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Abstract 

 

Prognostication is challenging in traumatic brain injury (TBI) patients in whom the CT fails to fully 

explain a low level of consciousness. Serum biomarkers reflect the extent of structural damage in a 

different way than CT does, but it is unclear if biomarkers provide additional prognostic value across 

the range of CT abnormalities. This study aimed to determine the added predictive value of 

biomarkers, differentiated by imaging severity.  

 

This prognostic study used data from the Collaborative European NeuroTrauma Effectiveness 

Research in Traumatic Brain Injury (CENTER-TBI) study (2014-2017). The analysis included patients 

aged ≥16 years with a moderate-severe TBI (Glasgow Coma Scale, GCS < 13) who had an acute CT 

and serum biomarkers obtained ≤24h of injury. Out of six protein biomarkers (GFAP, NFL, NSE, 

S100B, Tau, UCH-L1) the most prognostic panel was selected using lasso regression. The 

performance of established prognostic models (CRASH and IMPACT) was assessed before and after 

the addition of the biomarker panel, and compared between patients with different CT Marshall 

scores (Marshall score <3 versus Marshall score ≥3). Outcome was assessed at 6 months post-injury 

using the extended Glasgow Outcome Scale (GOSE), and dichotomized into favorable and 

unfavourable (GOSE <5). 

 

We included 872 patients with moderate-severe TBI. The mean age was 47 years (range 16 - 95), 647 

(74%) were male and 438 (50%) had a Marshall CT score <3. The serum biomarkers GFAP, NFL, 

S100B and UCH-L1 provided complementary prognostic information, NSE and Tau showed no added 

value. The addition of the biomarker panel to established prognostic models increased the area 

under the curve (AUC) by 0.08 and 0.03, and the explained variation in outcome by 13-14% and 7-



 

8%, for patients with a Marshall score of <3 and ≥3, respectively. The incremental AUC of biomarkers 

for individual models was significantly greater when the Marshall score was <3 compared to ≥3 (p < 

0.001).  

 

Serum biomarkers improve outcome prediction after moderate-severe TBI across the range of 

imaging severities and especially in patients with a Marshall score <3. 

traumatic brain injury, prospective study, CT scanning, biomarkers, adult brain injury 

Introduction 

Traumatic brain injury (TBI) is estimated to affect 1 in 2 people, account for 1 in 3 injury-related 

deaths and consume approximately 0.5% of the annual economic output worldwide.1 The Glasgow 

Coma Scale (GCS) is used to grade the initial injury severity, with a GCS <13 classified as moderate-

severe TBI.2 The detection of a low GCS usually prompts a computed tomography (CT) scan to look 

for a mass lesion or signs of raised intracranial pressure which would explain the low conscious level. 

When the CT does not show any of these (CT Marshall score <3)3 the low GCS may pose a diagnostic 

challenge.4 In some of these patients, the low GCS may be caused by alcohol, drugs, or early seizures 

and improves when these effects resolve. In others, prognosis-defining traumatic axonal injury may 

be present but missed by CT imaging, so that the CT is falsely reassuring.5 A more sensitive measure 

than CT for the degree of brain damage is thus needed. 

Being able to quantify the degree of brain damage more sensitively, is critical to predict clinical 

course and outcome, to guide communication with families and inform treatment decisions.  For 

example, in patients with substantial brain injury the clinician could delay sedation holds or non-

emergent surgical procedures to prioritise neuroprotection.   

Serum protein biomarkers, especially glial fibrillary acidic protein, have been shown to be more 

sensitive than CT for the detection of traumatic (axonal) injury defined on magnetic resonance 



 

imaging, at least in mild TBI.6,7 However, it is unclear if the additional injury detected by serum 

biomarkers is prognostically relevant. For example, the impact of axonal injury on outcome is driven 

by its location, rather than its volume.8 Serum biomarkers however correlate with total lesion 

burden, not with lesion type or location.9 So it is possible that biomarkers become elevated equally 

for prognostically relevant and irrelevant injury, in which case they would not enhance outcome 

prediction and may even confound it. 

Two independent multi-center studies have shown a significant benefit when serum biomarkers 

were added to the established prognostic models, IMPACT (International Mission for Prognosis and 

Analysis of Clinical Trials in TBI) and CRASH (Corticosteroid Randomisation after Significant Head 

Injury) in the general TBI population.10,11 However, it is unclear whether these findings generalize 

across the range of imaging severity, quantified by the Marshall CT classification.  

We therefore aimed to determine the added predictive value of biomarkers, differentiated by 

imaging severity as quantified by the Marshall CT classification. 

 

Methods 

Data collection 

This study was conducted and reported in accordance with the TRIPOD statement.12 Patients were 

selected from the prospective multi-centre Collaborative European NeuroTrauma Effectiveness 

Research in Traumatic Brain Injury (CENTER-TBI) study, which recruited from December 19, 2014, to 

December 17, 2017.13 Ethical approval was obtained by each site in accordance with local 

regulations and details may be found at https://www.center-tbi.eu/project/ethical-approval. Whilst 

the patient lacked capacity assent was given by their next of kin and consent sought when the 

patient regained capacity. Clinical data was accessed via the Neurobot platform (RRID/SCR_017004, 



 

core data, version 3.0; International Neuroinformatics Coordinating Facility; released November 24, 

2020).  

The present analysis included patients aged ≥16 years with a moderate-severe TBI (GCS < 13), in 

whom serum biomarkers and CT images were obtained within 24h of injury. The GCS refers to the 

best score recorded after resuscitation in the emergency department if available, otherwise the best 

recorded pre-hospital score was used. CT images were acquired using local site protocols and 

reported by central reviewers blinded to outcome, using the common data elements.14 Patients 

were split into two groups, based on whether the CT showed evidence of mass lesion/ raised 

intracranial pressure (Marshall score ≥3) or not (Marshall <3).3 

Outcome was assessed using the extended Glasgow Outcome Scale15 (GOSE) at six months post-

injury, by investigators blinded to biomarker levels. GOSE was dichotomized into favorable versus 

unfavourable outcome (GOSE <5) in line with established prognostic models.10,11  

Serum biomarkers included glial fibrillary acidic protein (GFAP), neurofilament light (NFL), neuron-

specific enolase (NSE), S100 calcium-binding protein B (S100B), total tau (Tau) and ubiquitin carboxy-

terminal hydrolase L1 (UCH-L1). Samples were stored at -80°C, transported and quality controlled as 

previously described.16 GFAP, NFL, Tau and UCH-L1 were analysed with a Single Molecule Arrays 

(SiMoA) based assay on the SR-X benchtop assay platform (Quanterix Corp., Lexington, MA) at 

University of Florida, USA.16 NSE and S100B were quantified using an electrochemiluminescence 

immunoassay kit (ECLIA) on the Cobas 8000 modular analyser (Roche Diagnostics, Mannheim, 

Germany) at the University of Pecs.16 The detectable ranges in pg/ml were as follows: GFAP 1.32–

40,000; NFL 0.0971–2000, Tau 0.0231–400 and UCH-L1 1.34–40,000. Values exceeding the upper 

level of detection were handled by stepwise dilution until in range. No samples in our cohort had 

values below the lower level of detection.  



