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Proof of a conjecture due to Chu on Gosper-
type sums

John M. Campbell and Paul Levrie

Abstract. We prove a conjecture due to Chu concerning Gosper-type
sums, using an evaluation due to Chudnovsky and Chudnovsky in 1998.
This formula discovered by the Chudnovsky brothers was later redis-
covered by Borwein and Girgensohn, but no proof of this formula has
been given, prior to our article. We introduce a full, self-contained proof
of the Chudnovsky–Chudnovsky evaluation, to formulate a full solution
to a problem due to Chu on Gosper-type sums involving reciprocals of
binomial coefficients of the form

(

3n+ε

n

)

for n ∈ N0 and ε ∈ {1,±2}.

Mathematics Subject Classification (2010). Primary 05A10; Secondary
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1. Introduction

The famous binomial sum evaluation
∞
∑

n=0

50n− 6

2n
(

3n
n

) = π (1.1)

due to Gosper [7] (cf. [3, p. 20]) has inspired much in the way of research on
series resembling (1.1) and involving inverted binomial coefficients such as
1

(3n
n
)
. The purpose of this article is to prove a conjecture related to (1.1) that

was given by Chu in a recent Journal of Difference Equations and Applicati-
ons contribution [5].

A key to our proof of Chu’s conjecture in [5] is given by the following
formula discovered in 1998 by the Chudnovsky brothers [6]:

−3

∞
∑

n=1

1
(

3n
n

)

n32n
= −3Gπ +

π2 ln(2)

8
− ln3(2)

2
+

99ζ(3)

16
. (1.2)

No full, self-contained proof of (1.2) has been previously published. It is
suggested in [6] that (1.2) may be proved by integrating the master formula



2 Campbell and Levrie

reproduced in (1.9), but proving this is nontrivial. The history associated with
(1.2), as summarized below, adds to the interest in the problem of proving
Chu’s conjecture from [5], as reproduced below as Conjecture 1.1.

The Chudnovsky brothers introduced (1.2) in 1998 [6]. In a 2004 text by
Borwein, Bailey, and Girgensohn [3, p. 27], the authors presented an equiva-
lent formulation of (1.2), and stated that it could be proved through difficult,
polylogarithmic manipulations, without any proof being given, and without
the authors of [4] having been aware that (1.2) was previously introduced by
Chudnovsky and Chudnovsky in [6]. In a 2005 article by Borwein and Girgen-
sohn [4], the authors again presented an equivalent version of (1.2) and again
stated that it could be proved through challenging, polylogarithmic manipu-
lations, but, again, no proof was given, and, again, the authors were unaware
that (1.2) had been introduced by the Chudnovsky brothers in 1998 [6]. Chu,
in 2022 [5], had also discovered an equivalent version of (1.2) experimentally,
using numerical approximations via Mathematica, and noted that Borwein
and Girgensohn had found (1.2), but the author of [5] was again unaware
that Chudnovsky and Chudnovsky had introduced (1.2) as far back as 1998
[6].

The foregoing considerations motivate our introducing a full proof of
Chudnovsky and Chudnovsky’s formula in (1.2) and our applying this for-
mula to prove the following conjecture due to Chu [5]. Chu [5] had experimen-
tally discovered the conjectured formulas shown below, again via numerical
approximations with Mathematica. The following conjecture is given as Con-
jecture 5.3 in [5].

Conjecture 1.1. (Chu, 2022) The following evaluations hold [5]:

∞
∑

n=1

(1/2)n

n3
(

3n+1
n

) =
48πG− 99ζ(3) + 8(53− 9π − 39 ln 2)

48
(1.3)

+
(1 + ln 2)(2 + π + 2 ln 2)(2− π + 2 ln 2)

24
, (1.4)

∞
∑

n=1

(1/2)n

n3
(

3n+2
n

) =
48πG− 99ζ(3) + 3(189− 40π − 118 ln 2)

48
(1.5)

+
(3 + 2 ln 2)(3 + π + 2 ln 2)(3− π + 2 ln 2)

48
, (1.6)

∞
∑

n=1

(1/2)n

n3
(

3n−2
n

) =
48πG− 99ζ(3)− 8(1 + 2π − 9 ln 2)

32
(1.7)

+
(1 + ln 2)(2 + π + 2 ln 2)(2− π + 2 ln 2)

16
. (1.8)

1.1. Background

The Chudnovsky–Chudnovsky formula in (1.2) is described in [6] as a natural
counterpart to the Gosper identity in (1.1). The key tool behind the Chud-
novsky’s derivation of (1.2) is given by the following master formula from
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[6]:

1

2

n
∑

k=1

ln2
(

xkζ
−k
n

)

= − 1

ns(n− s)

∞
∑

m=1

((−1)n−sTn)
m

(

mn
ms

)

m2
. (1.9)

With regard to Chudnovsky and Chudnovsky’s notation in (1.9), we are let-
ting ζ−k

n = e−2πik/n, referring to [6] for further details. It is suggested in [6]
that (1.2) may be derived using the n = 3 and s = 1 case of (1.9), but no
proof of this was given.

