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Abstract 
Introduction. The hypervariable T cell receptor (TCR), created through somatic 

recombination, allows for recognition of a diverse array of antigens. Single sequencing 

technologies allow capture of both the single cell expression data (scRNA-seq) with the 

paired single cell TCR sequencing (scTCR-seq). However, the current analytical pipelines 

have limited capacity to integrate both data levels. To overcome these limitations, we 

developed STEGO (Single cell TCR and Expression Grouped Ontologies) Shiny R 

application to facilitate the complex analysis required for understanding T cells role in 

various conditions.  

Program parameters. STEGO.R application includes the Seurat quality control (QC) 

process, merging with Harmony, followed by semi-supervised cellular annotations with 

scGate. The scRNA-seq with scTCR-seq is broken down into four sections: top clonotype, 
expanded clonotypes, clustering (ClusTCR

2
) and target epitopes from TCRex predictions. 

The Shiny R interface also facilitates the program’s accessibility to novice R coders. The 

application can be found at https://github.com/KerryAM-R/STEGO.R.  
Preliminary analysis. Out of 22 selected public datasets, 12 could be processed with 

STEGO.R. We re-interrogated the dataset concerning colon inflammations following 

melanoma therapies, as original studies did not integrate the scRNA-seq with scTCR-seq 
analysis. From one study, our novel process identified that the colitis expanded T cells were 

cytotoxic CD8+ T cells with over-represented transcripts including IFNG, GNLY, PFR1, 

GZMB, NKG7, HLA-DR, KLRD1 transcripts relative to both the non-expanded clonotypes, 

non-colitis cases and healthy colon donors. The analysis also identified a TRGV4 cluster 

associated with melanoma cases as well as two TRBV6-2 clusters specific to colitis.  

Discussion. STEGO.R facilitates fast and reproducible analysis of complex scRNA-seq with 

TCR repertoire data. We have demonstrated its utility by extracting novel biologically 

relevant insights into T-cells. We anticipate this program will facilitate the identification of 

subtle T population differences and if these are specific to a TCR clone and/or the expanded 
repertoire.  
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1. Introduction 
T cells, part of the adaptive arm of the immune system, have a critical function in maintaining 

human health. T cells are specialised to recognise a diverse array of epitope/antigens (e.g., 

peptides, lipids, small molecules) to identify and remove dysfunctional cells. To ensure 
coverage of all ‘foreign’ antigens, T cells have distinct functional profiles (e.g., cytotoxic 

CD8+ T cell are responsible for monitoring intracellular pathogens)[1]. Moreover, 

identification of the variable epitopes also relies on the T cells hyper variable receptor (TCR), 
created through recombination of Variable (V), Diversity (D) and Junctional (J) gene 

segments [2]. There are variable estimates on the total number of possible TCR 

recombination (~10
15

), with ~10
6
 functional clones [3]. The collection of the total sum of the 

total variation is referred to as the TCR repertoire. Overall to determine the T cells function 

with epitope specificity requires interrogating both the gene expression phenotype and TCR 

repertoire.  

 

With current next generation sequencing (NGS) technologies, we have access to single cell 

resolution of the genes expressed in the T cell subsets for both the gene expression (scRNA-
seq) and TCR paired chain sequencing (scTCR-seq). With this enhanced resolution, it has 

become clear that the protein-based classifications are not all inclusive. For instance, CD4+ 

cytotoxic T cells have now been observed [4]. Thus, combining scRNA-seq with scTCR-seq 
is a powerful tool for identifying the dynamic nature of T cell function. These technological 

advancements mean we can identify disease specific markers and identify the TCRs to 

functionally validate. The experimental workflow has come a long way to gain this breadth of 
information. 

 

The current approaches, reviewed in [5], identify many ways to process single cell gene 

expression data, with few programs taking into consideration the TCR-seq. Several 

approaches look for correlations in gene expression patterns and TCR similarity features 

(ConGA [6]). The target audience for most of these tools are computational biology experts, 

and therefore can require a steep learning curve for many experimental immunologists. 

Programs are either written in python (ConGA[6], pyTCR[7], Dandelion[8]) or R 

(scRepertoire[9]). Data generated through the 10x Genomics technologies can be analysed 
using their own software platforms, including CellRanger and Loupe Browser v6.4. While 

the BD rhapsody data requires the proprietary program SeqGeq®. The depth of the TCR 

repertoire analysis focuses on clonally expanded cells with similar expression pattern. Yet, it 
may be worthwhile interrogating if CDR3 sequence similarity could have similar functions 

(clustering), identify features of TCRs with predicted epitope specificity, and determine if a 

TCR may have multiple roles (i.e., multiple distinct expression profiles). However, these 
aspects are not considered in the current analysis pipelines, potentially missing crucial 

insights buried in single cell data.   

 

There are many approaches to annotating single cell RNA-seq dataset (reviewed in [5] and 

[Mullan et al. unpublished review]). To overcome some of these barriers to the annotation of 

single cell data, members of the Chan-Zuckerberg Initiative (CZI) have been developing a 

user-friendly python program (cellxgene)[10]. These label transfer models (e.g., 

CellTypist[11], cellxgene) perform reasonable well for labelling cellular populations with 

distinct profiles. Additionally, many of the programs cannot distinguish certain T cell 

populations (e.g., CD8+ γδ T cells from CD8+ αβ T cells). However, distinguishing the T 

cells sub-populations should include the TCR repertoire, and alternative approach are needed 

to add this distinct dataset. 
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Here we present out new tool STEGO.R to aid in scRNA-seq and scTCR-seq analysis. The 

program is a shiny R package for ease of installation and accessibility to novice R coders. We 
included extensive documentation (written and videos) to aid in the installation process, as 

well as the processing steps of the data analysis.  

