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University of Antwerp — Flanders Make, Belgium
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Abstract. This paper presents a framework for the competitive analy-
sis of Model Predictive Controllers (MPC). Competitive analysis means
evaluating the relative performance of the MPC as compared to other
controllers. Concretely, we associate the MPC with a regret value which
quantifies the maximal difference between its cost and the cost of any
alternative controller from a given class. Then, the problem we tackle is
that of determining whether the regret value of is at most some given
bound. Our contributions are both theoretical as well as practical: (1) We
reduce the regret problem for controllers modeled as hybrid automata to
the reachability problem for such automata. We propose a reachability-
based framework to solve the regret problem. Concretely, (2) we propose
a novel CEGAR-like algorithm to train a deep neural network (DNN) to
clone the behavior of the MPC. Then, (3) we leverage existing reacha-
bility analysis tools capable of handling hybrid automata with DNNs to
check bounds on the regret value of the controller.

Keywords: Competitive analysis - Hybrid automata

1 Introduction

An optimal control problem (OCP) deals with finding a function wu(t), called a
control law that assigns values to control variables for every time step ¢ € R>.
The control law should minimize a given cost function J{z(-),u(-),%o,ts] eval-
uated for a time interval (fo,ty) and subject to the state-equation constraints
&(t) = flx(t),u(t),t]. Model predictive controllers (MPC) solve such a control
problem for a given f. This paper presents an approach for the competitive anal-
ysis of MPC. Competitive analysis, in this context, means evaluating the relative
performance of the MPC as compared to other controllers. Referring to the OCP,
our approach assumes that a control law u(t) is given to us. Further, we associate
to u(t) a regret value, which quantifies the maximal difference between its cost
and the cost of any alternative control law from a given class C. Formally, the re-
gret of u(t) is: Reg(u) = sup.ce Supy er., J [ (), ul-), to, tg] — J[2(-), c(-), to, ty].
If Reg(u) < r, then we say that the control law u(t) is r-competitive.

In this work, we first show that the r-competitivity problem for controllers
modeled as hybrid automata is interreducible with the reachability problem for
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2 S. Bellis et al.

hybrid automata. It follows that the r-competitivity problem is undecidable.
Fortunately, this also points to using approximate reachability analysis tools
to realize approximate competitive analysis. Based on the latter, we propose
a counterexample-guided abstraction refinement (CEGAR) framework that ab-
stracts a given MPC using a deep neural network (DNN) trained to clone the
behavior of the MPC. This abstraction allows us to use reachability analysis
tools such as Verisig [14] to overapproximate the regret value of the abstracted
controller. As usual with CEGAR approaches, the refinement step is the main
challenge: If the regret is deemed too high (and Verisig finds a real example of
this), then this might be due to our abstraction of the controller as a DNN,
the overapproximation incurred by the reachability tool, or it might be a real
problem with the MPC. In our proposal, when we cannot match the high-regret
example to a behavior of the MPC, we use the output of the reachability analysis
tool to augment the dataset used for training the DNN.

As a final contribution, we report on a prototype implementation of our CE-
GAR framework using Verisig. We have used this prototype to analyze MPC for
two well-known control problems. While the approach is promising, we conclude
that further tooling support is required for the full automation of the framework.

Related work. Chen et al. 2022 [5] conducted a survey on recent advancements in
verifying cyber-physical systems and identified as understudied the verification
of control systems whose performance is measured using cost functions. Indeed,
we did not find many works on the verification of controllers with respect to the
cost functions used to obtain them from an OCP instance. Further, to the best
of our knowledge, there have been no previous works on the formal analysis of
regret in hybrid systems. A notable exception is the recent work of Muvvala et
al. [18] who propose regret minimization as a less pessimistic objective for robots
involved in collaborations (e.g., with humans), as opposed to a sole emphasis
on worst-case optimization. However, their regret analysis focuses on a higher
planning level, distinct from the hybrid-dynamics level of the system, making it
closer to the work of Hunter et al. [13] rather than the present one.

Behavioral cloning, also known as imitation learning, is a topic of increasing
interest within artificial intelligence (see, e.g. [3,19,20]). We do not claim to
have a new behavioral cloning algorithm. Rather, we have integrated a data
aggregation step into our CEGAR algorithm for the competitive analysis of
hybrid automata. Interestingly, contrary to previous uses of DNNs as proxies for
MPC [6,14], we have observed that a successful competitive analysis (i.e., the
tool says the controller is r-competitive for a small enough r) suggests one can
use the DNN instead of the MPC! Although this does not guarantee that the
MPC itself is r-competitive, the DNN demonstrates competitiveness. Moreover,
evaluating the DNN to compute the control law proves to be relatively efficient.

2 Hybrid Automata and Competitive Analysis

A hybrid automaton (HA, for short) is an extension of a finite-state automaton
equipped with a finite set of real-valued variables. The values of the variables
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change discretely along the transitions and they do so continuously, over time
while staying in a state.
Formally a HA is a tuple (Q, I, T, X, X, jump, flow, inv), where:

— (Q is a finite set of states and I C (@) is the subset of initial states,

X’ is a finite alphabet,

— T CQxXxQ is a set of transitions, and

X is a finite set of real-valued variables. We write V' C R¥ to denote the set

of all possible valuations of X.

