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Abstract— With the exponential increase of the protein 

sequence databases overtime, multiple-sequence alignment 

(MSA) methods, like PSI-BLAST, perform exhaustive and time-

consuming database search to retrieve evolutionary 

information. The resulting position-specific scoring matrices 

(PSSMs) of such search engines represent a crucial input to 

many machine learning (ML) models in the field of 

bioinformatics and computational biology. A protein sequence 

is a collection of contiguous tokens or characters called amino 

acids (AAs). The analogy to natural language allowed us to 

exploit the recent advancements in the field of Natural 

Language Processing (NLP) and therefore transfer NLP state-

of-the-art algorithms to bioinformatics. This research presents 

an Embedding Language Model (ELMo), converting a protein 

sequence to a numerical vector representation. While the 

original ELMo trained a 2-layer bidirectional Long Short-Term 

Memory (LSTMs) network following a two-path architecture, 

one for the forward and the second for the backward pass, by 

merging the idea of PSSMs with the concept of transfer-

learning, this work introduces a novel bidirectional language 

model (bi-LM) with four times less free parameters and using 

rather a single path for both passes. The model was trained not 

only on predicting the next AA but also on the probability 

distribution of the next AA derived from similar, yet different 

sequences as summarized in a PSSM, simultaneously (multi-

task learning), hence learning evolutionary information of 

protein sequences as well. The network architecture and the 

pre-trained model are made available as open source under the 

permissive MIT license on GitHub at 

https://github.com/issararab/PEvoLM. 

Keywords— Protein Sequences, Evolutionary Information, 
PSSM, Variational Inference, Deep Learning, Multi-task 
learning, ELMo 

I. INTRODUCTION  

In contemporary computational biology and, more 
specifically, in the area of proteins and the prediction of their 
properties, sequence alignment forms the de-facto standard 
input to nearly all machine learning methods [1]. Multiple 
sequence alignment methods, or MSAMs, are a set of 
algorithmic solutions for the alignment of evolutionarily 
related sequences. They can be applied to DNA, RNA, or 
protein sequences. Those algorithms are designed to take into 
account evolutionary events such as mutations, insertions, 
deletions, and rearrangements under certain conditions [2]. 
The main functionality of these alignment techniques is to 
search for homologs of a query sequence in a database of 
protein sequences, as they tend to share structure and function. 
For the past two decades, training machine learning models 
with evolutionary information representations, generated by 
multiple sequence alignments, has revolutionized the 
prediction power of AI methods. Multiple aspects of protein 
function and structure were studied and investigated following 
the same approach and achieved significant results in the 
prediction performance. Such downstream-specific tasks 

include protein secondary structure [3, 4, 5, & 6], 
transmembrane protein regions [7, 8, & 9], inter-residue 
contacts [10], and sub-cellular localization predictions [11, 
12] as well as protein to protein interactions [13, 14, & 15]. 
However, this increase in performance is becoming costly in 
recent years, with the continuous exponential growth of bio-
sequence data pools. UniProt is one example of such data 
stores, in which the entries keep doubling every couple of 
years [16]. To cope with such tremendous growth, alternative 
approaches are researched among the community. One 
prominent solution that can compete with conventional 
methods is the direction of Embedding Language Models 
(ELMo) [17], a state-of-the-art technology borrowed from the 
NLP field. 

In the NLP setting, pre-trained word representations are a 
central component to several natural language comprehension 
models [18, 19]. However, learning high-quality 
representations is a difficult task. Ideally, these 
representations have to model both the dynamic features of 
word usage, like semantics and morphology, and how they 
differ across linguistic domains, like polysemy modeling. Pre-
trained word vectors [18, 19, & 20] learned from a large 
corpus of unlabelled content have the ability to model these 
syntactic and semantic word representations. They represent 
the core of many state-of-the-art NLP architectures out there, 
such as semantic role labeling [21], question answering [22], 
and textual entailment [23]. 

