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Abstract. This paper presents a framework for the competitive analy-7

sis of Model Predictive Controllers (MPC). Competitive analysis means8

evaluating the relative performance of the MPC as compared to other9

controllers. Concretely, we associate the MPC with a regret value which10

quantiőes the maximal difference between its cost and the cost of any11

alternative controller from a given class. Then, the problem we tackle is12

that of determining whether the regret value of is at most some given13

bound. Our contributions are both theoretical as well as practical: (1) We14

reduce the regret problem for controllers modeled as hybrid automata to15

the reachability problem for such automata. We propose a reachability-16

based framework to solve the regret problem. Concretely, (2) we propose17

a novel CEGAR-like algorithm to train a deep neural network (DNN) to18

clone the behavior of the MPC. Then, (3) we leverage existing reacha-19

bility analysis tools capable of handling hybrid automata with DNNs to20

check bounds on the regret value of the controller.21

Keywords: Competitive analysis · Hybrid automata22

1 Introduction23

An optimal control problem (OCP) deals with finding a function u(t), called a24

control law that assigns values to control variables for every time step t ∈ R≥0.25

The control law should minimize a given cost function J [x(·), u(·), t0, tf ] eval-26

uated for a time interval (t0, tf ) and subject to the state-equation constraints27

ẋ(t) = f [x(t), u(t), t]. Model predictive controllers (MPC) solve such a control28

problem for a given f . This paper presents an approach for the competitive anal-29

ysis of MPC. Competitive analysis, in this context, means evaluating the relative30

performance of the MPC as compared to other controllers. Referring to the OCP,31

our approach assumes that a control law u(t) is given to us. Further, we associate32

to u(t) a regret value, which quantifies the maximal difference between its cost33

and the cost of any alternative control law from a given class C. Formally, the re-34

gret of u(t) is: Reg(u) := supc∈C suptf∈R≥0
J [x(·), u(·), t0, tf ]− J [x(·), c(·), t0, tf ].35

If Reg(u) < r, then we say that the control law u(t) is r-competitive.36

In this work, we first show that the r-competitivity problem for controllers37

modeled as hybrid automata is interreducible with the reachability problem for38
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hybrid automata. It follows that the r-competitivity problem is undecidable.39

Fortunately, this also points to using approximate reachability analysis tools40

to realize approximate competitive analysis. Based on the latter, we propose41

a counterexample-guided abstraction refinement (CEGAR) framework that ab-42

stracts a given MPC using a deep neural network (DNN) trained to clone the43

behavior of the MPC. This abstraction allows us to use reachability analysis44

tools such as Verisig [14] to overapproximate the regret value of the abstracted45

controller. As usual with CEGAR approaches, the refinement step is the main46

challenge: If the regret is deemed too high (and Verisig finds a real example of47

this), then this might be due to our abstraction of the controller as a DNN,48

the overapproximation incurred by the reachability tool, or it might be a real49

problem with the MPC. In our proposal, when we cannot match the high-regret50

example to a behavior of the MPC, we use the output of the reachability analysis51

tool to augment the dataset used for training the DNN.52

As a final contribution, we report on a prototype implementation of our CE-53

GAR framework using Verisig. We have used this prototype to analyze MPC for54

two well-known control problems. While the approach is promising, we conclude55

that further tooling support is required for the full automation of the framework.56

Related work. Chen et al. 2022 [5] conducted a survey on recent advancements in57

verifying cyber-physical systems and identified as understudied the verification58

of control systems whose performance is measured using cost functions. Indeed,59

we did not find many works on the verification of controllers with respect to the60

cost functions used to obtain them from an OCP instance. Further, to the best61

of our knowledge, there have been no previous works on the formal analysis of62

regret in hybrid systems. A notable exception is the recent work of Muvvala et63

al. [18] who propose regret minimization as a less pessimistic objective for robots64

involved in collaborations (e.g., with humans), as opposed to a sole emphasis65

on worst-case optimization. However, their regret analysis focuses on a higher66

planning level, distinct from the hybrid-dynamics level of the system, making it67

closer to the work of Hunter et al. [13] rather than the present one.68

Behavioral cloning, also known as imitation learning, is a topic of increasing69

interest within artificial intelligence (see, e.g. [3,19,20]). We do not claim to70

have a new behavioral cloning algorithm. Rather, we have integrated a data71

aggregation step into our CEGAR algorithm for the competitive analysis of72

hybrid automata. Interestingly, contrary to previous uses of DNNs as proxies for73

MPC [6,14], we have observed that a successful competitive analysis (i.e., the74

tool says the controller is r-competitive for a small enough r) suggests one can75

use the DNN instead of the MPC! Although this does not guarantee that the76

MPC itself is r-competitive, the DNN demonstrates competitiveness. Moreover,77

evaluating the DNN to compute the control law proves to be relatively efficient.78

