
This item is the archived peer-reviewed author-version of:

PEvoLM : Protein Sequence Evolutionary Information Language Model

Reference:
Arab Issar.- PEvoLM : Protein Sequence Evolutionary Information Language Model

2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), 29-31 August 2023, Eindhoven, Netherlands -

ISBN 979-83-503-1018-4 - IEEE Xplore, (2023), p. 1-8

Full text (Publisher's DOI): https://doi.org/10.1109/CIBCB56990.2023.10264890

To cite this reference: https://hdl.handle.net/10067/2000470151162165141

Institutional repository IRUA

PEvoLM: Protein Sequence Evolutionary
Information Language ModelIssar Arab

Department of Computer Science, University of Antwerp, 2020 Antwerp, Belgium

Biomedical Informatics Network Antwerpen (biomina), 2020 Antwerp, Belgium

Abstract— With the exponential increase of the protein

sequence databases overtime, multiple-sequence alignment

(MSA) methods, like PSI-BLAST, perform exhaustive and time-

consuming database search to retrieve evolutionary

information. The resulting position-specific scoring matrices

(PSSMs) of such search engines represent a crucial input to

many machine learning (ML) models in the field of

bioinformatics and computational biology. A protein sequence

is a collection of contiguous tokens or characters called amino

acids (AAs). The analogy to natural language allowed us to

exploit the recent advancements in the field of Natural

Language Processing (NLP) and therefore transfer NLP state-

of-the-art algorithms to bioinformatics. This research presents

an Embedding Language Model (ELMo), converting a protein

sequence to a numerical vector representation. While the

original ELMo trained a 2-layer bidirectional Long Short-Term

Memory (LSTMs) network following a two-path architecture,

one for the forward and the second for the backward pass, by

merging the idea of PSSMs with the concept of transfer-

learning, this work introduces a novel bidirectional language

model (bi-LM) with four times less free parameters and using

rather a single path for both passes. The model was trained not

only on predicting the next AA but also on the probability

distribution of the next AA derived from similar, yet different

sequences as summarized in a PSSM, simultaneously (multi-

task learning), hence learning evolutionary information of

protein sequences as well. The network architecture and the

pre-trained model are made available as open source under the

permissive MIT license on GitHub at

https://github.com/issararab/PEvoLM.

Keywords— Protein Sequences, Evolutionary Information,
PSSM, Variational Inference, Deep Learning, Multi-task
learning, ELMo

I. INTRODUCTION

In contemporary computational biology and, more
specifically, in the area of proteins and the prediction of their
properties, sequence alignment forms the de-facto standard
input to nearly all machine learning methods [1]. Multiple
sequence alignment methods, or MSAMs, are a set of
algorithmic solutions for the alignment of evolutionarily
related sequences. They can be applied to DNA, RNA, or
protein sequences. Those algorithms are designed to take into
account evolutionary events such as mutations, insertions,
deletions, and rearrangements under certain conditions [2].
The main functionality of these alignment techniques is to
search for homologs of a query sequence in a database of
protein sequences, as they tend to share structure and function.
For the past two decades, training machine learning models
with evolutionary information representations, generated by
multiple sequence alignments, has revolutionized the
prediction power of AI methods. Multiple aspects of protein
function and structure were studied and investigated following
the same approach and achieved significant results in the
prediction performance. Such downstream-specific tasks

include protein secondary structure [3, 4, 5, & 6],
transmembrane protein regions [7, 8, & 9], inter-residue
contacts [10], and sub-cellular localization predictions [11,
12] as well as protein to protein interactions [13, 14, & 15].
However, this increase in performance is becoming costly in
recent years, with the continuous exponential growth of bio-
sequence data pools. UniProt is one example of such data
stores, in which the entries keep doubling every couple of
years [16]. To cope with such tremendous growth, alternative
approaches are researched among the community. One
prominent solution that can compete with conventional
methods is the direction of Embedding Language Models
(ELMo) [17], a state-of-the-art technology borrowed from the
NLP field.

In the NLP setting, pre-trained word representations are a
central component to several natural language comprehension
models [18, 19]. However, learning high-quality
representations is a difficult task. Ideally, these
representations have to model both the dynamic features of
word usage, like semantics and morphology, and how they
differ across linguistic domains, like polysemy modeling. Pre-
trained word vectors [18, 19, & 20] learned from a large
corpus of unlabelled content have the ability to model these
syntactic and semantic word representations. They represent
the core of many state-of-the-art NLP architectures out there,
such as semantic role labeling [21], question answering [22],
and textual entailment [23].

