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Abstract 
Previous research efforts have focused on developing prospective life cycle inventory databases that 

build upon projections from integrated assessment models but were limited to attributional system 

models. A novel approach is required to construct consequential LCI databases that can be applied 

consistently on a large scale. To this end, the heuristic approach from Bo Weidema was selected as a 

basis for this study. This approach has been validated with historical data and was adapted in this 

study to identify the marginal suppliers in a prospective context. The different steps within the 

approach were analyzed, and alternative techniques for each step within the heuristic method were 

proposed. The techniques were tested on the future electricity sector using projections from two 

integrated assessment models (IMAGE and REMIND). Results show the sensitivity of results on the 

modelling technique selected in each step. The most sensitive step is the selection of the time interval, 

with even small changes resulting in a noticeable difference. In addition, the results also showed a 

substantial difference between the  projections of the two models. The relevance and goals of the 

alternative techniques for each step were discussed to guide users in forming the heuristic method 

for their study. 

 

Highlights 
- Development of a prospective consequential database 

- Review on consequential approaches for marginal changes 

- Work builds upon the commonly used heuristic approach  

- Prospective approach is applied to the electricity market using IAM projections 

- Results are incorporated into premise 
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ABM Agent-based model 
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LCA Life cycle assessment 

PEM Partial equilibrium model 
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S_LT Short-lasting changes using lead time as a time interval 

S_RANGE Short-lasting changes using a range as a time interval 
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CRR Capital replacement rate as a baseline 

   
ti,b Start of the time interval for technology i yr 

ti,f End of the time interval for technology i yr 

ti,c Starting point of the additional slope yr 

J Timestep between points yr 

Pi Production volume of technology i EJ 
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Ai,total Area under the curve EJ*yr 

Ai,baseline Area under the baseline EJ*yr 

Ai,growth Area of growth EJ*yr 

wi Weight for technology i EJ 
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1. Introduction 
Limiting the extent of climate change will require substantial efforts from governments and industries. 

Decisions on actions should preferably be based on information regarding their environmental 

consequences. To this end, consequential life cycle assessment (LCA) is a valuable tool that allows 

users to quantitatively assess the environmental implications of their decisions (1). However, since 

the consequences can only materialize in the future, it is also fundamental to account for the expected 

evolutions of the socio-economic context, which affect the background system of an LCA. 

Despite this need for a future-oriented rationale, only a few consequential LCA studies consider this 

future context when assessing the environmental impact of products and activities. Instead, the 

majority use background systems which were modelled relying on historical trends, assuming that 

these trends are representative of the future (2). However, the few studies integrating a prospective 

approach in the background system show this is not a valid assumption by default (3-5). For example, 

Vandepaer et al. (5) investigated the marginal electricity mix for several countries for multiple time 

intervals. The data projections were derived from reference scenarios (6) that estimate how the 

market might evolve if no further policy changes are implemented. The results showed, for the simple 

average, a 50% decrease in impacts on climate change for electricity when moving from 2015-2020 to 

2030-2040. Results were also compared when switching from reference scenarios to climate policy 

scenarios. Switching to an ambitious climate scenario resulted in an average of 75% lower climate 

change impacts for electricity use. Maes et al. (3) compared several scenarios and time intervals for 

cement and electricity supply. For electricity, the results were similar to Vandepaer et al. (5), whereas, 

for cement, the GWP could differ by as much as 900% across scenarios and time intervals.  

Such studies demonstrate the importance of incorporating future dynamics in consequential LCA. Yet, 

the biggest hurdle to integrating future trends into the background system is a lack of data on 

projections for the different industries and regions. Roadmaps are one potential prospective data 

source previously incorporated in LCA studies (3, 5). However, most roadmaps only focus on a select 

number of industries and regions, requiring several roadmaps to develop a prospective background 

system. These roadmaps rely on their assumptions, which do not consider how other sectors might 

evolve. It is, therefore, challenging to create a consistent economy-wide database starting from 

different roadmaps.  

This issue is not present in process-based integrated assessment models (IAMs). IAMs project long-

term transformation pathways by integrating energy, economic, land and climate models to do so 

consistently (7). A significant advantage is that IAMs operate on both a global and regional scale and 

take cross-sectoral interactions into account. Additionally, by integrating IPCC’s shared socio-
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economic pathways (SSPs) (8) and representative concentration pathways (RCPs) (9) a consistent set 

of scenarios can be developed that consider potential future socio-economic developments and 

greenhouse gas emission targets. A downside of IAMs is that the results are spatially aggregated and 

aggregated across sectors. Additional efforts are required to disaggregate the results to the desired 

level of detail. 

There has been excellent work on developing datasets considering the future context (3, 5, 10-15).  In 

these projects, the LCI database ecoinvent (16) is transformed, using the IAM data to align the 

database with the investigated time horizon. This way, the extensive network of interlinked processes 

in the database can be preserved, only requiring a few additional processes to be modelled which are 

not yet out on the market. Cox et al. (17) and Mendoza et al. (11) initiated this work, which is currently 

extended with the development of the premise software package (12). 