2 Hybrid Automata and Competitive Analysis79

A hybrid automaton (HA, for short) is an extension of a finite-state automaton80

equipped with a finite set of real-valued variables. The values of the variables81
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change discretely along the transitions and they do so continuously, over time82

while staying in a state.83

Formally a HA is a tuple (Q, I, T,Σ,X, jump,flow , inv), where:84

– Q is a finite set of states and I ⊆ Q is the subset of initial states,85

– Σ is a finite alphabet,86

– T ⊆ Q×Σ ×Q is a set of transitions, and87

– X is a finite set of real-valued variables. We write V ⊆ RX to denote the set88

of all possible valuations of X.89

– jump : T → Op maps transitions to a set of guards and effects on the values90

of the variables. That is, Op ⊆ V 2 and for a transition δ ∈ T , jump(δ) =91

(guard , effect) implies that δ is “enabled” if the current valuation is guard92

and effect is the valuation after the transition. Intuitively, jump denotes the93

discrete changes in the variables along transitions. Usually, the guards and94

effects are encoded as first-order predicates over the reals, e.g. jump(δ) =95

(x > 2, x+4) denotes the set {(v, v′) ∈ V 2 | v(x) > 2 and v′(x) = v(x)+ 4}.96

– flow : Q → F , with F ⊆ {f : R>0 → V }, maps each state q ∈ Q to a set F of97

functions fq that give the continuous change in the valuation of the variables98

while in state q. Usually, the functions fq are encoded as systems of first-99

order differential equations, e.g. ẋ = 5 denotes functions1 f(t)(x) = 5t + c,100

where c ∈ R>0 is the value of x at time t = 0.101

– inv : Q → 2V maps each state q ∈ Q to an invariant that constrains the102

possible valuations of the variables in q. Similar to jump, inv is usually103

encoded as first-order predicates over the reals.104

Configurations and runs. A configuration is a pair (q, v) where q ∈ Q and v ∈ V105

is a valuation of the variables in X. A configuration (q, v) is valid if v ∈ inv(q).106

Let (q, v) and (q′, v′) be two valid configurations. We say (q′, v′) is a discrete107

successor of (q, v) if δ = (q, a, q′) ∈ T for some a ∈ Σ and (v, v′) ∈ jump(δ).108

Similarly, (q′, v′) is a continuous successor of (q, v) if q = q′ and there exist109

t0, t1 ∈ R>0 and fq ∈ flow(q) such that fq(t0) = v, fq(t1) = v′ and for all110

t0 ≤ t ≤ t1, fq(t) ∈ inv(q).111

A run ρ is a sequence of configurations (q0, v0)(q1, v1) . . . (qn, vn) such that112

q0 ∈ I, v0 assigns 0 to all variables and, for all 0 ≤ i < n, (qi+1, vi+1) is a discrete113

or continuous successor of (qi, vi). The Reach decision problem asks, for given114

A and (q, v), whether there is a run of A whose last configuration is (q, v).115

Parallel composition. Let Ai = (Qi, Ii, Ti, Σi, Xi, jumpi,flow i, inv i) for i = 1, 2116

be two HA. Then, A = (Q, I, T,Σ,X, jump,flow , inv) is the parallel composition117

of A1 and A2, written A = A1 ||A2, if and only if:118

– Q = Q1 ×Q2 and I = I1 × I2,119

– Σ = Σ1 ∪Σ2 and X = X1 ∪X2.120

– The transition set T contains (⟨q1, q2⟩, σ, ⟨q
′
1, q

′
2⟩) if and only if there are121

i, j ∈ {1, 2} such that i ̸= j and:122

1 Note that if X contains more variables than just x, this function is not unique.
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• either σ ∈ Σi \Σj , (qi, σ, q
′
i) ∈ Ti, and qj = q′j ;123

• or σ ∈ Σi ∩Σj , (qi, σ, q
′
i) ∈ Ti, and (qj , σ, q

′
j) ∈ Tj .124

– The jump function is such that, for δ = (⟨q1, q2⟩, σ, ⟨q
′
1, q

′
2⟩), we have that:125

• either σ ∈ Σi \Σj and jump(δ) = jumpi(⟨qi, σ, q
′
i⟩) for some i, j ∈ {1, 2}126

with i ̸= j,127

• or σ ∈ Σi ∩Σj and jump(t) = jump1(⟨q1, σ, q
′
1⟩) ∩ jump2(⟨q2, σ, q

′
2⟩).128

– Finally, flow(⟨q1, q2⟩) = flow1(q1) ∩ flow2(q2), and129

– inv(⟨q1, q2⟩) = inv1(q1) ∩ inv2(q2).130

2.1 The cost of control131

In this work, we use HA to model hybrid systems and controllers. In particular,132

we henceforth assume any HA A = (Q, I, T,Σ,X, jump,flow , inv) modelling a133

hybrid system has a designated cost variable J ∈ X. We make no such assump-134

tion for HA used to model controllers. Observe that from the definition of parallel135

composition, it follows that if A models a hybrid system, then B = A || C also136

models a hybrid system — i.e. it has the cost variable J — for any HA C.137

The following notation will be convenient: For a run ρ = . . . (qn, vn) we write138