An ELMo is trained on a large corpus of unlabelled natural
text, Wikipedia as an example [2], to predict the next most
probable word in a sentence given all the previously seen
tokens. However, in a bi-directional language model, during
training we learn the probability distribution of the next word
in the sentence from both directions, i.e. predicting a pivot
word given all the previous tokens from a forward pass and
from a backward pass of a sentence. This bi-directional
autoregressive [17, 24] paradigm has revolutionized NLP
allowing the model to develop a syntactic and a semantic self-
learning of the word in a sentence, a.k.a. the context. This
means that, for a particular word, the model will provide
different contextualized embeddings, depending on the
sentence it is used in.

Given the close nature of protein sequences to natural
language sentences, the same approach was adopted to train
SeqVec [25] on UniRef50, a corpus of 9.5 billion amino acids,
which is around 10 folds larger than Wikipedia in terms of
tokens(words). In their research work, Heinzinger et al. [25]
proposed a novel embedding tool of protein sequences that
replaces the explicit search for evolutionary-related proteins
in a database. The model was trained on predicting the next
amino acid in the sequence. The new approach can be
described as an implicit transfer of biophysical and
biochemical information learned during the training of a bi-

directional language model embedder [17], inspired from
NLP, on a large unlabelled set of sequences.

The predictive power of the embeddings was then tested
on downstream tasks categorized under two levels: per-
residue and per-protein predictions. The results showed that
the models were able to reach a good performance, but did not
outperform the state-of-the-art MSA-based tools. This paper’s
idea was then to train a novel bi-language model on PSI-
BLAST’s output with transfer learning, which would
eventually encode evolutionary information of the proteins
within its embedding representations, with the goal of
boosting the final embedding power and potentially reduce the
size of residue embedding while maintaining the amount of
information encoded.

To train the new embedder, a large curated dataset of
sequences was compiled with their corresponding PSSMs of
size 1.83 Million proteins (~0.8 billion amino acids). The
dataset of proteins is reduced to 40% sequence identity, with
respect to the validation/test sets, and contains sequences
ranging between 18 and 9858 residues in length. The next
sections will include the research question, data and methods,
followed by the experiments, results and discussion section.

All results presented in this paper were conducted on a
remote Linux VM granted by Google with a system memory
size (RAM) of 120GB and 32 Intel® Xeon® CPUs with a
maximum speed of 2.3 GHz. The machine also contained a
cluster of 8 Tesla V100 SXM2 GPUs with a dedicated
memory of 16GB each, from which 2 GPUs were used to train
the novel embedding language model.

II. RESEARCH QUESTION

In probabilistic machine learning, a probabilistic model

is a joint distribution of hidden variables, referred to as z, and

observed variables, referred to as x. This statement can be

written in probabilistic notations as p(x, z).

In this setting, inference about the unknowns z is done

through what we call the posterior distribution. It is a

conditional distribution of the hidden variables given the

observations. This statement is translated in probabilistic

notations as p(z | x).

Figure 1. Problem statement visualization of the research goal on

learning representations of protein evolutionary information

The goal of this research work is to go directly from the

amino acid sequence of a given protein to a Position-Specific

Scoring Matrix, more specifically to the matrix of relative

frequencies. In other words, we want to translate a vector of

characters of length L, here the protein sequence, to a matrix

of dimensions L x 20, which is the Position-Specific Scoring

Matrix in our context. In this PSSM map, each row represents

the relative frequencies of a residue in the sequence with

respect to all the 20 known AAs. These row values represent

a discrete probability distribution, where the statistics in each

row sum up to 1 or 100 depending on the scale. Our approach

aims at learning those representations directly from the

sequence following the same paradigm applied in

autoregressive models [26]: From the observations of

previous time steps given as an input, we want to make

predictions of the next time step.