 

Statistical analysis 

Statistical analysis was conducted in R 4.2.0 (R Project for Statistical Computing).. Unless otherwise 

indicated, data is presented as mean (95% confidence interval). Statistical tests were two-tailed and 

p-values were considered significant if  <0.05 after adjustment for multiple comparisons using the 

Benjamini-Hochberg method (applied within each results table or figure).17 

Adjusting biomarkers for time of sampling 

The median time to sampling was 14h in both patient groups (Marshall score <3 and ≥3). However, 

the authors were concerned about a theoretical risk of unmeasured confounders which might relate 

to both sampling time and outcome. For example, prolonged pre-hospital extrication might lead to 

later biomarker sampling, past the peak timing of a biomarker and may result in a falsely low 

biomarker concentration. For the main analysis biomarker concentrations were therefore adjusted 

as if they had all been sampled at 14h post-injury exactly (Supplementary methods). In brief, for 

each biomarker the average time trajectory was estimated. Imagine a patient’s S100B was taken at 

8h instead of 14h and measured 0.2ng/ml. Assume further that S100B is estimated to rise by x ng/ml 

between 8h and 14h in a patient with similar clinical features. The patient’s adjusted S100B 

concentration would then be 0.2 + x ng/ml. As a sensitivity analysis we also repeated the main 

analysis with raw instead of adjusted biomarker concentrations. 

Missing data handling 

Missing data ranged between 0-10% per variable, with most variables missing <5% of data (Table 1). 

Missing data were handled under the missing at random assumption using multiple imputation by 

chained equations as implemented in the mice package.18 Ten imputed datasets were generated and 

results pooled using Rubin’s rules.19 Supplemental Figure 1 illustrates how multiple imputation was 

integrated with model derivation and testing. 

 



 

Selecting the most prognostic protein biomarkers 

 Using a smaller panel of proteins, provided they contain the same amount of prognostic 

information, will be cheaper when applied in clinical practice. We therefore used lasso regression to 

identify and include only the most predictive proteins in the final prognostic model.20 Lasso 

regression uses a tuning parameter or penalty factor lambda to reduce the model coefficients for all 

biomarkers in the panel; the higher the chosen lambda, the smaller the model coefficients. For some 

biomarkers the model coefficient will so be reduced to zero, which effectively excludes them from 

the panel. Within each imputed dataset 10x10 cross-validation was used to identify the magnitude 

of the tuning parameter lambda that would minimize the mean prediction error. Imputation sets 

were then stacked and a lasso model applied using the mean lambda from 10 imputed datasets. To 

avoid inflating the sample size by a factor of 10 after having stacked the imputation sets each 

observation was weighted as 0.1.21 All data were scaled and centered to produce standardized 

coefficients (without bootstrapping) so that they could be compared across biomarkers measured on 

different scales and between patient groups (Marshall score <3 versus Marshall score ≥3). These 

coefficients were used to calculate a summary biomarker score for each patient (i.e., a summary 

measure of all biomarkers weighted by their relative prognostic value within the panel), which was 

used in subsequent prognostic models.  

Note that the proteins selected for the final panel are not necessarily those with the highest 

prognostic ability when used in isolation. For example, it might be that S100B is the best biomarker, 

so the lasso model will select that one for its panel. It might further be that GFAP is the second-best 

marker, individually. However, if GFAP provides some information already obtained from S100B 

(e.g., the degree of astroglial injury), then the lasso model will prioritise a different biomarker, such 

as NFL, as the next most important panel member, even if individually NFL was not as prognostic as 

GFAP. We therefore also undertook a secondary analysis using individual biomarkers only. 



 

Deriving prognostic models 

We chose two established prognostic models as a reference benchmark: the corticosteroid 

randomisation after significant head injury (CRASH-CT) model and International Mission for 

Prognosis and Analysis of Clinical Trials in TBI (IMPACT-CT) model.10,11 Four logistic regression models 

were defined: CRASH-CT with and without proteins and IMPACT-CT with and without proteins. The 

CRASH-CT model contained the variables age, GCS, pupil reactivity and major extra cranial injury plus 

the following CT features: presence of petechial haemorrhages, obliteration of the third ventricle or 

basal cistern, subarachnoid hemorrhage (SAH), midline shift and a non-evacuated haematoma.10 The 

IMPACT-CT model contained the variables age, motor score, pupil reactivity, hypoxia, hypotension, 

Marshall CT score, SAH and epidural hematoma.11 We fitted the models to the study population with 

and without the biomarker score, i.e. the variables are the same as in the original models (± 

biomarker score) but the coefficients are not. This is to provide a fair assessment of the value of 

adding biomarkers and is in line with previous publications on this subject.22,23 

Testing model performance 

Model performance was assessed in the domains of discrimination (the ability to distinguish 

between patients with and without the outcome of interest), calibration (the agreement between 

predicted risk and observed outcome prevalence) and the overall model fit.24 Discrimination was 

assessed using the area under the receiver operating characteristic curve (AUC), where an AUC = 1 

indicates a perfect model and an AUC = 0.5 a model that is no better than chance.25 To assess 

calibration we fitted a Cox calibration regression plot with an intercept and a slope.26 An intercept = 

0 and a slope  = 1 indicate perfect calibration.26 Overall model fit was assessed using the Nagelkerke 

R2 which captures the percentage of the variation in outcome explained by the model.27 Two nested 

models (the same model with versus without protein biomarkers) were compared using a likelihood 

ratio test.28 



 

The performance of prediction models is overestimated when models are tested on the same 

patient population that they were derived on.29 To provide realistic estimates of model performance 

we corrected the aforementioned metrics of discrimination, calibration and overall fit using the 

bootstrapping technique recommended by Steyerberg et al.,29 using 1000 bootstrap samples. 

The incremental value that biomarkers add to established models was compared between patient 

groups (Marshall score <3 versus Marshall score ≥3) using a t-test. The incremental value was 

measured both as the incremental R2 and, as recommended by Snell et. al, the incremental 

logit(AUC).30 

To understand the drivers of the incremental value we also checked for an interaction between 

patient group and predictions made by the established models, and between patient group and the 

biomarker score. 

Sensitivity analysis 

As a sensitivity analysis we tested for any differences between subgroups. Patients with a Marshall 

score <3 where split into those with CT-occult injury (Marshall score = 1) versus those with a 

Marshall score of 2. Patients with a Marshall score ≥3 where split into those with only diffuse injury 

(Marshall score 3 and 4) versus those with mass lesions (Marshall score 5 and 6). We accepted that 

the smaller sample sizes (e.g., N = 73 for Marshall score = 1) rendered this analysis purely 

exploratory. 

Previous studies have suggested that the performance of biomarkers may be reduced in the 

elderly,31,32 and so a subgroup analysis was performed in patients aged 65 years and above. Given 

biomarker levels can also be elevated by extra-cranial injuries33 we conducted a sub-group analysis 

of patients with isolated TBI. 



 

Data and code availability 

The CENTER-TBI investigators are committed to data sharing to advance TBI research. Researchers 

can request access to de-identified patient data by submitting a proposal at https://www.center-

tbi.eu/data to the CENTER-TBI Management Committee. Researcher will need to sign a data sharing 

agreement and adhere to the regulatory restrictions of the original CENTER-TBI study. 

The statistical code is freely available at https://github.com/DrSophieRichter/BioPred 

 

Results 

Participants 

Inclusion criteria were met by 872 patients with moderate-severe TBI (Supplemental Figure 2). Their 

mean age was 47 years (range 16 - 95), 647 (74%) were male and 771 (88%) were intubated. In 438 

patients (50%) the Marshall score was <3. Compared to patients with a Marshall score ≥3, these 

patients tended to be younger, with more severe extra-cranial injuries and better pupil reactivity; 

their CT more often showed evidence of axonal injury and less often showed brain swelling or extra-

axial injuries (Table 1). Only 143 (33%) patients with a Marshall score <3 had an unfavourable 

outcome compared to 262 (60%) with a Marshall score ≥3. Patients with an unfavourable outcome 

had higher median biomarker concentrations than patients with favourable outcomes (Table 2). 

Selecting the biomarker panel for outcome prediction 

The four biomarkers GFAP, NFL, S100B and UCH-L1 all added complementary prognostic value to 

each other (Table 3). In contrast, NSE and Tau added no prognostic value if these four markers were 

already present. The biomarker score used in subsequent prognostic models was a summary 

measure of all biomarkers weighted by their relative prognostic value within the panel (i.e., their 

lasso coefficient). 

https://www.center-tbi.eu/data
https://www.center-tbi.eu/data


 

Looking at the biomarker score in isolation (not as an addition to established models), there was no 

significant difference between patients with Marshall scores <3 versus ≥3 (Supplemental Tables S1 

and S2). 