An ELMo is trained on a large corpus of unlabelled natural 
text, Wikipedia as an example [2], to predict the next most 
probable word in a sentence given all the previously seen 
tokens. However, in a bi-directional language model, during 
training we learn the probability distribution of the next word 
in the sentence from both directions, i.e. predicting a pivot 
word given all the previous tokens from a forward pass and 
from a backward pass of a sentence. This bi-directional 
autoregressive [17, 24] paradigm has revolutionized NLP 
allowing the model to develop a syntactic and a semantic self-
learning of the word in a sentence, a.k.a. the context. This 
means that, for a particular word, the model will provide 
different contextualized embeddings, depending on the 
sentence it is used in. 

Given the close nature of protein sequences to natural 
language sentences, the same approach was adopted to train 
SeqVec [25] on UniRef50, a corpus of 9.5 billion amino acids, 
which is around 10 folds larger than Wikipedia in terms of 
tokens(words). In their research work, Heinzinger et al. [25] 
proposed a novel embedding tool of protein sequences that 
replaces the explicit search for evolutionary-related proteins 
in a database. The model was trained on predicting the next 
amino acid in the sequence. The new approach can be 
described as an implicit transfer of biophysical and 
biochemical information learned during the training of a bi-



directional language model embedder [17], inspired from 
NLP, on a large unlabelled set of sequences. 

The predictive power of the embeddings was then tested 
on downstream tasks categorized under two levels: per-
residue and per-protein predictions. The results showed that 
the models were able to reach a good performance, but did not 
outperform the state-of-the-art MSA-based tools. This paper’s 
idea was then to train a novel bi-language model on PSI-
BLAST’s output with transfer learning, which would 
eventually encode evolutionary information of the proteins 
within its embedding representations, with the goal of 
boosting the final embedding power and potentially reduce the 
size of residue embedding while maintaining the amount of 
information encoded.  

To train the new embedder, a large curated dataset of 
sequences was compiled with their corresponding PSSMs of 
size 1.83 Million proteins (~0.8 billion amino acids). The 
dataset of proteins is reduced to 40% sequence identity, with 
respect to the validation/test sets, and contains sequences 
ranging between 18 and 9858 residues in length. The next 
sections will include the research question, data and methods, 
followed by the experiments, results and discussion section. 

All results presented in this paper were conducted on a 
remote Linux VM granted by Google with a system memory 
size (RAM) of 120GB and 32 Intel® Xeon® CPUs with a 
maximum speed of 2.3 GHz. The machine also contained a 
cluster of 8 Tesla V100 SXM2 GPUs with a dedicated 
memory of 16GB each, from which 2 GPUs were used to train 
the novel embedding language model. 

II. RESEARCH QUESTION 

In probabilistic machine learning, a probabilistic model 

is a joint distribution of hidden variables, referred to as z, and 

observed variables, referred to as x. This statement can be 

written in probabilistic notations as p(x, z). 
 

In this setting, inference about the unknowns z is done 

through what we call the posterior distribution. It is a 

conditional distribution of the hidden variables given the 

observations. This statement is translated in probabilistic 

notations as p(z | x). 
 

 
Figure 1. Problem statement visualization of the research goal on 

learning representations of protein evolutionary information 

 
The goal of this research work is to go directly from the 

amino acid sequence of a given protein to a Position-Specific 

Scoring Matrix, more specifically to the matrix of relative 

frequencies. In other words, we want to translate a vector of 

characters of length L, here the protein sequence, to a matrix 

of dimensions L x 20, which is the Position-Specific Scoring 

Matrix in our context. In this PSSM map, each row represents 

the relative frequencies of a residue in the sequence with 

respect to all the 20 known AAs. These row values represent 

a discrete probability distribution, where the statistics in each 

row sum up to 1 or 100 depending on the scale. Our approach 

aims at learning those representations directly from the 

sequence following the same paradigm applied in 

autoregressive models [26]: From the observations of 

previous time steps given as an input, we want to make 

predictions of the next time step. 