Figure 1 visualizes the main problem statement in this

research work, which aims to learn protein evolutionary

information. In a protein sequence of length L, given the

embedding of a residue x at position n as well as the previous

residues information passed on, we want to predict the

probability distribution of the relative frequencies of the next

residue n+1. In mathematical notations, this is equivalent to

a conditional probability distribution p(z | x), where z is an

overloaded set of parameters and latent variables of the

distribution. Since the evolutionary information embedded

within the relative frequencies matrix at the residue level is a

discrete probability distribution and the evidence can be

written as the marginalization of the joint distribution over z,

our probabilistic model can be reformulated as follows:

 𝒑(𝒛|𝒙) = 𝒑(𝒛,𝒙)∑ 𝒑(𝒛,𝒙)𝑧

To solve this model and since the evidence is not tractable,

we appeal to approximating our posterior inference through

Variational Inference (VI) [27] using Kullback-Leibler

divergence (𝕂𝕃-Div). The main idea is to: (1) find a tractable

distribution q(z|v) that is similar to p(z|x), and then (2) use

q(z|v) to answer the questions about p(z|x) that we care about.

Here, we just have to find the optimal parameters ν∗ that

minimize the 𝕂𝕃-divergence.

Following the universal approximation theorem [28], we

opted for a deep neural network as a parametric complex

function that can learn any distribution given enough neurons

in a two-layer network. Therefore, we converted our inference

to an optimization problem. The final loss function that we

need to minimize is:

 ν∗ = 𝑎𝑟𝑔min
 ν

[∑ 𝑝(𝑧|𝑥)log(𝑝(𝑧|𝑥)) − ∑ 𝑝(𝑧|𝑥) log (𝑞(𝑧|ν))]
III. DATA AND METHODS

Running PSI-BLAST on a large set of protein sequences
from UniProt [29], for example Reference Cluster with 50%
sequence identity, was unrealistic as the search is highly
exhaustive and might take months, depending on the available
computing resources, for a couple of millions of protein
sequences. Therefore, I opted for collecting the cached PSSMs
from Predict-Protein [30], an Internet service for sequence
analysis as well as prediction of protein structure and function.
Figure 2 depicts the high-level integration and transformation
steps applied in the pipeline used for data gathering and pre-
processing. Protein sequences from UniProt [29] Reference
Cluster with 50% sequence identity (uniref50 2019_12),
~38.8 Million proteins, were checked one by one, and for the
matched hits we retrieved PSSMs with evolutionary
information along with their corresponding alignment files.
All data was cleaned and pre-processed for high-quality

PSSMs to use during training. The final set of 1.83 Million
protein sequences (~0.8 billion amino acids) and their
corresponding PSSMs, along with validation, and test sets
have been made made public to the community and deposited
to Zenodo at (https://zenodo.org/record/4300971).

Figure 2. Simplified visualization of the gathering and pre-
processing pipeline of the whole Uniref50 dataset to obtain the final

training validation and test sets

To analyze our development set (~2.1M sequences)

in terms of the amount of evolutionary information encoded

in the relative frequencies’ matrices, we examined the
distribution of protein sequences with respect to the family

size of the number of aligned proteins for each sequence in

the set. The analysis showed that the majority of protein

PSSM files are built on family sizes of more than 1000

aligned sequences while ~200k PSSMs are built on families

of size less than 10 aligned sequences. Further analysis was

conducted by computing the complement of the cumulative

distribution at different threshold values (i.e. family sizes).

Mathematically speaking, we calculated the distribution of 1-

F(x), where F(x) is the CDF of the number of aligned proteins

to each sequence in our development set. The analysis

showed that 9% of the sequences have less than 10 aligned

proteins, leaving us with 91% of our total development set

with significant encoded evolutionary information.

Therefore, the threshold of 10 was picked to discard such

sequences with no significant evolutionary information.

Figure 3. Proteins sequence length distribution in the final training
set (~1.83 M protein sequences)

In ML-based NLP algorithms, two major pieces of

information are helpful in the model architecture design and

the hyperparameters selection, especially when it comes to

the size of mini-batch training enforced by the GPU memory

constraint. The first represents the distribution of proteins in

our final training set by their sequence length (Figure 3). The

histogram displays the length distribution we are dealing with

in the training set, and it characterizes a right-skewed

distribution with a mean of around 300 residues. The second

important piece of information is the distribution of

vocabulary in our training set. Figure 4 shows the amino acids

composition of our dataset, which is a rather right-skewed

distribution than a uniform one. This information will be used

to compute the cross-entropy (CE) random baseline for

predicting the next amino acid in the sequence.

Figure 4. Distribution of the amino acid composition in the final
training set (~0.8 billion amino acids)

IV. PEVOLM ARCHITECTURE

PEvoLM core technology is LSTM, which is the

same machinery used in the initial bi-directional

autoregressive approach presented by Peters et al. [17].

ELMos are known to require both large datasets and

significant training time and resources to reach convergence.