Jρ to denote the value vn(J). Further, we write ρ ∈ A, where ρ is a run of the139

hybrid automaton A. Now, the maximal and minimal cost of a HA A respectively140

are J(A) := supρ∈A Jρ and,J(A) := infρ∈A Jρ.141

2.2 Regret142

Fix a hybrid-system HA A = (Q, I, T,Σ,X, jump,flow , inv). We define the143

(worst-case) regret Reg(U) of a controller HA U as the maximal difference be-144

tween the (maximal) cost incurred by the parallel composition of A and U — i.e.145

the controlled system — and the (minimal) cost incurred by an alternative con-146

troller HA from a set C: Reg(U) := supU ′∈C(J(A || U)−J(A || U ′)). The Regret147

problem asks, for given A, U , C, and r ∈ Q, whether Reg(U) ≥ r.148

3 Reachability and Competitive Analysis149

In this section, we establish that the reachability and regret problems are interre-150

ducible. While this implies an exact algorithm for the competitive analysis of151

hybrid automata does not exist, it suggests the use of approximation algorithms152

for reachability as a means to realize an approximate analysis.153

Theorem 1. Let C be the set of all possible controllers. Then, the Regret154

problem reduces in polynomial time to the Reach problem.155

Proof (of Theorem 1). Given a hybrid-system HA A, a controller U , a set of all156

possible controllers C and a regret bound r ∈ Q, we will construct another HA157

A′ = (Q′, I ′, T ′, Σ,X ′, jump′,flow ′, inv ′) and a target configuration (q′, v) of A′
158

such that, (q′, v) is reachable in A′ if and only if Reg(U) < r in A || U . Let us159

write A = (Q, I, T,Σ,X, jump,flow , inv) and note that J ∈ X because A is a160
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Fig. 1. Gadget for simulating any possible controller

hybrid-system HA. We extend the automaton A ||U with a gadget to obtain A′.161

The idea is as follows: for every variable y ∈ Y of A || U , we add a copy of it162

in the variable set X ′ of A′ that simulates any possible choice of value for that163

variable by an alternative controller U ′. The variable J ′ ∈ X ′ calculates the cost164

of that alternative controller. Formally, X ′ = Y ∪ {y′ | y ∈ Y }.165

To simulate any possible valuation of the variables, we introduce the gadget166

given in Figure 1. For every variable x′
i such that xi is a variable in U , the gadget167

contains two states q+
x′
i

and q−
x′
i
. Then, flow ′(q+

x′
i
) contains ẋ′

i = 1 and ẋ′
j = 0 for168

all j ̸= i. Intuitively, this state allows us to positively update the value of x′
i to169

any arbitrary value. Similarly, flow ′(q−
x′
i
) contains ẋ′

i = −1 and ẋ′
j = 0, ∀j ̸= i,170

which allows it to negatively update the value of x′
i.171

Now, we add a “sink” state qreach and make it reachable from all the other172

states using transitions δ′i ∈ T ′ such that jump′(δ′i) contains guard of the form173

J − J ′ ≥ r. Finally, from every state q′ ∈ Q′, we add the option to go into its174

own copy of the gadget, set the values of the variables to any desired value and175

come back to the same state.176

Note that if (qreach,0) is reachable in A′, via a run ρ ∈ A′, then Jρ − J ′
ρ ≥ r.

As the gadget does not update the value of J and J ′, it is easy to see that
Reg(U) ≥ r. Now, if (qreach,0) is not reachable that means, Jρ − J ′

ρ < r for all
ρ ∈ A′. Now, as all possible controllers (in fact, all possible configurations of
variables from U) can be simulated in A′, it is easy to see that Reg(U) < r. ⊓⊔

Interestingly, the construction presented above does not preserve the prop-177

erty of being initialized. Intuitively, an initialized hybrid automaton is one that178

“resets” a variable x on transitions between states which have different flows for179

x. Alas, we do not know whether an alternative proof exists which does preserve180

the property of being initialized (and also being rectangular, a property which we181

do not formally define here). Such a reduction would imply the regret problem182

is decidable for rectangular and initialized hybrid automata.183

We now proceed to stating and proving the converse reduction.184

Theorem 2. The Reach problem reduces in polynomial time to the Regret185

problem.186

Proof (of Theorem 2). Given a HA A and a target configuration (q, v), we will187

construct a HA A′ and a controller U such that Reg(U) ≥ 2 with respect to188

A′ || U if and only if (q, v) is reachable in A. The reduction works for any set C189

of controllers that contains at least one controller that sets c to 0 all the time.190
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qi A qTc = 0, J = 0
c ≥ 1, J = 1 v, J = 2

Fig. 2. Reduction from Reach to Regret

First, we add two states to A′ so that Q′ = Q ∪ {qi, qT }. In A′, qi has a191

self-loop that can be taken if the value of c is 0 and the effect is that J = 0.192

From qi, we can also transition to the initial states of A if c ≥ 1, and in doing193

so, we set J to 1. Finally, from the target state q in A, we can go to the new194

state qT if the target valuation v is reached, and that changes the valuation of195

