Parameter optimization for Dynamic
Line Scan Thermography.

Thesis submitted in fulfilment of the requirements for the degree of Doctor in Applied Engineering
(Doctor in de Toegepaste Ingenieurswetenschappen) at the University of Antwerp.

Ing. Simon Verspeek

Supervisors
Prof. dr. G. Steenackers

University of Antwerp Prof. dr. X. Maldague

Antwerpen, 2023






Faculty of Applied Engineering
Electromechanics

Parameter optimization for Dynamic
Line Scan Thermography.

Thesis submitted in fulfilment of the requirements for the degree of
Doctor in Applied Engineering (Doctor in de Toegepaste
Ingenieurswetenschappen)
at the University of Antwerp.

Ing. Simon Verspeek

Supervisors
Prof. dr. G. Steenackers
Antwerpen, 2023 Prof. dr. X. Maldague



Jury

Chairman
Prof. dr. S. De Rammelaere, University of Antwerp, Belgium

Supervisors
Prof. dr. G. Steenackers, University of Antwerp, Belgium
Prof. dr. X. Maldague, Université Laval, Québec

Members

dr. B. Ribbens, University of Antwerp, Belgium

Prof. dr. R. Penne, University of Antwerp, Belgium

Prof. dr. A. Osman, Hochschule fiir Technik und Wirtschaft des Saarlandes,
Germany

Prof. dr. K. Van Den Abeele, Catholic University of Leuven, Belgium

Prof. dr. D. Angelis, Free University of Brussels, Belgium

Contact
Ing. Simon Verspeek

University of Antwerp
Faculty of Applied Engineering

Invilab Research Group

Groenenborgerlaan 171 2020 Antwerpen, Belgié
W: Invilab.be

M: simon.verspeek@uantwerpen.be

© 2023 Ing. Simon Verspeek
All rights reserved.



Acknowledgements

I would like to extend my profound appreciation to my esteemed advisors, Profes-
sor Gunther Steenackers and Professor Xavier Maldague, whose invaluable guid-
ance and unwavering support have been instrumental in my successful journey
through the complexities of doctoral research. Their profound knowledge and
steadfast belief in my capabilities have significantly contributed to the culmina-
tion of this PhD.

Furthermore, I wish to express my sincere gratitude to my esteemed colleagues,
whose professional camaraderie and personal friendships have enriched my aca-
demic experience. Both within and beyond the professional sphere, we have
shared moments of significance. I hold in high regard the contributions of Robin
Baetens and Bart Ribbens, who have consistently provided me with invaluable ad-
vice and a receptive ear. The transformation of professional relationships into cher-
ished friendships has enhanced my workplace environment immeasurably. There-
fore, I would also like to thank my friends who provided the necessary distraction
and enjoyable moments during the execution of this doctoral journey.

To my family, I am indebted for their unwavering support throughout this demand-
ing academic journey. Their unwavering faith in my abilities and the opportunities
they have provided me to pursue this doctoral endeavor have been foundational
to my scholarly aspirations.

Last but not least, I extend my heartfelt gratitude to my partner, whose unyielding
support has been unwavering, even when it necessitated late-night work sessions,
weekend commitments, and interruptions during vacations. Her understanding
and encouragement have provided me with strength and resilience during chal-
lenging times.

In summary, the successful culmination of this PhD is a collaborative achievement,
and I am profoundly thankful to all who have contributed to this endeavor. Your
guidance, support, and camaraderie have transformed this academic journey into a
fulfilling and rewarding experience. Thank you for your unwavering commitment
to my success.



ii

List of Abbreviations

IR
FOV
DLST
FEM
NDT
VisNIR
SWIR
MWIR
LWIR
MES
GP

SE
ARD
Us
IVR
RMSE
DOF

GBVF

MPI
UT
ECT
IRT
RGB
HSI

Infrared

Field Of View

Dynamic Line Scan Thermography
Finite Element Model
Non-Destructive Testing
Visible-Near Infrared