Therefore, we opted for transfer learning using

SeqVec/ELMo [36], a sequence embedder trained on a

corpus of 9.5 billion amino acids to predict the next residue

in a sequence. The architecture provides a per-residue

embedding of size (3 x 1024).

Initial experiments showed that a simple bi-

directional LSTM succeeds in perfectly learning a mapping

function on very small training sets, i.e. a couple of hundreds,

but struggles to improve the performance on a large dataset.

To boost the capacity of a network, one can either go deeper

by increasing the number of layers, go wider by increasing

the number of neurons, or both. A joint research work

between a faculty member at the University of Toronto and a

scientist at Microsoft Research [31] has shown empirically

that shallow feed-forward networks can learn the complex

functions formerly learned by deep neural networks and

obtain performances that were previously only possible with

deep architectures. This conclusion was convincing enough

to drop the idea of going deeper, in terms of layers, but rather

look towards the direction of increasing the number of hidden

units.

An LSTM architecture contains several components

named memory blocks. Such blocks are called gates

controlling the information flow in a network, including the

input, output and forget gates. The LSTM structure is

uniquely defined by the number of its input and output units.

To raise the capacity of an LSTM, one can just increase the

hidden size units, hence increasing the capacity of the cell

state to carry more information along to the next time steps

for complex tasks. However, those numbers determine the

computational complexity for training an LSTM network.

For a moderate number of hidden input units, dimensionality,

i.e. the complexity of the network, is largely dominated by

the size of the output hidden units. Sak et al. [32] from Google

labs suggested an alternative approach that addresses the

complexity of large-capacity LSTMs. They proposed the

addition of a linear projection layer applied right after the

output and before the recurrent connection to the cell.

Therefore, the recurrence is applied from a smaller projected

hidden state, which ultimately reduces the number of

computations within the whole LSTM cell, while maintaining

the large capacity of the cell state. The later described module

is referred to as LSTM with recurrent projection layer

(LSTMP) [32]. This technology has been adopted by

Jozefowicz et al. [33] in Google Brain labs to train different

variations of language models on a very large corpus of 0.8

billion words and a vocabulary size of 793471 words [34].

Jozefowicz et al. [33] empirically proved that when trying to

fit an LSTM network architecture on very large and complex

datasets, the size of the LSTM heavily matters.

To improve the LM architecture, I customized the

CUDA-optimized Long-Short Term Memory cell

implemented with TorchScript1 to include a recurrent linear

projection layer. For the hidden and projection sizes, we

decided to go with half the dimensions used in [17 & 36], i.e.

2048 units and 256-dimension projections.

Inspired by the original ELMo paper by Peters et al.

[17], a residual skip connection was added from the first to

the second LSTM layer, with the goal of boosting the training

performance. To further increase the capacity of the network

and have more control over the memory size allocated by the

LSTM layers for variable input sizes, we also added a fixed

size (1024 hidden unit) non-linear input layer, to the LSTM

cell, with LeakyReLU as an activation function. Concerning

the weights initialization of the LSTM matrices, we

initialized the input projection layer with a Kaiming [35]

uniform initialization, the biases of the LSTM gates to a value

of 1.0, as it was shown to perform well for long size

dependencies [36], and the rest of the matrices were

initialized with a uniform distribution of a standard deviation 𝜎 = 6.0ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒+𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 .

Combining all the LM state-of-the-art technologies

discussed in this subsection, a complex network architecture

was designed as visualized in figure 5. The model comprises

2 layers of LSTMs, with projections, stacked one after the

other. The first layer takes as input SeqVec uncontextualized

embeddings concatenated with a one-hot encoding vector of

size 20, making it a total input size of 512+20 = 532 units.

The second LSTM layer takes as input contextual

representations concatenating the output of the first layer with

the 2-layer context-aware embeddings from SeqVec,

resulting in an input size of 512*2+256 = 1280 units. As for

the residual block, the two representations, of size 256, from

both layers are then summed element-wise to serve as input

to the two parallel linear layers, one for predicting the next

amino acid and the second for inferring the next PSSM

column distribution.

