
This item is the archived peer-reviewed author-version of:

Orchestration procedures for the network intelligence stratum in 6G networks

Reference:
Chatzieleftheriou Livia Elena, Gramaglia Marco, Camelo Miguel, Garcia-Saavedra Andres, Kosmatos Evangelos, Gucciardo Michele, Soto-Arenas Paola

Andrea, Iosifidis George, Fuentes Lidia, Garcia-Aviles Gines,- Orchestration procedures for the network intelligence stratum in 6G networks

Networks and Communications (EuCNC), European Conference on - ISSN 2575-4912 - New york, Ieee, (2023), p. 347-352

Full text (Publisher's DOI): https://doi.org/10.1109/EUCNC/6GSUMMIT58263.2023.10188297

To cite this reference: https://hdl.handle.net/10067/1993000151162165141

Institutional repository IRUA

Orchestration Procedures for the Network

Intelligence Stratum in 6G Networks

Livia Elena Chatzieleftheriou, Marco Gramaglia, Miguel Camelo, Andres Garcia-Saavedra,

Evangelos Kosmatos, Michele Gucciardo, Paola Soto, George Iosifidis, Lidia Fuentes,

Gines Garcia-Aviles, Andra Lutu, Gabriele Baldoni, Marco Fiore

Abstract—The quest for autonomous mobile networks introdu-
ces the need for fully native support for Network Intelligence (NI)
algorithms, typically based on Artificial Intelligence tools like
Machine Learning, which shall be gathered into a NI stratum.
The NI stratum is responsible for the full automation of the
NI operation in the network, including the management of
the life-cycle of NI algorithms, in a way that is synergic with
traditional network management and orchestration framework.
In this regard, the NI stratum must accommodate the unique
requirements of NI algorithms, which differ from the ones of,
e.g., virtual network functions, and thus plays a critical role in
the native integration of NI into current network architectures.
In this paper, we leverage the recently proposed concept of
Network Intelligence Orchestrator (NIO) to (i) define the specific
requirements of NI algorithms, and (ii) discuss the procedures
that shall be supported by an NIO sitting in the NI stratum
to effectively manage NI algorithms. We then (iii) introduce a
reference implementation of the NIO defined above using cloud-
native open-source tools.

Index Terms—Network Intelligence, Network Intelligence Or-
chestration; Intelligence Plane

I. INTRODUCTION

One of the key expectations for 6G networks is definitively

closing the gap to full autonomous operation, by enabling

self-configuration with minimal or no human intervention

through the adoption of intelligent algorithms. This calls for

the introduction of an additional stratum in the network, i.e.,

one layer that is specifically devoted to the management and

orchestration of the intelligence in the network [1].

Managing intelligence in the network. Artificial Intelli-

gence (AI), and more concretely Machine Learning (ML) tech-

niques, pushed by the increased availability of measurement

data and computational resources within mobile networks,

have the potential to develop the Network Intelligence (NI)

that will enable fully autonomous 6G networks. Practical

steps towards this direction have been recently investigated

by major Standard-Defining Organization (SDO) entities such

as 3GPP and the European Telecommunications Standards

Institute (ETSI), as well as by global industrial initiatives

like O-RAN. Within the EU-funded DAEMON project [2],

L.E. Chatzieleftheriou is with IMDEA Networks Institute and University
Carlos III de Madrid (UC3M). M. Gramaglia is with UC3M. M. Camelo-
Botero and P. Soto are with University of Antwerp - imec A. Garcia-Saavedra
is with NEC Laboratories Europe. E. Kosmatos is with WINGS ICT Solutions.
M. Gucciardo and M. Fiore are with IMDEA Networks Institute. G. Iosifidis is
with Technical University of Delft. L. Fuentes is with University of Malaga. G.
Garcia-Aviles is with i2CAT Foundation. A. Lutu is with Telefonica Research.
G. Baldoni is with Zettascale Technology.