 

2. Material and Methods 
We selected 22 publicly available scRNA-seq with scTCR-seq for STEGO.R benchmarking 
based on a literature search (Table 1). Only 12 of the 22 datasets could be processed with 

STEGO.R (Table 1). The main issues for not being able to process the remaining ten datasets 

were due to missing information in the public repositories (i.e., no available gene expression 

[n=2], no TCR-seq[n=2]) or data format issue (e.g., summarised TCR data[n=1], cannot 

separate cases in merged files [n=2], incompatible format[n=3]). These 12 datasets were used 

to create a 10x Genomics workflow. In addition to the 10x Genomics datasets, we also used 

one Array-based dataset  and unpublished BD Rhapsody for the respective workflows.. The 

array pipeline was developed for re-analysis of a COVID-19 dataset and published in [12]. 

The 10x Genomics data was formatted as either raw filtered files (barcode, features, and 
matrix), .h5, .h5ad, rds.gz or csv.gz. STEGO.R can currently process the raw files, .h5 and 

csv.gz, but not the other formats. There is currently no process to make the cloupe and/or 

vloupe as the original matrix or TCR file and therefore were not analysable with STEGO.R. 
The direct 10x outputs of the barcode, features and matrix with the filtered_contig were the 

most accessible to processing in STEGO.R. The csv.gz required some manual manipulation 

to process the files, including add a group to the barcode file (e.g., S2 to S32).  
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Table 1. Publicly available datasets to test STEGO (10x Genomics based data). 

GEO Name Species Condition 
STEGO.R 

compatible 

# of 

individuals 

# of 

samples 

Cells 

included 

Total 

functional 

TCR 

sequences 

% of 

captured 

TCR 

sequenced 

Ref. 

GSE114724 

Immune Phenotypes in the 

Breast Tumour 

Microenvironment  

Homo 

sapiens 
Breast Cancer yes 3 5 28341 24039 85% [13] 

GSE121637 

Peripheral blood and tumour-

infiltrating immune cells in 

renal clear cell carcinoma  

Homo 

sapiens 
Renal Cancer 

scTCR-seq 

only 
- - - - - [14] 

GSE139555 

Peripheral clonal expansion of T 

lymphocytes associates with 

tumour infiltration and response 

to cancer immunotherapy 

Homo 

sapiens 

Anti-PD1 

therapy 
yes  13 32 194519 67700 35% [15, 16] 

GSE144469 
Colon Inflammation Induced by 

Cancer Immunotherapy 

Homo 

sapiens 

Melanoma and 

therapy 
yes  22 22 75569 68760 91% [17] 

GSE145370 

Immune suppressive landscape 

in a human oesophageal 

squamous cell carcinoma 

microenvironment 

Homo 

sapiens 

Oesophageal 

cancer 
yes 7 14 108226 35449 33% [18, 19] 

GSE148190 

Single cell RNA and TCR 

sequencing of tumor-infiltrating 

lymphocytes from human 

melanoma 

Homo 

sapiens 
Skin cancer yes 2 2 8794 4904 56% [20] 

GSE184330 

Single cell RNA sequencing and 

TCR repertoire analysis of MIS-
C affected patients versus 

healthy controls and severe 

adult COVID-19 

Homo 

sapiens 

COVID-19 
infection 

Cannot 

separate 
cases in 

merged files  

16 - - - - [21] 

GSE160173 

Induction of T cell dysfunction 

and NK-like T cell 

differentiation in vitro and in 

patients after CAR T cell 
treatment [scTCR-seq] 

Homo 

sapiens 

CAR T cell 

treatment 

scTCR-seq 

only  
2 - - - - [22] 

GSE180268 

Functional HPV-specific PD-1+ 

stem-like CD8 T cells in head 

and neck cancer 

Homo 

sapiens 

HPV and 

Head and 

Neck cancer 
yes 6 19 53303 26844 50% [23] 
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GEO Name Species Condition 
STEGO.R 

compatible 

# of 

individuals 

# of 

samples 

Cells 

included 

Total 

functional 

TCR 

sequences 

% of 

captured 

TCR 

sequenced 

Ref. 

GSE168859 

Coupled Single Cell RNA 

Sequencing and TCR Profiling 

of T Cells in Large Granular 
Lymphocytosis to Infer 

Pathophysiology and 

Mechanism of Drug Action 

Homo 

sapiens 

LGL and 
Response to 

Drugs& 
yes 20 32 558795 276796 50% [24] 

GSE168163 

Single-cell profiling of T 

lymphocytes in deficiency of 

adenosine deaminase 2 

Homo 

sapiens 

DADA2 

deficiency  

Summarised 

TCR file 
15 - - - - [25] 

GSE185659 

Human lung tissue resident 

memory T cells are re-

programmed but not eradicated 

with systemic glucocorticoids 

after acute cellular rejection 

Homo 

sapiens 

Lung 

transplant 

rejection 
yes 3 7 22397 8227 37% [26] 

GSE185058 

The Single Cell Sequencing of 

Immune Cells in malignant 

pleural effusion 

Homo 

sapiens 

malignant 

pleural 

effusion 

scRNA-seq 

only 
5 - - - - [27] 

GSE179994 

Temporal single cell tracing 

reveals clonal revival and 

expansion of precursor 

exhausted T cells during anti-

PD-1 therapy in lung cancer 

Homo 

sapiens 

anti-PD-1 

therapy in 

lung cancer 

Cannot 

process due 

to rds.gz 

format 

(incompatibl

e format) 

38 - - - - [28] 

GSE184703 

Expansion of Human 

Papillomavirus-Specific T Cells 

in Periphery and Cervix in a 

Therapeutic Vaccine Recipient 

Whose Cervical High-Grade 

Squamous Intraepithelial Lesion 

Regressed 

Homo 

sapiens 

HPV and 

cervical 

cancer 
yes 1 1 14946 10222 68% [29] 

GSE161192 

CD4+ T cells contribute to 

neurodegeneration in Lewy 

Body dementia 

Homo 

sapiens 
LB dementia yes 4 4 6438 5642 88% [30] 
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GEO Name Species Condition 
STEGO.R 

compatible 

# of 

individuals 

# of 

samples 

Cells 

included 

Total 

functional 

TCR 
sequences 

% of captured 

TCR 
sequenced 

Ref. 