 

Figure 1 visualizes the main problem statement in this 

research work, which aims to learn protein evolutionary 

information. In a protein sequence of length L, given the 

embedding of a residue x at position n as well as the previous 

residues information passed on, we want to predict the 

probability distribution of the relative frequencies of the next 

residue n+1. In mathematical notations, this is equivalent to 

a conditional probability distribution p(z | x), where z is an 

overloaded set of parameters and latent variables of the 

distribution. Since the evolutionary information embedded 

within the relative frequencies matrix at the residue level is a 

discrete probability distribution and the evidence can be 

written as the marginalization of the joint distribution over z, 

our probabilistic model can be reformulated as follows: 

 𝒑(𝒛|𝒙) = 𝒑(𝒛,𝒙)∑ 𝒑(𝒛,𝒙)𝑧  

 

To solve this model and since the evidence is not tractable, 

we appeal to approximating our posterior inference through 

Variational Inference (VI) [27] using Kullback-Leibler 

divergence (𝕂𝕃-Div). The main idea is to: (1) find a tractable 

distribution q(z|v) that is similar to p(z|x), and then (2) use 

q(z|v) to answer the questions about p(z|x) that we care about. 

Here, we just have to find the optimal parameters ν∗  that 

minimize the 𝕂𝕃-divergence. 
 

Following the universal approximation theorem [28], we 

opted for a deep neural network as a parametric complex 

function that can learn any distribution given enough neurons 

in a two-layer network. Therefore, we converted our inference 

to an optimization problem. The final loss function that we 

need to minimize is: 

 

   ν∗ = 𝑎𝑟𝑔min
         ν

[∑ 𝑝(𝑧|𝑥)log(𝑝(𝑧|𝑥))  − ∑ 𝑝(𝑧|𝑥) log (𝑞(𝑧|ν))] 
III. DATA AND METHODS 

Running PSI-BLAST on a large set of protein sequences 
from UniProt [29], for example Reference Cluster with 50% 
sequence identity, was unrealistic as the search is highly 
exhaustive and might take months, depending on the available 
computing resources, for a couple of millions of protein 
sequences. Therefore, I opted for collecting the cached PSSMs 
from Predict-Protein [30], an Internet service for sequence 
analysis as well as prediction of protein structure and function. 
Figure 2 depicts the high-level integration and transformation 
steps applied in the pipeline used for data gathering and pre-
processing. Protein sequences from UniProt [29] Reference 
Cluster with 50% sequence identity (uniref50 2019_12), 
~38.8 Million proteins, were checked one by one, and for the 
matched hits we retrieved PSSMs with evolutionary 
information along with their corresponding alignment files. 
All data was cleaned and pre-processed for high-quality 



PSSMs to use during training. The final set of 1.83 Million 
protein sequences (~0.8 billion amino acids) and their 
corresponding PSSMs, along with validation, and test sets 
have been made made public to the community and deposited 
to Zenodo at (https://zenodo.org/record/4300971). 

 

Figure 2. Simplified visualization of the gathering and pre-
processing pipeline of the whole Uniref50 dataset to obtain the final 

training validation and test sets 

To analyze our development set (~2.1M sequences) 

in terms of the amount of evolutionary information encoded 

in the relative frequencies’ matrices, we examined the 
distribution of protein sequences with respect to the family 

size of the number of aligned proteins for each sequence in 

the set. The analysis showed that the majority of protein 

PSSM files are built on family sizes of more than 1000 

aligned sequences while ~200k PSSMs are built on families 

of size less than 10 aligned sequences. Further analysis was 

conducted by computing the complement of the cumulative 

distribution at different threshold values (i.e. family sizes). 

Mathematically speaking, we calculated the distribution of 1- 

F(x), where F(x) is the CDF of the number of aligned proteins 

to each sequence in our development set. The analysis 

showed that 9% of the sequences have less than 10 aligned 

proteins, leaving us with 91% of our total development set 

with significant encoded evolutionary information. 

Therefore, the threshold of 10 was picked to discard such 

sequences with no significant evolutionary information. 

