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ABSTRACT 

How the knowledge base of disciplines grows, renews, and decays informs their distinct 

characteristics and epistemology. Here we track the evolution of knowledge bases of 19 disciplines 

for over 45 years. We introduce the notation of knowledge inheritance as the overlap in the set of 

references between years. We discuss two modes of knowledge inheritance of disciplines – successive 

and distant. To quantify the status and propensity of knowledge inheritance for disciplines, we 

propose two indicators: one descriptively describes knowledge base evolution, and one estimates the 

propensity of knowledge inheritance. When observing the continuity in knowledge bases for 

disciplines, we show distinct patterns for STEM and SSH disciplines: the former inherits knowledge 

bases more successively, yet the latter inherits significantly from distant knowledge bases. We further 

discover stagnation or revival in knowledge base evolution where older knowledge base ceases to 

decay after ten years (e.g. Physics and Mathematics) and are increasingly reused (e.g. Philosophy). 

Regarding the propensity of inheriting prior knowledge bases, we observe unanimous rises in both 

successive and distant knowledge inheritance. We show that knowledge inheritance could reveal 

disciplinary characteristics regarding the trajectory of knowledge base evolution and interesting 

insights into the metabolism and maturity of scholarly communication.  

1. INTRODUCTION 

1.1 Background 

Science progresses by “standing on the shoulders of giants” and exploits prior established knowledge 

as a foundation, inspiration, and examination of future research. In practice, researchers cite previous 

studies to acknowledge intellectual debts (Garfield, 1996; Merton, 1988), link concept symbols 

(Small, 1978), persuade audiences through attachment to established wisdom (Gilbert, 1977), or 

perform specific functions such as active/passive support or criticism (Erikson & Erlandson, 2014; 

Tahamtan & Bornmann, 2019). From the view of social constructivists (Cetina, 1991), the citing 

behaviors may also be manipulated by complex political and sociological elements, which render 

citations less attributed to cognitive content but to social factors such as fame, authority, pleading, 

conformity, or citation bartering (Tahamtan & Bornmann, 2019). Deviant scholarly practices such as 

coercive citations (Wilhite & Fong, 2012) or citation cartels (Franck, 1999) emerge and further 

complicate the connotation and evaluation of citations. Nonetheless, references in scholarly 

publications provide useful indications on what was read, studied, utilized, or paid attention to at the 

time of publishing and constitutes the knowledge base of research.  

From the temporal perspective, references are choices/judgments made by the authors that both link to 

the past and envision the future. Leydesdorff et al. (2022) point out that “citing is active and 

performative in the construction of possible futures, whereas being cited is the passive” (p. 5). On the 

one hand, cited articles in the past are selected to engage in the current research; on the other hand, 

researchers combine various references to contribute to future research their choice of knowledge 

combination, perhaps leading to new directions of research. References can therefore be recognized as 

recursive selections of what is relevant to future research and unveil the historical trajectories of 

scholarly communication (Leydesdorff, 1998; Leydesdorff et al., 2022; Leydesdorff & Milojević, 
2015).  

The study of references, i.e., knowledge bases, constitutes an important topic in quantitative science 

studies. Among others, a thread of research investigates the composition of references of specific 

knowledge clusters and explores their disciplinarity or interdisciplinarity, e.g. for economics (Angrist 
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et al., 2020; Truc et al., 2020), sociology (Broadus, 1952), or social sciences in general (Zhou et al., 

2022). The rationale behind these studies is to take a fixed snapshot of all the references made by a 

discipline during a set period and examine their interactions with itself and other disciplines, which 

entails the relative openness/diversity of research paradigms as traces of disciplinarity or 

interdisciplinarity. However, from an evolutionary perspective, how disciplines grow or evolve over 

time also informs their unique identities. Sugimoto and Weingart (2015) review five notions of 

understanding disciplinarity, i.e. what makes disciplines become disciplines, namely, cognitive 

coherence, social grouping, communication, separateness, tradition, and institutionalization. 

Regarding tradition in disciplines, the concept of continuity (Dascal & Dutz, 2008) is stressed that 

disciplines must have a “generally accepted intellectual tradition” or a “generalized cultural tradition” 

(Valenza, 2009, pp. 5–6). Disciplines may engage in different research topics over time and employ 

different methods accordingly; but to be regarded as an established discipline rather than a passing 

trend, disciplines should enjoy some cognitive continuity between adjacent periods and along the 

historical trajectory. That is to say, one could expect a certain level of continuity in the evolution of 

the knowledge base of disciplines. 

Nonetheless, disciplines are still bounded by the research topics they are dedicated to and exhibit 

different levels of continuity and mutation. Some research subjects, e.g., the study of social activities, 

may be more subjective to historical changes, than others, e.g., the study of the universe. The 

knowledge bases of various disciplines may therefore evolve by different models. In 1978, Garfield et 

al. discussed three possible models of knowledge base evolution, or in their words, “how clusters of 

cited documents change over time” (p. 594). The knowledge base for a certain discipline (cluster) 

could “continue and maintain a constant configuration”, whereas a second model expects sudden 

change associated with “very little overlap” between succeeding years. In the third model, one could 

observe a “continuing revolution … evidenced by a large and continuous turnover of highly-cited 

documents in the cluster”. One may also find distinctions in modes of knowledge accumulation 

between branches of science. A significant distinction in research traditions between STEM and 

SS&H is whether one could enjoy the conditions of cumulativeness in knowledge production 

(Bonaccorsi, 2022). Natural sciences, operating under the explanation epistemic model, produce 

knowledge in strong regularities, for instance, in the format of mathematical formulations, and thus 

are more capable of transmitting knowledge for future reference. SS&H, however, tries to interpret 

the social and cultural endeavors of humans at a certain historic moment, which is more dynamic and 

complex to be formulated and shared across generations.  