While these projects are an essential step forward in using a prospective background system, the 

transformation currently integrates the scenarios following an attributional approach. A prospective 

consequential background database is presently missing. Whereas attributional LCA considers the 

average impact contribution of the product system, consequential LCA aims at capturing the impact 

associated with a change in demand for the product (18). Hence, consequential modelling differs in 

two notable aspects. First, market mixes are no longer decided by the average production shares of 

the different suppliers on the market. Instead, the product system comprises suppliers along the 

supply chain likely to respond to a change in demand for said product. Second, multifunctionality is 

solved using system expansion, whereas attributional modelling uses allocation (19). For a 

comprehensive comparison, see Ekvall (20).  

To apply a similar transformation of IAM data following a consequential approach, only the first aspect 

must be accounted for, as the second aspect is already considered taken care of by the consequential 

version of ecoinvent (16). There are several methods available to determine the affected suppliers. A 

small literature review was performed to select the optimal method for this study. A heuristic 

approach, also known as Weidema’s 4-step procedure (29), was chosen as it is one of the few 

approaches that can be applied on a database-wide scale (16, 30).. The approach determines which 

suppliers are affected in the long term due to a small- scale change. These suppliers are known as 

“marginal suppliers” within the consequential framework. If more than one marginal supplier exists, 

a marginal mix is calculated. The shares of the mix represent their relative contribution to a change in 

demand. More information on the approach and the literature review can be found in the 

supplementary material. 
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Several studies have developed practical methods based on Weidema’s theoretical framework (4, 5, 

31). However, these have focused on identifying the marginal suppliers historically or in the near 

future. Some decisions made when developing those methods may not be optimal when determining 

the marginal suppliers in a future context. For example, how to choose the time horizon for a case 

study has never been adequately explored, as users are often constrained in their choice due to a lack 

of data (5, 21). Therefore, this study will first investigate the existing methods, identify the approach's 

critical parameters, and highlight issues and opportunities for improvement for each parameter. The 

findings from this investigation are then used to develop new techniques for the parameters. To 

determine their use, the existing and newly developed techniques will be tested on case studies. 

2. Measuring prospective competitiveness 
In the 4-step procedure proposed by Weidema et al. (29), the first two steps concern defining the time 

horizon and scale of the study and whether the extent of the change in demand affects the market 

structure. In step three the market trend is determined. The slope of the trend decides how the 

marginal suppliers are identified in the next step. Considering a market with an increasing, stable, or 

slightly decreasing supply volume, competitive suppliers are expected to answer the change in 

demand by investing in additional capacity. For markets with a definite declining trend, the least 

competitive suppliers are expected to respond to the change in demand by extending the lifetime of 

existing, albeit underperforming, technologies.  

Step four aims to identify the affected suppliers. In this step, suppliers that are constrained in their 

ability to respond to a change in demand are thrown out, and the competitiveness of the 

unconstrained suppliers is determined within the time horizon. There are a variety of approaches in 

the literature on how to assess competitiveness, with studies adopting different indicators and 

measuring approaches (3-5, 32).  

To apply the heuristic approach, the user must first determine the appropriate indicator for 

competitiveness for the study, the time horizon and the measuring approach.The following section 

will provide a short overview of existing variations of those parameters and highlight where there are 

opportunities to expand the approach, given the future-oriented outlook. 

2.1. Indicator for competitiveness 

Potential indicators for competitiveness are production cost, additional capital investments and 

trends in production volume. Due to data limitations, most consequential LCA studies use production 

volume as an indicator. Like other data sources, IAMs offer projections on production volume for most 

markets but rarely provide information on additional installed capital or production cost.  
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Typically, growth in production volume is measured against either the horizontal baseline or against 

the slope defined by the capital replacement rate (33) (see Figure 1). The two baselines imply different 

definitions of what is deemed competitive. With the former, any supplier that does not grow within 

the time horizon is seen as uncompetitive. With the latter, these suppliers could still be deemed 

competitive as long as the supplier is not phasing out. 

 

Figure 1: Left: growth against the horizontal baseline (in blue); right: growth against the slope formed by the capital 

replacement rate (in blue) 

2.2. Time interval 

In studies that include prospective data, the time horizon is often set between the latest available 

historical and the nearest available future data points (4, 5, 34). The measured trend within the time 

interval should indicate how competitive (or open to investment) the supplier is when it is expected 

to respond to a change in demand. Two elements play an essential role. First, when do suppliers react 

to the change in demand? This depends on how well suppliers can foresee and respond to changes in 

the market (35). Second, how long does it take to go from the decision to installing the additional 

capacity? This depends on the lead time of the technology. This is the time needed to plan, license, 

build and start an installation (36). 

Furthermore, changes in demand can be further distinguished between single occurrences or short-

lasting changes and continuous or long-lasting changes. Depending on the duration, the change in 

demand can potentially influence multiple investment decisions. The time interval should, therefore, 

also consider the duration of the change. 

2.3. Measuring the indicator 

Most studies measure only the difference between the beginning and end of the interval (3, 5). Other 

studies consider the growing trend of the suppliers using linear regression (4, 32). Both approaches 

are only valid if the production volume follows an almost linear pattern. However, in practice, 
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suppliers’ production outputs, in the long run, tend to follow an S-shaped pattern (37). To measure 

this non-linear growth, alternative approaches are needed. 