GSE178991 

10X genomics single cell GEX 

and VDJ 5’ sequencing of 

PBMC from Type 1 Diabetes 

patients treated with Treg 

therapy alone or plus low dose 

IL-2 

Homo 

sapiens 

Type 1 

Diabetes 

Cannot process 

due to .h5ad 

format 

(incompatible 

format) 

28 - - - - [31] 

GSE176201 

Immune signatures underlying 

post-acute COVID-19 lung 

sequelae 

Homo 

sapiens 

COVID-19 

lung tissue 
yes 6 6 34781 23081 66% [32] 

GSE172158 

Single-cell RNA-seq of T cells 
in B-ALL patients reveals an 

exhausted subset with 

remarkably heterogeneity 

Homo 

sapiens 

Leukemia (B-

ALL) 

Cannot 
separate cases 

in merged files 

4 - - - - [33] 

GSE182536 

Single-cell RNA-sequencing on 

human naïve and memory 

CD4+ T cells during 

Plasmodium falciparum 
infection 

Homo 

sapiens 

Malaria 

infection 

scTCR-seq in 

Vlope format 

(incompatible 

format) 

6 - - - - - 

GSE165499 

Co-evolving JAK2V617F+ 

relapsed AML and donor T cells 

with PD-1 blockade after stem 

cell transplantation: an index 

case 

Homo 

sapiens 

Anti-PD-1 

therapy in 

AML after 

transplantation 

yes 1 6 32714 3081^ 9% [34] 

GSE181279 

Single-cell RNA sequencing of 

peripheral blood reveals 

immune cell signatures in 

Alzheimer’s disease 

Homo 

sapiens 
Alzheimer’s 

scRNA-seq 

only 
5 - - - - [35] 

-  Not applicable due to missing files or incompatible file format.  
^ BCR & TCR sequence 
& Out of memory issues reached with >500,000 cells in the annotation process. To annotate all models with the Posttreatment and Pre-treatment files annotation (~8-12h). We 

recommend in this case to annotate <200,000 cells and then merge the files together before the analysis.  
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2.1 Data pre-processing 

10x Genomics: Each of the datasets included four files including the Barcode, feature 

annotations, matrix, and filtered contig annotations. As there were many file formats 

uploaded for 10x Genomics data, the process needed to include adding in h5, and csv.gz 

pipelines. To decrease compatibility and accessibility issue, we recommend storing the raw 

filtered files as either barcode, feature annotations, matrix, csv.gz or h5 matrix object with the 

TCR contigs in a separate file. The user needs to add the group and treatment label. This will 

be included in the “Sample_Name” column of the meta-data file. This will be the unique 

identify of the file.  
 

Similarly, BD Rhapsody included a labelled matrix or raw files (barcode, features, matrix) 

with a paired or unpaired TCR and sample tags file. For experiments missing the sample tags 
file, a mock file needs can be produced by the program. The unique identifier is already 

included in the “Sample_Name” column or the file name added to the “orig.ident” column.  

 
For the TCR/BCR sequence files are paired from the AIRR format. Due to the meta-data 

mering issue only the dominant sequence was maintained. However, there is some evidence 

the most dominant sequences may not be epitope specific, we added in a filtering pipeline 

from the AIRR format to identify sequences with multiple chains and non-standard pairing 

(e.g., alpha/delta). However, this is currently implemented only for BD Rhapsody datasets, as 

the 10x Genomics usually only had the filtered TCR files available. This will be merged at 

the end of the Seurat quality control process, if needed.   

 

Regardless of the platform of the data, the user will need to download several files which 
includes: ClusTCR

2 
(ID_ClusTCR2_date.csv), TCRex (ID_TCRex_date.tsv), SeuratQC 

(matrix[raw only]:ID_count-matrix_date.csv,  meta data: ID_metadata_platform_date.csv), 

TCR_Explore (ID_TCR_Explore_date.csv).  

 

2.2 Clustering 

ClusTCR
2
 was based on the ClusTCR python package[36]. This clustering is based on V 

family matching and sequence similarity CDR3 amino acid sequences of the same length. 

ClusTCR uses a hashing function to determine all pairs of sequences with a hamming 

distance of 1 and builds a graph from the edge list obtained through hashing. Next, it uses the 

Markov clustering algorithm (MCL) to identify similarity groups in the graph. The MCL R 

package originally only numerically labelled one node away connection relative to the row, 

and that part was looped to ensure that the whole cluster received the same numeric label 

(https://github.com/KerryAM-R/ClusTCR2) . However, unlike the ClusTCR python package, 

ClusTCR
2
 does not include the biochemical properties needed for the K-means clustering 

before the MCL step. As current scRNA-seq experiments have fewer clonotypes (e.g., 
<100,000 unique clonotypes), the K-means pre-clustering resulted in limited speedup.  

 

The user can upload multiple ID_ClusTCR2_date.csv for merging prior to the clustering if 
more than one individual is present or directly to the clustering section. After uploading, the 

user will need to download the clustering table (ClusTCR2_output_date.csv).  