Short Wave Infrared

Mid Wave Infrared

Long Wave Infrared

Mehler Engineering + Service GmbH
Gaussian Process

Squared Exponential

Automatic Relevance Determination
Uncertainty Sampling

Integrated Variance Reduction
Root Mean Square Error

Design Of Experiments

Artificial Intelligence

Gray Body View Factor

Radial Basis Function

Magnetic Particle Inspection
Ultrasonic Testing

Eddy Current Testing

Infrared Thermography

Red Green Blue

Hyperspectral Imaging

Ultraviolet



NUC
FFT
PCA

Non Uniformity Correction
Fast Fourier Transform

Principle Component Analysis

iii



iv

List of Publications

First Author

Verspeek, S., Peeters, J., Ribbens, B., Steenackers, G. (2018). Excitation
source optimisation for active thermography. Proceedings, 2(8), 1-7.
https://doi.org/10.3390/ICEM18-05325

Verspeek, S., Ribbens, B., Maldague, X., Steenackers, G. (2020). Optimi-
sation of a heat source for infrared thermography measurements : compari-
son to mehler engineering + service-heater. Applied Sciences, 10(4), 1-10.
https://doi.org/10.3390/APP10041285

Verspeek, S., Gladines, J., Ribbens, B., Maldague, X., Steenackers, G. (2021).
Dynamic line scan thermography optimisation using response surfaces im-
plemented on PVC flat bottom hole plates. Applied Sciences, 11(4).
https://doi.org/10.3390/APP11041538

Verspeek, S., De Boi, 1., Maldague, X., Penne, R., Steenackers, G. (2022).
Dynamic line scan thermography parameter design via Gaussian process em-
ulation. Algorithms, 15(4), 1-13. https://doi.org/10.3390/A15040102

Verspeek, S., Ribbens, B., Maldague, X., Steenackers, G. (2022). Spot
weld inspections using active thermography. Applied Sciences, 12(11), 1-12.
https://doi.org/10.3390/APP12115668

Supporting Author

Steenackers, G., Peeters, J., Verspeek, S., Ribbens, B. (2018). From thermal
inspection to updating a numerical model of a race bicycle : comparison with
structural dynamics approach. Applied Sciences, 8(2).
https://doi.org/10.3390/APP8020307

Peeters, J., Verspeek, S., Sels, S., Bogaerts, B., Steenackers, G. (2018). Op-
timised dynamic line scanning thermography for aircraft structures. QIRT
2018 : 14th Quantitative Infrared Thermography Conference, 687-695.
https://doi.org/10.21611/QIRT.2018.077

Peeters, J., Verspeek, S., Sels, S., Bogaerts, B., Steenackers, G. (2019). Op-
timized dynamic line scanning thermography for aircraft structures. Quanti-
tative Infra Red Thermography Journal.
https://doi.org/10.1080/17686733.2019.1589824

Sels, S., Verspeek, S., Ribbens, B., Bogaerts, B., Vanlanduit, S., Penne, R.,
Steenackers, G. (2019). A CAD matching method for 3D thermography of
complex objects. Infrared Physics and Technology, 99, 152-157.
https://doi.org/10.1016/J.INFRARED.2019.04.014



Sels, S., Bogaerts, B., Verspeek, S., Ribbens, B., Steenackers, G., Penne, R.,
Vanlanduit, S. (2020). 3D defect detection using weighted principal compo-
nent thermography. Optics and Lasers in Engineering, 128, 1-6.
https://doi.org/10.1016/J.0PTLASENG.2020.106039

Verstockt, J., Verspeek, S., Thiessen, F., Tondu, T., Tjalma, W. A., Brochez, L.,
Steenackers, G. (2021). Dynamic Infrared Thermography (DIRT) in biomed-
ical applications : DIEP flap breast reconstruction and skin cancer. AITA -
Advanced Infrared Technology Applications : Proceedings of the 16th In-
ternational Workshop on Advanced Infrared Technology Applications 2021,
26-28 October, 2021, Venice, Italia, 8(1), 1-5.
https://doi.org/10.3390/ENGPROC2021008003

Heirmans, R., Moor, D., Verspeek, S., Vrieze, D., Ribbens, B., Vanneste, M.,
Steenackers, G. (2021). Improving quality inspection of textiles by an aug-
mented RGB-IR-HS-AI approach. 8(1), 1-4.
https://doi.org/10.3390/ENGPROC2021008021

Verstockt, J., Verspeek, S., Thiessen, F., Tjalma, W. A., Brochez, L., Steenack-
ers, G. (2022). Skin cancer detection using infrared thermography : mea-
surement setup, procedure and equipment. Sensors, 22(9), 1-21.
https://doi.org/10.3390/522093327