 For this multi-task learning, two losses are then computed

and summed according to eq. 9 to form the final objective

function to be minimized. As our primary goal is to learn

evolutionary information representations, we want to assign

higher weight to the 𝕂𝕃 -Divergence loss. Additionaly,

previous experiments showed that the CE loss is more

dominant in the final objective function, being nearly 4 times

larger than the 𝕂𝕃-divergence loss. Thus, we decided to bring

both losses to the same scale and give more weight to the 𝕂𝕃-

divergence loss. Tuning the loss coefficients, our final

objective function is defined as: 𝐿𝑓𝑖𝑛𝑎𝑙 = 0.25 ∗ 𝐶𝐸𝑙𝑜𝑠𝑠 + 0.75 ∗ 𝐾𝐿𝑙𝑜𝑠𝑠

Figure 5. Conceptual visualization of our novel single path 2-layer bidirectional embedding language model architecture. The
model is trained on predicting both a distribution of the next amino acid and its corresponding evolutionary information

relative frequencies. The architecture makes use of LSTMs with projection and a residual connection

1 https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/

V. RESULTS AND DISCUSSION

Hyperparameter tuning on the presented architecture
revealed that the best-performing model is trained with
truncated backpropagation through time of 100 timesteps and
a batch size of 128 sequences.

Figure 6. Smoothed loss training curve of PEvoLM multi-
task learning on a dataset of 1.83 million proteins using a

maximum time step of 100 residues.

The model training took 1 week, and the converged
training curve for the joint final loss is displayed in Figure 6.
The curve shows how the high-capacity architecture has
allowed the model to learn representations from our 1.83
million sequences. From the training curve, we clearly see that
the loss function has made 3 improvement drops: The first
around 800 iterations after processing 100K sequences, the
second around 8300 iterations after processing 1 million
sequences, and the third 12K iterations after processing 1.5
million proteins. To assess how well each of the separate
tasks, predicting either the next residue or the next PSSM
column did contribute to the final loss, we plot the training
curves of each task separately and compare them to baselines.

Figure 7. PEvoLM smoothed loss training curve predicting
the next amino acid in the sequence. The model was trained
on a dataset of 1.83 Million proteins using a maximum time
step of 100 residues. The training curve is compared with

three baselines.

Figure 7 shows the training curve (blue) of the final self-
learning task predicting the next amino acid in a sequence
from all previously seen residues. Comparing the learning
trend with the one using plain LSTMs (Orange baseline), we
see how the large capacity architecture did improve the
training significantly when compared to plain architectures.
While the initial plain LSTM architecture’s training
maintained a constant rate (~2.8) over time, the training loss

of the final architecture starts at a much lower value (~2.65),
with a low range oscillation throughout the whole training and
converged at a loss of ~2.4, which is close to SeqVec reported
performance of ~2.35 (green baseline).

Figure 8. PEvoLM smoothed loss training curve predicting
the next PSSM column in the sequence. The model was

trained on a dataset of 1.83 million proteins with
corresponding relative frequencies using a maximum time

step of 100 residues. The training curve is compared with the
vanilla LSTM architecture baseline.

 Similarly to the cross-entropy loss, the 𝕂𝕃 -divergence
showed a comparable behavior for the novel ELMo
architecture. Figure 8 displays the next PSSM column
smoothed training curve where the model converged around
0.5, more than 1 3⁄ lower than the plain LSTM architecture
(orange). Table 1 summarizes the performance improvement
throughout this research, achieving a joint best loss of 1.0,
with a cross-entropy converging around CE = 2.4 and a 𝕂𝕃-
Divergence loss value at 𝕂𝕃 -Div = 0.5. The best model
architecture is defined with a hidden size of 2048 and an
output projection size of 256 units. The embedding predictive
power was further evaluated on two categories of downstream
tasks: the first task involves secondary structure, which is a
per-residue type of predictions; the second comprises
subcellular localization and soluble vs. membrane proteins as
a per-protein level of predictions.

Table 1. The table compares the performance of the final ELMo

architecture training 2 stacked bidirectional LSTMs with projection

via transfer learning (TL). The table shows the distinct performance

metrics of the CE and 𝕂𝕃-Divergence losses as well as the joint final

loss. Besides, the table displays the values of the random, plain

architecture, and SeqVec reported baselines.