 

2.3 TCRex processing  

If multiple individuals are used, the individual TCRex files can be merged in “TCRex merge” 

section. This process removes the duplicate CDR3 sequences and downloaded as the 

corresponding .tsv file (TCRex_merged_date.tsv). The user uploads the file to TCRex 
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webpage https://tcrex.biodatamining.be and selects the epitopes of interest[37]. This can be 

all viral and/or cancer, or focus on a specific subset (e.g., COVID-19, Melanoma etc.). The 
processed file is downloaded and will be uploaded to STEGO.R Analysis section.  

 

2.4 Gene expression quality control 
This followed the Seurat pipeline version 4[38]. Briefly, each individual dataset is processed 

to remove low quality cells (<200 features) or possible doublets (>6000 features). Cells with 

high mitochondrial (e.g., 20%) and low ribosomal gene can be removed (e.g., 5-10%). The 

data is scaled on the whole dataset, normalised, feature identification (n=2000), use the 

principal components (PC) for dimensional reduction (UMAP) and resolution for identifying 

Seurat clustering. The number of PCs can be interrogated using the Elbow method (e.g., 

usually between 10-15). The files are downloaded as the .h5Seruat object, which contains all 

the Seurat embeddings.  

 

2.5 Merging multiple samples. 

The harmony package was used to combine multiple .h5Seurat Seurat objects. This process 

requires the combined datasets to be re-scaled using the top 2000 transcripts and pre-selected 

genes for phenotyping (e.g., CD4, CD8). The process uses 30 PCs for the harmony reduction, 

which removes the batch/individual biases. The user can check that they annotated the files 

correctly with the presented UMAP plot. The user is required to then download the processed 

merged file (ExperimentID_merged_date.h5Seurat).  

 

If there are more than 200,000 total cells, it is best to batch merge in lots of ~200,000 cell for 

each annotation (see 2.5 for details), and divide the samples as evenly as possible between the 
batches. This was needed for the GSE168859, which had ~560,000 cells. After annotating, 

the files will then be merged into one .h5Seurat file.  

 

2.6 Single cell annotation  

The gold standard approach to single cell annotation involves (1) automated annotations, (2) 

manual annotation/inspection of the annotations and (3) expert review [39]. The common 
strategies for the automated annotation include transfer models (CellTypist[11], cellxgene). 

However, the annotations for the T cell sub-populations are incomplete. For instance, 

modelling approaches cannot distinguish the γδ T cells and NKT cells within the cytotoxic 

CD8+ T cell population (Figure 1A-C). Additionally, upon integration of the TCR-seq with 

the scRNA-seq, we could identify that there was mixing of the TRAC and TRDC expression 

and therefore do not have distinct expression patterns. In this manner, γδTCR can be missed 

due to reduced TRDC expression (Figure 1D).  

 

Some of the label transfer models do not include some common T cell population (e.g., Th2) 
[Mullan et al. unpublished review]. Additionally, none of the modelling investigates 

functional aspects of T cells including activation markers (e.g., IFNγ) that may not be subset 

specific. The other issue with these models is that they often do not include how the datasets 
were originally labelled. Until we have a robust list of markers for consistent labelling that fit 

the subtle differences of T cell subpopulations, they are not the best strategy for annotating T 

cells.  
 

The unsupervised Seurat clustering was not an ideal annotation strategy due to the dynamic 

nature of gene expression within clusters and between the clustering. Thereby this may have 

missed some important dynamic features. While these annotation strategies are good for 
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labelling cells with distinct transcriptional differences, an alternative annotation approach for 

identification of the subtle and dynamic differences within T cell population was used. The 
semi-supervised scGate [40] annotation methodology was integrated with custom databases 

to cover the missing models. Additionally, we also used the FindMarker function from the 

Seurat package within each of the “TCR and GEX” sub-section to identify markers that were 
over-represented for the individual clones, clonal expansion, clustering, and predicted 

epitopes. To check the expression the users could visualise the average expression (dot plot) 

or scaled expression (violin plot). Thereby, there were two strategies for annotating the T 

cells.  

 

Human Annotations 

Human specific markers were chosen based on several sources. The program includes the 

standard generic, CD4_TIL and CD8_TIL models from scGate [40], with the latter two 

models requiring sorted CD4 or CD8 T cell populations. To overcome this pre-sorting issue, 
there was a need to add the CD8A and CD4 transcriptional expression to the databases. 

Additionally, the models did not include double-negative (DN) annotations. From 

observation across the 12 usable datasets, the CD4 expression had poorer expression than 

CD8 markers (Figure 2). Often the DN population clustered with the CD4 population.  

 

However, as the three scGate models did not capture some of the more subtle T cell features. 

Therefore, these databases of annotation started with the general T cell markers identified in 

our recent review [Mullan et al. unpublished review]. Each of the annotation strategies was 

tested and refined and viewed against the raw expression to the final list in Table 2. Based on 
the above considerations, the models did not distinguish the αβTCR from γδTCR, as this 

required the TCR-seq level for certainty. Additionally, due to the CD4 coverage issue, this 

marker was not included in the T cell Function marker list and added the -like to each 
description. The lower expression of CD4 could be driven by activation or due to the 10x 

Genomic chemistry.  