— jump : T — Op maps transitions to a set of guards and effects on the values
of the variables. That is, Op C V2 and for a transition 6 € T, jump(d) =
(guard, effect) implies that § is “enabled” if the current valuation is guard
and effect is the valuation after the transition. Intuitively, jump denotes the
discrete changes in the variables along transitions. Usually, the guards and
effects are encoded as first-order predicates over the reals, e.g. jump(d) =
(r > 2,7 +4) denotes the set {(v,v') € V2 | v(z) > 2 and v/(z) = v(x) +4}.

— flow: Q — F,with F C {f : Ryo — V}, maps each state ¢ € Q to a set F of
functions f; that give the continuous change in the valuation of the variables
while in state ¢. Usually, the functions f, are encoded as systems of first-
order differential equations, e.g. © = 5 denotes functions® f(t)(x) = 5t + ¢,
where ¢ € Ry is the value of = at time ¢t = 0.

— inv : @ — 2V maps each state ¢ € @ to an invariant that constrains the
possible valuations of the variables in ¢. Similar to jump, inv is usually
encoded as first-order predicates over the reals.

Configurations and runs. A configuration is a pair (¢g,v) where ¢ € Q and v € V
is a valuation of the variables in X. A configuration (¢, v) is valid if v € inv(q).
Let (¢,v) and (¢’,v") be two valid configurations. We say (¢’,v’) is a discrete
successor of (q,v) if § = (q,a,q’) € T for some a € X and (v,v") € jump(d).
Similarly, (¢’,v") is a continuous successor of (q,v) if ¢ = ¢ and there exist
to,t1 € Ry and f; € flow(q) such that f,(to) = v, fy(t1) = v’ and for all
to <t <ty, fut) € inv(q).

A run p is a sequence of configurations (go,vo)(q1,v1) - .- (¢n,vn) such that
qo € 1, vy assigns 0 to all variables and, for all 0 < i < n, (¢;+1,v;+1) is a discrete
or continuous successor of (¢;,v;). The REACH decision problem asks, for given
A and (q,v), whether there is a run of A whose last configuration is (g, v).

Parallel composition. Let A; = (Qq, I;, Ti, Xy, X5, jump,, flow,, inv;) for i = 1,2
be two HA. Then, A = (Q, I, T, X, X, jump, flow, inv) is the parallel composition
of Ay and As, written A = A; || Ao, if and only if:

- Q=01 xQzand I =1 X I,

- 2221UE2 andX:Xlqu.

— The transition set T' contains ({q1,¢2),0,{q},q5)) if and only if there are
i,7 € {1,2} such that ¢ # j and:

! Note that if X contains more variables than just z, this function is not unique.
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e cither 0 € X; \ Y}, (¢;,0,q;) € T}, and ¢; = qj;
e oro € XNy, (¢,0,q;) € Ti, and (g5, 0,4;) € T}.
— The jump function is such that, for § = ({q1, q2), 0, (¢}, ¢5)), we have that:
e cither 0 € X; \ X; and jump(0) = jump;({(g;, 0, q;)) for some i, j € {1,2}
with i # j,
e or 0 € X;NX; and jump(t) = jump,({q1,0,q7)) N jump,({q2, 7, q5))-
— Finally, flow({q1,q2)) = flow,(q1) N flow,(g2), and
— inv({q1, q2)) = inv1(q1) N inva(ga).

2.1 The cost of control

In this work, we use HA to model hybrid systems and controllers. In particular,
we henceforth assume any HA A = (Q, I, T, X, X, jump, flow, inv) modelling a
hybrid system has a designated cost variable J € X. We make no such assump-
tion for HA used to model controllers. Observe that from the definition of parallel
composition, it follows that if A models a hybrid system, then B = A || C also
models a hybrid system — i.e. it has the cost variable J — for any HA C.

The following notation will be convenient: For a run p = ... (qn, v,) we write
J, to denote the value v, (J). Further, we write p € A, where p is a run of the
hybrid automaton A. Now, the mazimal and minimal cost of a HA A respectively
are J(A) = sup, e 4 J, and,J(A) == infpec 4 Jp.

2.2 Regret

Fix a hybrid-system HA A = (Q,I,T, X, X, jump, flow,inv). We define the
(worst-case) regret Reg(U) of a controller HA U as the maximal difference be-
tween the (maximal) cost incurred by the parallel composition of A and U — i.e.
the controlled system — and the (minimal) cost incurred by an alternative con-

troller HA from a set C: Reg(U) = supycc(J(A||U)—J(A || U’)). The REGRET
problem asks, for given A, U, C, and r € Q, whether Reg(U) > r.

3 Reachability and Competitive Analysis

In this section, we establish that the reachability and regret problems are interre-
ducible. While this implies an exact algorithm for the competitive analysis of
hybrid automata does not exist, it suggests the use of approximation algorithms
for reachability as a means to realize an approximate analysis.