J to 2. The valuation of J does not change within A.196

Note that the minimum cost incurred by a controller that constantly sets c
to 0 in A′ is 0, which is achieved by the run that loops on qi. Now, if (q,v) is
reachable in A via run ρ ∈ A, then the maximum cost incurred by a controller
that sets c to 1 occurs along a run qi ·ρ ·qT and is 2, making Reg(U) ≥ 2. On the
other hand, if (q,v) is not reachable in A, then the maximal value of J along any
such run is 1, resulting in Reg(U) < 2. Our constructed controller U is such that
it sets c to 1 all the time, and the above arguments give the desired result. ⊓⊔

Since the reachability problem is known to be undecidable for hybrid au-197

tomata in general [11], it follows that our regret problem is also undecidable.198

199

Corollary 1. The Regret problem is undecidable.200

4 CEGAR-Based Competitive Analysis201

We present our CEGAR approach to realize approximate competitive analysis.202

To keep the discussion simple, we focus on continuous systems, specifically single-203

state hybrid automata. Since our goal is to approximate the regret of MPCs, we204

model controllers as hybrid automata that sample variable values at discrete-205

time intervals and determine control variable values using a deep neural network206

(DNN) trained to behave as the MPC. Concretely, our approach specializes the207

reduction in the proof of Theorem 1: We will work with a hybrid automaton208

D that abstracts the behavior of the controller using a DNN, and a hybrid209

automaton N that abstracts the behaviors of all alternative controllers. The210

overview of our framework is depicted in Figure 3a. In section 5, we present a211

toolchain implementing this CEGAR-based approach.212

4.1 Initial abstraction and analysis213

Our proposed framework begins with the abstraction of the controller as a hybrid214

automaton D and the alternative controllers as N . Each of these automata are215

assumed to have a cost variable, say JD for D and JN for N . For a given216
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initial abstraction

reachability analysis

safe?

counterexample validation

spurious? end

reőne abstraction

Yes

No

No

Yes

(a) CEGAR-based approach

CEGAR loop

D.xml N.xml

HyST DxN.xml

Verisig

DNN.yml

Property.yml

safe? end

parser.py

spurious?

new DNN.yml

*.counterexample

old dataset(*.csv)

end

Yes

No

No

Yes

(b) Competitive analysis toolchain

Fig. 3. Flowchart depictions of our approach and our toolchain implementing it; We
use ANSI/ISO standard ŕowchart symbols: the parallelogram blocks represent in-
puts/outputs, and the rectangular blocks represent processes or tools

value r ∈ R, if we want to determine whether D is r-competitive then we add to217

A = D||N a new cost variable J = JN−JD. As is argued in Theorem 1, D should218

be r-competitive if and only if A can reach a configuration where the value of J219

is larger than r. Hence, we can apply any reachability set (overapproximation)220

tool to determine the feasibility of such a configuration.221

4.2 Reachability status222

If the reachability tool finds that a configuration with J ≥ r is reachable in223

A, we say it concludes A is unsafe. In that case, we will have to process the224

reachability witness. Otherwise, A is safe, and we can stop and conclude that D is225

r-competitive. Interestingly, D can now be used as an r-competitive replacement226

of the original controller! It is important to highlight that behavior cloning does227

not provide any guarantees regarding the relationship between the MPC and228

the DNN within D. Consequently, even if we have evidence supporting the r-229

competitiveness of D, we cannot infer the same for the MPC itself.230

In the context of MPCs, this result is already quite useful. This is because231

MPCs have a non-trivial latency and memory usage before choosing a next valu-232

ation for the control variables (see, e.g. [12,15]). In our implementation described233

in the following section, D takes the form of a DNN. As DNNs can be evaluated234

rather efficiently, using the DNN instead of the original MPC is desirable.235
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4.3 Counterexample analysis and refinement236

If A is deemed unsafe, we expect the reachability tool to output a counterex-237

ample in the form of a run. There is one main reason why such a run could238

be spurious, i.e. it does not correspond to a witness of the MPC not being239

r-competitive. Namely, the abstractions D (representing the MPC) or N (rep-240

resenting alternative controllers) might be too coarse. For the specific case of D,241

where a DNN is used to model the MPC, we describe sufficient conditions to242

determine if the counterexample is indeed spurious. If the counterexample is in-243

deed deemed spurious, we can refine our abstraction by incorporating new data244

obtained from the counterexample and retraining the DNN. In general, though,245

refining D and N falls into one of the tasks for which our framework does not246

rely on automation.247

4.4 Human in the loop248

There are three points in the framework, where human intervention is needed.249

Modelling and specification. First, the task of obtaining initial abstractions D250

and N of the controller and all alternative controllers, respectively, does require a251

human in the loop. Indeed, crafting hybrid automata is not something we expect252

from every control engineer. In our prototype described in the next section, we253

mention partial support for obtaining D and N automatically when the MPC is254

given in the language of a particular OCP and optimization library.255

Reachability analysis. Second, reachability being an undecidable problem, most256

reachability analysis tools can not only output safe and unsafe as results. Ad-257

ditionally, they might output an “unknown” status. In this case, revisiting the258

abstractions D and N , or even changing the options with which the tool is be-259

ing used may require human intervention. In fact, we see this as an additional260