On the other hand, how researchers assemble their knowledge bases is also determined by their 

individual characteristics and the current academic climate. For instance, Wu et al. (2019) discovered 

that small teams are more likely to build their research on older ideas and knowledge. Chu and Evans 

(2021) discuss the phenomenon that already well-cited papers, usually published a while back, are 

receiving even more citations and attention which may cause slowed canonical progress and 

stagnation in science. In addition, advancements in digital infrastructures for scholarly communication 

(De Silva & K. Vance, 2017), e.g. online repositories and dissemination venues, can make knowledge 

more accessible and thus lead to a higher probability of transmission. 

Examining how disciplines employ inherent knowledge over time can not only shed light on the status 

and evolution of the research paradigm of disparate knowledge clusters but also reveal historical shifts 

in the overall climate of scholarly communication. In this study, we put forward the concept of 

knowledge inheritance in discipline as reusing (inheriting) references that had been utilized in 

previous years by the same discipline itself. We hope to study the reference reuse patterns and how 
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such behaviors change over time for disciplines and try to understand how knowledge inheritance 

informs disciplinarity.  

1.2 Related literature 

The notion of reference reuse is not often referred to as such, except for Wang et al. (2022) who 

claimed to find universal patterns that researchers frequently reuse a few references throughout their 

careers as an indication of cognitive continuity. A more commonly employed name is “re-citation” 

(White, 2001), suggesting the usage of the same references in multiple papers (Milojević, 2012, p. 1). 
White (2001) studied re-citation for individual researchers and categorized different citing identities 

such as “scientific-paper style”, “bibliographic-essay style”, and “literature-review style”. Analyses 

on re-citation were further expanded to the author level, publication level (Ajiferuke et al., 2011), and 

researcher cohorts (Milojević, 2012). The quantification of re-citation takes two forms: the number of 

re-citations (Ajiferuke et al., 2011), and the fraction of re-citations in all references of entities 

(Milojević, 2012). We find our employed term “reference reuse” is more intuitive and easy to 

understand and therefore will stick to this expression in the paper.  

The study of reference reuse often involves temporal dynamics of the behavior which further links to 

concepts such as literature aging (Egghe & Ravichandran Rao, 1992; Egghe & Rousseau, 2000; 

Glänzel & Schoepflin, 1995; Gupta et al., 2002) or attention decay (Parolo et al., 2015) in research. If 

certain papers are decreasingly cited over years (re-used as references), one possible assumption is 

that they perhaps have become obsolete and are not deemed relevant or helpful to the current research. 

Various indicators are proposed to capture the speed/process of aging, such as citation half-life 

(Burton & Kebler, 1960; Tsay, 1998), Price index (Egghe, 1997; Moed, 1989; Price, 1970), reference 

age (Egghe, 1997), and its modified variants (Milojević, 2012), etc.  

Upon the very first proposal, they were designed to “describe and compare the differences among the 
sciences in their processes of knowledge growth” (Moed, 1989, p. 474), i.e. disciplinarity. By looking 

into researchers’ selective attention to the immediate past (e.g., references to 0 to 4 years old 

publications), one could find disciplinary differences in such referencing patterns which further 

reveals the epistemological features of disciplines. The Price index was proposed to capture the 

“immediacy effect” of disciplines which helps to differentiate hard and soft science (Cozzens, 1985; 

Price, 1970). Glänzel and Schoepflin (1999) discovered that disciplines with historical components, as 

summarized by Zhang and Glänzel (2017), such as parasitology, zoology, botany, and entomology 

exhibits higher reference age, whereas literature from life science, physics, and chemistry obsolete 

faster. Zhang and Glänzel (2017) took a more granulized perspective on subfields and found subfields 

related to Chemistry and energy and fuels tend to draw on recent literature, and subfields relating to 

physics and astronomy prefer a combination of older and more recent references. More related studies 

are summarized by Glänzel (2004) and Dorta-González & Gómez-Déniz (2022).  

In this study, we expand the conceptualization and operationalization of reference reuse with a new 

perspective focusing on the continuity of the knowledge base and examine the continuous evolution 

of knowledge bases for 19 main fields over time. We hope to contribute novel indicators on tracing 

the process of knowledge base evolution and new insights on understanding disciplinarity.  

The rest of the paper is organized as follows: In section 2, we propose the concept and indicators of 

knowledge inheritance. Section 3 introduces the data we utilized and the conducted analyses. We 

present the empirical results and discussions in Section 4 and the last section concludes.  

2. THE MEASUREMENT 

To operationalize the concept of knowledge inheritance, we put forward two indicators one takes a 

descriptive perspective and observes the level of inherited knowledge (the percentage of reused 
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reference), while the other one quantifies knowledge inheritance as a property of disciplines (the 

relative reference reuse propensity). We introduce them one by one. 