 
Table 2. Literature based annotation strategies.  
Classification Sub-classification Transcriptional markers 

Activation 

Early CD69
§
 

Late IL2RA 

Very late CD38, HLA-DRA 

Resting IL4R 

COVID^ 

Effector 
GZMB, GNLY, PRF1, PRDM1, KLRD1, 
SLC9A3R1 

Exhausted TIGIT, PDCD1 

Memory  GZMK 

Naïve LEF1, TCF7, CCR7 

Proliferative MKI67, TYMS 

Senescence B3GAT1 

Cell cycling Cycling MKI67, TOP2A 

ESCC [18] 

 

B cells MS4A1, CD19, CD3D-, CD3E-, CD2- 

CD4 T cells CD3D, CD3E, CD2, CD14-,CD4, CD8A- 

CD8 T cells CD3D, CD3E, CD2, CD14-, CD4-, CD8A 

 Double negative (DN) T cells CD3D, CD3E, CD2, CD4-, CD8A- 

mDC CD1C, FCER1A  

Mast cell  TPSB2, CPA3 

Basal cells/fibroblasts KRT19, IGFBP4, CTSB 

Monocyte/macrophages CD14, VCAN, FCGR2A, CSF1R 

Natural Killer (NK) CD3D-, CD3E-, CD2-, KLRD1,KLRC1 

pDC CLEC4C 
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Plasma LAMF7, IGKC 

Exhausted and 

Senescence 

Exhausted PDCD1, TIGIT 

Senescence B3GAT1 

T cell Function 

MAIT-like CD3E, TRAV1-2 

NKT-like (inhibitory receptor) CD3E, KLRC1, KLRD1 

Tfh-like
%

 CD3E, CXCR5 

Th1-like
 %

 CD3E, CXCR3, TBX21 

Th2-like
 %

 CD3E, CCR4  

Th9-like CD3E, IL9 

Th17-like
 %

 CD3E, RORC 

Th22-like CD3E, IL22 

Tregs CD3E, FOXP3 

Cytotoxic 

GNLY.GZMB.PFR1 GZMB, GNLY, PFR1 

GZMB.PFR1 GZMB, GNLY-, PFR1 

GNLY GZMB-, GNLY, PFR1- 

IFNγ and TNFα 

IFNγ and TNFα  IFNG, TNF 

IFNγ IFNG, TNF- 

TNF IFNG-, TNF 

Interleukin
%

  

IL-2 IL2 

IL-4 IL4 

IL-6 IL6 

IL-8 IL8 

IL-9 IL9 

IL-10 IL10 

IL-17 IL17A, IL17F 
% 

Markers identified based on transcriptional interrogation. The literature identified that interleukin markers are 

more poorly captured at the transcriptional level. It is unknown which markers can replace IL-9 or IL-22.  

* Based on COVID-19 x publication [ref].  
§ when CD69 is expressed with CD103 (transcript ID: ITGAE) they may represent resident memory T 

cells[41]. Other’s report that CD69 alone represents tissue resident T cells[42]. 

 

The current database requires some additions. Memory and tissue resident markers as well as 

including an NK-like annotation will be included in a later version of STEGO.R. 

Additionally, the cut-offs within the scGate thresholds depended on the origin of the dataset 

that includes: 10x Human, 10x Mouse (underdevelopment), BD Rhapsody (Human Immune 

panel), BD Rhapsody (Mouse; underdevelopment).  

 

User instruction for annotating 

The user uploads the merged or single .h5Seurat object for annotation. They can choose from 
a range of annotation strategies for mouse, human or other. For other, the user will download 

the database and alter the gene names as needed. However, the folder names must not be 

altered so that R can recognise each database correctly. Once annotated, the user will 
download this file (ExperimentID_Annotated_date.h5Seurat).  

 

2.7 Analysis 

The user will upload the annotated .h5Seurat file as well as the ClusTCR_output.csv and 

TCRex_ID.tsv (Beta chain only). If needed, the user can also upload a custom annotation file. 

The first column is labelled “ID” and will match the “Sample_Name” column. This allows 

for greater flexibility if new parameters need to be added to the dataset.  
 

The program will do all the necessary summarisation for identification of clonal expansion 

and overlapping TCR sequences. For a more in-depth interrogation of the structure of the 
TCR repertoire, can be done with TCR_Explore [43], which can also aid in reformatting to 

TCRdist3[44] for more in-depth distance statistics.  
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The analysis was split into several types of analyses: TCR or gene expression overview 
analysis and the TCR-seq with gene expression (TCR with GEx) split into single TCR 

interrogation, expanded TCR, TCR clustering and epitope prediction. Every section includes 

the capacity to download a UMAP figure with the distinct annotations. The clustering, 
epitope, clonal expansion, and repertoire overlap highlight a subset of data relevant to each 

section. The user can change which groups of markers to interrogate as per the annotation 

present Table 1. The section also includes the “FindMarker” to better understand how the 

population of interest differs from the rest of the population. The user can view the scaled 

data in violin plots or the average relative expression in the dot plot. The statistics table can 

be downloaded.  

 

2.8 Testing and requirements 

STEGO.R was installed by the intended user on all major operating systems (Unix, Microsoft 

Windows and Linux). We recommend having 32Gb of RAM, as the merging and annotation 
steps can be quite memory intensive. The user needs to download the latest version of R and 

RStudio. The user needs to make sure devtools and BiocManager before install STEGO.R. 

For a detailed installation and running instruction can be found at 

https://stego.readthedocs.io/en/latest/. STEGO.R functionality was tested in-house (MMR, 

VZV), University of Sydney (Sharland group), Monash University (Mifsud and Purcell lab’s) 

and other collaborators.  

 

2.9 Code availability 

STEGO code is available on the GitHub repository (https://github.com/KerryAM-

R/STEGO.R).  
 

2.10 Data availability 

The publicly available data was sourced based on the GEO numbers (Table 1).  
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3. Results 
3.1 Common practices for interrogating and presenting the scRNA-seq with scTCR-seq 

prior to STEGO.R   
12 of the 22 selected datasets could be processed through STEGO.R and were summarised to 

showcase how the authors annotated and displayed their scRNA-seq with scTCR-seq (Table 

3). These 12 datasets represent 88 individuals across 148 scRNA-seq with scTCR-seq 
datasets. There were ~1.14 million high quality cells with ~0.55 million functional TCR 

sequence. The TCR coverage for each dataset averaged 55% (range: 9% to 91%). All 

datasets, apart from [13], were processed in R ‘Seurat’ package. The majority of the datasets 

were annotated based on the Seurat clusters. However, few articles listed their markers and 

often referred to a previous publication or assumed that this was common knowledge. The 

ESCA dataset[18] had clear listing of each population, and was added to the annotation 

database in STEGO.R application. Some studies opted to not annotate the clusters and 

performed single marker interrogations, as the studies were focused on biomarker 

identification and validation[20, 23, 26].  
 