abstraction-refinement step which is considerably harder to automate since there261

is an absence of a counterexample to work with.262

Abstraction refinement. Finally, our framework does not say what to do if the263

counterexample being spurious is due to N being too coarse an approximation.264

This scenario can occur when N is purposefully modeled to discretize or ap-265

proximate certain behaviors of alternative controllers to facilitate reachability266

analysis. However, for D, we offer automation support by proposing the retrain-267

ing of our DNN in the implementation. It might actually be needed to change268

the architecture of the DNN to obtain a better abstraction. This process can be269

automated, as increasing the number of layers is often sufficient according to the270

universal approximation theorem [4].271

5 Implementation and Evaluation272

We now present our implementation of the CEGAR-based competitive analysis273

method presented in the previous section, along with two case studies used for274

evaluation: the cart pendulum and an instance of motion planning.275
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5.1 Competitive analysis toolchain276

Figure 3b gives a visual depiction of the toolchain in the form of a flowchart.277

Starting from the top, D.xml, N.xml are XML files encoding hybrid automata278

D and N , respectively, in the SpaceEx modeling language[8]. The automaton D279

represents the controller, which could be a model predictive controller (MPC),280

and N represents a class of controllers that the MPC is compared against —281

see also Section 4.1. We use the HyST [2] translation tool for hybrid automata282

to generate the parallel composition D || N (encoded in DxN.xml, again in the283

SpaceEx language). The composed automaton, along with the trained DNN and284

the property to be verified, are fed as inputs to Verisig. Verisig [14] is a tool285

that verifies the safety properties of closed-loop systems with neural network286

components. The tool takes a hybrid automaton, a trained neural network, and287

property specification files as inputs. It performs the reachability analysis and288

provides safety verification result. We then parse the output of Verisig to deter-289

mine whether D is competitive enough (parser.py). If this is not the case, we290

realize a sound check to determine if the counterexample is spurious, in which291

case we use it to extend our dataset and further train the DNN.292

5.2 Initial abstraction and training293

Our toolchain is finetuned to work well for hybrid systems modeled in a tool294

called Rockit and MPCs obtained using the same tool. Rockit, which stands for295

Rapid Optimal Control Kit, is a tool designed to facilitate the rapid prototyp-296

ing of optimal control problems, including iterative learning, model predictive297

control, system identification, and motion planning [10].298

Our toolchain includes a utility that interfaces with the API of Rockit to299

automatically generate the hybrid automata D and N from a model of a control300

problem. While the use of Rockit is convenient, it is not required by our toolchain.301

Based on a dataset (in our examples, we obtain it from Rockit), we train302

a DNN using behavioral cloning : we try to learn the behavior of an expert (in303

our case, the MPC) and replicate it. For this, we make use of the Dagger algo-304

rithm[20], which, after an initial round of training on the dataset from Rockit,305

will simulate traces using the DNN. The points that the neural network visits306

along these traces are then given to the expert, and the output of the expert is307

recorded. These new points and outputs are appended to the first dataset, and308

this new dataset is used to train a second DNN. This iterative process is done309

multiple times to make the DNN more robust. In all of our experiments, the310

TensorFlow framework [1] was used for the creation and training of the DNN.311

5.3 Reachability status312

The regret property, encoded as a reachability property as is done in the proof313

of Theorem 1, is specified in the property file Property.yml, which also includes314

the initial states of D || N . Verisig provides three possible results: “safe” if no315

property violation is found, “unsafe” if there is a violation, and “unknown” if the316
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property could not be verified, potentially due to a significant approximation317

error. In the latter two cases, a counterexample file (CE file) is generated.318

5.4 Counterexample analysis and retraining319

If the result is “unsafe”, the next step is to compare the counterexample tra-320

jectory against the dataset generated from the controller code. If a matching321

trajectory is found, it indicates a real counterexample, meaning that this tra-322

jectory could potentially occur in the actual controller, and no further action is323

required. If a matching trajectory is not found, then it is a spurious counterex-324

ample that requires either retraining the DNN or fix(es) in D||N . Our toolchain325

automatically validates the counterexample by comparing the trajectories from326

Verisig and the controller as implemented in Rockit. To do so, since Rockit uses327

the floating-point representation of real numbers, we choose a decimal precision328

of ϵ = 10−3 for the comparison. In the case of a spurious counterexample that329

requires retraining the DNN, we update the existing dataset using Rockit to330

obtain additional labeled data based on the trajectory from the CE file.331

The CE file from Verisig represents state variable values using interval arith-332

metic, while the controller dataset contains state variable values in R without333

intervals. To accommodate this difference, we choose to append to the dataset334

new entries: (a) the lower bounds of input intervals, (b) the upper bounds, and335

(c) a range2 of intermediate input values within the intervals. For each of these,336

we also include the corresponding controller outputs. The generation of the up-337

dated dataset and the retraining of the DNN are performed automatically by our338

toolchain. A DNN trained on the new dataset is then fed to Verisig again along339

with DxN.xml and the Property.yml. This way, the CEGAR loop is repeated340

until one of the following conditions is true: (a) the counterexample is real, or (b)341

a maximum number of retraining iterations (determined by the user) is reached.342