2.1 The percentage of inherited knowledge 

Suppose two different periods, in our case, years, we define the percentage of inherited knowledge 

(𝐾𝐼𝑝𝑒𝑟𝑐) of the latter year 𝑡𝑗 from the prior year 𝑡𝑖 for a certain discipline 𝑑 as follows: 

             𝐾𝐼𝑝𝑒𝑟𝑐(𝑑, 𝑡𝑖, 𝑡𝑗) = |{𝑏 | 𝑀𝑎𝑏>0,𝑎∈𝑃𝑢𝑏𝑑,𝑡𝑖} ∩ {𝑏 | 𝑀𝑎𝑏>0,𝑎∈𝑃𝑢𝑏𝑑,𝑡𝑗}||{𝑏 | 𝑀𝑎𝑏>0,𝑎∈𝑃𝑢𝑏𝑑,𝑡𝑖}|   , (𝑡𝑖 < 𝑡𝑗)                      (1) 

For a matrix 𝑀 describing citations between publications, 𝑀𝑎𝑏 equals 1 if publication 𝑎 cites 

publication 𝑏, and 0 otherwise. For any entity 𝑑, e.g., disciplines in this study, we denote all the 

publications that are classified under it and published at time 𝑡 as 𝑃𝑢𝑏𝑑,𝑡. We then retrieve all 

references cited by publications in 𝑃𝑢𝑏𝑑,𝑡 as the knowledge base of 𝑑 at time 𝑡, yielding {𝑏 | 𝑀𝑎𝑏 >0, 𝑎 ∈ 𝑃𝑢𝑏𝑑,𝑡}. The percentage of inherited knowledge by 𝑡𝑗 from 𝑡𝑖 for 𝑑 is therefore defined as the 

percentage of 𝑑′𝑠 knowledge base at 𝑡𝑖 overlapped with that at 𝑡𝑗.  

The measurement is designed as a fraction so that the notion of inherited knowledge can be compared 

between disciplines and traced over time under the same scale. We also specifically set the 

denominator as the number of references from the prior year (𝑡𝑖), not later years (𝑡𝑗), for three 

reasons. First, it carries the connotation we want to explore in this study which is the magnitude of 

inherited prior knowledge. Having this chosen denominator can directly lead to the percentage of the 

prior knowledge base that is inherited. Second, the number of references from the prior year is fixed 

in time (already happened) so that a change in the value of our measurement can only come from the 

numerator. Since we aim to trace the temporal evolution of knowledge inheritance, this helps us 

provide a better interpretation of the results. Third, it also assists us in investigating the decay of the 

knowledge base from a certain prior year by tracing the percentage of its references inherited by 

upcoming years. Another design of this measurement is that we count the number of cited documents, 

not the frequency of citing behaviors. So, references are treated equally whether they are highly cited 

or not. In this way, we hope to avoid confounding effects of other temporal dynamics such as 

increasing citation inequality (Nielsen & Andersen, 2021). For these reasons, we believe the current 

measurement design suits this study.  

This employed indicator can also be regarded as a form of bibliographic coupling (Kessler, 1963), 

taking disciplinary publication sets from different years as coupled entities and the number of shared 

references as the coupling strength. We normalize the coupling strength between two years by 

dividing it by the number of referenced articles for the earlier year of the two, yielding a normalized 

coupling strength with empirical implication, that is the degree of overlap in a phased knowledge 

base. In previous studies, bibliographic coupling is frequently utilized to quantify the relationships 

(e.g., cognitive convergence) between scientific entities to arrive at local or global maps (networks) of 

science. These maps serve various scientometric research, from overall science mapping (Ahlgren & 

Colliander, 2009; Boyack & Klavans, 2010; Jarneving, 2007), knowledge domain mapping (Ferreira, 

2018; Valenzuela et al., 2017), research evaluation (Cancino et al., 2017; Glänzel & Czerwon, 1996; 

King, 1987), and interdisciplinarity measurements (Chang & Huang, 2012; Rafols & Meyer, 2010; 

Thijs et al., 2021). Nonetheless, our defined parameter is distinct from the existing forms of 

bibliographic coupling in two ways. First, it can be recognized as a form of self-coupling since the 

coupled publication sets are classified under the same discipline and represent a continuum of 

scientific ideas and practices. In addition, we observe the coupling strength between publication sets 
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from different periods, i.e., temporal coupling. Put together, our defined 𝐾𝐼𝑝𝑒𝑟𝑐 is the temporal self-

coupling of disciplines which sheds light on the continuity and change of knowledge bases for 

disciplines. This variant of bibliographic coupling is seldomly used, except for Zeng et al. (2019) who 

studies the bibliographic coupling within researchers’ own publication portfolios.  

Under our operationalization of the percentage of inherited knowledge, we recognize its two different 

forms, namely successively inherited knowledge (𝑡𝑗 − 𝑡𝑖 = 1) and distantly inherited knowledge (𝑡𝑗 −𝑡𝑖 > 1). The first depicts whether the knowledge base is successively inherited or re-used by the next 

adjacent year. By focusing on the adjacent overlap in the knowledge base and its evolutions, we aim 

to explore whether disciplines always situate on a continuous knowledge base or experience high 

turnover. The second form focuses on the re-use of distant knowledge bases from earlier years; in our 

later analysis, they are more than a decade old. We try to see if older references are still in fashion for 

disciplines and which discipline relies strongly on old classics. We would also like to stress that the 

distinguishment between successive and distant is not definitive. We use the threshold of one in this 

study to distinguish the knowledge inheriting behavior for the most adjacent year and other following 

years. One could also adopt different thresholds to depict successive and distant knowledge 

inheritance considering the characteristics of the studied entities. For instance, one could consider 

reusing references after two years still as successive knowledge inheritance for a study of researchers 

or disciplines with a longer publishing cycle. In this study, we focus on collective patterns in large 

corpora so that individual-level discrepancies should be negligible.  