NI Function

N

A

K

S

K

NIF Components

Many to Many

NI Service
One to Many

Fig. 1. The hierarchical taxonomy of NI algorithm components. A NIF
corresponds to an individual NI instance that assists a specific functionality:
for example, it could capture the implementation of a capacity forecasting
task, assisting an NI edge orchestration functionality.

we have identified key gaps in the above efforts. Namely,

the implementations currently provided by the standarization

entities do not deliver the following essential functionalities:

(i) coordination of the NI across different network domains;

(ii) data management across NI instances in a decentralized

and unified fashion; (iii) support for the NI lifecycle man-

agement; and, (iv) solid methodologies for the definition and

representation of NI models. Failing to meet the above would

severely compromise the applicability of NI and, subsequently,

its practical adoption within 6G networks.

Network Intelligence stratum. As part of its activities, the

DAEMON project aims at filling the gaps above by presenting

a clear set of functional and non-functional requirements

that target the coordination of NI instances in an end-to-

end fashion. To this end, we are proposing a new Network

Intelligence stratum that complements and interacts with the

existing planes in current and next-generation mobile net-

works, i.e, the user/data, control, and management planes. In

our effort to define the NI stratum organization and operations,

we already introduced a reference representation of complex

NI algorithms as a hierarchy, sketched in Fig. 1, of Network

Intelligence Services (NISs) that can be broken down into

one or more Network Intelligence Functions (NIFs), which is

turn are composed of atomic NIF Components (NIF-Cs) [3].

We also specified how NISs and NIFs can be managed by

a Network Intelligence Orchestration (NIO) with a precise

internal structure of fundamental building blocks [3].

In addition, in a separated work, we defined a suitable

reference representation to be adopted by the NIO to model

any NI algorithm [4]. To that end, we adapted a popular

model that is widely adopted for autonomous and self-adaptive

DAEMON

Intelligent Orchestrator

NIF ManagerNIF Manager

NIF component
Manager

NIF Catalog

NIS Catalog

Service Management and
Orchestration Framework

MLOps

Control plane

User plane (switch)

K A

S

P

N
AP S

N

IP packets

traffic volumes

switch configuration

ONOS switch controller

CPU GPUMemory

O-DU
P

N
K

NIF4: S.2.1 [8]

O-RAN Near-RT RIC
P

NIF3: S.2.5 [8]

S

S

S

K

O-Cloud

MAC

Scheduler

FEC decoder

User

SNR

User

BSR

NIF1: S5.1 [9]

NIF2: S5.2 [9]

Edge

S N

NIF6: S2.1 [8]

A K

NIF5: S2.3 [8]

K
P

A

P

Non-RT-RIC SMO

S

A

K

P

N

ource
nalyze
lan
nowledge

Si k

Shared NIF
component

Network
core

Network
edge

- RAN

NIF-Cs

NIF

Fig. 2. NI-native architectural concept proposed by the DAEMON project for the NI stratum. The diagram portrays the interactions between many different
NIFs that implement two NI-assisted functionalities, or NIS, also developed in the project. The NIF-Cs that compose each NIF are categorized using our
original N-MAPE-K representation. The hierarchies of NISs, NIFs, and NIF-Cs are managed all at once by the NIO framework, by avoiding conflicts and
leveraging synergies among them.

systems, i.e., the Monitor-Analyze-Plan-Execute over a shared

Knowledge (MAPE-K) feedback loop [5]. Building on top

of the MAPE-K representation, we dissected NI algorithms

into common elements that have different characteristics (e.g.,

a data-gathering probe or a Neural Network model), and

introduced original training and closed control loops that a

NIF may implement, which resulted into an extended Network

MAPE-K (N-MAPE-K) model tailored to the NI environment.

The N-MAPE-K model allows capturing (i) the inference loop,

(ii) a traditional supervised training loop, and (iii) a second

training loop dedicated to online learning.