Comparing the incremental value of biomarkers between patient groups 

Established models without the biomarker score had lower AUCs and lower R2 in patients with a 

Marshall score <3 compared to those with a Marshall score ≥3 (Table 4). When tested using an 

interaction term however, this difference did not reach statistical significance (Supplemental Table 

S2). 

The addition of the biomarker score resulted in a statistically significant improvement in measures of 

discrimination and model fit in both patient groups (Table 4, Supplemental Figures S3-6). 

The incremental value of biomarkers was significantly greater for patients with a Marshall score <3 

compared to those with a Marshall score ≥3 for both models (Figures 1-2). The panel outperformed 

individual biomarkers, at least for Marshall scores <3. The best performing individual marker was 

S100B, followed by UCH-L1 (Figures 1-2). 

Model coefficients for all models are provided in Supplemental Tables S3-S4. 

Sensitivity analysis 

There was no difference in the incremental value of biomarkers between Marshall score 1 versus 

Marshall score 2 patients, nor between Marshall score 3-4 vs Marshall score 5-6 patients 

(Supplemental Figure S7). However, the incremental value was higher in Marshall score 2 patients 

compared to Marshall score 3-4 patients, when quantified using the AUC (CRASH-CT and IMPACT-CT 

models) and the variation explained (only IMPACT-CT model). 

Biomarkers also provided incremental benefits in patients aged ≥ 65 years (Supplemental table S5) 

and to patients with isolated TBI (Supplemental table S6). 



 

Repeating the analysis with raw biomarker concentrations, unadjusted for sampling time, yielded 

almost identical results to the main analysis (Supplemental Tables S7-S8, Supplemental Figures S8-

S9). 

Discussion  

This study assessed the prognostic value of serum biomarkers in traumatic brain injury patients with 

a GCS <13 with or without signs of mass lesion or raised intracranial pressure on CT. Prior to this 

study biomarkers were known to be a more sensitive marker of brain injury than CT, but it was 

unclear whether the additional detected brain damage would be prognostically relevant across the 

range of imaging severities. Our findings show that serum biomarkers not only improve established 

models in those patients with a Marshall score <3, but do so to a greater degree than in patients 

with higher Marshall scores. 

The first step in serum biomarker-based outcome prediction is to choose the most relevant 

biomarker(s). Using a panel rather than individual biomarkers may be preferable given the varied 

cellular origin and pathological processes leading to the release of specific proteins.34 This however 

needs to be balanced against the risk of redundancy, which reduces model performance and 

increases cost. To the authors’ knowledge this is the first study that employed a data-driven 

approach to select the optimal panel. From our data we learned that most of the prognostic 

information could be captured in just two markers: S100B, an astroglial marker also elevated after 

skeletal injury, and NFL, derived from myelinated sub-cortical axons.35 Together they may provide a 

summary measure of the burden of extra- and intra-cranial injury. Since some complementary 

information was added by GFAP and UCH-L1 we included those markers in our prognostic model. 

Whether the added information of these two markers is worth the extra cost would need to be 

assessed in a formal health economics analysis. Interestingly, NSE and Tau provided no additional 

value. If single biomarkers rather than a panel are being used, then S100B is the most prognostic 

marker. UCH-L1, rather than NFL, takes the second place as it is not being penalized for providing 



 

information that is already obtained via S100B. This conclusion will be relevant to both researchers 

and developers of assay platforms. 

Previous studies in moderate-severe TBI reported AUCs ranging from 0.66‐0.92 and 0.66‐1.00 for 

IMPACT and CRASH models, respectively.36 The AUCs of the IMPACT-CT model (before the addition 

of biomarkers) in our study were 0.72 and 0.78 in patients with Marshall scores <3 and ≥3, 

respectively. The AUCs of the CRASH-CT model without biomarkers in our study were 0.73 and 0.79 

in patients with Marshall scores <3 and ≥3, respectively. Testing for the difference in model 

performance using an interaction term only showed an insignificant trend towards poorer 

performance in patients with a Marshall score <3. Overall, this suggests that model performance 

may be slightly worse in patients with a Marshall score <3, which may reflect the potentially 

conflicting information that CT and GCS provide to the models in such patients.  

Serum protein biomarkers were able to significantly improve the performance of established 

prognostic models in our study. A previous study also conducted on the CENTER-TBI cohort but 

including a large proportion of mild TBI patients, reported improvements in the AUC by 0.05-0.08 (all 

6 biomarkers) or  0.04-0.07 (GFAP + UCH-L1) and improvements in the explained variance by 12-15% 

(all 6 biomarkers) or 10-13% (GFAP + UCH-L1) when biomarkers were added to the IMPACT-Core and 

CRASH-Core models.23 A similar study conducted in the US-based TRACK-TBI cohort recorded 

improvements of 0.05 for the AUC and 12% for the explained variance when adding UCH-L1 and 

GFAP to the IMPACT-CT model.22 These values agree with those observed in our study, where the 

AUC increased by 0.08 and 0.03, and the variation explained by 13-14% and 7-8%, for patients with a 

Marshall score of <3 and ≥3, respectively. Importantly, we showed that an incremental value of 

serum biomarkers for AUC and R2 was present across all imaging severities and was greater for those 

with Marshall scores <3.  

Our sensitivity analysis showed no differences in the incremental value of biomarkers between 

Marshall scores 1 versus 2, or between Marshall scores 3-4 versus 5-6, but did show differences 



 

between the Marshall score 2 and the Marshall score 3-4 group. This supports our a priori 

dichotomization at Marshall ≥3. 

Limitations 

First, our sample size was limited to 872 patients compared to the original derivation cohorts for 

CRASH-CT (n = 10,008) and IMPACT-CT (n = 8,509).10,11 However, we believe that the multi-center 

multi-national design of our study and the use of bootstrapping for optimism correction, mean that 

our results will still generalize to future patients. Second, the Quanterix assay kits used in our study 

have not yet been licenced for use in clinical practice. Another platform is already approved for 

GFAP and UCHL-1 in the context of CT triage, and others are likely to be developed.37 Further studies 

are needed to understand how to cross-calibrate and translate results between assay platforms. 

Finally, we only tested six protein biomarkers. It is possible that the prognostic value of the protein 

panel could be enhanced by yet another class of proteins (e.g. the oligodendrocyte marker myelin 

basic protein), by proteins extracted from extra-cellular vesicles (which facilitates blood brain barrier 

transit and prevents their degradation) or by non-protein markers such as microRNAs or 

metabolomics.35,38,39  

Conclusion 

Serum biomarkers improve outcome prediction after moderate-severe TBI across the range of 

imaging severities and especially in patients with a Marshall score <3. 

  



 

Transparency, Rigor and Reproducibility Summary 

The study was pre-registered at clinicaltrials.gov (NCT02210221). The analysis plan was not formally 

pre-registered, but the team members with primary responsibility for the analysis (lead author and 

senior author) certify that the analysis plan was pre-specified. The sample size of 434 and 438 

patients per group was not pre-planned but based on the number of patients meeting inclusion 

criteria. 4509 CENTER-TBI participants were screened and 872 fulfilled inclusion criteria 

(Supplemental figure S2). Participants were blinded to biomarker results throughout the study, even 

after primary clinical observations were complete. Handling of biofluid samples and analysis was 

performed by team members blinded to relevant characteristics of the participants. Samples were 

analyzed in a single round of experiments with the same batch of reagents. Quantitative test-retest 

reproducibility using the same participants assessed repeatedly showed a coefficient of variation of 

7% for S100B and NSE, and 22-30% for GFAP, UCH-L1, NFL and Tau.16 All equipment and analytical 

reagents used to perform measurements on the fluid biomarkers are widely available from Roche 

Diagnostics, Mannheim, Germany and Quanterix Corp., Lexington, MA, respectively. The key 

inclusion criteria and outcome evaluations are established standards. Missing data has been handled 

using multiple imputation, as reported in the text. Correction for multiple comparisons was 

performed using the Benjamini-Hochberg method. This report includes documentation of internal 

validation using bootstrapping.  Deidentified CENTER-TBI data, including the subset used for 

this study, will be available to researchers who provide a methodologically sound study 

proposal for review and approval by the Management Committee (submitted online at: 

https://www.center-tbi.eu/data).  