2.2 The property of knowledge inheritance 

For a certain discipline or other scholarly entities, to what extent their knowledge bases overlapped 

between years may also be affected by many factors, for instance, the discipline size. For a large 

discipline, with numerous researchers working within it, one may expect greater cognitive continuity 

since there are more people actively choosing what knowledge is currently available and what can be 

passed on. Empirically, we tested the correlation between discipline size and the percentage of 

successively inherited knowledge in 2014 and confirmed the positive linear relationship, as shown in 

Figure 1a. As an attempt to remove the effect of size dependence, we constructed null models for each 

discipline and each year by creating publication sets with randomly assigned discipline labels. Put 

differently, for a discipline 𝑑 at year 𝑡 with 𝑁 publications, we randomly select 𝑁 papers published in 

year 𝑡 as a replicate of this discipline while keeping the discipline size. The random assignments were 

repeated 10 times so that for each discipline 𝑑 at year 𝑡 we created 10 samples that capture the 

expected knowledge inheriting behavior for a discipline with similar size. In Figure 1b, we show 

again the relationship between discipline size and the percentage of inherited knowledge in the null 

models we created. A clear monotonic relationship is obtained which describes the size dependence 

issue. The average 𝐾𝐼𝑝𝑒𝑟𝑐 for null models of all disciplines are lower than the observed value in real 

cases.  

To further quantify the relative propensity of knowledge inheritance as a property by excluding the 

inherent impact of discipline size, we calculate the degree of deviation of 𝐾𝐼𝑝𝑒𝑟𝑐 from the list of 

simulative 𝐾𝐼𝑝𝑒𝑟𝑐′ in null models using a z-score format metric, which is derived as the difference 

between the observed value 𝐾𝐼𝑝𝑒𝑟𝑐 and mean value of the simulated 𝐾𝐼𝑝𝑒𝑟𝑐′, divided by the standard 

deviation of 𝐾𝐼𝑝𝑒𝑟𝑐′. The idea is to estimate to what extent the observed level of knowledge 

inheritance of disciplines deviates (is greater) than a scholarly entity of the same size. With this 

method, we hope to explore the relative knowledge inheriting propensity of disciplines while 

maximumly reducing the impact of discipline size.  
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                                  𝐾𝐼𝑝𝑟𝑜𝑝(𝑑, 𝑡𝑖, 𝑡𝑗) =   𝐾𝐼𝑝𝑒𝑟𝑐(𝑑,𝑡𝑖,𝑡𝑗)−Mean(𝐾𝐼𝑝𝑒𝑟𝑐′)SD(𝐾𝐼𝑝𝑒𝑟𝑐′)   , (𝑡𝑖 < 𝑡𝑗)                              (2) 

 

Figure 1. Discipline size and the percentage of inherited knowledge. a. the percentage of successively 
inherited knowledge for all disciplines in 2014; b. the average percentage of successively inherited 

knowledge for publication sets with the same size of each discipline. 

3. DATA AND ANALYSES 

In the empirical study, we examine the knowledge inheritance of scientific disciplines for a 45-year 

time span (1970-2014). We harness data from Microsoft Academic Graph (MAG) and retrieve 23 

million publications and their 589 million references (K. Wang et al., 2020). 19 major disciplines of 

science are investigated in this study, which is recognized by MAG through paper-level classifications 

at the most aggregated level (Level 0). We manually set two criteria for the inclusion of publications. 

First, only publications that are assigned to one discipline are included, and thus avoid problems 

relating to multi-assignment; In addition, only publications that are cited at least once are included, 

hoping to partially filter out non-scholarly publications collected by MAG (Visser et al., 2021) and 

achieve publication sets that are visible and impactful to at least one citing paper. We replicate the 

analyses using two journal-based classification systems, namely the American Physics Society (APS) 

journal list and the EconLit journal lists, as robustness tests.  

We recognize the significance of discipline delineation in our research design that most of the 

calculations rely on publication sets embodying disciplines. A sensitive and unstable classification 

scheme may come with a sudden change in disciplinary publication sets that will eventually distort 

our metrics. To partially avoid this problem in this study, we choose the broadest discipline 

classification to achieve somewhat stable disciplinary publication sets over time. In Figure 1, we 

discuss three descriptive statistics of the defined disciplines and get a nuanced understanding of the 

temporal patterns of these publication sets. The total number of publications (Figure 1a) for each 

discipline kept growing for the last 45 years, except for some humanities disciplines such as history, 

philosophy, and art which experienced drops in recent years. The total number of references that 

appeared in disciplinary publication sets has also increased since 1970 for almost all disciplines, with 

similar drops or slowdowns for the humanities disciplines in the 2010s. The third statistic describes 

the total number of cited publications, i.e., unique references, for each discipline, which appears in the 

denominator of our defined metrics. Similar patterns can be found also for these statistics which show 

the relative stability of the defined disciplines and our calculation. Given that disciplines exhibit 

relative stability and similar growth patterns in the volume of scientific outputs and knowledge base, 
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it is reasonable to assume that the discrepancies in the level of knowledge inheritance, if any, can be 

attributed to the distinct characteristics of the disciplines themselves, that is to say, disciplinarity.  