In conclusion, this study aims to identify approaches and key criteria following the heuristic approach 

to identify marginal suppliers and to translate this into practical calculation protocols. The heuristic 

approach determines who the affected suppliers are by determining their level of competitiveness. 

While there are several potential indicators to measure competitiveness, using the trends in 

production growth is the most common and practical. There is, however, no consensus on when and 

how growth should be measured.  

3. Methods 

3.1. Overall approach  

To develop a prospective heuristic approach, this study has tested several techniques to derive the 

three parameters: indicator for competitiveness, time interval and growth measurement approach. 

These techniques were combined to form heuristic methods to determine the marginal mix. These 

methods were then tested in a case study to assess the sensitivity of the approach to the different 

techniques. 

3.2. Indicator for competitiveness 

All measurements were done on production volume. To measure the absolute growth of suppliers, 

growth was measured against the horizontal baseline (see Figure 1). By measuring against the slope 

formed by the capital replacement rate, an estimate could be made of how much new capital is 

installed (33). The slope formed by the capital replacement rate is equal to: 

− 𝑃𝑖,𝑡𝑖,𝑏𝐿𝑖            (Eq. 1) 

with: 

- 𝑡𝑖,𝑏 : start of the time interval for technology i 

- 𝑃𝑖,𝑡𝑏 : production volume of technology i at year ti,b 

- 𝐿𝑖 : lifetime of technology i 

Both the measurement against the horizontal baseline (HOR) and against the capital replacement 

rate (CRR) were tested out in the case study.  

3.3. Time interval 

3.3.1. Supplier’s foresight and technology’s lead time 

Similarly to economic models, to identify when suppliers are expected to respond, we assume a level 

of foresight for the suppliers (35). Two levels of foresight were selected for this study: myopic and 



8 
 

perfect foresight. In the myopic approach, also called a recursive dynamic approach, the agents have 

no foresight on relevant parameters (e.g., energy demand, policy changes and prices). They will only 

act based on the information they can observe. In this case, the suppliers can respond to a change in 

demand only after it has occurred. In the perfect foresight approach, the future (within the studied 

period) is fully known to all agents. In this case, the decision to invest can be made ahead of the change 

in demand. 

The lead time lies between the decision to invest in new capital and the installation of the new capital 

(see Figure 2)(36). Depending on the technology, this can take up to a year (e.g., photovoltaic farm) 

to even more than a decade (e.g., nuclear power plant). 

   

Figure 2 Example of difference in lead times between technologies within the same market 

Suppliers will aim to install the additional capacity as soon as needed. For suppliers with perfect 

foresight (PERF), this will be right before the change in demand. For myopic suppliers (MYOP), a delay 

equal to the lead time is considered.  

A general lead time for all technologies within the market can be used, or technology-specific lead 

times can be used. While the latter approach is more detailed, implementing it can be challenging. 

Therefore, the sensitivity of the lead time on the results is considered by comparing results when using 

the average lead time of the market (GEN) against the individual lead times for the technologies within 

the market (IND). 

3.3.2. Selecting the time interval 

The additional capital is expected to be installed at a single point for single occurrences or short-lasting 

changes in demand. For suppliers with perfect foresight, we assume this is in the same year the change 

in demand occurs (see Figure 3, left-hand side). For suppliers without foresight, capital will show a 

lead time later (see Figure 3, right-hand side).  To measure the trend around the point where the 

additional capital will be installed, a range of n years before and after the point is taken as the time 

interval. For this study, a range of two years is taken (see Figure 3), resulting in a four-year time 

interval4. This value closely mirrors the recommended time interval in ecoinvent’s consequential 

database, which is three-to-four3-4 years (21). This time interval is long enough to measure an actual 
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trend, not an abnormality or single occurrence, but also short enough to represent the chosen time 

reference. 

         

Figure 3: time interval for a short-lasting change in demand, assuming the supplier has perfect foresight (left side) or no 

foresight (right side) 

For long-lasting changes in demand, the interval will follow the entire duration of the change. As with 

the short-lasting changes, the delay in response is considered for suppliers with no foresight (see 

Figure 4). Two techniques were used to measure growth within the time interval. The first technique 

takes the time interval, and the trends are measured once over the entire interval (L_WHOLE). In the 

second technique, the time interval is split up into smaller sections. The marginal suppliers within each 

section are determined separately, after which the average marginal mix for the entire time interval 

is calculated (L_SPLIT). For this study, the time interval was split into its smallest form, each section 

having a time interval of 1 year. 

 

Figure 4 time interval for a long-lasting change in demand, assuming the supplier has perfect foresight (left side) or no 

foresight (right side) 

3.4. Calculating growth 

According to previous studies (3, 5) the marginal suppliers' mix can be calculated using the slope of 

the time interval for each supplier (SLOPE). In these studies (3, 5), the slope is calculated by dividing 

the difference in production volume compared to the initial volume or capital replacement rate by the 

time interval duration (see Eq. 2). Identifying the marginal suppliers depends on the market trend. 

Marginal suppliers are the most competitive if the market trend lies above the baseline. In this case, 

any supplier with a negative slope is left out. The approach described in the literature was also 

adopted in this study to calculate the supply shares of the short-listed suppliers (eq 3). If the market 

trend lies under the baseline, the least competitive suppliers are the marginal ones. In this case, 

suppliers with a positive slope are left out. 
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Using the slope only considers the production volume of the suppliers at the start and end of the time 

interval. Three techniques are used to evaluate the entire growth of the suppliers within the time 

interval. The first was taken over previous studies (4, 32), and the second and third were developed 

for this study.  