Mapping NI algorithm components into the N-MAPE-K

representation allows highlighting the following fundamental

classes of atomic NIF-Cs.

• Sensor NIF-Cs specify all the probes needed to gather

the input measurement data.

• Monitors NIF-Cs specify how each NIF interacts with the

Sensor NIF-Cs and gathers raw data from them.

• Analyze NIF-Cs include any pre-processing, summary,

or preparation of the data for the specific NI algorithm

implemented in the plan NIF-Cs.

• Plan NIF-Cs constitute the specific NI algorithm imple-

mented by the NIF.

• Execute NIF-Cs specify how the algorithm is going to

interact with the managed system and how to possibly

change its configuration parameters.

• Effector NIF-Cs specify the configuration parameters up-

dated in the Network Function (NF), and the Application

Programming Interfaces (APIs) to be used to that end.

Contribution. In this paper, we present a unified framework

that brings together our earlier proposals for (i) the operational

hierarchy of NI components in the NIO, and (ii) the N-MAPE-

K representation of NIF-Cs. By doing so, we make a step

forward the vision of a complete NI stratum anticipated above.

An illustrative example of the resulting integration is pro-

vided in Fig. 2. There, each circle depicts a NIF-C and a

double circle captures a NIF-C shared among multiuple NI-

assisted functionalities. For example, the circle in the O-Cloud

rectangle captures the FEC decoder. Multiple united NIF-Cs

constitute a NIF, e.g. Nuberu [6] or Henna [7], to mention

two solutions developed in the project itself. Finally, by

combining NIFs we get a NIS: as an example, the integration

of different RAN-related algorithms can realize an overall

reliable virtualized RAN (vRAN) service.

We identify and present in detail the specific requirements

that NI algorithms pose on the NIO framework discussed

before, understanding their specificity and devising procedures

that the NIO shall provide in §II. Then, in §III, we analyse

how the NIO can support them by discussing specific NIP

processes. Finally, in §IV, we discuss how state-of-the-art

open-source solutions for cloud-native orchestrations can be

leveraged to implement our proposed framework.

II. THE NEED FOR SPECIFIC NI STRATUM PROCEDURES

The concurrent instantiation of many different NIFs raises

challenges that the architecture we propose allows addressing.

Next, we detail the management needs that such challenges

create, and exemplify them with representative NI-assisted

functionalities developed in the DAEMON project [8], [9].

A. Conflict resolution

DAEMON’s NIO allows to efficiently re-use and combine

different elements that can be shared across NIFs, by repre-

senting their split into atomic NIF-Cs that abide by the N-

MAPE-K framework [4]. This eventually enables building in

an effective ways a NIS, analogously to the approach used by

3GPP SA5 to build the Network Slicing data model –where

a Network Slice is decomposed into Network Slice subnets.

However, while composing NIFs to build a NIS, through the

sharing of different NIF-Cs, possible conflicts on operations

and/or resources may arise. It is hence a task of the NIO to

arbitrate the operation of such components, guaranteeing that

the overall goal of the NIS is met.

Let us illustrate this issue by detailing the arrangement of

Nuberu and Athena, two NIFs described in [8] (§2.1 and

§2.5, respectively), that aim at improving the resiliency of

a virtualized radio access network (vRAN) system by acting

on MAC scheduling decision at the Distributed Unit (DU)

of base stations. Nuberu [6] proposed a re-design of the full

stack to be cloud-native and resilient; while Athena introduced

a model that learns the limits of the infrastructure and takes

scheduling decisions. Thus both algorithms support the Radio

MAC scheduler acquiring knowledge from similar input data

(e.g., the information about the channel) and enforcing radio

scheduling decisions, optimizing the reliability of the system,

at different time scales. This results in the sharing of two NIF-

C, the sources and the sinks between these two NIFs, as also

shown by the N-MAPE-K representation depicted in Fig. 2.