To understand the status and propensity of knowledge inheritance of disciplines, we organize our 

analyses in two groups, with the first group utilizing 𝐾𝐼𝑝𝑒𝑟𝑐 to observe the evolution of the percentage 

of inherited knowledge within disciplines. We start by presenting a panoramic view of the evolution 

of knowledge base and knowledge inheriting for disciplines over 45 years and hope to give a birds-

eye view of how the continuity of disciplinary knowledge bases evolve. We further quantitatively 

distinguish typologies of knowledge inheriting behavior of disciplines by applying hierarchical 

clustering on the resulted matrices following methods by Yan and Ding (2012). We examine the 

obtained hierarchies/clusters and discuss the implied connotations of disciplinarity. In addition, we 

articulate the concept of knowledge base decay by focusing on how the knowledge base of a certain 

year is reused in the next 20 years and further discuss some empirical changes in recent years. For the 

second group of analyses, we employed the 𝐾𝐼𝑝𝑟𝑜𝑝 indicator, the relative propensity of knowledge 

inheritance, and conducted comparisons among disciplines over the investigated time span. The idea 

is to discover which disciplines are more likely to inherit from their prior knowledge bases and how 

such propensities change over time. Two aspects of knowledge inheritance will be examined, namely, 

successive and distant knowledge inheritance, as introduced in the Measurement section. For the 

second one, we set the “distant” time difference as 10 years and present the results on how disciplines 
inherent knowledge bases from 10 years ago.  

 

 

Figure 2. Temporal statistics for the defined 19 disciplines. (a) the number of publications for each 
discipline; (b) the total number of references cited by the publications of each discipline; (c) the total 

number of unique references cited by the publications of each discipline. Discipline labels in legend are 
arranged by the descending order of value in (c). 

Table 1. Indicator and parameter settings for the four conducted analyses 

Analysis Indicator Parameter setting  
4.1 A panorama on the evolution of 

knowledge inheriting 
𝑲𝑰𝒑𝒆𝒓𝒄 𝒕𝒊 < 𝒕𝒋  

4.2 The decay of the knowledge base 𝑲𝑰𝒑𝒆𝒓𝒄  𝒕𝒋 ∈ [𝒕𝒊. . 𝒕𝒊 + 𝟐𝟎] 
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4.3 The propensity of successive 
knowledge inheritance 

𝑲𝑰𝒑𝒓𝒐𝒑   𝒕𝒋 =  𝒕𝒊 + 𝟏 

4.4 The propensity of distant 
knowledge inheritance 

𝑲𝑰𝒑𝒓𝒐𝒑 𝒕𝒋 =  𝒕𝒊 + 𝟏𝟎 

 

 

Figure 3. Outline of the data and analyses in this study 

4. RESULTS AND DISCUSSION 

4.1 A panorama view on the evolution of knowledge base and knowledge inheriting 

We start by showing a holistic view of the evolution of knowledge inheriting practices for all 

disciplines during the studied period. As suggested in the Measurements section, the defined 

knowledge inheritance can be operationalized as a triangular matrix (Figure 4). We further investigate 

the characteristics of the disciplinarity of these disciplines by applying hierarchical clustering on 

vectors (concatenated from matrices) representing the knowledge inheritance of disciplines and 

examine latent structures of disciplines for this attribute. The retrieved hierarchy/clusters are shown in 

Figure 5.  

We start with Figure 4 to provide a holistic understanding of the knowledge base evolution of 

disciplines. The first observation that can be drawn from Figure 4 is that the knowledge bases of 

disciplines are much more similar between adjacent years, the diagonal, than other distant years. For 

all disciplines, we find higher values in the diagonals and adjacent years, evidenced by the dense red 

clusters. Some disciplines exhibit a stronger and clearer diagonal, mostly STEM fields, which 

indicates a greater degree of overlap in the knowledge bases of adjacent years, whereas some 

relatively nascent disciplines, such as Material Science and Environmental Science started to have 

greater overlap in knowledge bases since the new century. In general, the differences in the evolution 

of knowledge inheriting between STEM and SS&H are more visually discernable that many STEM 

fields are associated with strong and clear diagonals signaling high successive knowledge inheritance 

and strong decays. On the other hand, many SS&H disciplines exhibit a lower percentage of 

successively inherited knowledge and a weak decay process, the latter may even lead to a stable 

percentage of references reused constantly as indicated by the red triangles in the lower half of the 

matrices of Political Science, Business, Economics, etc. As robustness checks, we applied the same 

analyses on two discipline-specific journal indexes, namely EconLit for Economics, and APS for 

Physics, and arrived at similar patterns in their knowledge base evolution (in Appendix).  
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Figure 4. Overview of the knowledge base evolution of disciplines. The x-axis denotes the later year that 
inherits knowledge from the prior year indicated in the y-axis. The colors denote the percentage of the 
inherited knowledge base. The color bar in each subplot shows the scale of values, cells with lighter red 

indicate greater values, whereas lighter blue indicates smaller values. 

 

 

Figure 5. Hierarchical structures of knowledge base evolution 

In addition to reiterating findings from previous sections, we also hope to detect shared patterns 

among disciplines and shed light on the discrepancies in knowledge inheritance to inform their 

disciplinarity. We result in a hierarchical clustering in Figure 5 that illustrates the difference between 

STEM and SS&H in terms of knowledge inheritance by assigning most disciplines from the two to 

separate clusters. In the first cluster, we find most SS&H disciplines, accompanied by Mathematics 

which shares a similar enthusiasm for older knowledge bases (high distant knowledge inheritance as 

found in Section 4.2) with SS&H disciplines. In the second cluster, most STEM disciplines are 
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assigned to this group, along with Psychology which is cognitively and methodologically adjacent to 

many Life science disciplines such as Biology and Medicine. In the third cluster, two relatively 

nascent disciplines (as independent institutionalized disciplines), namely Geography and 

Environmental Science, are found here with both low successive knowledge inheritance and weak 

decays. The two disciplines involve elements from both STEM and SS&H which makes them hard to 

be categorized as purely one of them. Environmental Science is still regarded as an interdisciplinary 

science (Oberg, 2011) that integrates knowledge from various disciplines and therefore is still trying 

to gain independence in research paradigm and discourse, hence less continuity and inheritance in the 

knowledge base.  