5.5 Experiments343

In the sequel, we use our tool to analyze two control problems that have been344

implemented using the Rockit framework. The research questions we want to345

answer with the forthcoming empirical study are the following.346

RQ1 Can we have a fully automated tool to perform the competitive analysis?347

RQ2 Is the toolchain scalable? Why or why not?348

RQ3 Does the approach help to improve confidence in (finite-horizon) competi-349

tivity of controllers?350

RQ4 Does the approach help find bugs in controller design?351

We now briefly introduce the two case studies, their dynamics, and how each352

of them are modeled so that our toolchain can be used to analyze them.353

2 Our toolchain splits each interval into n equally large segments and adds all points
in the resulting lattice. In our experiments, we use n = 4.



A Framework for the Competitive Analysis of Model Predictive Controllers 11

Cart pendulum. The cart pendulum problem is a classic challenge in control354

theory and dynamics [7]. In it, an inverted pendulum is mounted on a cart355

that can move horizontally via an electronic servo system. The objective is to356

minimize a cost J = F 2 + 100 ∗ pos2, where F represents the force applied to357

the cart and pos indicates the position of the cart. The values of F and pos are358

constrained within the range of [−2, 2]. The dynamics of the cart correspond to359

the physics of the system and make use of parameters including the mass of the360

cart and the pendulum and the length of the pendulum (see Appendix A).361

While the proof of Theorem 1 provides a sound way to model all alternative362

controllers in the form of N , the construction combines continuous dynamics363

and non-determinism. Current hybrid automata tools do not handle non-trivial364

combinations of these two elements very well. Hence, we have opted to discretize365

the choice of control values for alternative controllers. Intuitively, this means366

that every time the DNN is asked for new control variable values in D, the367

automaton N non-deterministically chooses new alternative values from a finite368

subset fixed by us a priori (see Figure 5b in appendix for an example).369

Motion planning The case study involves computing a series of actions to370

move an object from one point to another while satisfying specific constraints371

[16]. In our case study, an MPC is used to plan the motion of an autonomous372

bicycle that is expected to move along a curved path on a 2D plane using a373

predefined set of waypoints. To prevent high-speed and skidding, the velocity374

(V ) and the turning rate (δ, in radians) are constrained in the ranges 0 ≤ V ≤ 1375

and −π/6 ≤ δ ≤ π/6. The objective is to minimize the sum of squared estimate376

of errors between the actual path taken by the bicycle and the reference path.377

Intuitively, the more the controller deviates from the reference path, the higher378

its cost (see Appendix B).379

Like in the cart pendulum case study, we discretize the alternative control380

variable valuations. A big difference is that the cost has both a Mayer term and381

a Lagrangian that depend on the location of the bicycle and the waypoints in an382

intricate way. In terms of modelling, this means that D and N have to “compute”383

closest waypoints relative to the current position of the bicycle (see Figure 6).384

Discussion. Towards an answer for RQ1, we can say that while our toolchain3
385

somewhat automates our CEGAR, it still requires manual work (e.g. the initial386

training and choice of DNN architecture). Moreover, in the described case stud-387

ies, we did not observe an MPC DNN that is labeled as competitive. This may be388

due to (over)approximations incurred by our framework and our use of Verisig.389

Despite this, we can answer RQ4 positively as our toolchain allowed us to spot390

a bug hidden in the Rockit MPC solution for the cart pendulum. We observed in391

early experiments that the MPC was not competitive and short (run) examples392

of this were quickly found by Verisig. We then found that the objective function393

in Rockit was indeed not as intended by the developers.394

3 All graphs and numbers can be reproduced using scripts from: https://github.
com/competitive-analysis-toolchain/competitive-analysis.
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Fig. 4. Boxplots showing the training losses of all DNNs against all test sets

The DNNs do show a trend towards copying the behavior of the MPC (see395

Figure 4) even though we retrain a new DNN from scratch after each (spurious)396

counterexample obtained via Verisig and we (purposefully) randomize the choice397

of test and training set in each iteration. We do this to increase variability in398

the set of behaviors and the counterexamples used to extend the dataset. In399

the cart pendulum case study, we observe that in the iterations 2, 7, and 11,400

the number of discrete time steps during which the corresponding DNN can act401

while remaining competitive is larger than in the initial iteration. Hence, for402

RQ3, we conclude our toolchain can indeed help increase reliability in the DNN403

proxy being competitive, albeit only for a finite horizon. On the negative side,404

experiments for 20 iterations of retraining from spurious counterexamples take405

more than 90min in both our case studies. This leads us to conclude that our406

toolchain does not yet scale as required for industrial-size case studies (RQ2).407

6 Conclusion408

Based on our theoretical developments to link the regret problem with the clas-409

sical reachability problem, we proposed a CEGAR-based approach to realize the410

competitive analysis of MPCs via neural networks as proxies. We also presented411

an early proof-of-concept implementation of the approach. Now that we have a412

baseline, we strongly believe improvements in the form of algorithms and dedi-413

cated tools will allow us to improve our framework to the point where it scales414

for interesting classes of hybrid systems.415
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A Cart pendulum with physics-based cost492