A similar consideration applies when dealing with mixed

user and control intelligence, as in the case of the algorithms

in §5.1 of [8], whose goal is (i) performing in-switch inference

at line rate [7] and (ii) achieving optimal configuration of

circuit switching by using real-time traffic demands. The NIF

implementing in-switch inference, i.e., NIF1 in Fig. 2, acts

almost entirely in the user plane, directly classifying IP traffic

and directly enforcing decisions into the NF that is classifying

the traffic, the switch controller in this case. NIF2 in the figure

generates instead the circuit switching configuration in the

control plane and enacts it in the user plane. The configuration

decision is taken based on information about traffic volume,

which is available at each switch.

The previous two examples, in which different NIFs share

sources and sinks, motivate the need for monitoring and

coordination of policy enforcement. In this context, different

conflicts may arise, as follows.

• Conflicts when monitoring data. Algorithms may need

data from the same source but with different granularity.

Hence, the NIF Manager shall guarantee that the required

information arrives from the Sources to the specific

Plan/Analyze modules with the necessary granularity

(e.g., at subframe or packet level) in an automated manner

to, e.g. avoid duplicating the monitoring over IP packets.

• Conflicts in the policy enforcement. Different NI algo-

rithms may act on the same network functions (in the

proposed example, the DU MAC scheduler), configuring

different parameters. Thus, the Intelligent Orchestrator

shall deploy conflict resolution policies with the NIF-C

of each NIF to guarantee that, e.g., the scheduled MAC

frame never exceeds the available capacity or contrasting

selected users.

Therefore, the NIO shall oversee and amend any subopti-

mal decision taken by individual NIFs by closely monitoring

the access to data sources and the policies determined by

decision-making algorithms.

B. Knowledge sharing among NIFs

Fig. 2 also illustrates the shared representation of two NIFs

detailed in [9] (§2.3 and §2.1, respectively): energy-driven

vRAN orchestration, i.e., NIF5 in the figure, and energy-aware

VNF placement, or NIF6 in the figure. In the case of these

two NIFs, energy consumption measurements from an edge

cloud platform are required and a source node component

is hence shared. Moreover, NIF5 generates knowledge about

high-performing RAN control policies given a context and

once virtualized instances of RAN components have been

deployed. On the other hand, NIF6 is in charge of VNFs

placement, which in this case implements virtualized RAN

functions. In this context, the NIO shall provide central-

ized coordination among multiple NIFs. Such centralized

coordination would allow sharing of knowledge that fostered

synergetic performance improvements between both NIFs. For

instance, part of the knowledge learned by NIF6 can be used

by NIF5 to make better placement decisions and, vice versa,

some knowledge learned by NIF5 can be used by NIF6 to

enforce informed (placement-aware) RAN control policies.

Knowledge sharing aspects should also be available cross-

domain. For instance, in §4.2 of [9] we describe an anomaly

detection solution for IoT platforms. In that scenario, the user

plane traverses multiple domains, which brings new challenges

in terms of running root-cause analysis of anomalies. Hence,

the parties involved in building the user plane for the IoT

devices suffering from anomalies should be integrated into

the anomaly detection scheme, and such synchronization shall

happen at the NI Orchestration.

C. Model selection, catalog, and re-training

Although this is not a condition directly stemming from

the design of the NI algorithms themselves, NISs may need

to build on the knowledge of the underlying environment.

This calls for awareness of the software/hardware environment

(e.g., as the performance of a specific FEC implementation

depend on the target hardware [10]) or of the location of

the device where they are executed (e.g., as reconfigurable

intelligent surfaces may have different behaviors according to

their geographical position and surrounding environment [11]).

When executed in the context of a pure ML environment,

these tasks are natively tackled by several MLOps frameworks.

In the context of an NI-native architecture, however, this

requires tight interaction with the underlying orchestration

environment. To guarantee that the deployed NIF can operate

in the right context, NI models need to match the specific

hardware-software-environmental characteristics of the net-

work functions deployed in a network service. Thus, the NIO

shall exchange execution context information with the

sibling MANO operating in the network, so as to select

the proper model to be used for inference within a NIF.