 

 

Figure 3. Proteins sequence length distribution in the final training 
set (~1.83 M protein sequences) 

In ML-based NLP algorithms, two major pieces of 

information are helpful in the model architecture design and 

the hyperparameters selection, especially when it comes to 

the size of mini-batch training enforced by the GPU memory 

constraint. The first represents the distribution of proteins in 

our final training set by their sequence length (Figure 3). The 

histogram displays the length distribution we are dealing with 

in the training set, and it characterizes a right-skewed 

distribution with a mean of around 300 residues. The second 

important piece of information is the distribution of 

vocabulary in our training set. Figure 4 shows the amino acids 

composition of our dataset, which is a rather right-skewed 

distribution than a uniform one. This information will be used 

to compute the cross-entropy (CE) random baseline for 

predicting the next amino acid in the sequence. 
 

 

Figure 4. Distribution of the amino acid composition in the final 
training set (~0.8 billion amino acids) 

IV. PEVOLM ARCHITECTURE 

PEvoLM core technology is LSTM, which is the 

same machinery used in the initial bi-directional 

autoregressive approach presented by Peters et al. [17]. 

ELMos are known to require both large datasets and 

significant training time and resources to reach convergence. 

Therefore, we opted for transfer learning using 

SeqVec/ELMo [36], a sequence embedder trained on a 

corpus of 9.5 billion amino acids to predict the next residue 

in a sequence. The architecture provides a per-residue 

embedding of size (3 x 1024).  

Initial experiments showed that a simple bi-

directional LSTM succeeds in perfectly learning a mapping 

function on very small training sets, i.e. a couple of hundreds, 

but struggles to improve the performance on a large dataset. 

To boost the capacity of a network, one can either go deeper 

by increasing the number of layers, go wider by increasing 

the number of neurons, or both. A joint research work 

between a faculty member at the University of Toronto and a 

scientist at Microsoft Research [31] has shown empirically 

that shallow feed-forward networks can learn the complex 

functions formerly learned by deep neural networks and 

obtain performances that were previously only possible with 

deep architectures. This conclusion was convincing enough 

to drop the idea of going deeper, in terms of layers, but rather 

look towards the direction of increasing the number of hidden 

units. 

 



An LSTM architecture contains several components 

named memory blocks. Such blocks are called gates 

controlling the information flow in a network, including the 

input, output and forget gates. The LSTM structure is 

uniquely defined by the number of its input and output units. 

To raise the capacity of an LSTM, one can just increase the 

hidden size units, hence increasing the capacity of the cell 

state to carry more information along to the next time steps 

for complex tasks. However, those numbers determine the 

computational complexity for training an LSTM network. 

For a moderate number of hidden input units, dimensionality, 

i.e. the complexity of the network, is largely dominated by 

the size of the output hidden units. Sak et al. [32] from Google 

labs suggested an alternative approach that addresses the 

complexity of large-capacity LSTMs. They proposed the 

addition of a linear projection layer applied right after the 

output and before the recurrent connection to the cell. 

Therefore, the recurrence is applied from a smaller projected 

hidden state, which ultimately reduces the number of 

computations within the whole LSTM cell, while maintaining 

the large capacity of the cell state. The later described module 

is referred to as LSTM with recurrent projection layer 

(LSTMP) [32]. This technology has been adopted by 

Jozefowicz et al. [33] in Google Brain labs to train different 

variations of language models on a very large corpus of 0.8 

billion words and a vocabulary size of 793471 words [34]. 

Jozefowicz et al. [33] empirically proved that when trying to 

fit an LSTM network architecture on very large and complex 

datasets, the size of the LSTM heavily matters.  

 

To improve the LM architecture, I customized the 

CUDA-optimized Long-Short Term Memory cell 

implemented with TorchScript1  to include a recurrent linear 

projection layer. For the hidden and projection sizes, we 

decided to go with half the dimensions used in [17 & 36], i.e. 

2048 units and 256-dimension projections.  

 

Inspired by the original ELMo paper by Peters et al. 