Overall, we can observe that increasing percentages of prior knowledge bases were inherited by the 

disciplines themselves in recent years, evidenced by thicker diagonals along the x-axis and growing 

bottom triangles. Can the observed pattern be explained by the growth of disciplines over time that 

each discipline publishes more publications in recent years and therefore yielding more actors to 

inherit prior knowledge? Do the observed disciplinary differences in the evolution of their knowledge 

base inheriting practice not relate to their disciplinarity but only to the change in discipline size? We 

further test this hypothesis by comparing the successive and distant (10-year) 𝐾𝐼𝑝𝑒𝑟𝑐 with the growth 

rate of disciplines, as shown in Figure 6. The purple dashed lines and red lines show the growth rate 

of publications for disciplines, while the green and blue lines denote the percentage of inherited 

knowledge for successive and distant 𝐾𝐼𝑝𝑒𝑟𝑐. The green lines are de facto the diagonal in Figure 4. 

We see that many disciplines experienced rather steady publication growth over the four decades, yet 

exhibit a steep rise in  𝐾𝐼𝑝𝑒𝑟𝑐 in recent years. For instance, in Biology, Physics, Chemistry, and 

Medicine, their publications increased at a steady rate, yet their knowledge inheriting behavior, for 

both successive and distant, showed an accelerated increase since the 1990s. It shows that these 

disciplines are inheriting a greater percentage of prior knowledge bases and the observed change is 

not attributed to the growth of their publications.  

 

Figure 6. Publication growth rate and the percentage of knowledge that is successively or distantly 
inherited. The dashed purple line denotes the publication growth and the red dashed line provides the 

linear fit. The green solid line presents the percentage of knowledge that the year in the x-axis successively 
inherited from the previous adjacent year. The blue solid line presents the percentage of knowledge that 



12 

 

the year in the x-axis distantly inherited from the knowledge base of ten years ago. 

 

In summary, we show that tracing the knowledge inheriting practices and knowledge base evolution 

of disciplines provides direct intuitions in inferring their characteristics in disciplinarity and the 

maturity of disciplines.  

4.2 The decay of the knowledge base 

While examining the change in the percentage of inherited knowledge, we notice that the references 

of disciplines for disciplines in a certain year seem to be increasingly less inherited over time, as 

shown by the decreasing value from the diagonals to the top-left corner for all disciplines in Figure 4. 

For instance, the knowledge base of Biology in 1970 was reused for 43.6% in 1971, 28.8% in 1980, 

18.7% in 1990, and 15.0% in 2000. How does the re-usage of disciplines decay over time? Do 

disciplines exhibit different decay patterns? What does it tell the characteristics of disciplinarity? 

Could we find temporal changes in decay patterns that signal shifts or evolutions in the scientific 

enterprise? To explore these questions, we study how each year’s knowledge base is inherited in the 
next 20 years and compare differences in the decay patterns among years and disciplines.  

In Figure 5, we show that the decay of knowledge inheritance is rather common in many disciplines, 

mostly from STEM, and less clear in some SS&H disciplines. The knowledge bases of Chemistry, 

Biology, Medicine, and Physics decay most significantly. For their references made in 1970, around 

40% of them were reused in 1971 (successively inherited knowledge) and only 15% remained 

employed after 45 years (distantly inherited knowledge). We can characterize them as disciplines with 

greater adjacently inherited knowledge and strong decays of the knowledge base. On the other hand, 

we also see many SS&H disciplines exhibit less successively inherited knowledge and weak decays. 

For instance, Sociology in 1971 reused 19.6% of references from 1970, 17.5% of which remained in 

the knowledge base of Sociology 2014. In some SS&H disciplines, we even observe that a prior 

knowledge base is increasingly inherited in the upcoming years, for instance, in Philosophy, or 

inherited for a constant percentage, for instance, in Political Science, History, and Business.  

Regarding historical shifts, we find a rise in the percentage of inherited knowledge for all disciplines 

over the past 45 years for both successive and distant. Disciplines from STEM and SS&H in recent 

years, regardless of their own patterns in knowledge inheritance and decays, are all re-using a larger 

proportion of references from the adjacent prior year and previous years than 45 years ago, as shown 

in the upward-moving from lower purple lines to upper green lines. As the scientific enterprise 

continues to grow and prosper, one could certainly anticipate increasing continuity in knowledge 

inheritance, presumably brought by more well-developed scholarly infrastructures such as journals, 

conferences, programs, and institutions. Nonetheless, two special findings warrant further discussions. 

First, Physics and Chemistry, unlike the other disciplines, did not gain a substantial increase in 

successive knowledge inheritance, which maintained at around 40% for more than four decades. 

They, on the other hand, both experienced growth in distant knowledge inheritance. Put together, the 

decay process of knowledge inheritance for the two disciplines shrank significantly. In empirical 

terms, a great proportion of their knowledge was reused in the next year and continued to be re-used 

in the upcoming years. The second finding is observed in many disciplines such as Mathematics, 

Economics, Material Science, Computer Science, Physics, and Chemistry. Their knowledge base in 

the 1970s used to follow a continuous decay pattern for 20 years. Yet the knowledge base of the 

1990s decayed only for the first following ten years and plateaued during the second decade (2000s 

and 2010s). Around 20% of references made by publications from Computer Science in 1994 had 
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remained employed since 2004, which seems to have become a fixture (or classics) in the knowledge 

base of Computer Science.  