Researchers will need to sign a data sharing agreement and adhere to the regulatory restrictions of 

the original CENTER-TBI study. Analytic code used to conduct the analyses presented in this study 

are available in a public code repository https://github.com/DrSophieRichter/BioPred. This paper 

https://eur03.safelinks.protection.outlook.com/?url=https%3A%2F%2Fwww.center-tbi.eu%2Fdata&data=05%7C01%7Cvfjn2%40universityofcambridgecloud.onmicrosoft.com%7C7d9c02751cf842c9055f08db2b9e7ebd%7C49a50445bdfa4b79ade3547b4f3986e9%7C1%7C0%7C638151731976664977%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C3000%7C%7C%7C&sdata=XL%2BC9MZjRZuYDX1WMmNK8%2F5Cmy32M9t%2BUT4XnGLqxb8%3D&reserved=0
https://github.com/DrSophieRichter/BioPred


 

will be published under a Creative Commons Open Access license, and upon publication will be 

freely available at https://www.liebertpub.com/loi/neu. 
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Figure legends 

 

Figure 1. Comparison of the incremental value of serum biomarkers between patient groups – 
CRASH-CT model. The incremental value of adding serum biomarkers to established prognostic 
models (CRASH-CT and IMPACT-CT) was compared between patients with a Marshall score <3 and 
those with a Marshall score ≥3, using a t-test. Dot and bar plots show means and 95% confidence 
intervals. Estimates were down-corrected for optimism via bootstrapping. q denotes the p-value 
corrected for multiple comparisons. ns = not significant, */**/** indicate q <0.05/ <0.01/ <0.001. 
AUC = area under the curve. The logit transformation ensures a fair comparison across models which 
had different baseline AUCs prior to the addition of serum biomarkers. R2 = Nagelkerke R2 expressed 
as the percentage of the variation in outcome explained by the model. 

 

Figure 2. Comparison of the incremental value of serum biomarkers between patient groups – 
IMPACT-CT model. The incremental value of adding serum biomarkers to established prognostic 
models (CRASH-CT and IMPACT-CT) was compared between patients with a Marshall score <3 and 
those with a Marshall score ≥3, using a t-test. Dot and bar plots show means and 95% confidence 
intervals. Estimates were down-corrected for optimism via bootstrapping. q denotes the p-value 
corrected for multiple comparisons. ns = not significant, */**/** indicate q <0.05/ <0.01/ <0.001. 
AUC = area under the curve. The logit transformation ensures a fair comparison across models which 
had different baseline AUCs prior to the addition of serum biomarkers. R2 = Nagelkerke R2 expressed 
as the percentage of the variation in outcome explained by the model. 

 



 

  
Marshall ≥3 

(N=434) 
Marshall <3 

(N=438) 
Overall 
(N=872) 

Age (years)C, I
    

  Median (Q1-Q3) 53 (36 - 68) 42 (25 - 58) 47 (29 - 64) 
Age, dichotomized (years)S

    

  <65 295 (68 %) 367 (84 %) 662 (76 %) 
  >=65 139 (32 %) 71 (16 %) 210 (24 %) 
SexD

    

  F 116 (27 %) 109 (25 %) 225 (26 %) 
  M 318 (73 %) 329 (75 %) 647 (74 %) 
Care pathD

    

  not admitted 0 (0 %) 2 (0 %) 2 (0 %) 
  ward 13 (3 %) 22 (5 %) 35 (4 %) 
  ICU (self-ventilating) 26 (6 %) 34 (8 %) 60 (7 %) 
  ICU (intubated) 394 (91 %) 377 (86 %) 771 (88 %) 
  ICU (airway unknown) 1 (0 %) 3 (1 %) 4 (0 %) 
Major extra-cranial injuryC

    

  absent 250 (58 %) 194 (44 %) 444 (51 %) 
  present 184 (42 %) 244 (56 %) 428 (49 %) 
Isolated TBIS

    

  isolated 188 (43 %) 128 (29 %) 316 (36 %) 
  not isolated 246 (57 %) 310 (71 %) 556 (64 %) 
Glasgow Coma ScaleC

    

  12 31 (7 %) 25 (6 %) 56 (6 %) 
  11 22 (5 %) 39 (9 %) 61 (7 %) 
  10 27 (6 %) 40 (9 %) 67 (8 %) 
  9 24 (6 %) 20 (5 %) 44 (5 %) 
  8 36 (8 %) 42 (10 %) 78 (9 %) 
  7 40 (9 %) 47 (11 %) 87 (10 %) 
  6 30 (7 %) 40 (9 %) 70 (8 %) 
  5 17 (4 %) 18 (4 %) 35 (4 %) 
  4 33 (8 %) 30 (7 %) 63 (7 %) 
  3 174 (40 %) 137 (31 %) 311 (36 %) 
Motor scoreI

    

  6 32 (7 %) 40 (9 %) 72 (8 %) 
  5 97 (22 %) 132 (30 %) 229 (26 %) 
  4 44 (10 %) 50 (11 %) 94 (11 %) 
  3 20 (5 %) 23 (5 %) 43 (5 %) 
  2 26 (6 %) 19 (4 %) 45 (5 %) 
  1 214 (49 %) 174 (40 %) 388 (44 %) 
  Missing 1 (0.2%) 0 (0%) 1 (0.1%) 
Reactive pupilsC, I

    

  2 273 (63 %) 359 (82 %) 632 (72 %) 
  1 43 (10 %) 29 (7 %) 72 (8 %) 
  0 97 (22 %) 38 (9 %) 135 (15 %) 
  Missing 21 (4.8%) 12 (2.7%) 33 (3.8%) 
HypoxiaI

    

  absent 343 (79 %) 332 (76 %) 675 (77 %) 
  present or suspected 59 (14 %) 85 (19 %) 144 (17 %) 



  
Marshall ≥3 

(N=434) 
Marshall <3 

(N=438) 
Overall 
(N=872) 

  Missing 32 (7.4%) 21 (4.8%) 53 (6.1%) 
HypotensionI

    

  absent 348 (80 %) 335 (76 %) 683 (78 %) 
  present or suspected 55 (13 %) 80 (18 %) 135 (15 %) 
  Missing 31 (7.1%) 23 (5.3%) 54 (6.2%) 
Time to blood protein sample (hours)D

    

  Median (Q1-Q3) 14 (8.4 - 19) 14 (7.7 - 19.4) 14 (8 - 19.1) 
Marshall CT scoreI, S

    

  1 0 (0 %) 73 (17 %) 73 (8 %) 
  2 0 (0 %) 365 (83 %) 365 (42 %) 
  3 85 (20 %) 0 (0 %) 85 (10 %) 
  4 17 (4 %) 0 (0 %) 17 (2 %) 
  5 or 6 332 (76 %) 0 (0 %) 332 (38 %) 
Petechial haemorrhageC

    

  absent 359 (83 %) 299 (68 %) 658 (75 %) 
  present 55 (13 %) 118 (27 %) 173 (20 %) 
  Missing 20 (4.6%) 21 (4.8%) 41 (4.7%) 
Cisternal compressionC