The regression technique (REGR) applies linear regression on all points within the interval. After that, 

the calculation is similar to using the slope, except the slope is now not calculated using equation 2 

but comes from the linear trendline. 

The area technique (AREA) accounts for the entire path of the supplier’s production volume within 

the time horizon. It is done by measuring the area of the additional production volume using midpoint 

Riemann Sums (see Eq. 4-6). This approach favors suppliers with early growth over those with late 

growth.  

The weighted technique (WEIGH) uses weighting factors. A first slope (mi,long) is calculated within the 

entire time interval. A second, shorter slope (mi,short) is then calculated at the end of the time interval 

(see Figure 5, left side). The second slope is divided by the first slope. The growth is exponential if the 

ratio x is higher than 1, linear if equal to 1, logarithmic if lower than 1, and if lower than zero, the 

supplier experiences a decline in growth near the end. The calculated value x is passed through a 

logistic model to restrict how much the weight can affect the weighted score. In the example shown 

in Figure 5, the boundaries of the logistic model are [-1:+1]. The resulting value is then multiplied by a 

weight w and added onto the first slope (see Eq. 11). For this study, the weight is mi,long, so that the 

weighted score is at maximum double the value of the slope calculated in Eq. 2. and at the minimum, 

zero. The weighted score is in the following step used to calculate the share in the mix, similar to 

equation 3.  

 

Figure 5 left: measuring the slopes, right: logistic model 
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Table 1. Overview of the equations used in the measurement techniques 

 Eq. # Equation Variables 

SLOPE Eq. 2 𝑚𝑖 = 𝑃𝑖,𝑡𝑖,𝑓 − 𝑃𝑖,𝑡𝑖,𝑏𝑡𝑖,𝑓 − 𝑡𝑖,𝑏  
𝑡𝑖,𝑏: start of the time interval for 

technology i 𝑡𝑖,𝑓: end of the time interval for 

technology i 𝑃𝑖,𝑡𝑖,𝑏: production volume of technology 

i at year ti,b 𝑃𝑖,𝑡𝑖,𝑓: production volume of technology 

i at year ti,f 𝑚𝑖: slope of technology i 𝑆𝑖: supply share of technology i 

Eq. 3 𝑆𝑖 = 100 ∗ 𝑚𝑖∑ (𝑚𝑖)𝑛𝑖  

REGR / 𝑃𝑖 = 𝑚𝑖,𝑟𝑒𝑔𝑟 ∗ 𝑡  

Slope calculated using least squares regression line 

on values within the time interval 

𝑃𝑖: production volume of technology i 𝑡: year 𝑚𝑖,𝑟𝑒𝑔𝑟: slope of technology i 

AREA Eq. 4 𝐴𝑡𝑜𝑡𝑎𝑙= 𝐽 ∗ (2 ∗ ∑ 𝑃𝑖,𝑡𝑖,𝑗𝑛𝑗 − 𝑃𝑖,𝑡𝑖,𝑓 − 𝑃𝑖,𝑡𝑖,𝑏)2  

𝐽 = timestep between points 𝑃𝑖,𝑡𝑖,𝑗: production volume of technology 

i at year j within the time interval 𝐴𝑖,𝑡𝑜𝑡𝑎𝑙: total area under the curve 𝐴𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: area under the baseline 𝐴𝑖,𝑔𝑟𝑜𝑤𝑡ℎ: area of growth 

Eq. 5 𝐴𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 𝑃𝑖,𝑡𝑖,𝑏 ∗ (𝑡𝑖,𝑓 − 𝑡𝑖,𝑏) 

Eq. 6 𝐴𝑖,𝑔𝑟𝑜𝑤𝑡ℎ = 𝐴𝑖,𝑡𝑜𝑡𝑎𝑙 − 𝐴𝑖,𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 

WEIGH Eq. 7 𝑚𝑖,𝑙𝑜𝑛𝑔 = 𝑃𝑖,𝑡𝑖,𝑓 − 𝑃𝑖,𝑡𝑖,𝑏 𝑡𝑖,𝑓 − 𝑡𝑖,𝑏⁄  
𝑚𝑖,𝑙𝑜𝑛𝑔 = slope of the time horizon 𝑚𝑖,𝑠ℎ𝑜𝑟𝑡 = additional slope 𝑡𝑖,𝑐 = starting point of the additional 

slope 𝑤𝑖 = weight (can be chosen by the user) 𝑚𝑖,𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑 = the weighted slope 

 

Eq. 8 𝑚𝑖,𝑠ℎ𝑜𝑟𝑡 = 𝑃𝑖,𝑡𝑖,𝑓 − 𝑃𝑖,𝑐 𝑡𝑖,𝑓 − 𝑡𝑖,𝑐⁄  

Eq. 9 𝑥𝑖 = 𝑚𝑖,𝑙𝑜𝑛𝑔𝑚𝑖,𝑠ℎ𝑜𝑟𝑡 

Eq. 10 𝑤𝑖 =  𝑚𝑖,𝑙𝑜𝑛𝑔 

Eq. 11 𝑚𝑖,𝑤 = 𝑚𝑖,𝑙𝑜𝑛𝑔 +             2 ∗ ( 𝑒(−1+𝑥𝑖)1 + 𝑒(−1+𝑥𝑖) − 0.5) ∗  𝑤𝑖 
 

3.5. ecoinvent’s consequential methodology  

As the approach will be applied to the ecoinvent database, ecoinvent’s current methodology is 

discussed and compared with the proposed alternatives. EcoinventE uses two methods within the LCI 
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database to determine the mix of marginal suppliers within a market. The first approach was 

introduced in ecoinvent v.3 alongside the consequential system model version of the database (16, 

30). The second approach was introduced later in v.3.4 and is only used for the electricity sector (5). 