Theorem 1. Let C be the set of all possible controllers. Then, the REGRET
problem reduces in polynomial time to the REACH problem.

Proof (of Theorem 1). Given a hybrid-system HA A, a controller U, a set of all
possible controllers C and a regret bound r € Q, we will construct another HA
A =(Q,I', T, X, X', jump’, flow', inv') and a target configuration (¢’,v) of A’
such that, (¢/,v) is reachable in A’ if and only if Reg(U) < r in A|| U. Let us
write A = (Q, I, T, X, X, jump, flow, inv) and note that J € X because A is a
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Fig. 1. Gadget for simulating any possible controller

hybrid-system HA. We extend the automaton A || U with a gadget to obtain A’.
The idea is as follows: for every variable y € Y of A || U, we add a copy of it
in the variable set X’ of A’ that simulates any possible choice of value for that
variable by an alternative controller U’. The variable J’ € X’ calculates the cost
of that alternative controller. Formally, X' =Y U{y’ |y € Y}.

To simulate any possible valuation of the variables, we introduce the gadget
given in Figure 1. For every variable  such that x; is a variable in U, the gadget

+

contains two states q;r{ and g, . Then, ﬂow'(qw ) contains x; =1and 2} = 0 for

all j # 4. Intuitively, this state allows us to poéitively update the value of z} to
any arbitrary value. Similarly, ﬂow’(q;) contains ;z;; = —1 and x; =0, Vj # 1,
which allows it to negatively update the value of x.

Now, we add a “sink” state ¢reach and make it reachable from all the other
states using transitions &, € T" such that jump’(d}) contains guard of the form
J — J' > r. Finally, from every state ¢’ € @', we add the option to go into its
own copy of the gadget, set the values of the variables to any desired value and
come back to the same state.

Note that if (greach, 0) is reachable in A’, via a run p € A’, then J, — J,’) > .
As the gadget does not update the value of J and J’, it is easy to see that
Reg(U) > r. Now, if (greach,0) is not reachable that means, J, — J[’, < r for all
p € A’. Now, as all possible controllers (in fact, all possible configurations of
variables from U) can be simulated in A’, it is easy to see that Reg(U) <r. O

Interestingly, the construction presented above does not preserve the prop-
erty of being initialized. Intuitively, an initialized hybrid automaton is one that
“resets” a variable x on transitions between states which have different flows for
x. Alas, we do not know whether an alternative proof exists which does preserve
the property of being initialized (and also being rectangular, a property which we
do not formally define here). Such a reduction would imply the regret problem
is decidable for rectangular and initialized hybrid automata.

We now proceed to stating and proving the converse reduction.

Theorem 2. The REACH problem reduces in polynomial time to the REGRET
problem.

Proof (of Theorem 2). Given a HA A and a target configuration (g,v), we will
construct a HA A’ and a controller U such that Reg(U) > 2 with respect to
A’ || U if and only if (g,v) is reachable in A. The reduction works for any set C
of controllers that contains at least one controller that sets ¢ to 0 all the time.
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¢=0.7=0(a) c>1,J=1 A v, J =2 (@)

Fig. 2. Reduction from REACH to REGRET

First, we add two states to A’ so that Q" = QU {g;,qr}. In A’, ¢; has a
self-loop that can be taken if the value of ¢ is 0 and the effect is that J = 0.
From ¢;, we can also transition to the initial states of A if ¢ > 1, and in doing
so, we set J to 1. Finally, from the target state ¢ in A, we can go to the new
state gp if the target valuation v is reached, and that changes the valuation of
J to 2. The valuation of J does not change within A.

Note that the minimum cost incurred by a controller that constantly sets ¢
to 0 in A’ is 0, which is achieved by the run that loops on ¢;. Now, if (¢, v) is
reachable in A via run p € A, then the maximum cost incurred by a controller
that sets ¢ to 1 occurs along a run ¢; - p- ¢r and is 2, making Reg(U) > 2. On the
other hand, if (¢, v) is not reachable in A, then the maximal value of J along any
such run is 1, resulting in Reg(U) < 2. Our constructed controller U is such that
it sets ¢ to 1 all the time, and the above arguments give the desired result. O

Since the reachability problem is known to be undecidable for hybrid au-
tomata in general [11], it follows that our regret problem is also undecidable.

Corollary 1. The REGRET problem is undecidable.

4 CEGAR-Based Competitive Analysis

We present our CEGAR approach to realize approximate competitive analysis.
To keep the discussion simple, we focus on continuous systems, specifically single-
state hybrid automata. Since our goal is to approximate the regret of MPCs, we
model controllers as hybrid automata that sample variable values at discrete-
time intervals and determine control variable values using a deep neural network
(DNN) trained to behave as the MPC. Concretely, our approach specializes the
reduction in the proof of Theorem 1: We will work with a hybrid automaton
D that abstracts the behavior of the controller using a DNN, and a hybrid
automaton N that abstracts the behaviors of all alternative controllers. The
overview of our framework is depicted in Figure 3a. In section 5, we present a
toolchain implementing this CEGAR-based approach.