    

  absent 98 (23 %) 411 (94 %) 509 (58 %) 
  present 316 (73 %) 6 (1 %) 322 (37 %) 
  Missing 20 (4.6%) 21 (4.8%) 41 (4.7%) 
Midline shiftC

    

  absent 185 (43 %) 414 (95 %) 599 (69 %) 
  present 229 (53 %) 3 (1 %) 232 (27 %) 
  Missing 20 (4.6%) 21 (4.8%) 41 (4.7%) 
SAHC, I

    

  absent 46 (11 %) 139 (32 %) 185 (21 %) 
  present 368 (85 %) 278 (63 %) 646 (74 %) 
  Missing 20 (4.6%) 21 (4.8%) 41 (4.7%) 
EDHI

    

  absent 315 (73 %) 367 (84 %) 682 (78 %) 
  present 99 (23 %) 50 (11 %) 149 (17 %) 
  Missing 20 (4.6%) 21 (4.8%) 41 (4.7%) 
HaematomaC

    

  absent 47 (11 %) 262 (60 %) 309 (35 %) 
  present 367 (85 %) 155 (35 %) 522 (60 %) 
  Missing 20 (4.6%) 21 (4.8%) 41 (4.7%) 
WLSTD

    

  not withdrawn 341 (79 %) 417 (95 %) 758 (87 %) 
  withdrawn 93 (21 %) 21 (5 %) 114 (13 %) 
GOSE at 6 monthsD

    

  1 159 (37 %) 43 (10 %) 202 (23 %) 
  2 or 3 83 (19 %) 66 (15 %) 149 (17 %) 
  4 20 (5 %) 34 (8 %) 54 (6 %) 
  5 53 (12 %) 59 (13 %) 112 (13 %) 
  6 25 (6 %) 63 (14 %) 88 (10 %) 
  7 29 (7 %) 55 (13 %) 84 (10 %) 
  8 24 (6 %) 70 (16 %) 94 (11 %) 
  Missing 41 (9.4%) 48 (11.0%) 89 (10.2%) 



Table 1. Patient characteristics. Values are given as mean (first quartile – third quartile) or frequency 
(percent). ICU = intensive care unit, CT = computed tomography, Cisternal compression = obliteration 
of the third ventricle or basal cistern, SAH = subarachnoid haemorrhage, EDH = epidural haematoma, 
Haematoma = Non-evacuated haematoma, WLST = Withdrawal of life-sustaining treatment, GOSE = 
extended Glasgow Outcome Score. Superscripts: C = variable included in CRASH_CT model, I = 
variable included in IMPACT_CT model, S = variable used for subgroup-analysis, D = descriptor of 
patient cohort not used in modelling 

 

 



 

 Marshall ≥3 Marshall <3 

  
fav 

(N=131) 
unfav 

(N=262) 
fav 

(N=247) 
unfav 

(N=143) 
GFAP (ng/ml)     

  Median (Q1-Q3) 15 (5.4 - 30) 39 (13.9 - 79.5) 9.6 (4.7 - 21) 27 (9.2 - 50.5) 
  Missing 0 (0%) 3 (1.1%) 2 (0.8%) 1 (0.7%) 
NFL (pg/ml)     

  Median (Q1-Q3) 51 (24.2 - 97.9) 100 (46.7 - 224.8) 31 (16.2 - 55.3) 73 (32.6 - 137) 
  Missing 0 (0%) 3 (1.1%) 2 (0.8%) 1 (0.7%) 
NSE (ng/ml)     

  Median (Q1-Q3) 22 (16.3 - 32.1) 30 (21.1 - 47.3) 21 (15.5 - 29.4) 26 (18.6 - 40) 
  Missing 0 (0%) 0 (0%) 1 (0.4%) 0 (0%) 
S100B (ng/ml)     

  Median (Q1-Q3) 0.25 (0.1 - 0.4) 0.62 (0.3 - 1.4) 0.23 (0.1 - 0.4) 0.49 (0.3 - 0.7) 
  Missing 0 (0%) 1 (0.4%) 0 (0%) 0 (0%) 
Tau (pg/ml)     

  Median (Q1-Q3) 8.1 (3.3 - 15) 18 (7.7 - 41) 5.4 (3 - 10.4) 10 (5.4 - 22.6) 
  Missing 0 (0%) 3 (1.1%) 2 (0.8%) 1 (0.7%) 
UCH-L1 (pg/ml)     

  Median (Q1-Q3) 270 (145 - 572) 720 (295 - 1283) 220 (112 - 398) 540 (249 - 1011) 
  Missing 0 (0%) 4 (1.5%) 2 (0.8%) 1 (0.7%) 

 

Table 2. Biomarker concentrations stratified by Marshall score and outcome. Outcome was 
measured at 6 months using the extended Glasgow Outcome Scale (GOSE) and deemed favourable 
(“fav”) if GOSE ≥5 and unfavourable (“unfav”) if GOSE <5. Figures are provided as medians (first 
quartile – third quartile). 

 

 



 

Variable Overall Marshall <3 Marshall ≥3 

(Intercept) 0.50 0.34 0.65 

GFAP 0.02 0.01 0.04 

NFL 0.08 0.07 0.03 

NSE 0.00 0.00 0.00 

S100B 0.13 0.10 0.11 

Tau 0.00 0.00 0.00 

UCH-L1 0.03 0.03 0.03 

 

Table 3. Relative prognostic value of individual proteins. The table shows the results of the lasso 
regression using acute serum biomarker concentrations to predict unfavourable six-month outcome. 
The higher the coefficient, the stronger the prognostic value of a biomarker. A coefficient of zero 
indicates that the protein does not add any further prognostic value if the other proteins are already 
available. The strength of the coefficients is color coded with darker shades indicating greater 
prognostic value. Biomarker concentrations are all log-transformed and adjusted for time of sampling 
so that individual proteins are directly comparable. All coefficients are standardized so that the two 
patient groups are directly comparable. 



 

 CRASH-CT IMPACT-CT 

Proteins added none panel none panel 

Marshall score <3 

Area under 
the curve 

0.73 
(0.72-0.74) 

0.81 
(0.79-0.82) 

0.72 
(0.71-0.73) 

0.80 
(0.78-0.81) 

Variation 

explained (%) 
26 

(24-27) 
39 

(37-41) 
24 

(22-25) 
38 

(35-41) 

Calibration 

intercept 
-0.16 

(-0.21--0.11) 
-0.10 

(-0.14--0.07) 
-0.08 

(-0.11--0.06) 
-0.05 

(-0.07--0.03) 

Calibration 

slope 

0.73 
(0.67-0.79) 

0.80 
(0.77-0.84) 

0.84 
(0.82-0.85) 

0.87 
(0.86-0.88) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

Marshall score ≥3 

Area under 
the curve 

0.79 
(0.77-0.80) 

0.82 
(0.81-0.84) 

0.78 
(0.76-0.79) 

0.82 
(0.81-0.83) 

Variation 

explained (%) 
36 

(33-39) 
43 

(40-46) 
35 

(32-38) 
43 

(40-46) 

Calibration 

intercept 
0.04 

(0.03-0.06) 
0.04 

(0.03-0.05) 
0.07 

(0.06-0.08) 
0.06 

(0.05-0.07) 

Calibration 

slope 

0.89 
(0.88-0.90) 

0.90 
(0.89-0.91) 

0.84 
(0.83-0.86) 

0.85 
(0.84-0.87) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

 

Table 4. Performance of prognostic models with and without serum biomarkers. CRASH-CT and 
IMPACT-CT are the established prognostic models. Their performance was assessed before and after 
adding the biomarker score. Figures are Mean (95% confidence interval). Results were obtained 
through bootstrapping within multiply imputed datasets, which reduces mean estimates and widens 
confidence intervals to ensure results are generalizable. q-values are p-values corrected for multiple 
comparisons. 
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Supplemental methods: Adjusting biomarkers for time of sampling 

Serum biomarkers were adjusted for time between injury of sampling (from now on just called 

“time”) by estimating what each patient’s biomarker concentration would have been, had the 

sample been taken two hours post-injury. This was done as follows: 

1. We fitted a regression model with the observed biomarker concentration as the dependent 

variable and time, time2 and time3 (as orthogonal polynomials) as the independent variables. We 

also added the following covariates as independent variables: Age, Sex, GCS, Motor score, Reactive 

pupils, Marshall score, presence of subarachnoid hemorrhage on CT, presence of epidural 

haematoma in CT, presence of petechial haemorrhages on CT, presence of cisternal compression on 

CT, presence of midline shift on CT, presence of majr extracranial haemorrhage, hypoxia, 

hypotension, care pathway and alcohol intoxication. 