This incidentally calls for the need of a model catalog

from which the NIO can select the most appropriate model

depending on the specific infrastructural status operated by

the network at a certain point in time. If no model is available

for the specific execution environment, the NIO shall be able

to invoke the training of a new model, fetching the required

data as required by the target algorithm.

III. NI-NATIVE ARCHITECTURAL PROCEDURES

As described in the previous section, several considerations

and challenges emerge while concurrently deploying multiple

NIFs providing the same or different NISs. Building on the

NIO organization and N-MAPE-K represenation of NIF-Cs,

we next define processes that answer such needs.

NIF 1 NIF 2

NI Virtual Infrastructure

CPU GPU Memory

NIF Manager

NIF component
manager

Data
Ingestion

Model
Training

Model
Testing

Model
Packing

Model
Registering

Machine Learning Pipeline

NIF/NIS Catalog

Network Intelligence Orchestrator
Model
Retrain

NIS 1

NIF 3

NIS 2
NIS 3

NIS Lifecycle
management

Data Analytics

Conflict detection and
resolution

Policy Interpreter and
configuration

Monitoring

Knowledge
Management

NIS workflow
configuration

NIS creation,
selection, optimization,

and instantiation
Explainability

Network Management
and Orchestration

Fig. 3. The NI stratum and the functional blocks of the Network Intelligence Orchestrator.

A. Rationale

When used outside the network domain, the set of solu-

tions that deal with the lifecycle management of intelligent

algorithms is usually referred to as MLOps [12]. Items such

as Feature Engineering, Model Training, Model Engineering,

as well as their integration in a CI/CD system are usually

encompassed in this definition. When transferring this view

into the mobile network realm, however, these items cannot

be transferred as is, mostly because of the very different

timescales that are usually involved in network environments,

which may go down to sub-ms levels.

Therefore, we split the items into elements that are only

related to pure ML tasks and are commonly executed offline,

either only once or very rarely. We mark them as Machine

Learning Pipeline in Fig. 3. Instead, other elements need to

directly interact with the NIFs in the network, continuously

evaluating the quality of the NIS and performing fine-grained

lifecycle management of the NIF-Cs, including their coordi-

nation. These are the most interesting in the context of the NI

stratum, and we discuss them next.

B. Overall description

As mentioned in the previous section, the NIO should

incorporate multiple functionalities to support the described

challenges and beyond. Some key functionalities are shown in

Fig. 3. Their main purposes are as follows.

• Data analytics. This block includes any pre-processing

or preparation of the data (e.g., averages, autoencoders,

filtering, or clustering algorithms).

• Knowledge management. A critical components of the

NIO, the knowledge management block provides all the

mechanisms required to plan, organize, act, and control

the knowledge across all the deployed NIS.

• Monitoring. This block processes the NIS’s information.

As NIS can be composed of both non-ML (e.g., tradi-

tional VNFs) and ML-based functionalities, the monitor-

ing information can also be of both types: ML-related

(e.g., model-specific metrics and detection of data drift

for essential features), and non-ML-related (e.g., QoE,

QoS, etc.). In addition, this block will monitor NIs in

both training and inference deployments.

• NIS lifecycle management. This functional block takes

care of the deployment and maintenance of working ML

models, aligned with MLOps practices. This includes the

creation of new ML pipelines to re-train ML models.

• NIS creation/selection, optimization, and instantiation.

Before any deployment, the NIO has to select (e.g., based

on hardware constraints), optimize (e.g., compress a

Neural Network (NN)-based NIS to achieve a given trade-

off between model size and performance), and instantiate

the selected NIS. In case a given NIS is not available in

the catalog, the NIO should be able to create it based on

the available data and execution context information.

• Model explainability. This block provides the methods

that help human experts understand NIS composed of

black-box (e.g., deep neural network) ML algorithms.