[17], a residual skip connection was added from the first to 

the second LSTM layer, with the goal of boosting the training 

performance. To further increase the capacity of the network 

and have more control over the memory size allocated by the 

LSTM layers for variable input sizes, we also added a fixed 

size (1024 hidden unit) non-linear input layer, to the LSTM 

cell, with LeakyReLU as an activation function. Concerning 

the weights initialization of the LSTM matrices, we 

initialized the input projection layer with a Kaiming [35] 

uniform initialization, the biases of the LSTM gates to a value 

of 1.0, as it was shown to perform well for long size 

dependencies [36], and the rest of the matrices were 

initialized with a uniform distribution of a standard deviation 𝜎 =  6.0ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒+𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 .  

 

Combining all the LM state-of-the-art technologies 

discussed in this subsection, a complex network architecture 

was designed as visualized in figure 5. The model comprises 

2 layers of LSTMs, with projections, stacked one after the 

other. The first layer takes as input SeqVec uncontextualized 

embeddings concatenated with a one-hot encoding vector of 

size 20, making it a total input size of 512+20 = 532 units. 

The second LSTM layer takes as input contextual 

representations concatenating the output of the first layer with 

the 2-layer context-aware embeddings from SeqVec, 

resulting in an input size of 512*2+256 = 1280 units. As for 

the residual block, the two representations, of size 256, from 

both layers are then summed element-wise to serve as input 

to the two parallel linear layers, one for predicting the next 

amino acid and the second for inferring the next PSSM 

column distribution.  

 

 For this multi-task learning, two losses are then computed 

and summed according to eq. 9 to form the final objective 

function to be minimized. As our primary goal is to learn 

evolutionary information representations, we want to assign 

higher weight to the 𝕂𝕃 -Divergence loss. Additionaly, 

previous experiments showed that the CE loss is more 

dominant in the final objective function, being nearly 4 times 

larger than the 𝕂𝕃-divergence loss. Thus, we decided to bring 

both losses to the same scale and give more weight to the 𝕂𝕃-

divergence loss. Tuning the loss coefficients, our final 

objective function is defined as: 𝐿𝑓𝑖𝑛𝑎𝑙 =  0.25 ∗ 𝐶𝐸𝑙𝑜𝑠𝑠 + 0.75 ∗ 𝐾𝐿𝑙𝑜𝑠𝑠 

Figure 5. Conceptual visualization of our novel single path 2-layer bidirectional embedding language model architecture. The 
model is trained on predicting both a distribution of the next amino acid and its corresponding evolutionary information 

relative frequencies. The architecture makes use of LSTMs with projection and a residual connection 

 
1 https://pytorch.org/blog/optimizing-cuda-rnn-with-torchscript/ 



V. RESULTS AND DISCUSSION 

Hyperparameter tuning on the presented architecture 
revealed that the best-performing model is trained with 
truncated backpropagation through time of 100 timesteps and 
a batch size of 128 sequences.  

 

 

Figure 6. Smoothed loss training curve of PEvoLM multi-
task learning on a dataset of 1.83 million proteins using a 

maximum time step of 100 residues. 

The model training took 1 week, and the converged 
training curve for the joint final loss is displayed in Figure 6. 
The curve shows how the high-capacity architecture has 
allowed the model to learn representations from our 1.83 
million sequences. From the training curve, we clearly see that 
the loss function has made 3 improvement drops: The first 
around 800 iterations after processing 100K sequences, the 
second around 8300 iterations after processing 1 million 
sequences, and the third 12K iterations after processing 1.5 
million proteins. To assess how well each of the separate 
tasks, predicting either the next residue or the next PSSM 
column did contribute to the final loss, we plot the training 
curves of each task separately and compare them to baselines. 

 

 

Figure 7. PEvoLM smoothed loss training curve predicting 
the next amino acid in the sequence. The model was trained 
on a dataset of 1.83 Million proteins using a maximum time 
step of 100 residues. The training curve is compared with 

three baselines. 