4.1 Initial abstraction and analysis

Our proposed framework begins with the abstraction of the controller as a hybrid
automaton D and the alternative controllers as N'. Each of these automata are
assumed to have a cost variable, say Jp for D and Jy for N. For a given
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|HYST |—>/ DxN.xml / / DNN.yml /
P

Verisig |<7/ Property.yml /

initial abstraction

reachability analysis l CEGAR loop
,,,,,,,,,,,,,,,,,,,,,,,,,, ,
I
Yes !
No |
No ¥ !

| counterexample validation |

I
l old dataset(*.csv)

No»

Yes Yes
¥
refine abstraction !

(a) CEGAR-based approach (b) Competitive analysis toolchain

Fig. 3. Flowchart depictions of our approach and our toolchain implementing it; We
use ANSI/ISO standard flowchart symbols: the parallelogram blocks represent in-
puts/outputs, and the rectangular blocks represent processes or tools

value r € R, if we want to determine whether D is r-competitive then we add to
A = D||N anew cost variable J = Jy —Jp. As is argued in Theorem 1, D should
be r-competitive if and only if A can reach a configuration where the value of J
is larger than r. Hence, we can apply any reachability set (overapproximation)
tool to determine the feasibility of such a configuration.

4.2 Reachability status

If the reachability tool finds that a configuration with J > r is reachable in
A, we say it concludes A is unsafe. In that case, we will have to process the
reachability witness. Otherwise, A is safe, and we can stop and conclude that D is
r-competitive. Interestingly, D can now be used as an r-competitive replacement
of the original controller! It is important to highlight that behavior cloning does
not provide any guarantees regarding the relationship between the MPC and
the DNN within D. Consequently, even if we have evidence supporting the r-
competitiveness of D, we cannot infer the same for the MPC itself.

In the context of MPCs, this result is already quite useful. This is because
MPCs have a non-trivial latency and memory usage before choosing a next valu-
ation for the control variables (see, e.g. [12,15]). In our implementation described
in the following section, D takes the form of a DNN. As DNNs can be evaluated
rather efficiently, using the DNN instead of the original MPC is desirable.
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4.3 Counterexample analysis and refinement

If A is deemed unsafe, we expect the reachability tool to output a counterex-
ample in the form of a run. There is one main reason why such a run could
be spurious, i.e. it does not correspond to a witness of the MPC not being
r-competitive. Namely, the abstractions D (representing the MPC) or A/ (rep-
resenting alternative controllers) might be too coarse. For the specific case of D,
where a DNN is used to model the MPC, we describe sufficient conditions to
determine if the counterexample is indeed spurious. If the counterexample is in-
deed deemed spurious, we can refine our abstraction by incorporating new data
obtained from the counterexample and retraining the DNN. In general, though,
refining D and N falls into one of the tasks for which our framework does not
rely on automation.

4.4 Human in the loop

There are three points in the framework, where human intervention is needed.

Modelling and specification. First, the task of obtaining initial abstractions D
and NV of the controller and all alternative controllers, respectively, does require a
human in the loop. Indeed, crafting hybrid automata is not something we expect
from every control engineer. In our prototype described in the next section, we
mention partial support for obtaining D and A automatically when the MPC is
given in the language of a particular OCP and optimization library.

Reachability analysis. Second, reachability being an undecidable problem, most
reachability analysis tools can not only output safe and unsafe as results. Ad-
ditionally, they might output an “unknown” status. In this case, revisiting the
abstractions D and N, or even changing the options with which the tool is be-
ing used may require human intervention. In fact, we see this as an additional
abstraction-refinement step which is considerably harder to automate since there
is an absence of a counterexample to work with.

Abstraction refinement. Finally, our framework does not say what to do if the
counterexample being spurious is due to N being too coarse an approximation.
This scenario can occur when A is purposefully modeled to discretize or ap-
proximate certain behaviors of alternative controllers to facilitate reachability
analysis. However, for D, we offer automation support by proposing the retrain-
ing of our DNN in the implementation. It might actually be needed to change
the architecture of the DNN to obtain a better abstraction. This process can be
automated, as increasing the number of layers is often sufficient according to the
universal approximation theorem [4].

5 Implementation and Evaluation

We now present our implementation of the CEGAR-based competitive analysis
method presented in the previous section, along with two case studies used for
evaluation: the cart pendulum and an instance of motion planning.
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5.1 Competitive analysis toolchain

Figure 3b gives a visual depiction of the toolchain in the form of a flowchart.
Starting from the top, D.xml, N.xml are XML files encoding hybrid automata
D and N, respectively, in the SpaceEx modeling language|8]. The automaton D
represents the controller, which could be a model predictive controller (MPC),
and N represents a class of controllers that the MPC is compared against —
see also Section 4.1. We use the HyST [2] translation tool for hybrid automata
to generate the parallel composition D || N (encoded in DxN.xml, again in the
SpaceEx language). The composed automaton, along with the trained DNN and
the property to be verified, are fed as inputs to Verisig. Verisig [14] is a tool
that verifies the safety properties of closed-loop systems with neural network
components. The tool takes a hybrid automaton, a trained neural network, and
property specification files as inputs. It performs the reachability analysis and
provides safety verification result. We then parse the output of Verisig to deter-
mine whether D is competitive enough (parser.py). If this is not the case, we
realize a sound check to determine if the counterexample is spurious, in which
case we use it to extend our dataset and further train the DNN.