This is a fundamental capability to understand the cause

of a decision from a NIS such that a human can consis-

tently review/correct its results.

• Policy interpreter and configuration. This functional

block interprets high-level user’s intent objectives, e.g.,

high-level QoE targets and business KPIs, that are as-

sociated with different NIS. If needed, it also performs

changes in the policy.

• NIS workflow configuration. This block puts together

data engineering, ML, and DevOps in a more straight-

forward, efficient, and effective fashion. In a general

perspective, the NIO uses NIS workflow configuration to

operationalize the deployment, monitoring, and lifecycle

management in a modular and flexible way.

• Network management and orchestration (MANO).

This functional block takes care of the lifecycle manage-

ment of the traditional Network Virtual Functions (NVF)

that communicate with a NIS. In addition, it provides the

context execution information from the network.

• Conflict detection and resolution. This block provides

a mechanism to solve trade-offs that may emerge from

conflicting objectives in the control and user planes,

e.g., in establishing policies (at small timescales) ver-

sus enforcing such policies (at large timescales). This

functionality allows the NIO to compare policies among

different NIS to detect conflicts and perform conflict

resolution based on comparison and resolution rules.

The previous functionalities provide the mechanisms that

allow the NIO to address the challenges that can emerge

when NISs are deployed across different network domains and

operating in multiple time scales. Next, we briefly describe

how the combination of some functional blocks can help to

address the challenges described in the previous section.

C. Conflict resolution

We introduced two specific conflict cases in the previous

section: (i) when conflicts emerge when monitoring data, e.g.,

algorithms may need data from the same source but with

different granularity, and (ii) when conflicts in the policy

enforcement of different NI algorithms may act on the same

network functions but configuring different values for the

target parameters. In situations like those above, the policy

interpreter and configuration block will gather information

about the policy guiding the different NIS and pass their

interpretation to the conflict detection and resolution module.

In both cases, a conflict will be detected, and the NIO will

identify and apply the conflict resolution rules associated with

(i) multi-time scale coordination and (ii) parameter constraints

and execution priority. The outcome after applying the rules

should provide a plan that will trigger configuration modifi-

cation of the NIS policies. In the case of NIS empowered by

black-box ML algorithms, the model explainability block will

interpret policies associated with such algorithms.

D. Model selection, catalog, and re-training

NI solutions stored in the NIS/NIF catalog are inherently

trained on hardware and software platforms that may not

match the ones available in the new environment where they

need to be deployed. In such cases, the NIS creation/selection,

optimization, and instantiation block will obtain networking

and execution context information from its MANO block

operating in the network and select the proper model to be

used in inference within a NIF. Suppose a mismatch between

trained and targeted hardware/software appear. In that case, the

same block should perform the optimization/adaptation (e.g.,

compression of a neural network, change of inference library

from GPU to CPU) to match the new environment. In case no

model is available for the specific execution environment, the

NIS creation/selection, optimization, and instantiation block

will create a new NIS and then notify the NIS workflow

configuration block to trigger a new training phase.

E. Knowledge Sharing

NISs deployed in the same or across different domains use

their knowledge to derive their execution plans. The knowl-

edge management block will allow the NIO to understand the

knowledge of each NISs, via the interaction with the model

explainability block and derive new policies that represent the

shared knowledge among NISs, by interacting with the policy

interpreter and configuration block.

IV. REFERENCE IMPLEMENTATION

We implement the NI-native architecture presented above

as a prototype using Kubernetes [13] as the main deployment

environment. In addition, Kubeflow [14] is used to perform

MLOps and as the baseline for developing some of the

NIO functionalities. Furthermore, selected functionalities of

the NIO are developed from scratch. The Eclipse Zenoh

framework [15] is used for data flow programming among the

NIF-Cs and for metric collection and aggregation, such as the

ones coming from the sources NIF-Cs. A visual representation

of the prototype implementation is in Fig. 4.