In Section 2, we are to also make use of the following known Gosper-type
summations [3, p. 26]:

∞
∑

n=1

1

n
(

3n
n

)

2n
=

π

10
− ln 2

5
, (1.10)

∞
∑

n=1

1

n2
(

3n
n

)

2n
=

π2

24
− ln2(2)

2
. (1.11)

A method that may be applied to evaluate the above series is given in [3,
➜1.7], and these results are also obtained via the same method in [4]. The
above results also may be proved via the generating function identity due to
Batir [2] and Villacorte [9] (cf. [5]) giving an elementary evaluation for the
power series corresponding to the summand of (1.11).

We are to also make use of Batir’s generating function evaluation [1]
whereby

∞
∑

k=0

xk

(3k + 1)
(

3k
k

) =
φ(φ− 1)

3φ− 1

(

3

2
ln

∣

∣

∣

∣

φ

φ− 1

∣

∣

∣

∣

+
3φ− 2

√

3φ2 − 4φ

(

tan−1 φ
√

3φ2 − 4φ
+ tan−1 2− φ

√

3φ2 − 4φ

))

,

where

φ = φ(x) =
2

3
+

1

3

(

27− 2x+ 3
√
81− 12x

2x

)−
1

3

+

1

3

(

27− 2x+ 3
√
81− 12x

2x

)

1

3

,

and letting 0 < |x| < 27
4 . In particular, the x = 1

2 case gives us that

∞
∑

k=0

(

1
2

)k

(3k + 1)
(

3k
k

) =
π

5
+

3 ln(2)

5
, (1.12)

and this is to be applied in Section 2 below.
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2. Main proof

Adopting notation due to Chu [5], Chu showed that

Ωλ(ε, x) =

∫ 1

0

tεLiλ(x(1− t)t2)

1− t
dt,

where

Ωλ(ε, x) =

∞
∑

n=1

xn

nλ+1
(

3n+ε
n

) .

So, it remains to evaluate the integral on the right-hand side of

Ω2(0,
1
2 ) =

∞
∑

n=1

1
(

3n
n

)

n32n
=

∫ 1

0

Li2
(

1
2 (1− t)t2

)

1− t
dt. (2.1)

Lemma 2.1. The integral evaluation given as follows hold true, for w ∈ C \
R>1:

I(w) :=

1
∫

0

ln(1− t) ln(1− wt)

t
dt

=
1

2
ln2(1− w) lnw + ln(1− w)Li2(1− w)− Li3(1− w) + Li3(w) + ζ(3).

Proof. Using Mathematica we are able to find an antiderivative for

ln(1− at) ln(1− bt)

t
.

The output given by Mathematica is:

Log[a t] Log[1 - a t] Log[1 - b t] + 1/2 (Log[a t] - Log[b t]) Log[

1 - b t] (-2 Log[1 - a t] + Log[1 - b t]) + (-Log[a t] + Log[b t])

Log[1 - b t] Log[(-1 + b t)/(-1 + a t)] + 1/2 (Log[a t] + Log[(a - b)/

(b (-1 + a t))] - Log[((a - b) t)/(-1 + a t)]) Log[(-1 + b t)/(-1 + a

t)]^2 + (Log[1 - b t] - Log[(-1 + b t)/(-1 + a t)]) PolyLog[2,1 - a

t] + (Log[1 - a t] + Log[(-1 + b t)/(-1 + a t)]) PolyLog[2,1 - b t] +

Log[(-1 + b t)/(-1 + a t)] (-PolyLog[2,(-1 + b t)/(-1 + a t)] +

PolyLog[2,(a - a b t)/(b - a b t)]) - PolyLog[3,1 - a t] -

PolyLog[3,1 - b t] + PolyLog[3,(-1 + b t)/(-1 + a t)] -

PolyLog[3,(a - a b t)/(b - a b t)]