5.2 Initial abstraction and training

Our toolchain is finetuned to work well for hybrid systems modeled in a tool
called Rockit and MPCs obtained using the same tool. Rockit, which stands for
Rapid Optimal Control Kit, is a tool designed to facilitate the rapid prototyp-
ing of optimal control problems, including iterative learning, model predictive
control, system identification, and motion planning [10].

Our toolchain includes a utility that interfaces with the API of Rockit to
automatically generate the hybrid automata D and N from a model of a control
problem. While the use of Rockit is convenient, it is not required by our toolchain.

Based on a dataset (in our examples, we obtain it from Rockit), we train
a DNN using behavioral cloning: we try to learn the behavior of an expert (in
our case, the MPC) and replicate it. For this, we make use of the Dagger algo-
rithm[20], which, after an initial round of training on the dataset from Rockit,
will simulate traces using the DNN. The points that the neural network visits
along these traces are then given to the expert, and the output of the expert is
recorded. These new points and outputs are appended to the first dataset, and
this new dataset is used to train a second DNN. This iterative process is done
multiple times to make the DNN more robust. In all of our experiments, the
TensorFlow framework [1] was used for the creation and training of the DNN.

5.3 Reachability status

The regret property, encoded as a reachability property as is done in the proof
of Theorem 1, is specified in the property file Property.yml, which also includes
the initial states of D || N. Verisig provides three possible results: “safe” if no
property violation is found, “unsafe” if there is a violation, and “unknown” if the
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property could not be verified, potentially due to a significant approximation
error. In the latter two cases, a counterexample file (CE file) is generated.

5.4 Counterexample analysis and retraining

If the result is “unsafe”, the next step is to compare the counterexample tra-
jectory against the dataset generated from the controller code. If a matching
trajectory is found, it indicates a real counterexample, meaning that this tra-
jectory could potentially occur in the actual controller, and no further action is
required. If a matching trajectory is not found, then it is a spurious counterex-
ample that requires either retraining the DNN or fix(es) in D||A. Our toolchain
automatically validates the counterexample by comparing the trajectories from
Verisig and the controller as implemented in Rockit. To do so, since Rockit uses
the floating-point representation of real numbers, we choose a decimal precision
of € = 1073 for the comparison. In the case of a spurious counterexample that
requires retraining the DNN, we update the existing dataset using Rockit to
obtain additional labeled data based on the trajectory from the CE file.

The CE file from Verisig represents state variable values using interval arith-
metic, while the controller dataset contains state variable values in R without
intervals. To accommodate this difference, we choose to append to the dataset
new entries: (a) the lower bounds of input intervals, (b) the upper bounds, and
(c) a range? of intermediate input values within the intervals. For each of these,
we also include the corresponding controller outputs. The generation of the up-
dated dataset and the retraining of the DNN are performed automatically by our
toolchain. A DNN trained on the new dataset is then fed to Verisig again along
with DxN.xml and the Property.yml. This way, the CEGAR loop is repeated
until one of the following conditions is true: (a) the counterexample is real, or (b)
a maximum number of retraining iterations (determined by the user) is reached.

5.5 Experiments

In the sequel, we use our tool to analyze two control problems that have been
implemented using the Rockit framework. The research questions we want to
answer with the forthcoming empirical study are the following.

RQ1 Can we have a fully automated tool to perform the competitive analysis?
RQ2 Is the toolchain scalable? Why or why not?
RQ3 Does the approach help to improve confidence in (finite-horizon) competi-

tivity of controllers?

RQ4 Does the approach help find bugs in controller design?

We now briefly introduce the two case studies, their dynamics, and how each
of them are modeled so that our toolchain can be used to analyze them.

2 Our toolchain splits each interval into n equally large segments and adds all points
in the resulting lattice. In our experiments, we use n = 4.
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Cart pendulum. The cart pendulum problem is a classic challenge in control
theory and dynamics [7]. In it, an inverted pendulum is mounted on a cart
that can move horizontally via an electronic servo system. The objective is to
minimize a cost J = F2 + 100 * pos?, where F represents the force applied to
the cart and pos indicates the position of the cart. The values of F' and pos are
constrained within the range of [—2,2]. The dynamics of the cart correspond to
the physics of the system and make use of parameters including the mass of the
cart and the pendulum and the length of the pendulum (see Appendix A).

While the proof of Theorem 1 provides a sound way to model all alternative
controllers in the form of A/, the construction combines continuous dynamics
and non-determinism. Current hybrid automata tools do not handle non-trivial
combinations of these two elements very well. Hence, we have opted to discretize
the choice of control values for alternative controllers. Intuitively, this means
that every time the DNN is asked for new control variable values in D, the
automaton A non-deterministically chooses new alternative values from a finite
subset fixed by us a priori (see Figure 5b in appendix for an example).