 Cross-

Entropy

loss

(AA)

𝕂𝕃-

Divergence

loss

(PSSM)

Joint

loss

(AA +

PSSM)

Hidden size

/

Output size

Random

baseline

3.12 - - -

SeqVec

reported

baseline

2.35 - - 4096 512⁄

TL+2bi-

LSTM

2.8 0.8 1.8 256 256⁄

PEvoLM 2.4 0.5 1.0 2048 256⁄

 (a) (b)

Figure 9. (a) 3-state secondary structure prediction comparison between MSA-based and ELMo-based inducers (b) Subcellular localization

and membrane vs soluble protein prediction comparison between MSA-based and ELMo-based inducers

Regarding the first evaluation, a model was trained using

the new embeddings as input to predict the three states of a

protein secondary structure: helix (H), strand (E), and coil

(C). The embeddings were evaluated on three test sets:

• 𝑇𝑆115 [37]: a set of 115 sequences derived from

high-quality protein structures (i.e. < 3 Å) with no
more than 30% PIDE to any protein of known

structure in the PDB [38] in 2015.

• 𝐶𝐵513 [39]: a set of 513 non-redundant sequences

compiled after a Structure Integration with

Function, Taxonomy and Sequence (SIFTS) [86]

mapping.

• 𝐶𝐴𝑆𝑃12 [40]: a set of 21 protein sequences retrieved

in 2018 from the 𝐶𝐴𝑆𝑃12 free-modelling targets

after a SIFTS mapping.

Figure 9-a displays the performance results of PEvoLM

embedder compared to SeqVec, another ELMo-based model,

and ReProf [87], an MSA-based model. ReProf is built on

PSSM matrices input generated by MSA methods. The latter

is still considered as one of the state-of-the-art methods on

this task. From the histogram plot, we see that SeqVec is

performing quite well without the need of evolutionary

information to make predictions. we also observe that

SeqVec and PEvoLM are performing in a quite comparable

way where SeqVec is still doing better. However, we should

mention that SeqVec is relying on embeddings of size 3x1024

for each residue in the sequence to reach this performance,

whereas PEvoLM requires embeddings with only half the

size of its rival (3x512).

The second evaluation was conducted on predicting the

membrane-bound proteins from the water-soluble ones. The

two-state predictions were tested on a set of 846 proteins

retrieved from DeepLoc [41] published supplementary data

set. DeepLoc is a state-of-the-art tool relying on MSA

profiles output to build its models. It also includes a model

predicting the 10 states of subcellular localization,

corresponding to our third benchmarking evaluation. The

same annotated test set was used to evaluate and benchmark

PEvoLM and SeqVec embeddings with DeepLoc (Figure 9-

b). The orange bars correspond to the performance results of

the 𝑄2 membrane predictions. We see that PEvoLM is lower

by 10% and 4% compared to DeepLoc and SeqVec,

respectively.

While DeepLoc is still outperforming both of the ELMo-

based methods (𝑄2 =93%), our suggested embedding

performance is still significantly high hitting an 83% with an

embedding size of only 3x512 per residue. However, the 𝑄10

localization predictions seem to perform poorly, with an

overall accuracy of 50%, which is 28% lower than DeepLoc

and 18% lower than SeqVec.

VI. CONCLUSION

 The current algorithms for generating evolutionarily

related information of protein sequences is largely dominated

by multiple sequence alignment methods. We have seen that

this technique is one of the most widely used modeling

approaches in biology. MSAMs are used to expose those

restricted evolutionary regions within a sequence. The results

of these methods represent an essential input to several

downstream applications in the field of bioinformatics. The

process is simply described as searching for homologs of a

query sequence in a database of protein sequences, capturing

the conservation patterns in the alignment, and storing this

information as a matrix of numerical scores for each position

in the alignment.

 Even though, the evolutionary information

representations generated by MSA methods have

revolutionized the prediction power of AI methods for the

past two decades, this increase in performance has become

costly in recent years, with the continuous exponential

growth of bio-sequence data pools. Thanks to the similarity

of protein sequences to natural language, NLP state-of-the-

art algorithms, such as ELMo, has successfully been applied

in bioinformatics.

 The main objective of this research was to deploy an

ELMo tool incorporating evolutionary information in its

representations and offering a better trade-off between

computing resources and runtime. While pre-training is

costly, the inference is cheaper. A novel bidirectional

language model was trained following the autoregressive

approach. The model was trained on a set of 1.83 million

proteins (~0.8 billion residues), predicting both the next

amino acid in a sequence and the probability distribution of

the next residue derived from similar, yet different,

sequences, as summarized in a PSSM. With 975MB required

GPU memory to load the final pre-trained model, the average

inference time takes around 1.03 second to embed a human

protein sequence segment of size 512 residues. The

embeddings' prediction power was evaluated on three

downstream tasks: secondary structure, subcellular

localization, and membrane vs. soluble protein predictions.