Replacing b by 1 and a by w and simplifying, taking into account that 0 ≤
t ≤ 1 and w ∈ C \ R>1, the expression above reduces to:

1/2 Log[w] Log[1 - w t]^2 + Log[1 - t] Log[t] Log[1 - w t] +

Log[1 - w t] PolyLog[2, 1 - w t] + Log[1 - t] PolyLog[2, 1 -

t] + Log[(1 - t)/(1 - w t)] (-PolyLog[2, (1 - t)/(1 - w t)] +

PolyLog[2, (w - w t)/(1 - w t)]) - PolyLog[3, 1 - w t] -

PolyLog[3, 1 - t] + PolyLog[3, (1 - t)/(1 - w t)] -

PolyLog[3, (w - w t)/(1 - w t)]
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It is a matter of routine to check that the limit as t → 1 of the above
expression minus the limit as t → 0, is equal to

1

2
ln2(1− w) lnw + ln(1− w)Li2(1− w)− Li3(1− w) + Li3(w) + ζ(3).

�

Lemma 2.2. The following integral evaluation holds true for a given complex
number w:

J(w) :=

1
∫

0

ln(t) ln(1− wt)

t
dt = Li3(w). (2.2)

Proof. This is easily seen to hold by computing Li3(tw)− ln(t)Li2(tw) as an
evaluation for the indefinite integral corresponding to (2.2), and by taking
appropriate limits of this antiderivative expression. �

Theorem 2.3. The Chudnovsky–Chudnovsky formula in (1.2) holds true.

Proof. Recalling (2.1), note that we have:

Ω2(0, x) =

1
∫

0

Li2(x(1− t)t2)

1− t
dt = 2

1
∫

0

Li2(x(1− t)t2)

t
dt

which is a consequence of

1
∫

0

(2t− 3t2)Li2(x(1− t)t2)

(1− t)t2
dt = 0.

Using partial integration we get:

1
∫

0

Li2(x(1− t)t2)

t
dt =

1
∫

0

(2− 3t) ln(1− x(1− t)t2)

(1− t)t
ln(t) dt

= 2

1
∫

0

ln(t) ln(1− x(1− t)t2)

t
dt−

1
∫

0

ln(t) ln(1− x(1− t)t2)

1− t
dt

= 2

1
∫

0

ln(t) ln(1− x(1− t)t2)

t
dt−

1
∫

0

ln(1− t) ln(1− xt(1− t)2)

t
dt

where we have replaced t by 1− t in the second integral.
We now use the same trick that is used in Chu [5]: take x = y3/(1 − y)2 in
both integrals. We then factor the argument of the second ln in both integrals:

1− y3(1− t)t2

(1− y)2
=

(

1 +
y

1− y
t

)

(1− ut) (1− ūt)

and

1− y3t(1− t)2

(1− y)2
= (1− yt) (1− vt) (1− v̄t) .
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with

u =
y(1 + i

√
3− 4y)

2(1− y)
, v =

y(2y − 1 + i
√
3− 4y)

2(1− y)2
.

Using this in both integrals, they each split up in a sum of 3 integrals, of
type I or J . Bringing everything together, we find

Ω2(0, x)

= 4

1
∫

0

ln(t) ln(1− x(1− t)t2)

t
dt− 2

1
∫

0

ln(1− t) ln(1− xt(1− t)2)

t
dt

= 4Li3(− y
1−y ) + 4Li3(u) + 4Li3(ū)− 2I(y)− 2I(v)− 2I(v̄).

Taking x = 1
2 , hence y = 1

2 , u = 1
2 (1 + i), v = i, and using Lemma 2.1 and

2.2, we arrive at:

Ω2(0,
1
2 ) = Gπ − π2 ln(2)

24
+

ln3(2)

6
− 33ζ(3)

16

using values of the polylogarithmic functions found in [8]. �

Theorem 2.4. Chu’s conjecture, as reproduced as Conjecture 1.1, holds.

Proof. The binomial expression in the denominator on the left-hand side of
(1.3) may be rewritten so as to express the series on the left-hand side of
(1.3) so that:

∞
∑

n=1

(

1
2

)n

n3
(

3n+1
n

) =

∞
∑

n=1

2−n(1 + 2n)

n3(1 + 3n)
(

3n
n

) . (2.3)

Applying partial fraction decomposition, we find that the series on the left-
hand side of (2.3) may be rewritten as:

∞
∑

n=1

2−n
(

1
n3 − 1

n2 + 3
n − 9

3n+1

)

(

3n
n

) .