Figure 7 shows the training curve (blue) of the final self-
learning task predicting the next amino acid in a sequence 
from all previously seen residues. Comparing the learning 
trend with the one using plain LSTMs (Orange baseline), we 
see how the large capacity architecture did improve the 
training significantly when compared to plain architectures. 
While the initial plain LSTM architecture’s training 
maintained a constant rate (~2.8) over time, the training loss 

of the final architecture starts at a much lower value (~2.65), 
with a low range oscillation throughout the whole training and 
converged at a loss of ~2.4, which is close to SeqVec reported 
performance of ~2.35 (green baseline). 

 

 

Figure 8. PEvoLM smoothed loss training curve predicting 
the next PSSM column in the sequence. The model was 

trained on a dataset of 1.83 million proteins with 
corresponding relative frequencies using a maximum time 

step of 100 residues. The training curve is compared with the 
vanilla LSTM architecture baseline. 

 Similarly to the cross-entropy loss, the 𝕂𝕃 -divergence 
showed a comparable behavior for the novel ELMo 
architecture. Figure 8 displays the next PSSM column 
smoothed training curve where the model converged around 
0.5, more than 1 3⁄  lower than the plain LSTM architecture 
(orange). Table 1 summarizes the performance improvement 
throughout this research, achieving a joint best loss of 1.0, 
with a cross-entropy converging around CE = 2.4 and a 𝕂𝕃-
Divergence loss value at 𝕂𝕃 -Div = 0.5. The best model 
architecture is defined with a hidden size of 2048 and an 
output projection size of 256 units. The embedding predictive 
power was further evaluated on two categories of downstream 
tasks: the first task involves secondary structure, which is a 
per-residue type of predictions; the second comprises 
subcellular localization and soluble vs. membrane proteins as 
a per-protein level of predictions. 

Table 1. The table compares the performance of the final ELMo 

architecture training 2 stacked bidirectional LSTMs with projection 

via transfer learning (TL). The table shows the distinct performance 

metrics of the CE and 𝕂𝕃-Divergence losses as well as the joint final 

loss. Besides, the table displays the values of the random, plain 

architecture, and SeqVec reported baselines. 

 

 Cross-

Entropy 

loss  

(AA) 

𝕂𝕃-

Divergence 

loss 

(PSSM) 

Joint 

loss 

(AA + 

PSSM) 

Hidden size 

/ 

Output size 

Random 

baseline 

3.12 - - - 

SeqVec 

reported 

baseline 

2.35 - - 4096 512⁄  

TL+2bi-

LSTM 

2.8 0.8 1.8 256 256⁄  

PEvoLM 2.4 0.5 1.0 2048 256⁄  

 



             (a) (b) 

 

                           
Figure 9. (a) 3-state secondary structure prediction comparison between MSA-based and ELMo-based inducers (b) Subcellular localization 

and membrane vs soluble protein prediction comparison between MSA-based and ELMo-based inducers 

 

 

 

Regarding the first evaluation, a model was trained using 

the new embeddings as input to predict the three states of a 

protein secondary structure: helix (H), strand (E), and coil 

(C). The embeddings were evaluated on three test sets:  

• 𝑇𝑆115  [37]: a set of 115 sequences derived from 

high-quality protein structures (i.e. < 3 Å) with no 
more than 30% PIDE to any protein of known 

structure in the PDB [38] in 2015.  

• 𝐶𝐵513 [39]: a set of 513 non-redundant sequences 

compiled after a Structure Integration with 

Function, Taxonomy and Sequence (SIFTS) [86] 

mapping. 

• 𝐶𝐴𝑆𝑃12 [40]: a set of 21 protein sequences retrieved 

in 2018 from the 𝐶𝐴𝑆𝑃12  free-modelling targets 

after a SIFTS mapping. 

Figure 9-a displays the performance results of PEvoLM 

embedder compared to SeqVec, another ELMo-based model, 

and ReProf [87], an MSA-based model. ReProf is built on 

PSSM matrices input generated by MSA methods. The latter 

is still considered as one of the state-of-the-art methods on 

this task. From the histogram plot, we see that SeqVec is 

performing quite well without the need of evolutionary 

information to make predictions. we also observe that 

SeqVec and PEvoLM are performing in a quite comparable 

way where SeqVec is still doing better. However, we should 

mention that SeqVec is relying on embeddings of size 3x1024 

for each residue in the sequence to reach this performance, 

whereas PEvoLM requires embeddings with only half the 

size of its rival (3x512). 