TCR-seq data was most frequently analysed only in the context of the gene expression. The 

most common analysis was a dot plot that looked at clonal frequency across two conditions to 
see if they expanded or contracted [15, 26, 29, 34]. When combined with the scRNA-seq 

transcriptional expression, the most common approach to understanding the role of the 

scTCR-seq was to colour the UMAP plot by TCR repertoire clonal frequency.  
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Table 3. Summary of analysis strategies and findings in the original twelve articles 

 

GEO Study Goal Sort 
Program and 

packages 
Annotation strategy 

TCR-analysis 

(figures/tables) 

scRNA-seq and scTCR 

figures and/or findings 

GSE114724 

[13] 

Interrogating T 

cells from breast 

carcinoma tissue, 

LN and PBMC 

microenvironment 

CD45+ 

DAPI− 

Charlotte 

Python 

package 

Manual checking clusters on top 

ranked genes. 

Markers not listed 

 

Overlayed TCR onto the 

cluster. 

 

Described multiple phenotypes 

of T cells within the samples. 

GSE139555 

[15] 

Compare paired 

tumor and non-

tumor adjacent 

tissue and blood 

in NSCLC 

CD3+ 

(PBMC) or 

CD45+ 

(Tumor) 

Seurat in R 

Cluster based.  

 

Markers not listed 

Compared T cell expansion 

using dot plots. 

 

Use dominant phenotype 

within expanded TCR 

PBMCs were somewhat 

representative of tumor T cell. 

Therefore, could be used for 

monitoring and direct 

treatment. 

GSE139555 

[16] 

Interrogating 

CD28+CD226+ 
CD8+ T cells in 

NSCLC to assess 

the impact of  

treatment  

CD3+ 
(PBMC) or 

CD45+ 

(Tumor) 

Seurat in R 

Cluster based on published gene 

signatures. 
 

Focused on CD28 and CD226 

 

Markers not listed. 

Previous article Previous article 

GSE144469 

[17] 

Interrogating 

cellular and 
molecular 

mechanisms of 

colitis side effect 

of CTLA-4 or 

PD-1/PD-L1 

therapy 

(melanoma) 

CD3+ CD45+ 

from colon 

biopsies 

Seurat in R 

SingleR projection model 

 
Manual checking clusters on top 

ranked genes 

 

CD4 and CD8 based on 

normalized expression 

 

Markers not listed 

No main scTCR figures No overlap analysis 

GSE145370 

[18] 

Understanding the 

tumor 

microenvironment 

in ESCC 

CD45+ 

CD235- from 

Tumor and 

adjacent 

tissues 

Seurat in R 

 

Monocle in R 

(trajectory 

analysis) 

Manual checking clusters on top 

ranked genes 

 

Markers listed (no MAIT, NKT, 

γδTCR included) 

Exhausted listed in Sup. Data 3 

Upset plots, bar graphs of 

% clonal 

Overlayed clonal expansion on 

UMAP and compared within 

clusters. Distinct and 

overlapping T cells in both 

tumor and adjacent tissue.  
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GSE145370 

[19] 

Understanding the 
role of IL-32 in 

ESCC 

Previous 
publication 

Seurat in R 

Manual checking clusters on top 

ranked genes 

 
Markers listed (no MAIT, NKT, 

γδTCR included) 

 

Previous publication only Previous publication only 

GSE148190 

[20] 

Understanding 

LAYN role in 

human melanoma  

CD3+ CD8+ 

(melanoma 

tissue) 

Seurat in R 

Focused on LAYN expression 

only.  

No cell annotation 

Single chain analysis of top 

20 expanded clonotypes 

±LAYN 

Overlayed clonal expansion on 

UMAP and focused on LAYN 

being expressed in more 

expanded T cells 

GSE168859 

[24] 

T-cell large 
granular 

lymphocyte 

leukemia (T-

LGLL) 

CD3+ Seurat in R 

Used raw data from 

GSE93777[45] and used gene 

sets to define cells 

 
Markers not listed.  

3D bar graphs, diversity 

calculation (Gini), length 

distributions, Clustering  

Overlayed clonal expansion on 

UMAP. Limited phenotypic 

analysis on expanded clones.  

GSE185659 

[26] 

Understanding the 

effect of 

glucocorticoid 

therapy for 

treating Acute 

rejection in lung 
transplant patients 

CD3+ Seurat in R 

Some markers listed (e.g. 

Naïve: S1PR1 and SELL) or 

based on CD4 vs CD8 

expression.  

Dot plot frequency graph.  

Overlayed clonal expansion on 

UMAP. 

Expression (volcano plot) of 

top 4 clonotypes vs the rest.  

GSE184703 

[29] 

Understanding 

HPV-Specific 

T Cells  

Peptide 

derived T cells 

and IFNγ+ 

Seurat in R 

 

Loupe V(D)J 

Browser  

Single marker interrogation by 

cluster with UMAP and violin 

plots 

Dot plot frequency graph.  

 

Single chain frequency 

No overlap analysis 

GSE176201 

[32] 

Understanding 

acute lung 

sequelae T cell 

signature from 

COVID-19  

CD3+ from 

BAL and 

PBMC  

Seurat in R 

Used clusterProfiler and 

AddModuleScore based on 

three published datasets. 