2. We used this regression model to calculate for each patient their predicted biomarker 

concentration (at their actual sampling time) and the predicted biomarker concentration at 14 

hours. The difference, delta, between these two predicted values was calculated. 

3. For each patient we added delta to their observed biomarker concentration. 

  



 

Supplemental Figure S1. Workflow combining multiple imputation with bootstrapping. Ten 

imputed datasets imp_01 to imp_10 were generated from the original incomplete dataset. For each 

imputed dataset 1000 bootstrap samples boot_0001 to boot_1000 were created by resampling 

patients with replacement. Assessing the performance of a model on the same data that it was 

derived on will provide overly optimistic performance metrics. Bootstrapping was used to correct 

the model performance metrics for optimism. As an example, this process is shown for the area 

under the curve (AUC) but the same process was used for all performance metrics. 

  



 

Supplemental Figure S2. Flowchart of patient inclusion 



Marshall score Outcome N Biomarker score 

 ≥3 
0 149 -0.064 (-0.069--0.058) 

1 285  0.128 ( 0.125- 0.132) 

 <3 

0 285 -0.118 (-0.124--0.111) 

1 153  0.046 ( 0.038- 0.053) 

 

Supplemental Table S1. Biomarker mean scores. The biomarker score is a weighted summary 

measure of GFAP, NFL, S100B and UCH-L1 concentrations, on a logit scale. N refers to the number of 

patients. Outcome was either favourable (0) or unfavourable (1). 

  



 

Supplemental Table S2. Interaction between models and patient groups. Three models were fitted 

to check if prognostic tools (the CRASH-CT model, the IMPACT-CT model, the biomarker score) 

predict outcome differently in different patient groups (Marshall score <3 versus Marshall score ≥3). 

A positive interaction term shows outcome is better predicted in Marshall score <3 patients, a 

negative interaction term shows outcome is less well predicted in Marshall score <3 patients. q-

values are p-values corrected for multiple comparisons. 

 

 

  

Model Variable Estimate 
Std. 

Error 
z value q-value 

CRASH-CT 

Intercept  0.330  0.117  2.824  0.006 

Marshall<3 -0.681  0.163 -4.171 <0.001 

CRASH-CT  0.991  0.113  8.783 <0.001 

Marshall<3 : CRASH-CT -0.145  0.157 -0.924  0.362 

IMPACT-CT 

Intercept -0.065  0.132 -0.494  0.623 

Marshall<3 -0.001  0.182 -0.003  0.963 

IMPACT-CT  1.135  0.125  9.102 <0.001 

Marshall<3 : IMPACT-CT -0.261  0.168 -1.550  0.136 

Biomarker 

score 

Intercept  0.498  0.111  4.498 <0.001 

Marshall<3 -0.937  0.157 -5.956 <0.001 

pred_bio  4.577  0.596  7.680 <0.001 

Marshall<3 : Biomarker score  1.030  0.934  1.102  0.280 



 

Supplemental Figure S3: Calibration curves for patients with Marshall score <3. Calibration plots 

were created by ordering patients from the lowest to the highest predicted probability of 

unfavorable outcome, then splitting patients into 10 groups, and then plotting each group’s mean 

predicted probability of unfavorable outcome against the prevalence of that outcome actually 

observed in that group. Dots with bars = mean predicted probability of unfavorable outcome in each 

group with its 95% confidence interval. Solid line = calibration line that should be followed by a 

perfectly calibrated model. Dashed line = calibration line of the actual model, fitted using linear 



regression. Colored line = calibration line of the actual model, fitted using locally estimated 

scatterplot smoothing. 

  



 

Supplemental Figure S4: Calibration curves for patients with Marshall score ≥3. Calibration plots 

were created by ordering patients from the lowest to the highest predicted probability of 

unfavorable outcome, then splitting patients into 10 groups, and then plotting each group’s mean 

predicted probability of unfavorable outcome against the prevalence of that outcome actually 

observed in that group. Dots with bars = mean predicted probability of unfavorable outcome in each 

group with its 95% confidence interval. Solid line = calibration line that should be followed by a 

perfectly calibrated model. Dashed line = calibration line of the actual model, fitted using linear 



regression. Colored line = calibration line of the actual model, fitted using locally estimated 

scatterplot smoothing. 

  



 

Supplemental Figure S5: Receiver operating characteristic curves for patients with Marshall score 

<3. Established models were used with and without the addition of protein biomarkers to predict 

unfavourable outcome. AUC = area under the curve, CI = confidence interval 

  



 

Supplemental Figure S6: Receiver operating characteristic curves for patients with Marshall score 

≥3. Established models were used with and without the addition of protein biomarkers to predict 

unfavourable outcome. AUC = area under the curve, CI = confidence interval 

  



 

Supplemental Figure S7. Comparison of the incremental value of serum biomarkers between 

patient groups – subgroup analysis. The incremental value of adding serum biomarkers to 

established prognostic models (CRASH-CT and IMPACT-CT) was compared between patients with 

Marshall scores 1 versus 2, 2 versus 3-4 and 3-4 vs 5-6, using t-tests. Dot and bar plots show means 



and 95% confidence intervals. Estimates were down-corrected for optimism via bootstrapping. q 

denotes the p-value corrected for multiple comparisons. ns = not significant, */**/** indicate q 

<0.05/ <0.01/ <0.001. AUC = area under the curve. The logit transformation ensures a fair 

comparison across models which had different baseline AUCs prior to the addition of serum 

biomarkers. R2 = Nagelkerke R2 expressed as the percentage of the variation in outcome explained 

by the model. The upper and lower limits of the 95% confidence intervals are not shown for the 

some R2 values, as they approach plus and minus infinity, respectively. 

  



Model Variable Estimate 
Std. 

Error 

z 

value 

p-

value 

Refitted CRASH-CT 

Intercept -2.519  0.546 -4.609 <0.001 

Age (years)_crash  0.055  0.009  6.109 <0.001 

Glasgow Coma Score  0.143  0.040  3.550  0.001 

Reactive pupils (1)  0.205  0.537  0.381  0.653 

Reactive pupils (2) -0.664  0.384 -1.729  0.104 

Major extra-cranial injury 

(present)  0.603  0.239  2.521  0.014 

Petechial haemorrhages 

(present)  0.795  0.253  3.138  0.002 

Cisternal compression 

(present)  2.574  1.083  2.359  0.022 

Subarachnoid haemorrhage 

(present)  0.257  0.249  1.033  0.354 

Midline shift (present) -0.344  1.230 -0.282  0.783 

Unevacuated haematoma 

(present)  0.120  0.241  0.500  0.631 

Refitted IMPACT-CT 

Intercept -2.171  0.587 -3.697 <0.001 

Age (years)  0.032  0.006  5.146 <0.001 

Motor score (2)  0.880  0.548  1.605  0.128 

Motor score (3) -0.039  0.515 -0.076  0.882 

Motor score (4) -0.179  0.356 -0.502  0.629 

Motor score (5 or 6) -1.006  0.270 -3.723 <0.001 

Reactive pupils (1)  0.081  0.543  0.148  0.799 

Reactive pupils (2) -0.790  0.386 -2.046  0.050 

Hypoxia (present or 

suspected) -0.388  0.307 -1.262  0.238 

Hypotension (present or 

suspected)  0.755  0.292  2.585  0.012 

Marshall score (2)  1.388  0.427  3.248  0.002 

Subarachnoid haemorrhage 

(present) -0.165  0.296 -0.552  0.532 

Extradural haematoma 

(present) -0.698  0.387 -1.799  0.078 

Refitted CRASH-CT plus 

biomarkers 

Intercept -2.099  0.594 -3.529  0.001 

Age (years)_crash  0.056  0.010  5.743 <0.001 

Glasgow Coma Score  0.140  0.044  3.156  0.002 

Reactive pupils (1)  0.321  0.571  0.560  0.546 

Reactive pupils (2) -0.625  0.415 -1.509  0.156 



Model Variable Estimate 
Std. 