Motion planning The case study involves computing a series of actions to
move an object from one point to another while satisfying specific constraints
[16]. In our case study, an MPC is used to plan the motion of an autonomous
bicycle that is expected to move along a curved path on a 2D plane using a
predefined set of waypoints. To prevent high-speed and skidding, the velocity
(V) and the turning rate (9, in radians) are constrained in the ranges 0 <V <1
and —7/6 < ¢ < w/6. The objective is to minimize the sum of squared estimate
of errors between the actual path taken by the bicycle and the reference path.
Intuitively, the more the controller deviates from the reference path, the higher
its cost (see Appendix B).

Like in the cart pendulum case study, we discretize the alternative control
variable valuations. A big difference is that the cost has both a Mayer term and
a Lagrangian that depend on the location of the bicycle and the waypoints in an
intricate way. In terms of modelling, this means that D and A/ have to “compute”
closest waypoints relative to the current position of the bicycle (see Figure 6).

Discussion. Towards an answer for RQ1, we can say that while our toolchain®
somewhat automates our CEGAR, it still requires manual work (e.g. the initial
training and choice of DNN architecture). Moreover, in the described case stud-
ies, we did not observe an MPC DNN that is labeled as competitive. This may be
due to (over)approximations incurred by our framework and our use of Verisig.
Despite this, we can answer RQ4 positively as our toolchain allowed us to spot
a bug hidden in the Rockit MPC solution for the cart pendulum. We observed in
early experiments that the MPC was not competitive and short (run) examples
of this were quickly found by Verisig. We then found that the objective function
in Rockit was indeed not as intended by the developers.

3 All graphs and numbers can be reproduced using scripts from: https://github.
com/competitive-analysis-toolchain/competitive-analysis.
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Box Plot of Error Loss for DNNs Box Plot of Error Loss for DNNs
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Fig. 4. Boxplots showing the training losses of all DNNs against all test sets

The DNNs do show a trend towards copying the behavior of the MPC (see
Figure 4) even though we retrain a new DNN from scratch after each (spurious)
counterexample obtained via Verisig and we (purposefully) randomize the choice
of test and training set in each iteration. We do this to increase variability in
the set of behaviors and the counterexamples used to extend the dataset. In
the cart pendulum case study, we observe that in the iterations 2, 7, and 11,
the number of discrete time steps during which the corresponding DNN can act
while remaining competitive is larger than in the initial iteration. Hence, for
RQ3, we conclude our toolchain can indeed help increase reliability in the DNN
proxy being competitive, albeit only for a finite horizon. On the negative side,
experiments for 20 iterations of retraining from spurious counterexamples take
more than 90min in both our case studies. This leads us to conclude that our
toolchain does not yet scale as required for industrial-size case studies (RQ2).

6 Conclusion

Based on our theoretical developments to link the regret problem with the clas-
sical reachability problem, we proposed a CEGAR-based approach to realize the
competitive analysis of MPCs via neural networks as proxies. We also presented
an early proof-of-concept implementation of the approach. Now that we have a
baseline, we strongly believe improvements in the form of algorithms and dedi-
cated tools will allow us to improve our framework to the point where it scales
for interesting classes of hybrid systems.
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A Cart pendulum with physics-based cost
The cart’s dynamics are summarized in Table 1, with parameters including the

cart’s mass (mcart), the pendulum mass (m), the pendulum length (L), and the
gravitational constant (g).

Use case Initial state|Dynamics Objective S;‘?;:;i S;::traints Sample time(s)
pos = dpos
6=do
pos = 0.5 dpos = (—mLsin(0)(d0)*+
N 0=0 mgcos(0)sin(0) + F)/ . 2 S —2<F<2
cart pendulum pos =0 (meart +m —m + (cos(60))2) 2F + 100pos Force (F) 2<pos<2 0.04
6=0 df = (—mLcos(0)sin(0)(d0)*

+
Feos(0) + (meart + m)gsin(0))/
(L(mcart + m — m(cos(6))*))

z=0 z = Veos(0)
.quare error betw <v<
motion planning|y = 10 y = Vsin(6) sdvare error between I Turning rate (5) 2’/2- B IE TR R
-0 0 = V/Ltan(6) position and reference pat /6 <8<

Table 1. The initial states, the dynamics and other control parameters of the cart
pendulum and motion planning.

To determine the sample time for the MPC, we calculate it as the ratio
of the control horizon (Tf) to the number of control intervals (Nhor). In this
case, T'f is set to 2 seconds and Nhor is 50, resulting in a sample time of
dt = Tf/Nhor = 0.04s. Additionally, the initial conditions for the system are
specified as [pos, 0, dpos, df] = [0.5,0,0,0]. The controller is said to have found
an optimal solution, respecting the constraints, for which the cost is minimum.
That is, the more the controller deviates from the set constraints for F' and pos,
the more it is "punished", thereby setting a higher value to the cost variable.

For the DNN abstracting the MPC, we trained a fully connected model with
4 inputs nodes, 1 output node* and 4 hidden layers. The number of nodes in
the hidden layers as well as the activation function and the learning rate were
chosen using hypertuning. For hypertuning, the hyperband algorithm was used
[17]. The options that the hyperband algorithm had for each hyperparameter
were the following:

— The amount of nodes in each hidden layer: 16, 32, 48, 64, 80 or 96.