 Even if we did not succeed in reaching our initial goal of

outperforming SeqVec, we did achieve a performance close

to SeqVec with half the embedding dimensions (i.e. 3 x 512).

Additionally, the results have confirmed a finding by

Jozefowicz et al. [33], who did empirically prove that, when

trying to fit an LSTM network architecture on very large and

complex datasets, the size of the LSTM matters. In general,

and from the downstream tasks perspective, there was no

evidence that adding PSSM input will improve the

knowledge that LMs could learn from a sequence. Different

hypotheses can be drawn here: SeqVec was able to learn

certain patterns already without PSSMs, our dataset was too

small for training an LM, we should have trained the whole

architecture from scratch (i.e. without transfer learning), we

should have used larger capacity LSTMPs, or we should have

simply trained longer.

ACKNOWLEDGMENT

The author would like to thank Michael Heinzinger,
Violetta Cavalli-Sforza, and Burkhard Rost for their insights
and feedback on this piece of work.

REFERENCES

[1] Barton J. Geoffrey, Protein Sequence Alignment Techniques,

European Molecular Biology Laboratory Outstation, The European
Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton,
Cambridge CB10 LSD, England. Acta Cryst. (1998). D54,1139-1146

[2] Maria Chatzou, Cedrik Magis, Jia-Ming Chang, Carsten Kemena,
Giovanni Bussotti, Ionas Erb, Cedric Notredame, Multiple sequence
alignment modeling: methods and applications, Briefings in
Bioinformatics, Volume 17, Issue 6, November 2016, Pages 1009–
1023, doi: https://doi.org/10.1093/bib/bbv099

[3] Rost B., Sander C. (1993) Prediction of protein secondary structure at
better than 70% accuracy. J Mol Biol. 232:584–99.

[4] Rost B, Sander C. Improved prediction of protein secondary structure
by use of sequence profiles and neural networks. Proc Natl Acad Sci.
1993;90:7558–62.

[5] Barton GJ. Protein secondary structure prediction. Curr Opin Struct
Biol. 1995;5:372–6.

[6] Chandonia J-M, Karplus M. Neural networks for secondary structure
and structural class predictions. Protein Sci. 1995;4:275–85.

[7] Bigelow H, Petrey D, Liu J, Przybylski D, Rost B. Predicting
transmembrane beta-barrels in proteomes. Nucleic Acids Res.
2004;32:2566–77.

[8] Rost B, Casadio R, Fariselli P. Topology prediction for helical
transmembrane proteins at 86% accuracy. Protein Sci. 1996;5:1704–
18.

[9] Rost B, Casadio R, Fariselli P, Sander C. Transmembrane helix
prediction at 95% accuracy. Protein Sci. 1995;4:521–33.

[10] Punta M, Rost B. PROFcon: novel prediction of long-range
contacts.Bioinform. 2005;21(13):2960–8.

[11] Nair R, Rost B. Better prediction of sub-cellular localization by
combining evolutionary and structural information. Proteins.
2003;53(4):917–30.

[12] Nair R, Rost B. Mimicking cellular sorting improves prediction of
subcellular localization. J Mol Biol. 2005;348(1):85–100.

[13] Marino Buslje C, Teppa E, Di Domenico T, Delfino JM, Nielsen M.
Networks of high mutual information define the structural proximity of
catalytic sites:implications for catalytic residue identification. PLoS
Comput Biol. 2010;6(11):e1000978.

[14] Ofran Y, Rost B. ISIS: interaction sites identified from sequence.
Bioinform. 2007;23(2):e13–6.

[15] Ofran Y, Rost B. Protein-protein interaction hot spots carved into
sequences.PLoS Comput Biol. 2007;3(7):e119.

[16] Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, UniProt C.
UniRef clusters: a comprehensive and scalable alternative for
improving sequence similarity searches. Bioinform. 2015;31(6):926–
32.

[17] Peters M., Neumann M., Iyyer M., Gardner M., Clark C., Lee K.,
Zettlemoyer L. (2018). Deep contextualized word representations.
arXiv:1802.05365

[18] Mikolov T., Sutskever I., Chen K., Corrado G. S., and Dean J. (2013).
Distributed representations of words and phrases and their
compositionality. In NIPS.