Error 

z 

value 

p-

value 

Major extra-cranial injury 

(present)  0.190  0.263  0.719  0.485 

Petechial haemorrhages 

(present)  0.777  0.266  2.925  0.004 

Cisternal compression 

(present)  2.009  1.439  1.316  0.210 

Subarachnoid haemorrhage 

(present) -0.117  0.274 -0.424  0.577 

Midline shift (present) -0.358  1.309 -0.291  0.777 

Unevacuated haematoma 

(present) -0.147  0.260 -0.567  0.584 

Biomarker panel 

logit(probability)  4.887  0.737  6.626 <0.001 

Refitted IMPACT-CT plus 

biomarkers 

Intercept -1.828  0.635 -2.872  0.007 

Age (years)  0.034  0.007  5.001 <0.001 

Motor score (2)  0.772  0.575  1.340  0.204 

Motor score (3)  0.122  0.530  0.231  0.775 

Motor score (4) -0.179  0.388 -0.461  0.657 

Motor score (5 or 6) -0.958  0.293 -3.271  0.002 

Reactive pupils (1)  0.153  0.573  0.263  0.721 

Reactive pupils (2) -0.831  0.415 -2.005  0.055 

Hypoxia (present or 

suspected) -0.380  0.323 -1.173  0.272 

Hypotension (present or 

suspected)  0.308  0.314  0.982  0.335 

Marshall score (2)  1.090  0.471  2.307  0.027 

Subarachnoid haemorrhage 

(present) -0.452  0.321 -1.404  0.188 

Extradural haematoma 

(present) -0.947  0.415 -2.274  0.027 

Biomarker panel 

logit(probability)  4.962  0.725  6.846 <0.001 

 

Supplemental Table S3. Model coefficients for patients with a Marshall score <3. 

  



Model Variable Estimate 
Std. 

Error 

z 

value 

p-

value 

Refitted CRASH-CT 

Intercept -1.113  0.723 -1.540  0.156 

Age (years)_crash  0.068  0.010  6.761 <0.001 

Glasgow Coma Score  0.206  0.043  4.806 <0.001 

Reactive pupils (1) -0.871  0.508 -1.715  0.090 

Reactive pupils (2) -1.276  0.379 -3.367  0.001 

Major extra-cranial injury 

(present)  0.470  0.259  1.814  0.073 

Petechial haemorrhages 

(present)  0.486  0.378  1.284  0.215 

Cisternal compression 

(present)  0.520  0.296  1.755  0.128 

Subarachnoid haemorrhage 

(present)  0.442  0.378  1.166  0.269 

Midline shift (present) -0.040  0.266 -0.151  0.793 

Unevacuated haematoma 

(present) -0.628  0.400 -1.567  0.130 

Refitted IMPACT-CT 

Intercept -0.245  0.597 -0.407  0.640 

Age (years)  0.040  0.007  5.643 <0.001 

Motor score (2)  1.122  0.652  1.713  0.094 

Motor score (3)  0.701  0.640  1.087  0.295 

Motor score (4) -0.660  0.396 -1.665  0.115 

Motor score (5 or 6) -1.114  0.292 -3.818 <0.001 

Reactive pupils (1) -0.694  0.512 -1.356  0.181 

Reactive pupils (2) -1.395  0.383 -3.638 <0.001 

Hypoxia (present or 

suspected) -0.081  0.382 -0.216  0.744 

Hypotension (present or 

suspected)  1.144  0.459  2.483  0.017 

Marshall score (4) -0.192  0.727 -0.261  0.730 

Marshall score (5) or 6 -0.058  0.323 -0.181  0.829 

Subarachnoid haemorrhage 

(present)  0.504  0.376  1.338  0.206 

Extradural haematoma 

(present) -0.651  0.275 -2.365  0.025 

Refitted CRASH-CT plus 

biomarkers 

Intercept -0.635  0.757 -0.840  0.434 

Age (years)_crash  0.065  0.010  6.268 <0.001 

Glasgow Coma Score  0.172  0.045  3.816 <0.001 

Reactive pupils (1) -0.537  0.533 -1.009  0.318 

Reactive pupils (2) -1.060  0.394 -2.687  0.008 



Model Variable Estimate 
Std. 

Error 

z 

value 

p-

value 

Major extra-cranial injury 

(present)  0.397  0.273  1.457  0.151 

Petechial haemorrhages 

(present)  0.453  0.398  1.139  0.268 

Cisternal compression 

(present)  0.356  0.311  1.146  0.317 

Subarachnoid haemorrhage 

(present)  0.045  0.396  0.114  0.748 

Midline shift (present)  0.084  0.283  0.298  0.698 

Unevacuated haematoma 

(present) -0.454  0.421 -1.078  0.300 

Biomarker panel 

logit(probability)  3.807  0.714  5.327 <0.001 

Refitted IMPACT-CT plus 

biomarkers 

Intercept -0.051  0.631 -0.081  0.765 

Age (years)  0.038  0.007  5.188 <0.001 

Motor score (2)  1.507  0.673  2.230  0.030 

Motor score (3)  0.579  0.657  0.873  0.401 

Motor score (4) -0.423  0.422 -1.004  0.351 

Motor score (5 or 6) -0.854  0.308 -2.774  0.007 

Reactive pupils (1) -0.436  0.526 -0.829  0.412 

Reactive pupils (2) -1.240  0.394 -3.142  0.002 

Hypoxia (present or 

suspected) -0.179  0.397 -0.454  0.649 

Hypotension (present or 

suspected)  0.820  0.477  1.711  0.097 

Marshall score (4) -0.001  0.799  0.006  0.752 

Marshall score (5) or 6  0.118  0.339  0.347  0.732 

Subarachnoid haemorrhage 

(present)  0.073  0.402  0.183  0.718 

Extradural haematoma 

(present) -0.559  0.293 -1.911  0.067 

Biomarker panel 

logit(probability)  3.900  0.717  5.440 <0.001 

 

Supplemental Table S4. Model coefficients for patients with a Marshall score ≥3 



 CRASH-CT IMPACT-CT 

Proteins added none panel none panel 

Marshall score <3 

Area under 

the curve 

0.70 

(0.67-0.74) 

0.76 

(0.74-0.79) 

0.75 

(0.73-0.77) 

0.80 

(0.78-0.83) 

Variation 

explained (%) 

32 

(28-36) 

45 

(42-48) 

47 

(43-50) 

58 

(53-62) 

Calibration 

intercept 

0.11 

(0.07-0.16) 

0.11 

(0.07-0.14) 

0.16 

(0.11-0.21) 

0.14 

(0.09-0.19) 

Calibration 

slope 

0.56 

(0.43-0.69) 

0.56 

(0.47-0.65) 

0.29 

(0.25-0.34) 

0.31 

(0.27-0.35) 

Likelihood ratio 

test q-value 
 0.004  0.003 

Marshall score ≥3 

Area under 

the curve 

0.77 
(0.74-0.81) 

0.86 
(0.83-0.89) 

0.68 
(0.63-0.74) 

0.83 
(0.79-0.86) 

Variation 

explained (%) 

34 
(29-38) 

53 
(46-60) 

23 
(16-30) 

51 
(44-57) 

Calibration 

intercept 

0.42 
(0.22-0.63) 

0.30 
(0.18-0.42) 

0.98 
(0.87-1.09) 

0.60 
(0.49-0.70) 

Calibration 

slope 

0.63 
(0.51-0.74) 

0.65 
(0.57-0.72) 

0.27 
(0.24-0.30) 

0.38 
(0.35-0.40) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

 

Supplemental Table S5. Model performance in patients aged ≥ 65 years. N = 71 for Marshall <3 and 

N = 139 for Marshall ≥3. CRASH-CT and IMPACT-CT are the established prognostic models. Their 

performance was assessed before and after adding the biomarker score. Figures are Mean (95% 

confidence interval). Results were obtained through bootstrapping within multiply imputed datasets, 

which reduces mean estimates and widens confidence intervals to ensure results are generalizable. q-

values are p-values corrected for multiple comparisons. 