3.5.1. Ecoinvent’s general methodology 

In the first method, the marginal mix largely resembles the average mix found in the attributional 

system model. The critical difference is that suppliers constrained in their ability to respond to a 

change in demand are excluded from the market mix. Two types of constraints are considered (21). 

First, suppliers whose process relies on an input resource which depends on the demand for another 

product are excluded (= by-product constraint). Second, the technology level of a supplier, combined 

with the market situation, is a selection variable (TECH) (see Table 2). Considering a market whose 

supply volume is increasing, stable or slightly decreasing, suppliers using modern technologies can 

respond to a change in demand. For fast-declining markets, suppliers using old technologies are seen 

as unconstrained and able to respond to a change in demand. 

 

 

Technologies are considered modern if they are used when additional capacity is required and old if 

the technology is phasing out. Historical data or expert judgement was used in ecoinvent to identify 

the technology level. In this study, the technology level of the suppliers will be decided using the 

production growth of the supplier against the capital replacement rate.  

3.5.2. ecoinvent’s method for the electricity sector 

In the second method, the marginal mix is determined following the method described in Vandepaer 

et al. (5). The method assumes suppliers have no foresight and provide a direct response to the change 

in demand. The general lead time of the market is taken as the time interval (S_LT). Growth and share 

are calculated using the difference in growth between the start and end of the time interval, as in 

equations 1 and 2. 

Technology level of an activity Requirement  

New A novel technology that is not yet commonly used 

Modern  A technology that is used when installing new capacity  

Current  A technology that sits between the old and modern 

requirements  

Old A technology that is being decommissioned 

Decommissioned  A technology that is no longer in use 

Table 2 ecoinvent's assigned technology levels 
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3.6. Heuristic method description 

Heuristic methods to determine the marginal suppliers were constructed by combining the discussed 

techniques for the different parameters. This resulted in a total of 56 combinations. For the discussion, 

this was shorted down to 17 methods which only change on technique each time, plus the two 

methods from ecoinvent (see Table 3). The results for all other combinations can be found in the 

supplementary material. The first two methods in Table 3 follow ecoinvent’s methodology. Methods 

3-9 focus on assessing the marginal suppliers for short-lasting changes in demand. Methods 10-19 

focus on determining the marginal suppliers for long-lasting changes in demand. For this study, the 

change in demand will last for 20 years. This value was chosen as it is close to the maximum lifetime 

for transport equipment and computer appliances in industries and only slightly lower than the 

average lifetime for machinery (38). Methods 17-19 split the time interval into small sections, 

calculating the time interval for each section and then calculating the average marginal mix. This 

technique requires all suppliers to share the same time interval, which is why only the general lead 

time is used. Because the time interval was split up in its smallest form, techniques that measure the 

entire growth were not applied for this technique. 

Table 3 Overview of the investigated heuristic methods 

 Methods Time 

interval 

Lead time Foresight Measurement  Indicator 

1 e.v.3.0 S_LT GEN MYOP TECH CRR 

2 e.v.3.4 S_LT GEN MYOP SLOPE HOR 

       

3 S_BASE S_RANGE GEN MYOP SLOPE HOR 

4 S_IND S_RANGE IND MYOP SLOPE HOR 

5 S_PERF S_RANGE GEN PERF SLOPE HOR 

6 S_REGR S_RANGE GEN MYOP REGR HOR 

7 S_AREA S_RANGE GEN MYOP AREA HOR 

8 S_WEIGH S_RANGE GEN MYOP WEIGH HOR 

9 S_CRR S_RANGE GEN MYOP SLOPE CRR 

       

10 L_BASE L_WHOLE GEN MYOP SLOPE HOR 

11 L_IND L_WHOLE IND MYOP SLOPE HOR 

12 L_PERF L_WHOLE GEN PERF SLOPE HOR 

13 L_REGR L_WHOLE GEN MYOP REGR HOR 

14 L_AREA L_WHOLE GEN MYOP AREA HOR 

15 L_WEIGH L_WHOLE GEN MYOP WEIGH HOR 

16 L_CRR L_WHOLE GEN MYOP SLOPE CRR 

17 Ls_BASE L_SPLIT GEN MYOP SLOPE HOR 

18 Ls_PERF L_SPLIT GEN PERF SLOPE HOR 

19 Ls_CRR L_SPLIT GEN MYOP SLOPE CRR 
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3.7. Using IAM projections to determine the marginal suppliers 

The heuristic methods are applied to the projections of two IAMs currently used in premise. The first 

one, REMIND, uses a computable global equilibrium model with perfect foresight (39, 40). The second 

one, IMAGE, uses a partial equilibrium model with a myopic view (39, 41). While the suppliers have 

no perfect foresight in the model, they use heuristic forecasting approaches to guide their decisions 

(42, 43). Both models’ projections extend to 2100; the data is provided in time steps of 5 years till 

2050 and after in 10 years.  