Expanding the above summand, we obtain a linear combination of the Chud-
novsky brothers’ formula in (1.2), the Borwein–Borwein formulas in (1.10)
and (1.11), and the special case of Batir’s generating function highlighted in
(1.12). So, the previously proved closed forms for (1.2), (1.10), (1.11), and
(1.12) give us that (1.3)–(1.4) holds.

Rewriting the series in (1.5) so that

∞
∑

n=1

(

1
2

)n

n3
(

3n+2
n

) =
∞
∑

n=1

21−n(1 + n)(1 + 2n)

n3(1 + 3n)(2 + 3n)
(

3n
n

) , (2.4)

we proceed to apply partial fraction decomposition, and we find that the
left-hand side of (2.4) may be expressed as:

∞
∑

n=1

21−n
(

1
2n3 − 3

4n2 + 17
8n − 6

3n+1 − 3
8(3n+2)

)

(

3n
n

) . (2.5)
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We may rewrite (2.5) using the previously proved closed forms for (1.2),
(1.10), (1.11), and (1.12), so as to give us the equality of (2.5) and:

πG− 33ζ(3)

16
+ 12− 79π

40
− π2

16
+

ln3(2)

6
+

3 ln2(2)

4
− 161 ln(2)

20
− 1

24
π2 ln(2)−

3

4

∞
∑

n=1

2−n

(2 + 3n)
(

3n
n

) . (2.6)

Applying a reindexing argument to (1.10), we find that

π

10
− ln(2)

5
=

∞
∑

n=0

2−n(1 + 2n)

3(1 + 3n)(2 + 3n)
(

3n
n

) ,

so that

π

10
− ln(2)

5
=

∞
∑

n=0

(

1
9(1+3n) +

1
9(2+3n)

)

2−n

(

3n
n

) , (2.7)

so that the special case of Batir’s generating function shown in (1.12) allows
us to evaluate the series in (2.6). So, the formula in (1.5)–(1.6) holds.

We proceed to rewrite the series in (1.7) so that

∞
∑

n=1

(

1
2

)n

n3
(

3n−2
n

) =

∞
∑

n=1

3 2−1−n(−1 + 3n)

n3(−1 + 2n)
(

3n
n

) . (2.8)

Applying partial fraction decomposition, we find that the left-hand side of
(2.8) equals:

∞
∑

n=1

(

3 2−1−n
)

(

1
n3 − 1

n2 − 2
n + 4

−1+2n

)

(

3n
n

) . (2.9)

From the Chudnovsky–Chudnovsky formula in (1.2), together with the for-
mulas in (1.10) and (1.11) proved by Borwein and Girgensohn, we find that
the series in (2.9) may be rewritten as:

− 1

10
(3π) +

3Gπ

2
− π2

16
+

3 ln(2)

5
− 1

16
π2 ln(2)+

3 ln2(2)

4
+

ln3(2)

4
− 99ζ(3)

32
+ 6

∞
∑

n=1

2−n

(2n− 1)
(

3n
n

) . (2.10)

According to the beta integral identity
∫ 1

0

(1− t)2n−2tn−12−n dt =
3(3n− 1)

2n(2n− 1)
(

3n
n

) ,

we may apply the operator
∑

∞

n=1 · to both sides and then use the Dominated
Convergence Theorem to reverse the order of infinite summation and integra-
tion. The resultant integrand may be written as − 1

(t−2)(t2+1) , which admits
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an elementary antiderivative. This gives us that

π

10
+

3 ln(2)

10
=

∞
∑

n=1

3 2−1−n(−1 + 3n)

n(−1 + 2n)
(

3n
n

) ,

so that

π

10
+

3 ln(2)

10
=

∞
∑

n=1

(

3 2−1−n
)

(

1
n + 1

−1+2n

)

(

3n
n

) ,

so that a reindexing argument gives us that

π

10
+

3 ln(2)

10
=

∞
∑

n=0

2−1−n
(

1
3(1+3n) +

1
3(2+3n)

)

(

3n
n

) +

∞
∑

n=1

3 2−1−n

(−1 + 2n)
(

3n
n

) .

So, from the above equality, together with (2.7) and the special case of Batir’s
generating function in (1.12), we may evaluate the remaining series (2.10) in
the desired way. This gives us that (1.7)–(1.8) holds. �
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