— The learning rate was sampled between le-5 and le-1 with a logarithmic
sampling.

— The activation function: sigmoid or a tangent hyperbolic.

The sigmoid and tangent hyperbolic activation functions were chosen because
they can be used in Verisig. The factor used in the hyperband algorithm was 3.

4 The last layer of the DNN has a shifted and scaled sigmoid function as an activation
function. This function restricts the output of the DNN between -2 and 2. This
makes sure that the DNN never outputs a parameter that is outside the bounds of
the problem. This reduces the number of spurious counterexamples that are found
by the CEGAR loop.
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We begin the modeling process by representing the given controller as au-
tomaton D, depicted in Figure Figure 5a. This automaton consists of three
modes, each suffixed with a ‘D’ (e.g., initD, environmentD), distinguishing them
from the modes of automaton A/. The initial mode, initD, and the DNN mode
do not involve any time elapse. The incoming edges to the DNN mode labeled as
_f1, _f2, etc., indicate the inputs to the DNN. Verisig uses the input DNN.yml
in place of the DNN mode. The DNN “mimics” the MPC which takes pos, 0,
dpos, and df as inputs and outputs F. The output of the DNN (_ f1) is set
to the Force variable F'D with a scaling factor that corresponds to the sigmoid
activation function.

choice
clockD==0.0
clockD:= 0.0&
_fli= posD&
_f2:= thetaD&
_f3:= dposD& choice

_f4:= dthetaD clockN == 0.0
clockN := 0.0

initD
clockD == 10
clockD'==

inithl
clockN <=0

clockN'==1
chosen chosen
reset chosen clockN==0.0 lockN 22 0.0
clockD==0.0 clockN:= 0.0& clocthl == 9.
clockD==0.04 : FNe 20 clockN = 0.0&
clockD:=0.0 clockD:= 0.0& reset FN o= -2.0
FD:= -2+ _fl¥4 clockN==0.04
clockN:=0.0
environmentD - ;
environmenth
clockD == 0.04 clockN <= 0.04
clockD' == 1& clockN' == 1.0&
posD' == dposD& posh' == dposN&
thetaD' == dthetaD& " tT‘ == :thﬂS; e
[ . etaN' == eta
dposD == (1.0 * 2.0 * sin(thetaD) ¥ dthetaD * dposN' == (-1.0 % 2.0 % sinlthetal) * dthetal * d
dthetaD' == (-1.0 + 2.0 * cos{thetaD) * sin(thet dthetal' == (-1.0 % 2.0 # cos(thetal) * sin(thetal
costD' == FD * FD + 100.0 * posD * posD costN' == FN * FN + 100.0 * posN * posN
(a) Automaton D (b) Automaton N

Fig. 5. Automaton D and automaton A for cart pendulum

The environment mode contains the control dynamics and the cost function,
expressed as ordinary differential equations. To model the controller’s sample
time, we employ a combination of setting the invariant of clockD to 0.04 and
resetting clockD to 0.04 on the outgoing edge from the environment. This ensures
that exactly 0.04 seconds are spent in the environment mode, reflecting the
desired sample time of the controller.

Automaton N models the class of controllers to be compared with MPC (or
alike). Unlike D, A does not use a trained DNN — as A corresponds to a class
of controllers other than the MPC (or alike), there is no need to have a DNN.
So, the DNN mode in A is just a dummy mode used for sync and composition
generation. Also, unlike D, A has discrete behaviour with deterministic transi-
tions where each transition has F' set between -2 and 2 (same constraint as in
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D). That is, by discretizing the environment in automaton A/ we make the set of
controllers we compare against as finite. Furthermore, the discretization helps in
having a tighter reachability set, thereby reducing verification time. We assume
D and N have the same sampling time of 0.04s. Note that the behaviour of D
and A is identical, for e.g., a transition in D from init mode to DNN mode is
identical to the transition from init mode to DNN mode in A/. This ensures a
fair comparison between the MPC and other controllers. Synchronization labels
(choice, chosen, reset) are used on each edge to establish this identical behaviour,
which also facilitates composition. The parallel composition D || N generated by
HyST.

The next step is to feed the generated composition D||A to Verisig along with
the property file and the trained DNN. The competitive analysis is performed for
the regret property costD — cost N >= 0.25. That is, we ask Verisig if there is an
‘unsafe’ trajectory in the composed automaton with the difference in the costs is
greater than 0.25. Verisig returned an ‘unsafe’ result along with a CE file, which
is then automatically parsed to obtain the unsafe trajectory. The trajectory from
Verisig is compared against the controller’s dataset and it is found that it is a
spurious counterexample. As the next step, the dataset file is appended with
new data from the CE file, and the DNN is retrained. The retrained DNN, along
with the composed automaton and the property file is fed to Verisig again. The
DNN retraining (a.k.a the refinement) is repeated for 20 iterations.