In the prototype, Kubernetes serves as the main deployment

environment taking care of the MANO functionalities on top

of a virtualized infrastructure. The Kubeflow deployment is

realized as a Kubeflow cluster with one controller and 3 worker

nodes, in which the NIF-C components are deployed as pods.

The management of NIF-Cs is realized by the NIF component

manager in Fig. 3 through the Kubernetes API. As described

in previous sections, a set of interconnected NIF-Cs following

the N-MAPE-K representation compose a NIF. This is realized

by a pipeline of pods managed by the NIF Manager utilizing

the Kubeflow Pipelines SDK. This is illustrated in Fig. 2.

The generated pipeline of NIF-Cs is defined in Python, is

translated in YAML, and then deployed in Kubernetes (both

pods and connectivity) using the developed service which

utilises the Kubeflow pipeline service. In the same fashion, NI

Orchestrator manages the NISs (using Kubeflow) at a higher

hierarchical level.

Following the described approach, we can provide a set of

NI Orchestrator functionalities including (i) NIS composition,

(ii) NIS lifecycle management, (iii) NIS workflow configura-

tion, (iv) NIS selection, and (v) Monitoring, which are realized

by building on the functionality already available in the

Kubeflow framework. The developed monitoring service of NI

Orchestration provides monitoring of (i) NIF-C/NIF/NIS de-

ployment status, (ii) NIF/NIS pipeline progress, (iii) MLOps

progress, (iv) resource utilization, and (v) performance KPIs.

The rest of the functionalities are planned to be developed as

separate modules integrated with the final solution.

The MLOps operations responsible for the model retraining,

at the top of Fig. 3, is realized as ML pipelines in the Kubeflow

environment, while the NIF/NIS catalog is created using a

Docker repository linked to the Kubernetes environment.

Finally, it is important to stress that the NIF-C taxonomy

(i.e., Analyse, Plan), as well as the adopted communication

paradigm (Eclipse Zenoh) were adopted in all components of

the architecture including NIF/NIS Catalogs (Dockers with

Fig. 4. Prototype demonstrating NIS/NIF/NIF-C pipeline generation, deployment and monitoring.

different prebuilt libraries per NIF-C type) and during the

NIF/NIS creation process (different preconfigured attributes

per NIF-C type). This taxonomy is further used by the solution

for realizing tasks related to the application of policies and

conflict resolution.

V. CONCLUSIONS

In this paper, we discuss the Network Intelligence (NI)

orchestration procedures that are needed to support a NI-

native architecture. Following the recent proposals, we identify

the requirements that a range of NI algorithms based on AI

techniques pose to the Network Intelligence Orchestration

(NIO) framework. Based on this discussion, we devise re-

quirements stemming from the concurrent instantiation of NI

Services (NISs) and NI Functions (NIFs) that the NIO shall

meet, as well as detailed processes that should be supported

by the NIO framework. Finally, we go one step forward,

and provide the discussion of a reference implementation of

the NIO framework, building on top of state-of-the-art open-

source tools for cloud-native orchestration.

ACKNOWLEDGMENT

This work has received funding from the European Union’s

Horizon 2020 research and innovation program under grant

agreement no. 101017109 “DAEMON”.

REFERENCES

[1] 5G PPP Architecture Working Group, “The 6G Architecture Landscape
- European perspective,” Dec. 2022. [Online]. Available: https:
//doi.org/10.5281/zenodo.7313232

[2] “H2020 ICT-52 DAEMON,” https://h2020daemon.eu/, 2021-2023, ac-
cessed: 2018-12-06.

[3] M. Camelo, M. Gramaglia, P. Soto, L. Fuentes, J. Ballesteros, A. Bazco-
Nogueras, G. Garcia-Aviles, S. Latré, A. Garcia-Saavedra, and M. Fiore,
“Daemon: A network intelligence plane for 6g networks,” in 2022 IEEE

Globecom Workshops (GC Wkshps), 2022, pp. 1341–1346.