The cart’s dynamics are summarized in Table 1, with parameters including the493

cart’s mass (mcart), the pendulum mass (m), the pendulum length (L), and the494

gravitational constant (g).495

Use case Initial state Dynamics Objective
Control
variable

Path
constraints

Sample time(s)

cart pendulum

pos = 0.5
θ = 0
˙pos = 0

θ̇ = 0

˙pos = dpos

θ̇ = dθ
˙dpos = (−mLsin(θ)(dθ)2+

mgcos(θ)sin(θ) + F )/
(mcart+m−m ∗ (cos(θ))2)

ḋθ = (−mLcos(θ)sin(θ)(dθ)2+
Fcos(θ) + (mcart+m)gsin(θ))/
(L(mcart+m−m(cos(θ))2))

2F + 100pos2 Force (F)
−2 ≤ F ≤ 2
−2 ≤ pos ≤ 2

0.04

motion planning
x = 0
y = 10
θ = 0

x = V cos(θ)
y = V sin(θ)
θ = V/Ltan(δ)

square error between
position and reference path

Turning rate (δ)
0 ≤ V ≤ 1
−π/6 ≤ δ ≤ π/6

1.3 ≤ t ≤ 1.9

Table 1. The initial states, the dynamics and other control parameters of the cart
pendulum and motion planning.

To determine the sample time for the MPC, we calculate it as the ratio496

of the control horizon (Tf) to the number of control intervals (Nhor). In this497

case, Tf is set to 2 seconds and Nhor is 50, resulting in a sample time of498

dt = Tf/Nhor = 0.04s. Additionally, the initial conditions for the system are499

specified as [pos, θ, dpos, dθ] = [0.5, 0, 0, 0]. The controller is said to have found500

an optimal solution, respecting the constraints, for which the cost is minimum.501

That is, the more the controller deviates from the set constraints for F and pos,502

the more it is "punished", thereby setting a higher value to the cost variable.503

For the DNN abstracting the MPC, we trained a fully connected model with504

4 inputs nodes, 1 output node4 and 4 hidden layers. The number of nodes in505

the hidden layers as well as the activation function and the learning rate were506

chosen using hypertuning. For hypertuning, the hyperband algorithm was used507

[17]. The options that the hyperband algorithm had for each hyperparameter508

were the following:509

– The amount of nodes in each hidden layer: 16, 32, 48, 64, 80 or 96.510

– The learning rate was sampled between 1e-5 and 1e-1 with a logarithmic511

sampling.512

– The activation function: sigmoid or a tangent hyperbolic.513

The sigmoid and tangent hyperbolic activation functions were chosen because514

they can be used in Verisig. The factor used in the hyperband algorithm was 3.515

4 The last layer of the DNN has a shifted and scaled sigmoid function as an activation
function. This function restricts the output of the DNN between -2 and 2. This
makes sure that the DNN never outputs a parameter that is outside the bounds of
the problem. This reduces the number of spurious counterexamples that are found
by the CEGAR loop.
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We begin the modeling process by representing the given controller as au-516

tomaton D, depicted in Figure Figure 5a. This automaton consists of three517

modes, each suffixed with a ‘D’ (e.g., initD, environmentD), distinguishing them518

from the modes of automaton N . The initial mode, initD, and the DNN mode519

do not involve any time elapse. The incoming edges to the DNN mode labeled as520

_f1, _f2, etc., indicate the inputs to the DNN. Verisig uses the input DNN.yml521

in place of the DNN mode. The DNN “mimics” the MPC which takes pos, θ,522

dpos, and dθ as inputs and outputs F . The output of the DNN (_f1) is set523

to the Force variable FD with a scaling factor that corresponds to the sigmoid524

activation function.525

(a) Automaton D (b) Automaton N

Fig. 5. Automaton D and automaton N for cart pendulum

The environment mode contains the control dynamics and the cost function,526

expressed as ordinary differential equations. To model the controller’s sample527

time, we employ a combination of setting the invariant of clockD to 0.04 and528

resetting clockD to 0.04 on the outgoing edge from the environment. This ensures529

that exactly 0.04 seconds are spent in the environment mode, reflecting the530

desired sample time of the controller.531

Automaton N models the class of controllers to be compared with MPC (or532

alike). Unlike D, N does not use a trained DNN – as N corresponds to a class533

of controllers other than the MPC (or alike), there is no need to have a DNN.534

So, the DNN mode in N is just a dummy mode used for sync and composition535

generation. Also, unlike D, N has discrete behaviour with deterministic transi-536

tions where each transition has F set between -2 and 2 (same constraint as in537
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D). That is, by discretizing the environment in automaton N we make the set of538

controllers we compare against as finite. Furthermore, the discretization helps in539

having a tighter reachability set, thereby reducing verification time. We assume540