 

Figure 7. The decay of knowledge inheritance in 20 years. Each line denotes the level of inheritance of a 
certain year’s knowledge base over the following 20 years, as annotated by colors for which green 

represents recent years (until 1994) and purple for the older years (from 1970). The y-axis shows the level 
of knowledge inheritance while the x-axis shows the decay period of 20 years. For a knowledge base 

employed in 1994 the decay period is then 1995-2014, and for that of 1970 is 1971-1990. 

4.3 Successive knowledge inheritance 

In previous sections, we see each discipline as an autonomous and distinct habitat and try to observe 

the evolutionary trajectory and the knowledge inheriting practices of their knowledge bases. In this 

section, we further move on to estimate and compare the relative propensity of knowledge inheritance 

among various disciplines. In addition to the above-discussed descriptive view, we hope to answer 

which disciplines may exhibit a greater propensity of knowledge inheritance and relatively higher 

cognitive continuity and how it changes over time.  
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By looking at results from 2014, we found that the majority of Natural Science disciplines, such as 

Biology, Geology, Physics, Mathematics, and Material Science exhibit the greatest level of successive 

knowledge inheritance. Three disciplines from the Social Sciences are also associated with a higher 

level of successive knowledge inheritance, namely Psychology, Business, and Economics, as 

compared to relatively lower values for the rest of the Social Science disciplines. For at least two of 

them, their separated pattern from the rest of the Social Sciences is not unexpected. Psychology, 

especially under recent developments in clinical psychology, neuropsychology, etc., shares a 

significant portion of knowledge and methods with biomedical sciences, which renders similar 

patterns in knowledge inheritance and accumulation. Economics, at least for some of its subfields, is 

known to have embraced mathematization early since the later 19th century (Bonaccorsi, 2022) and 

therefore build knowledge more mathematically and cumulatively, with greater resemblance to 

Natural Science disciplines. On the other hand, two application-oriented disciplines, such as 

Engineering and Computer Science rank at the second echelon, among Philosophy and Sociology. 

Political Science, History, and Art exhibit the lowest level of successive knowledge inheritance.  

 

Figure 8. Successive knowledge inheritance of scientific disciplines: the relative propensity of inheriting 
knowledge base from the adjacent year compared to the null model. Results for disciplines are annotated 
with the same color as the text and their labels are ranked according to their corresponding value around 

2014.  

Following the temporal evolution of successive knowledge inheritance, we discover a unanimous rise 

in the propensity of reusing the last adjacent knowledge base for almost all disciplines. Such an 

increase is more prominent in Business which climbed from 12th in the 1970s to 4th in the 2010s. 

Engineering also grew faster than the others in inheriting successive knowledge. On the contrary, 

History and Arts are associated with mild increases and fluctuations over the five decades and may 

even experience slight downward trends in recent years. Overall, the increase in the propensity of 
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successive knowledge inheritance indicates that disciplines are more likely to reuse the adjacent 

knowledge base and evolve with greater adjacent cognitive continuity.  

4.4 Distant knowledge inheritance 

We then move on to explore patterns in distant knowledge inheritance of disciplines. We set the time 

difference as ten years so that we are looking at the behaviors of reusing references that were used ten 

years ago. For example, for the distant knowledge inheritance in 2014 for Geology, we quantify the 

propensity of inheriting the knowledge base of 2004 for the same discipline. 

The rankings of disciplines for distance knowledge inheritance remain similar for some of the 

disciplines such as Psychology, Biology, and Mathematics, which still exhibit the highest level. On 

the other hand, some disciplines, such as Geology and Economics, are found to be more inclined to 

reuse older references than others. They are all located in higher rankings for distant knowledge 

inheritance than that for successive knowledge inheritance. In Economics, such enthusiasm in older 

literature is also found in previous studies. For instance, Card and DellaVigna (2013) discovered that 

older papers (pre-1990) in Econometrics and Theory are more cited than recent ones in top journals 

from Economics (opposite pattern in Development and International Economics). Another study on 

dissertations and thesis in Mathematics and Statistics reported that their cited materials are on average 

19.9 years old and therefore suggest librarians not be afraid to purchase older materials (Flynn, 2020). 

Disciplines’ behavior in distant knowledge inheritance is deeply embedded in their research traditions 

and informs the characteristics of their disciplinarity.  

 

Figure 9. Distant knowledge inheritance of scientific disciplines: the relative propensity of inheriting the 
knowledge base from 10 years ago compared to the null model. Results for disciplines are annotated with 

the same color as the text and their labels are ranked according to their corresponding value around 2014.  
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Similar to what is observed in successive knowledge inheritance, an increasing trend over time is also 

found in all disciplines, with fluctuations for some. Geology, Psychology, and Economics continued 

their leading role in distant knowledge inheritance throughout the four decades, while Biology, 

Physics, and Medicine experienced a greater increase and have become disciplines that are most likely 

to reuse decade-old knowledge bases. The increase is less obvious, if any, in Computer Science, 

Engineering, and Art. We also want to mention that, for many disciplines, their remote knowledge 

inheritance seems to have achieved faster growth since the new century, evidenced by steeper lines 

since around 2005. It is possible that more older references have been made available through more 

openly available and comprehensive electronic reference resources such as Google Scholar since 2004 

(Adlington & Benda, 2005) and the pervasive adoption of electronic publishing since the 1990s (De 

Silva & K. Vance, 2017). 