  



 CRASH-CT IMPACT-CT 

Proteins added none panel none panel 

Marshall score <3 

Area under 

the curve 

0.70 
(0.66-0.74) 

0.80 
(0.76-0.84) 

0.74 
(0.69-0.78) 

0.81 
(0.79-0.83) 

Variation 

explained (%) 

26 
(19-33) 

43 
(37-49) 

33 
(26-39) 

47 
(43-50) 

Calibration 

intercept 

-0.46 
(-0.70--0.23) 

-0.33 
(-0.51--0.14) 

-0.32 
(-0.45--0.20) 

-0.27 
(-0.36--0.18) 

Calibration 

slope 

0.48 
(0.28-0.67) 

0.59 
(0.42-0.76) 

0.56 
(0.52-0.60) 

0.60 
(0.57-0.63) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

Marshall score ≥3 

Area under 

the curve 

0.80 
(0.78-0.82) 

0.85 
(0.84-0.87) 

0.80 
(0.78-0.83) 

0.86 
(0.85-0.87) 

Variation 

explained (%) 

41 
(38-45) 

53 
(49-57) 

44 
(40-49) 

56 
(52-60) 

Calibration 

intercept 

0.07 
(0.05-0.08) 

0.05 
(0.04-0.07) 

0.09 
(0.07-0.11) 

0.07 
(0.05-0.09) 

Calibration 

slope 

0.85 
(0.83-0.86) 

0.83 
(0.82-0.85) 

0.75 
(0.70-0.81) 

0.75 
(0.69-0.80) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

 

Supplemental Table S6. Model performance in patients with isolated TBI. N = 128 for Marshall <3 

and N = 188 for Marshall ≥3. CRASH-CT and IMPACT-CT are the established prognostic models. Their 

performance was assessed before and after adding the biomarker score. Figures are Mean (95% 

confidence interval). Results were obtained through bootstrapping within multiply imputed datasets, 

which reduces mean estimates and widens confidence intervals to ensure results are generalizable. q-

values are p-values corrected for multiple comparisons. 

  



Variable Overall Marshall <3 Marshall >=3 

(Intercept) 0.50 0.34 0.65 

GFAP 0.03 0.01 0.04 

NFL 0.09 0.09 0.02 

NSE 0.00 0.00 0.00 

S100B 0.12 0.09 0.11 

Tau 0.00 0.00 0.00 

UCH-L1 0.03 0.03 0.03 

 

Supplemental table S7. Relative prognostic value of individual proteins – unadjusted for sample 

timing. The table shows the results of the lasso regression using acute serum biomarker 

concentrations to predict unfavourable six-month outcome. The higher the coefficient, the stronger 

the prognostic value of a biomarker. A coefficient of zero indicates that the protein does not add any 

further prognostic value if the other proteins are already available. The strength of the coefficients is 

color coded with darker shades indicating greater prognostic value. Biomarker concentrations are all 

log-transformed and adjusted for time of sampling so that individual proteins are directly 

comparable. All coefficients are standardized so that the two patient groups are directly 

comparable. 

 

 



 CRASH-CT IMPACT-CT 

Proteins added none panel none panel 

Marshall score <3 

Area under 

the curve 

0.73 
(0.72-0.74) 

0.81 
(0.79-0.82) 

0.72 
(0.71-0.73) 

0.80 
(0.78-0.82) 

Variation 

explained (%) 

26 
(24-27) 

39 
(37-41) 

24 
(22-25) 

38 
(35-41) 

Calibration 

intercept 

-0.16 
(-0.21--0.11) 

-0.11 
(-0.14--0.07) 

-0.08 
(-0.11--0.06) 

-0.05 
(-0.07--0.03) 

Calibration 

slope 

0.73 
(0.67-0.79) 

0.80 
(0.77-0.84) 

0.84 
(0.82-0.85) 

0.87 
(0.86-0.89) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

Marshall score ≥3 

Area under 

the curve 

0.79 
(0.77-0.80) 

0.83 
(0.81-0.84) 

0.78 
(0.76-0.79) 

0.82 
(0.81-0.83) 

Variation 

explained (%) 

36 
(33-39) 

43 
(40-47) 

35 
(32-38) 

43 
(40-46) 

Calibration 

intercept 

0.04 
(0.03-0.06) 

0.04 
(0.02-0.05) 

0.07 
(0.06-0.08) 

0.06 
(0.05-0.07) 

Calibration 

slope 

0.89 
(0.88-0.90) 

0.90 
(0.89-0.91) 

0.84 
(0.83-0.86) 

0.85 
(0.84-0.87) 

Likelihood ratio 

test q-value 
 <0.001  <0.001 

 

Supplemental Table S8. Model performance in all patients – unadjusted biomarker concentrations. 

CRASH-CT and IMPACT-CT are the established prognostic models. Their performance was assessed 

before and after adding the biomarker score. Figures are Mean (95% confidence interval). Results 

were obtained through bootstrapping within multiply imputed datasets, which reduces mean 

estimates and widens confidence intervals to ensure results are generalizable. q-values are p-values 

corrected for multiple comparisons. 

 



 

Supplemental Figure S8. Comparison of the incremental value of serum biomarkers between 

patient groups for CRASH-CT – unadjusted biomarker concentrations. The incremental value of 

adding serum biomarkers to established prognostic models (CRASH-CT and IMPACT-CT) was 

compared between patients with a Marshall score <3 and those with a Marshall score ≥3, using a t-

test. Dot and bar plots show means and 95% confidence intervals. Estimates were down-corrected 

for optimism via bootstrapping. q denotes the p-value corrected for multiple comparisons. ns = not 

significant, */**/** indicate q <0.05/ <0.01/ <0.001. AUC = area under the curve. The logit 

transformation ensures a fair comparison across models which had different baseline AUCs prior to 



the addition of serum biomarkers. R2 = Nagelkerke R2 expressed as the percentage of the variation 

in outcome explained by the model. 

 

  



 

Supplemental Figure S9. Comparison of the incremental value of serum biomarkers between 

patient groups for IMPACT-CT – unadjusted biomarker concentrations. The incremental value of 

adding serum biomarkers to established prognostic models (CRASH-CT and IMPACT-CT) was 

compared between patients with a Marshall score <3 and those with a Marshall score ≥3, using a t-

test. Dot and bar plots show means and 95% confidence intervals. Estimates were down-corrected 

for optimism via bootstrapping. q denotes the p-value corrected for multiple comparisons. ns = not 

significant, */**/** indicate q <0.05/ <0.01/ <0.001. AUC = area under the curve. The logit 

transformation ensures a fair comparison across models which had different baseline AUCs prior to 



the addition of serum biomarkers. R2 = Nagelkerke R2 expressed as the percentage of the variation 

in outcome explained by the model. 
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