[4] M. Gramaglia, M. Camelo, L. Fuentes, J. Ballesteros, G. Baldoni,
L. Cominardi, A. Garcia-Saavedra, and M. Fiore, “Network Intelligence
for Virtualized RAN Orchestration: The DAEMON Approach,” in 2022

Joint European Conference on Networks and Communications & 6G

Summit (EuCNC/6G Summit). IEEE, 2022, pp. 482–487.

[5] IBM Corporation, “Autonomic computing white paper – an
architectural blueprint for autonomic computing,” 2005. [Online].
Available: https://www-03.ibm.com/autonomic/pdfs/AC%20Blueprint%
20White%20Paper%20V7.pdf

[6] G. Garcia-Aviles, A. Garcia-Saavedra, M. Gramaglia, X. Costa-Perez,
P. Serrano, and A. Banchs, “Nuberu: Reliable ran virtualization in shared
platforms,” in Proceedings of the 27th Annual International Conference

on Mobile Computing and Networking, 2021, pp. 749–761.
[7] A. T.-J. Akem, B. Bütün, M. Gucciardo, and M. Fiore, “Henna:

Hierarchical machine learning inference in programmable switches,”
in Proceedings of the 1st International Workshop on Native Network

Intelligence, ser. NativeNi ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1–7. [Online]. Available:
https://doi.org/10.1145/3565009.3569520

[8] A. Garcia-Saavedra, J. X. Salvat, D. D. Vleeschauwer, C.-Y. Chang,
L. Fuentes, D.-J. Munoz, A. Lutu, M. Gucciardo, M. Fiore,
L. E. Chatzieleftheriou, N. Slamnik-Kriještorac, P. Soto, M. Camelo,
M. Gramaglia, G. Garcia-Aviles, E. Municio, and N. Mhaisen,
“DAEMON Deliverable 3.2: Refined Design of Real- Time Control
and VNF Intelligence Mechanisms,” Nov. 2022. [Online]. Available:
https://doi.org/10.5281/zenodo.7525876

[9] L. Fuentes, M. Amor, Ángel Cañete, M. Fiore, S. Alcalá,
S. Barmpounakis, I. Chondroulis, I. Belikaidis, E. Kosmatos, A. G.
Saavedra, J. X. Salvat, M. Camelo, P. Soto, A. Lutu, G. Iosifidis, D. D.
Vleeschauwer, C.-Y. Chang, and A. Pentelas, “DAEMON Deliverable
4.2: Refined design of intelligent orchestration and management
mechanisms,” Nov. 2022, This project has received funding from
the European Union’s Horizon 2020 Research and Innovation
Programme under grant agreement No. 101017109. [Online]. Available:
https://doi.org/10.5281/zenodo.7544155

[10] J. A. Ayala-Romero, A. Garcia-Saavedra, M. Gramaglia, X. Costa-
Perez, A. Banchs, and J. J. Alcaraz, “Vrain: A deep learning
approach tailoring computing and radio resources in virtualized
rans,” in The 25th Annual International Conference on Mobile

Computing and Networking, ser. MobiCom ’19. New York, NY,
USA: Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3300061.3345431

[11] W. Xia, S. Rangan, M. Mezzavilla, A. Lozano, G. Geraci, V. Semkin,
and G. Loianno, “Generative neural network channel modeling for
millimeter-wave uav communication,” IEEE Transactions on Wireless

Communications, vol. 21, no. 11, pp. 9417–9431, 2022.
[12] D. Kreuzberger, N. Kühl, and S. Hirschl, “Machine learning operations

(mlops): Overview, definition, and architecture,” 2022. [Online].
Available: https://arxiv.org/abs/2205.02302

[13] “Kubernetes.” [Online]. Available: https://kubernetes.io/
[14] “Kubeflow.” [Online]. Available: https://www.kubeflow.org/
[15] “Eclipse zenoh.” [Online]. Available: https://zenoh.io/