 

Markers not listed 

Supplementary figures bar 

graph (%) 

Separate CD4+ and CD8+ 

analysis. 

 

Overlayed clonal expansion on 

UMAP (sup. Figure). 

Comparing expression of 

expanded (>5) clonotypes to 

non-expanded (≤5).   
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GSE161192 

[30] 

Understanding T 
cells in Lewy 

body dementia 

No sort, From 
CSF 

Seurat in R 

 

MAST in R 
 

topGO for 

gene ontology   

Used Findmarker in clusters and 

MAST package (filter out low 
quality cells).  

 

Markers not listed 

No main scTCR figures.  

Overlayed clonal expansion on 

UMAP and single marker 
analysis of expanded 

clonotypes.  

Gene ontology analysis.  

GSE165499 

[34] 

Demonstrating 

how single-cell 
technology can 

understand the 

relapses GVL 

- Seurat in R 

FindMarkers within clusters 

used. Populations based on 

published articles.  

 
CITE-seq and scRNA-seq 

expression.  

 

Some markers in heatmap, but 

not listed in a table.  

Dot plot frequency graph 

(two conditions).  

Overlayed clonal expansion on 

UMAP.  

GSE180268 

[23] 

Understanding 

HPV+ T cells in 

head and neck 

cancer  

tetramer-

sorted HPV-

specific PD-

1+ CD8+ T 

cells 

Seurat in R 
 

VISION in R 

 

Monocle3 in R 

(trajectory 

analysis) 

FindMarkers within clusters 

used. 

 

Single marker and observed 

across the three clusters. 

No main scTCR figures. 
Overlayed clonal expansion on 

UMAP. 

LN, Lymph node. PBMC, Peripheral mononuclear cells. UMAP, uniform manifold approximation and projection. BAL, bronchoalveolar lavage fluid. CSF, cerebral spinal 
fluid. GVL, Graft-vs-leukemia. HPV, Human papilloma virus. NSCLC, non-small cell lung carcinoma. ESCC, esophageal squamous cell carcinoma. 
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3.2 Re-analysing the colitis dataset.  

While all datasets were processed for re-analysis, the GSE144469 will be used as the primary 
example as the original study did not contain scTCR-seq analysis. Additionally, this dataset 

included both αβ and γδ T-cells. The purpose of the GSE144469 study was to understand 

why some individuals that were treated for melanoma developed the gastrointestinal 
inflammation i.e., colitis[17]. The researchers analysed CD3+ CD45+ T cells from colon 

biopsies that represented eight melanoma patients with colitis (C), eight melanoma patients 

without colitis (NC) and six healthy controls (CT).  

 

Firstly, we used STEGO.R to analyse the TCR-seq and gene expression independent of each 

other. There was evidence of clonal expansion (Fig. 3A) with the vast majority of clonotypes 

were unique to the individual (Fig. 3B). The clonal expansion on the UMAP plot (Fig. 3C) 

appeared to be mostly from CD8+ T cell population (Fig. 3D). Additionally, the clonal 

expansion represented both αβTCR and γδTCR, which was based on the TCR sequencing 
rather than the gene expression (Fig. 3E). 

 

The upset plot, an alternative of a Venn diagram for representing overlap when four or more 
groups are listed, identified that there were few public clonotypes (Fig. 3B). Therefore, 

interrogating the top clonotypes was not performed. Instead, analysing the phenotype of the 

clonally expanded population (Ex; ≥3 clonotypes) vs non-expanded (NEx; <3 clonotypes) 
was completed (Fig. 4A). Comparing the phenotype of the colitis Ex vs NEx identified 55 

markers associated with the expanded colitis populations include CD8A and CD8B, as well 

as class II HLA genes, (e.g., HLA-DRB1, HLA-DPA1, HLA-DRA, HLA-DPB1) cytotoxic 

markers (e.g.,PFR1, GNLY, GZMB, IFNG), NK receptors (CD160, KLRD1) and tissue 

homing integrins (ITGA1, ITGAE) (Fig. 4B). Additionally, there were 124 markers over-

represented in inflamed colitis Ex compared to the non-colitis Ex (Fig. 4C). These markers 

include GBP genes that are interferon induced proteins, CD38 (late activation marker), 

cytotoxic markers (e.g., GZMB, GZMK, GZMH, GNLY, IFNG, PRF1) as well as antigen 

processing (TAP1) and effector-linked (NKG7) transcripts.  

 

The next step of the analysis was to identify clusters on CDR3 sequence similarity. 

Interestingly, there was a preference for the TRBV6-2 11mer and 12mer in the colitis cases 

that had a greater degree of GNLY, GZMB and PFR1 expression (Fig. 5A and 5B). There 

were also TRGV10 (pseudogene) and TRGV2 clusters specific to the NC and CT including a 
(Fig. 5C and 5D). Additionally, an alternative gamma genes TRGV4 and TRGV8 clusters 

were over-represented in the melanoma (C and NC) with the (Fig. 5E and 5F). All these 

clonotypes appeared to express cytotoxic markers.  
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4. Discussion 
As part of testing STEGO.R we searched for datasets that contained scRNA-seq with scTCR-

seq and identified 22 datasets to interrogate for re-analysis purposes. 55% of these publicly 
stored datasets were able to be processed through our novel STEGO.R. The remaining 45% 

could not be re-interrogated due to formatting or missing data issues. This highlights a 

broader issue with how single cell RNA-seq data is stored in public repositories. Based on 
our experience, the easiest data to reanalyses was the output of the cellranger pipeline 

containing the barcode, features and matrix file as well as storing both the filtered and 

unfiltered contig (TCR) file in the AIRR format. This will allow other to readily re-

interrogate previous data and/or add published dataset to help improve statistical power. We 

emphasize the storing of public data into common file formats that apply to the current 

standards of the field [39]. 