 

The second evaluation was conducted on predicting the 

membrane-bound proteins from the water-soluble ones. The 

two-state predictions were tested on a set of 846 proteins 

retrieved from DeepLoc [41] published supplementary data 

set. DeepLoc is a state-of-the-art tool relying on MSA 

profiles output to build its models. It also includes a model 

predicting the 10 states of subcellular localization, 

corresponding to our third benchmarking evaluation. The 

same annotated test set was used to evaluate and benchmark 

PEvoLM and SeqVec embeddings with DeepLoc (Figure 9-

b). The orange bars correspond to the performance results of 

the 𝑄2 membrane predictions. We see that PEvoLM is lower 

by 10% and 4% compared to DeepLoc and SeqVec, 

respectively. 

 

While DeepLoc is still outperforming both of the ELMo-

based methods ( 𝑄2 =93%), our suggested embedding 

performance is still significantly high hitting an 83% with an 

embedding size of only 3x512 per residue. However, the 𝑄10 

localization predictions seem to perform poorly, with an 

overall accuracy of 50%, which is 28% lower than DeepLoc 

and 18% lower than SeqVec. 

VI. CONCLUSION 

 

 The current algorithms for generating evolutionarily 

related information of protein sequences is largely dominated 

by multiple sequence alignment methods. We have seen that 

this technique is one of the most widely used modeling 

approaches in biology. MSAMs are used to expose those 

restricted evolutionary regions within a sequence. The results 

of these methods represent an essential input to several 

downstream applications in the field of bioinformatics. The 

process is simply described as searching for homologs of a 

query sequence in a database of protein sequences, capturing 

the conservation patterns in the alignment, and storing this 

information as a matrix of numerical scores for each position 

in the alignment.  

 

 Even though, the evolutionary information 

representations generated by MSA methods have 

revolutionized the prediction power of AI methods for the 

past two decades, this increase in performance has become 

costly in recent years, with the continuous exponential 

growth of bio-sequence data pools. Thanks to the similarity 

of protein sequences to natural language, NLP state-of-the-

art algorithms, such as ELMo, has successfully been applied 

in bioinformatics.  

 



 The main objective of this research was to deploy an 

ELMo tool incorporating evolutionary information in its 

representations and offering a better trade-off between 

computing resources and runtime. While pre-training is 

costly, the inference is cheaper. A novel bidirectional 

language model was trained following the autoregressive 

approach. The model was trained on a set of 1.83 million 

proteins (~0.8 billion residues), predicting both the next 

amino acid in a sequence and the probability distribution of 

the next residue derived from similar, yet different, 

sequences, as summarized in a PSSM. With 975MB required 

GPU memory to load the final pre-trained model, the average 

inference time takes around 1.03 second to embed a human 

protein sequence segment of size 512 residues. The 

embeddings' prediction power was evaluated on three 

downstream tasks: secondary structure, subcellular 

localization, and membrane vs. soluble protein predictions. 

 

 Even if we did not succeed in reaching our initial goal of 

outperforming SeqVec, we did achieve a performance close 

to SeqVec with half the embedding dimensions (i.e. 3 x 512). 

Additionally, the results have confirmed a finding by 

Jozefowicz et al. [33], who did empirically prove that, when 

trying to fit an LSTM network architecture on very large and 

complex datasets, the size of the LSTM matters. In general, 

and from the downstream tasks perspective, there was no 

evidence that adding PSSM input will improve the 

knowledge that LMs could learn from a sequence. Different 

hypotheses can be drawn here:  SeqVec was able to learn 

certain patterns already without PSSMs, our dataset was too 

small for training an LM, we should have trained the whole 

architecture from scratch (i.e. without transfer learning), we 

should have used larger capacity LSTMPs, or we should have 

simply trained longer. 
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