B Motion planning with waypoint-based cost

Motion planning involves computing a series of optimal steps to move an object
from one point to another while satisfying specific constraints [16]. In our case
study, an MPC is used to plan the motion of an autonomous bicycle that is
expected to move on a curved path on a 2D plane using a predefined set of
waypoints. To prevent high speed and skidding, the velocity(v) and the turning
rate(d) of the bicycle are constrained within the ranges of 0 <V < 1and —7/6 <
0 < 7/6 respectively. The objective is to minimize the sum of squares error
between the actual path taken by the bicycle and the reference path. That is, the
more the controller deviates from the reference path, the more it is “punished"
with a higher value of sum squared error. The bicycle dynamics are summarized
in Table 1, where L represents the bicycle length. Unlike the cart pole case study
where the sample time remains constant, the controller dynamically calculates
the sample time (¢ second) within the range of 1.3 <= t, <= 1.9. The Python
implementation of the use case is available at [9].

To model this case study, four automaton were employed. D and N represent
the given controller and the class of controllers for comparison, respectively. Ad-
ditionally, we use two more automaton C1 and C2, one for the given controller
and one for the class of controllers. Since these two automaton are identical,
automata C1 is shown in Figure 6. These automata model three functions from
the path planning algorithm that compare the bicycle’s current position with
the reference path. The first function involves finding the closest waypoint on



18 S. Bellis et al.

WFEsets

total_distD - D_w01D >=0

wy_lastD:= 16.9

total_distD:= total_d total_distD - D_wOID <= 0.001 total_d

reset2

DminD:=D_w2D

piS;fSD& DrinD -D_w2D >=0  pminD - D_wlD == 0

DminD:= D_wlD

wx_lastD: = 4.7552825814758 & total_distD - D_w01D- D_w12D >= 0

wx_lastD:= 4.3301270189222 &
astD:= 17.777777777778

istD - D_w01D - D_wl2D =

wx_lastD:= 4.9726094768414 ¢ Wx_lastDi= 4.9726094765414 &
wy_lastD:= 15.211111111111  Wy_lastD:=15.211111111111

D_wlastD:= (xD - wx_lastDI*(xD - wx_lastD] + (yD - wy
D_wOD:= (xD-wx_0D] * (xD-wx_0D) + {yD-wy_0D] * (yD
D_wlD:= (xD-wx_1D] * (xD-wx_1D) + {yD-wy_1D] * (yD
D_w2D:= i(xD-wx_2D) * (xD-wx_2D) + (yD-wy_2D) * {yD

DminD:= D_w0D

DminD - D_wlD <= 0.00

costD:= costD + DminD + D_wlastD DminD - D w20 <= 0.001

Fig. 6. Automaton C1 for motion planning

the reference path and comparing it with the current position. This is achieved
by computing the x- and y-coordinate distances between the current position
and each point on the reference path, starting from a specific index. The index
of the closest waypoint is saved using the distance formula®. The second function
determines the index of the last waypoint on the reference path that is located at
a certain distance from the current position. The last index is obtained by calcu-
lating the cumulative distance starting from the index of the first waypoint and
continuing until the index of the last waypoint. The third function creates a list
of N waypoints. It begins by using the index of the last waypoint obtained from
the second step to determine the number of indices (referred to as delta index)
between the last index and the first index. If delta index is greater than the
desired number of waypoints N, it means there are more than N path points
available. In this case, we consider the indices of the first N waypoints. However,
if delta__index is less than N, indicating that there are fewer than N waypoints
available, we consider the index of the last waypoint and repeat it multiple times.

In contrast to the physics-based cost utilized in the cart pole case study, the
cost in C1 and C2 is modeled as the sum of the accumulated cost, the distance
to the closest waypoint, and the distance to the last waypoint. This cumulative
sum represents the deviation between the path taken by the controller and the
reference path. Subsequently, we conduct a competitive analysis, as illustrated
in Figure 3b, utilizing the costs obtained from C1 and C2.

For the DNN abstracting this MPC, we trained a fully connected model with
3 inputs nodes, 3 output node and 4 hidden layers. The 3 input nodes correspond
to the parameters X, Y and theta that are used in the MPC. The output nodes

5 We employ the squared difference between the x- and y-coordinates without taking
the square root. This choice is made due to the current limitation of flow*, which
does not support the square root of variables (only the square root of a constant is
supported).
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correspond with the control variables Delta, V and a timestep. The timestep
is used by the simulation function of the system because the timestep is not
constant for this MPC. This MPC does not use an activation function on the
last layer to restrict the output. The rest of the construction and training of this
DNN is analogous to the previous DNN.

The generated composition D || A || C1 || C2 is fed to Verisig along with
the property file and the trained DNN. The competitive analysis is performed
for the regret property costD — costN >= 0.25. Verisig returned an ‘unsafe’
result along with a CE file. The trajectory from Verisig is compared against the
controller’s dataset and it is found that it is a spurious counterexample. As the
next step, the dataset file is appended with new data from the CE file, and the
DNN is retrained. The retrained DNN, along with the composed automaton and
the property file is fed to Verisig again. The DNN retraining is repeated for 20
iterations.
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