D and N have the same sampling time of 0.04s. Note that the behaviour of D541

and N is identical, for e.g., a transition in D from init mode to DNN mode is542

identical to the transition from init mode to DNN mode in N . This ensures a543

fair comparison between the MPC and other controllers. Synchronization labels544

(choice, chosen, reset) are used on each edge to establish this identical behaviour,545

which also facilitates composition. The parallel composition D ||N generated by546

HyST.547

The next step is to feed the generated composition D||N to Verisig along with548

the property file and the trained DNN. The competitive analysis is performed for549

the regret property costD−costN >= 0.25. That is, we ask Verisig if there is an550

‘unsafe’ trajectory in the composed automaton with the difference in the costs is551

greater than 0.25. Verisig returned an ‘unsafe’ result along with a CE file, which552

is then automatically parsed to obtain the unsafe trajectory. The trajectory from553

Verisig is compared against the controller’s dataset and it is found that it is a554

spurious counterexample. As the next step, the dataset file is appended with555

new data from the CE file, and the DNN is retrained. The retrained DNN, along556

with the composed automaton and the property file is fed to Verisig again. The557

DNN retraining (a.k.a the refinement) is repeated for 20 iterations.558

B Motion planning with waypoint-based cost559

Motion planning involves computing a series of optimal steps to move an object560

from one point to another while satisfying specific constraints [16]. In our case561

study, an MPC is used to plan the motion of an autonomous bicycle that is562

expected to move on a curved path on a 2D plane using a predefined set of563

waypoints. To prevent high speed and skidding, the velocity(v) and the turning564

rate(δ) of the bicycle are constrained within the ranges of 0 ≤ V ≤ 1 and −π/6 ≤565

δ ≤ π/6 respectively. The objective is to minimize the sum of squares error566

between the actual path taken by the bicycle and the reference path. That is, the567

more the controller deviates from the reference path, the more it is “punished"568

with a higher value of sum squared error. The bicycle dynamics are summarized569

in Table 1, where L represents the bicycle length. Unlike the cart pole case study570

where the sample time remains constant, the controller dynamically calculates571

the sample time (ts second) within the range of 1.3 <= ts <= 1.9. The Python572

implementation of the use case is available at [9].573

To model this case study, four automaton were employed. D and N represent574

the given controller and the class of controllers for comparison, respectively. Ad-575

ditionally, we use two more automaton C1 and C2, one for the given controller576

and one for the class of controllers. Since these two automaton are identical,577

automata C1 is shown in Figure 6. These automata model three functions from578

the path planning algorithm that compare the bicycle’s current position with579

the reference path. The first function involves finding the closest waypoint on580
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Fig. 6. Automaton C1 for motion planning

the reference path and comparing it with the current position. This is achieved581

by computing the x- and y-coordinate distances between the current position582

and each point on the reference path, starting from a specific index. The index583

of the closest waypoint is saved using the distance formula5.The second function584

determines the index of the last waypoint on the reference path that is located at585

a certain distance from the current position. The last index is obtained by calcu-586

lating the cumulative distance starting from the index of the first waypoint and587

continuing until the index of the last waypoint. The third function creates a list588

of N waypoints. It begins by using the index of the last waypoint obtained from589

the second step to determine the number of indices (referred to as delta_index)590

between the last index and the first index. If delta_index is greater than the591

desired number of waypoints N , it means there are more than N path points592

available. In this case, we consider the indices of the first N waypoints. However,593

if delta_index is less than N , indicating that there are fewer than N waypoints594

available, we consider the index of the last waypoint and repeat it multiple times.595

In contrast to the physics-based cost utilized in the cart pole case study, the596

cost in C1 and C2 is modeled as the sum of the accumulated cost, the distance597

to the closest waypoint, and the distance to the last waypoint. This cumulative598

sum represents the deviation between the path taken by the controller and the599

reference path. Subsequently, we conduct a competitive analysis, as illustrated600

in Figure 3b, utilizing the costs obtained from C1 and C2.601

For the DNN abstracting this MPC, we trained a fully connected model with602

3 inputs nodes, 3 output node and 4 hidden layers. The 3 input nodes correspond603

to the parameters X, Y and theta that are used in the MPC. The output nodes604

5 We employ the squared difference between the x- and y-coordinates without taking
the square root. This choice is made due to the current limitation of ŕow*, which
does not support the square root of variables (only the square root of a constant is
supported).
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correspond with the control variables Delta, V and a timestep. The timestep605

is used by the simulation function of the system because the timestep is not606

constant for this MPC. This MPC does not use an activation function on the607

last layer to restrict the output. The rest of the construction and training of this608

DNN is analogous to the previous DNN.609

The generated composition D || N || C1 || C2 is fed to Verisig along with610

the property file and the trained DNN. The competitive analysis is performed611

for the regret property costD − costN >= 0.25. Verisig returned an ‘unsafe’612

result along with a CE file. The trajectory from Verisig is compared against the613

controller’s dataset and it is found that it is a spurious counterexample. As the614

next step, the dataset file is appended with new data from the CE file, and the615

DNN is retrained. The retrained DNN, along with the composed automaton and616

the property file is fed to Verisig again. The DNN retraining is repeated for 20617

iterations.618
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