For testing and validating the proposed procedures, electricity production in the regions of Europe 

and China is selected as case studies. The two regions were chosen as their current power systems 

differ substantially in the penetration rate of low-carbon technologies: 57% in Europe (44) against 26% 

for China (45) in 2019. The regions’ differences could affect the decisions made in the future, which in 

turn could affect the results of the heuristic approach. 

There is a difference in spatial scale between the two models. For IMAGE, Europe is disaggregated 

into Western and Central Europe, and China is aggregated with Mongolia (41). In REMIND, Europe 

comprises EU-28 and non-EU-28 countries (40). For this study, Western Europe and the EU-28 are 

selected from IMAGE and REMIND, respectively, to represent the European region.  

Regarding scenarios, the socio-economic trajectory SSP-2 is known as the ‘Middle of the road’. It is 

combined with two climate mitigation targets: a Baseline target (i.e., RCP 6.5), representing a global 

temperature increase of 3.5°C by 2100 with respect to pre-industrial levels, as well as a Paris 

Agreement-compliant target (i.e., RCP 1.9), limiting the global temperature increase to 1.5 C. These 

two scenarios, referred to throughout the rest of the study as +3.5°C and +1.5°C, respectively, provide 

a moderate and extreme case of climate mitigation efforts.  

The marginal mix was calculated for each scenario over several time points, from 2020-2050, in 10-

year timesteps. As the IAMs’ data is not detailed enough to compare approaches that change the time 

interval, the data was disaggregated into yearly data, using cubic spline interpolation to fill in the 

missing data points (46).  

4. Results 

4.1. Exploratory analysis of raw IAM data 

4.1.1. REMIND 

For the EU, both the +3.5°C and +1.5°C scenarios show a significant increase in the demand for energy 

after 2020, which is mainly answered using wind and solar energy. In both scenarios, fossil fuels are 

primarily phased out, though natural gas is still present in the +3.5°C scenario.  
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The electricity sector in the EU and China shows very similar trends. In China, wind and solar are the 

primary electricity sources in the future, and a decline in fossil fuels is expected. Despite an overall 

reduction in coal, an uptake in Coal integrated gasification combined cycle (IGCC) is projected for China 

in the 3.5°C scenario. A temporary increase in nuclear energy and natural gas is expected for both the 

+3.5°C and +1.5°C scenarios. Hydro energy remains stable throughout the time horizon. In the +3.5°C 

scenario, the market slowly declines after 2035. In the 1.5°C scenario, this decline is also present only 

temporarily. In the +1.5°C scenario, the phase-out of fossil fuels occurs faster, and carbon capture and 

storage (CCS) is adopted for the combustion of natural gas, though its use remains small. 

 

 

 

Figure 6 REMIND’s projections for the electricity sector 

4.1.2. IMAGE 

IMAGE’s projections are noticeably less consistent than those of REMIND. For both the EU and China, 

fossil fuels and nuclear energy remain essential in both scenarios. All scenarios project a switch from 

coal to natural gas. Wind and solar energy are still significant, though far less than in REMIND. Like 

REMIND, a market decrease is projected for China, though much later. 
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Figure 7 IMAGE's projections for the electricity sector 

4.2. Impact of IAM scenarios on the marginal mix 

A select number of results are shown in the following section. First, we investigate the impact of the 

heuristic method choice on the marginal mix using Figures 8 and 9. Second, we compare the marginal 

mix for each scenario using Figures 10 and 11.  All results not covered in this section can be found in 

the supplementary material. 

Despite REMIND’s consistent trends, the marginal mixes can substantially differ between the years 

and methods. The marginal mixes for the EU are the most stable ones, including only two or three 

marginal suppliers (see Figure 8, left side). For China however, the marginal mixes fluctuate more due 

to the decline in total production volume that occurs midway through the investigated time horizon 

(see Figure 8, right side). The differences between the marginal mixes are on average more 

pronounced in IMAGE, with many marginal suppliers throughout the period considered (see Figure 9).  

Of the 19 methods that were tested, the biggest difference lies between methods that focus on 

identifying the consequences of short-lasting changes and those that concentrate on long-lasting 
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changes.  In some cases, such as the 2040 mix for Western Europe (see Figure 9, left side), there is 

only a small overlap of marginal suppliers.  

 

 

Figure 8 Comparison of methods using REMIND's projections (the year in the title notes the year the change in demand first 

occurs) 

A general trend we observe in the data is that there is only a slight difference between methods that 

split the time interval (Ls-BASE, -PERF and CRR) and those that take the entire time interval (L-BASE, -

PERF and CRR). However, the effect is more noticeable for time intervals that encapsulate rapid 

changes in marginal suppliers. For instance, IMAGE projects for Western Europe a temporary increase 

in electricity from coal PC from 2040 to 2050. This results in a noticeable difference between those 

methods that split the time interval and those that take the entire time interval for the 2040 mixes 

(see Figure 9, left side). 
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Figure 9 Comparison of methods using IMAGE's projections 

The capital replacement rate has the most significant effect on both short- and long-lasting changes. 