 

Many studies failed to list the main markers used to annotate the clusters, subjected to 

researcher expertise when interpreting the data and are unlikely reproducible. To improve 
this, based on our recent review and refinement with the 12 datasets, we included several 

databases of common T cell specific markers. This list is not yet inclusive of all T cell 

subtypes (e.g., memory, NKT), and needs further input from T cell immunologists. The 
memory markers have not been included in part due to the issue of CD45RO and CD45RA 

proteins being translated from the same CD45 transcript. Those two variants of CD45 

proteins distinguish naïve from memory. However, we need additional markers that are 
transcriptional appropriate for memory populations.  

 

The other strategy STEGO employed was to use the findMarker function focusing on the 

TCR, expansion or cluster of interest. This highlighted the markers that were over-

represented in the cell population of interest. For instance, the extended interrogation of the 

colitis clonal expansion identified a more cytotoxic profile (IFNγ, GNLY, PFR1, GZM’s, 

NKG7), class II HLA genes) with NK receptors (KLRD1) from CD8+ T cells relative non-

expanded colitis T cells. Similarly, these cytotoxic genes were more prevalent in the T cells 

derived from the colitis cases compared to both the non-colitis cases and healthy controls. 
Thereby, this analysis was able to give additional insights into the bystander cells and could 

be excluded as a cause of the colitis after melanoma treatment. Importantly, key biomarkers 

segregated out the expanded T cell population, some of which are not commonly used with 
focused experiments that relies on IFNγ/TNFα capture. We would recommend companies 

developing triplet capture protocol for intracellular proteins granulysin, granzyme B and 

perforin, as the triplicate expression is closely linked to the expanded populating. The sorting 
process would also need to include the NK receptors.  

 

Unlike the previous tools that focus on public and private clonotypes, STEGO.R was able to 

identify public clusters and determine if they had similar expression profiles. Our 

interrogation was able to identify two colitis specific clusters that expressed TRBV6-2 

(11mer and 12mer). This may indicate a preference for certain beta-chains irrespective of the 

alpha pairing. Additionally, the clustering analysis also identified T cells that may protect 

against the inflammatory, as they were absent or rarely expressed in the colitis cases. One 

cluster expressed the TRGV10 pseudogene, indicating it would not express a functional TCR, 

yet it appears to have utility in tracking distinguishing colitis from non-colitis cases. Lastly, 

the clustering identified several gamma specific clusters of TRGV4 and TRGV8 that were 

over-represented in the melanoma (C and NC) cases. A recent study showed that Vγ4+ T 

cells can be HLA-A*02:01 restricted to melanoma peptides [46]. Thereby, the TRGV4 
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cluster, as it also expressed CD8, could be a class I antigen reactive γδ T-cell that may 

recognise melanoma specific peptides. In this manner, STEGO.R provided additional 
evidence that there might be more similarity between αβ and γδ T-cells than has been 

assumed so far. This finding also reinforces the need to classify the T cell based on function 

expression in an independent manner from the TCR sequence.  
 

5. Conclusion 
Here we present our STEGO.R for processing and analysing scRNA-seq with scTCR-seq 

data. Through optimising STEGO pipeline we identified shortcomings with how the 

published literature is stored as well as annotation reporting. We showcased some of our 

program’s functionality by extending the analysis of colitis complication to melanoma 

therapy. This enabled the identification of colitis specific T cells expression signature, that 

were specific to the expanded populations. Additionally, we identified two TRBV6-2 clusters 

specific to the colitis complication. Overall, STEGO.R program has improved our capacity to 

understand the novelties of scRNA-seq with scTCR-seq data.  
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Figure 1. Understanding dynamic and variability of TCR expression. (A-B) UMAP plot representing the 

chain expression of the (A) TRA gene and (B) TRG that was derived from the TCR-seq data-level. (C) CD8 

transcripts (CD8A and CD8B) and NK receptors (CD160 and KLRD1) expression. (D) Constant T cell gene 

markers (TRAC, TRDC, TRGC1).  

 

 
Figure 2. Limitation in CD4 expression. (left) CD4 and (right) CD8A expression.  
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Figure 3. Exploring the gene expression the TCR expansion of the colitis dataset. (A) Clonal expansion 

based on frequency of clones across. (B) Upset plot of the paired TCR including both the V(D)J genes and 

CDR3 sequence. An upset plot similar to Venn diagrams represent numbers of overlapping samples. The black 

dot represents if a sequence was present in any given sample. The lines indicate if the sequence was present in 
multiple samples. The bar graphs on the top and right represent the number of total unique clones. (C-D) UMAP 

plot of all samples coloured by (C) clonal frequency or (D) generic T cell markers. (E) UMAP plot of the three 

groups coloured by the TCR pairing. C = colitis, CT = normal control and NC = no-colitis.  
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Figure 4. Interrogation of the expanded colitis expanded clones. (A) UMAP plot of the three groups 

coloured by the TCR pairing coloured by expansion (n≥3). (B-C) Dot plots showcasing the relative significant 

expression (p<0.001) for (B) Expanded colitis vs non-expanded colitis and (C) colitis compared to both the 

normal controls and non-colitis T cells. C = colitis, CT = normal control and NC = no-colitis.  
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Figure 5. Interrogating the TCR CDR3 clustering to identify conditions specific sequences. (A-F) Each of 

the plots contains a (top) motif consensus sequence, (middle) UMAP location and (bottom) cytotoxic 

expression of GNLY, GZMB and PFR1. (A-B) represent two TRBV6-2 clusters that were specific to colitis. (C-

D) represent two gamma clusters identified in non-colitis and normal controls. (E-F) Cluster over-represented in 

the melanoma patients. C = colitis, CT = normal control and NC = no-colitis.  
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