[19] Pennington J., Socher R., and Manning C. D. (2014) . Glove: Global
vectors for word representation. In EMNLP

[20] Turian J. P., Ratinov L., and Bengio Y. (2010). Word representations:
A simple and general method for semi-supervised learning. In ACL

[21] He L., Lee K., Lewis M., and Zettlemoyer L. S. (2017). Deep semantic
role labeling: What works and what’s next. In ACL

[22] Liu X., Shen Y., Duh K., and Gao. J. (2017). Stochastic answer
networks for machine reading comprehension. arXiv preprint
arXiv:1712.03556 .

[23] Chen Q., Zhu X., Ling Z., Wei S., Jiang H., and Inkpen D. (2017).
Enhanced lstm for natural language inference. In ACL.

[24] Akaike H. (1998) Autoregressive Model Fitting for Control. In: Parzen
E., Tanabe K., Kitagawa G. (eds) Selected Papers of Hirotugu Akaike.
Springer Series in Statistics (Perspectives in Statistics). Springer, New
York, NY

[25] Heinzinger, M., Elnaggar, A., Wang, Y. et al. Modeling aspects of the
language of life through transfer-learning protein sequences. BMC
Bioinformatics 20, 723 (2019). https://doi.org/10.1186/s12859-019-
3220-8

[26] Akaike H. (1998) Autoregressive Model Fitting for Control. In: Parzen
E., Tanabe K., Kitagawa G. (eds) Selected Papers of Hirotugu Akaike.
Springer Series in Statistics (Perspectives in Statistics). Springer, New
York, NY

[27] C. Zhang, J. Bütepage, H. Kjellström and S. Mandt, "Advances in
Variational Inference," in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 8, pp. 2008-2026, 1 Aug. 2019, doi:
10.1109/TPAMI.2018.2889774.

[28] Lu Y. & Lu J. (2020). A Universal Approximation Theorem of Deep
Neural Networks for Expressing Distributions. arxiv:2004.08867v2

[29] The UniProt Consortium, UniProt: a worldwide hub of protein
knowledge, Nucleic Acids Research, Volume 47, Issue D1, 08 January
2019, Pages D506–D515, https://doi.org/10.1093/nar/gky1049

[30] Rost, B., Yachdav, G., & Liu, J. (2004). The PredictProtein server.
Nucleic acids research, 32(Web Server issue), W321–W326.
doi:10.1093/nar/gkh377

[31] Ba J., Caruana R. (2014) Do Deep Nets Really Need to be Deep? doi:
arXiv:1312.6184v7

[32] Sak H., Senior A., Beaufays F. (2014) Long Short-Term Memory
Based Recurrent Neural Network Architectures for Large Vocabulary
Speech Recognition. doi: arXiv:1402.1128v1

[33] Jozefowicz R., Vinyals O., Schuster M., Shazeer N, and Wu Y. (2016)
Exploring the limits of language modeling. CoRR abs/1602.02410.

[34] Chelba C., Mikolov T., Schuster M., Ge Q., Brants T., Koehn P., and
Robinson T. (2013) One billion word benchmark for measuring

https://doi.org/10.1093/bib/bbv099

progress in statistical language modeling. arXiv preprint
arXiv:1312.3005

[35] He K., Xiangyu Z., Shaoqing R., and Jian S. (2015) Delving deep into
rectifiers: Surpassing human-level performance on imagenet
classification. In International Conference on Computer Vision
(ICCV), 2015. URL http://arxiv.org/abs/1502.01852.

[36] Jozefowicz R., Zaremba W., and Sutskever I. (2015) An empirical
exploration of recurrent network architectures. In Proceedings of the
32nd International Conference on Machine Learning (ICML-15), pp.
2342–2350, 2015.

[37] Yang Y, Gao J, Wang J, Heffernan R, Hanson J, Paliwal K, Zhou Y.
Sixty-five years of the long march in protein secondary structure
prediction: the final stretch? Brief Bioinform. 2016;19(3):482–94.

[38] Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H,
Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res.
2000;28(1):235–42.

[39] Cuff JA, Barton GJ. Evaluation and improvement of multiple sequence
methods for protein secondary structure prediction. Proteins Struct
Funct Genet. 1999;34(4):508–19.

[40] Abriata LA, Tamò GE, Monastyrskyy B, Kryshtafovych A, Dal Peraro
M. Assessment of hard target modeling in CASP12 reveals an
emerging role of alignment-based contact prediction methods.
Proteins. 2018;86:97–112

[41] Almagro Armenteros JJ, Sonderby CK, Sonderby SK, Nielsen H,
Winther O. DeepLoc: prediction of protein subcellular localization
using deep learning. Bioinform. 2017;33(24):4049.