For methods using the capital replacement rate, technologies decreasing at a slow pace or stable are 

included (e.g., hydro in most cases). The use of capital replacement rate also substantially affects only 

slightly growing technologies (e.g., solar PV in Figure 8, left side).  

The baseline has the most effect when the market decreases slowly, as is the case for China. For 

methods that use the horizontal baseline, the market is deemed uncompetitive. The least competitive 

suppliers are included instead of including the most competitive suppliers in the mix. However, for 

methods that use the capital replacement rate as a baseline, the market is still deemed competitive, 

as the rate of decline is lower than the weighted average capital replacement rate (see Figure 8, right 

side), resulting in a completely different set of marginal suppliers within the mix.  

Overall, the techniques that affect the lead time or foresight have a negligible effect. There are some 

cases where the effect becomes more pronounced. This occurs when a technology’s or market’s 

production volume exceeds the baseline. In those cases, only a small change in the time interval can 

have a substantial effect, as it can alter whether the market or technology is deemed competitive.  

An example of this can be seen in the 2020 mix for Western Europe (see Figure 9, right side). While 

IMAGE’s projections show an overall growing market volume for the EU, there is a dip in total 

production volume between 2020 and 2040. As a result, the slight change in the time interval between 

methods using myopic foresight and those using perfect foresight greatly impacts the mix as it changes 

whether the market is deemed competitive or not. 
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Alternative techniques to measure growth have the smallest effect of the techniques, except when 

the trends start to change midway through the time interval. This is especially the case for short-

lasting changes, which will almost always appear quasi-linear due to the short time interval. For - 

changes, the change is more substantial.  

Measuring growth using the area technique resulted in an increased share of technologies with high 

growth at the start. Unlike the split technique, suppliers must maintain their production volume 

throughout the time interval to be included. For example, the temporary peak in electricity supply 

from coal for Western Europe is not included for L_AREA but is for Ls_BASE (see Figure 9, left side). 

The weighted technique is meant to increase or reduce the share of suppliers based on their growth 

pattern. While no suppliers underwent expansive growth in the projections, several suppliers 

experienced a logarithmic growth or a temporary peak in growth. In those instances, the weighted 

method correctly identified the growth type and reduced the suppliers' share.  

The general methodology (e.v.3.0) shows the most significant difference compared to all other 

methods. It is also the only method that uses production volume instead of growth to calculate the 

share of the marginal suppliers. The method that was developed in v.3.4. is very similar to S_BASE, 

with the only difference being the chosen time interval. The changes are relatively small but 

noticeable, as with the other methods that vary the time interval selected (S_IND and S_PERF).  

The global warming potential (GWP) was calculated for each marginal mix (see white points on each 

bar). When comparing the difference in GWP between methods, the differences are minor for the EU 

in the REMIND scenarios (see Figure 8, left side). This is even the case when the mixes are substantially 

different. This is because the marginal suppliers are all renewable technologies with a similar GWP. In 

all other cases, the difference in GWP is substantial, as power plants using fossil fuels are included as 

marginal suppliers.  

Figures 10 and 11 show the marginal mix for each scenario for 2020 and 2050 to allow for comparison. 

Results are shown for S_BASE, S_CRR, L_BASE and L_CRR, as the timespan of the change and the 

baseline had the most impact on the results.   

In REMIND, the EU has a high adoption rate of renewable technologies starting around 2020 (see 

Figure 10). Simultaneously, China also experiences a substantial uptake of renewable technologies in 

the REMIND scenarios. However, due to its decline in total energy consumption, the market falls below 

the horizontal baseline. As a result, most combinations of heuristic methods include non-competitive 

suppliers if the horizontal baseline is used over the capital replacement rate. Overall, the marginal 

mixes for remind are stable throughout the decades, especially when looking at L_CRR. 
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Figure 10 marginal mixes using REMIND's projections (EU = EU-28, CN = China) 

The marginal mixes for IMAGE have a far lower share of renewable technologies. Instead, the mixes 

are dominated by fossil fuels in 2020. In 2050 the shares of renewable technologies slightly increase, 

and a large share of technologies use CCS in the 1.5°C scenarios. 

 

Figure 11 marginal mixes using IMAGE's projections (EU = Western Europe, CN = China) 
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5. Discussion 
Projections or electricity production mixes obtained from the two IAMs used in this study are 

substantially different despite using the same pathways and focusing mainly on the same regions the 

different levels of foresight cause the suppliers' difference in the IAMs (47). As REMIND, all agents 

have perfect foresight. Because of this, the agents can set up long-term plans without risking 

disruption by unexpected changes. As a result, the trends in REMIND are consistent and only focus on 

a few technologies. On the other hand, IMAGE-modelled agents have no foresight, trending in more 

considerable volatility in production volume. 