5 CONCLUSION 

This study proposes a new perspective on understanding the connotation of disciplinarity by 

investigating the modes of knowledge base evolution of scientific disciplines. We put forward the 

notion of knowledge inheritance to unveil how disciplines recursively assemble their knowledge base 

and how such selections from different periods may overlap with each other. We propose two 

methods to quantify both the status of knowledge inheriting from a descriptive view and the 

propensity of knowledge inheritance from a relative view with comparisons with null models. From 

the descriptive perspective, we define reusing references from a certain year as inheriting the 

knowledge base from that year and quantify the percentage of inherited references as an indication of 

the cognitive continuity between that year and a current year. Reusing knowledge bases from the last 

adjacent year is referred to as successive and reusing knowledge bases from, for instance, 10-, 20, and 

30- years ago are therefore distant. To estimate the relative propensity of knowledge inheritance for 

disciplines, we compared the observed overlap in knowledge bases with that of randomized 

publication sets with the same number of publications and estimated the degree of deviation as a 

proxy for their relative propensity of knowledge inheritance. We examine this new concept and the 

indicators on 19 major disciplines for 45 years (1970-2014) using data from MAG. Below we 

summarize some major findings.  

When observing the evolutions of the continuity of knowledge base for disciplines, we find distinct 

patterns for disciplines, which can be categorized into three groups, the STEM group (include also 

Psychology), the SS&H group (include also Mathematics), and the third group with Geography and 

Environmental Science. The STEM disciplines show a consistent and clearer pattern in inheriting the 

successive and recent knowledge bases, whereas the knowledge base of SS&H disciplines often 

maintains great overlap with older knowledge bases. From successive to distant, the percentage of the 

knowledge base from a prior year that is reused by the following years decays over time: the 

knowledge base of STEM disciplines decays most significantly and less for SS&H disciplines. We 

even observe that a prior knowledge base is increasingly inherited in the upcoming years, for instance, 

in Philosophy, or inherited for a constant percentage, for instance, in Political Science, History, and 

Business. On the other hand, we also observe historical shifts in knowledge inheritance that the decay 

process stops earlier to plateau in recent years for some disciplines such as Mathematics, Economics, 

Material Science, Computer Science, Physics, and Chemistry. Around 20% of references made by 

publications from Computer Science in 1994 became a fixture in the knowledge base of Computer 

Science. When comparing the percentage of knowledge bases disciplines reused successively with 

null models, we see that STEM disciplines are associated with a greater level of successive 

knowledge inheritance than SS&H disciplines, except for Psychology, Business, and Economics. For 
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the propensity of distant knowledge inheritance, we find that Geology and Economics are more 

inclined to reuse older references than others. Overall, we observe a unanimous increase over the 45 

years in both successive and distant knowledge inheritance in the majority of disciplines, which 

signals that disciplines are more likely to reuse prior knowledge bases.  

The observed greater value in both the degree and propensity of knowledge inheritance for STEM 

fields provides empirical evidence of their significant cognitive continuity in the knowledge base. It 

could corroborate previous theoretical discussions on the differences in research tradition between 

STEM and SS&H. Some disciplines do not only study research subjects that are rather constant over 

time (e.g. the universe), but also build their research methods or tools incrementally (e.g. microscope), 

and are rooted in theories that are insensitive to temporal shifts in humanity (e.g. Newton’s law of 

motion). However, the divide between STEM and SS&H cannot explain disciplinarity solely: some 

social science disciplines such as Economics exhibit greater cognitive continuity in the knowledge 

base, yet the knowledge base of Computer Science evolves quickly and vastly, yielding frequent 

turnover in utilized knowledge. Although focusing on economic aspects of the (changing) society, 

many topics in Economics gradually build their knowledge and theories on mathematical formulations 

and further enrich prior theories with empirical studies from more granularized and diverse data. On 

the other hand, the knowledge base of Computer Science, with an invariant focus on computing 

technologies, may also be influenced by the computing devices, supporting technologies, 

societal/business needs, or commercial products. The cognitive continuity of disciplines may be a sum 

total of the immutability of various elements in research: subjects, methods, tools, theories, venues, 

applications, etc. 

On the other hand, the increasing knowledge inheritance, for both successive and distant, may indicate 

the increasing maturity of studied disciplines that their research practice is conducted on a 

continuously evolved knowledge base. Such knowledge continuity embodies well-developed research 

paradigms and methodology, widely recognized classics and canons, long-term research visions and 

questions, designated academic training and mentorship, and specialized research institutions and 

invisible colleges. Reusing a prior knowledge base may also represent a vote of confidence by a new 

generation of researchers who find the last adjacent knowledge and even distant prior knowledge still 

useful to a current research question and therefore would like to take up the torch. Disciplinary 

identities are gradually consolidated by cognitive continuity and stable research tradition. On the other 

hand, one may also concern about stagnation in knowledge base evolution that too much attention is 

devoted to old classics but hinders the canonical process of new works (Chu & Evans, 2021), which 

are found to be an important recipe for greater academic impact (Poncela-Casasnovas et al., 2019). 

High knowledge inheritance could, on the one hand, indicate cognitive continuity which foregrounds 

disciplinarity and, on the other hand, alarm deficit in new ideas. Having an optimal combination of 

past knowledge and new ideas could foster disciplines to achieve greater impact (Mukherjee et al., 

2017) and maintain a healthy metabolism of knowledge evolution for future breakthroughs.  
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APPENDIX 

 

Figure A1. Robustness checks using journal lists from two discipline-dedicated datasets: American 
Physical Society (APS) and journals index (partial) in EconLit offered by American Economic Association 

(https://www.aeaweb.org/econlit/journal_list.php). 