The level of foresight used seems to be linked to the goal of the IAM. Models with perfect foresight, 

such as REMIND, are most used to determine optimal transition pathways (35). Myopic models, such 

as those of IMAGE, are designed more closely to simulate reality as suppliers operate in asymmetric 

markets in real life and tend to be short-sighted when making decisions. IMAGE's model may be more 

appropriate for studies focusing on short-lasting changes that will occur in the near future. Both can 

be used for long-lasting changes or changes that happen in the far future. This study focused on two 

IAMs which are based on equilibrium models. However, multiple types of models have been used to 

develop IAMs (48). Examples are MUSE (49), which is agent-based and ANEMI (50), based on the 

system dynamics simulation approach. Projections are expected to differ significantly depending on 

the model type the IAM is based on. It is recommended to use a combination of IAMs and scenarios 

to deal with the uncertainty of future projections.  

Results showed how sensitive the heuristic method is to the different parameters. The techniques to 

use depend on the focus of the study and are to be decided by the user. The following paragraphs 

discuss the various techniques, and recommendations are made on when to use each to help guide 

users in this decision. 

The most significant differences were between methods focused on short-lasting changes and those 

focused on long-lasting changes. Multiple changes will occur in a single LCA study, which can differ in 

starting point and duration. It may therefore be interesting to use separate time intervals for changes 

that significantly affect the environmental impact. 

The baseline selection is essential for both short- and long-lasting changes. This is especially the case 

when the market is slightly decreasing. The use of the capital replacement rate is recommended as it 

leans closer to the idea of measuring competitiveness through investments and to the other potential 

indicators.  



22 
 

The level of foresight had a small but noticeable effect on the results. As mentioned earlier, IAMs also 

assign a level of foresight to the supplier. It is recommended that the heuristic approach and IAM align 

with this assumption. If a myopic approach is taken, the lead time must be considered. It is 

recommended to use individual lead times of the technologies in the market as they influence the 

results.  

For short-lasting changes, the results are only slightly affected by the measuring technique. For long 

time intervals, this is not the case. The technique to use depends on the focus of the study.  

Linear regression is most useful for historical data to filter out potential outliers, which can influence 

the results if growth is measured using the slope in production volume. It is less useful for prospective 

data, which does not have these types of outliers. While the results do sometimes show a difference 

between using the slope or the linear trendline, this difference is caused by applying linear regression 

to a non-linear trend. 

If the outlook is essential, then the weighted technique is advised. This technique can determine the 

growth trend the technology is going through. The type of growth trend, in turn, can indicate how the 

supplier may grow. This technique can also aid when historical data needs to be used, as it only 

requires a limited number of data points to determine the type of growth. This type of model could 

also be interesting when estimating suppliers’ investment plans in a myopic model. As these suppliers 

do not know how the future may evolve, they might use indicators such as the growth trend to make 

predictions and guide their investment decisions. 

Using the area under the curve to measure growth puts the focus instead on early development. This 

can be interesting, and in the early stages, the most impact may be felt due to the initial change in 

demand. Also, while the change in demand can technically influence investment decisions until the 

end, this is not the case for the use phase. Additional capital that appears at the end will barely be 

used to respond to that change in demand, directly or indirectly. By focusing on early growth, the use 

of additional capital within the time interval can be considered. This also avoids scenarios where novel 

technologies appear at the end of the time horizon with a high adoption rate and dominate the 

marginal mix. At the same time, they barely overlap with the lifetime of the investigated product or 

activity.  

As with alternative measuring techniques, splitting the time interval into sections can consider non-

linear growth. The differences are that no focus is laid on either the end or the beginning and that any 

investment in technology is considered even if the technology phases out later in that same time 

interval. 
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6. Conclusions 
This work focused on developing a consistent prospective background database following a 

consequential approach. This study aimed to create an approach that is simple and flexible enough to 

be used systematically at a database scale. This study has shown that it is possible to consistently use 

the heuristic approach by Weidema et al. (29) to determine the long-term consequences of small-

scale changes in a future context. The study has also shown the sensitivity of the different parameters 

within the heuristic approach. It has developed several techniques allowing users to modify the 

method depending on the focus of the study. For this study IAMs were used to model the background 

system. These models offer projections consistent on a scenario level and a global scale. However, 

their data is aggregated across geographies and sectors for use in the LCA context. For example, 

additional work will be required to disaggregate the data on the level of ecoinvent’s detailed 

inventories for the study of specific and geographically limited sectors, such as the cement sector. In 

addition, the IAM incorporates several innovative technologies that are not yet out on the market. 

These technologies are absent from ecoinvent’s database and should be manually added, which 

should be the subject of future research. Future work should also investigate how foreground changes 

can be modelled on top of the database in a way that is consistent with the underlying scenario of the 

database. 

The results of this study were used in premise to transform the consequential ecoinvent database 

using IAM projections. As no one approach fits all, all techniques discussed were made available in the 

tool. The transformation is limited to the electricity mix, but this will be expanded. Whatever method 

is used will have a noticeable effect on the database. This is not just because of the use of the IAM 

projections but also because most of the markets within ecoinvent still measure share based on 

production volume instead of growth. 

To conclude, this study has shown how projections can be integrated on a database-wide scale for the 

consequential approach. Several techniques are provided to allow users to freely choose their method 

based on the focus of their study. Future work will focus on expanding the approach in premise to 

integrate IAM projections for industries besides the electricity sector. In addition, future work will 

focus on how to disaggregate the IAM data and how to model foreground changes in a way consistent 

with the IAM scenarios.  
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