Hillen, M., Sels, S., Ribbens, B., Verspeek, S., Janssens, K., Van der Snickt,
G., Steenackers, G. (2023). Qualitative Comparison of Lock-in Thermog-
raphy (LIT) and Pulse Phase Thermography (PPT) in Mid-Wave and Long-
Wave Infrared for the Inspection of Paintings. Applied Sciences, 13(7), 1-13.
https://doi.org/10.3390/APP13074094



vi
Abstract

Performing non-destructive inspections is widely used to evaluate objects for struc-
tural integrity. Infrared (IR) thermography is a common technique in the field of
non-destructive testing. Both active and passive thermography are used to inspect
objects depending on the type of defect to be inspected. Passive thermography is
often used to determine the health of objects that generate heat during operation
(e.g. a transformer, a motor, circuit boards, ... ). Deviant heating patterns may in-
dicate anomalies in the samples to be inspected. Active thermography on the other
hand is based upon upsetting the equilibrium of the object by means of inducing
a thermal wave. Active thermography is often used as non-destructive technique
because of its advantages in comparison to others such as ultrasound testing, X-
ray radiography, visual inspections etc. IR thermography is a fast, safe, contactless
and full-field measurement technique to perform inspections. It has shown to be
reliable in many applications and therefore more and more industrial companies
and researchers show interest in exploring the field of thermographic inspections.
Some disadvantages of thermography make it hard to implement the technique as
a plug and play technique. The main disadvantage is the fact that an expert skilled
in the art is needed to optimise the measurement setup and prescribe the needed
parameters in order to perform accurate and efficient measurements. Another im-
portant drawback of the thermal inspections performed nowadays is the size limit
of objects to be inspected. IR thermography is often performed keeping the sample
stationary in the field of view (FOV) of the used camera. Research has been per-
formed in order to inspect larger samples using dynamic line scan thermography
(DLST), whereby a heat source and camera tandem moves relative to the specimen
to be inspected. Performing measurements using DLST not only requires an expert
skilled in thermography, but even one who has expertise in dynamic inspections.
Since more parameters have an influence on the result, it becomes much harder
to predict the optimal setup parameters.

This thesis focuses on providing an insight in the influence of the different param-
eters used in dynamic line scan measurements and using the acquired knowledge
to predict an optimal parameter set.

First, a concise explanation of thermography will be given, explaining the working
principle of the technology and describing different techniques that can be used
in order to perform IR inspections. Second, the focus lies on the measurement-
setup itself. In order to predict the most suitable parameter set, it is necessary to
ensure the optimal working of all individual components. Afterwards, different
techniques are investigated to perform parameter predictions and finally a novel
method is presented to accurately align the images of the translating object. The
proposed techniques are validated using industrial applications.

In order to enable the optimisation of the parameter set used for dynamic line
scan thermography, an optimal measurement setup had to be defined. There exist
line heating sources specifically for DLST measurements, but there were still some
improvements possible. Therefore a new line heating source was developed using
ray-tracing software. The second goal of this thesis was to generate an insight
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in the correlation between different parameters of a dynamic inspection. This
knowledge enables inspectors to predict possible parameters to perform dynamic
measurements without the need of trial and error testing for longer periods of
time. Getting insight in the working principle requires a lot of data and would
therefore require en enormous amount of measurements. This procedure would
be too time-consuming and expensive, resulting in seeking refuge in a finite el-
ement (FEM) simulation. The simulation resembles the DLST working principle
making it possible to generate data relatively fast. Starting from this data, several
methods are investigated to predict the optimal parameter set for dynamic line
scan thermography measurements. The used techniques vary from established
techniques such as response surface methodology to newer techniques such as
artificial intelligence and Gaussian processes. The outcome of the different opti-
misation techniques is validated using experimental measurements. At first the
focus was specifically on predicting the optimal parameter set for DLST based for
finding one defect with specific properties. However, techniques investigated in
later stages of this thesis, also prove interesting to offer an answer to questions
where multiple solutions can be found and focus more on supporting the inspec-
tor in selecting a suitable parameter set.

Finally the captured images have to be aligned in order to be able to perform post-
processing. Existing methods require a synchronisation between the movement of
the sample and the frame rate of the thermal camera. The technique in this thesis
enables sub pixel shifting without the need of synchronisation.

The knowledge obtained in this thesis can offer an insight in the working princi-
ple of dynamic line scan thermography and enables the user to define an optimal
parameter set for thermal inspections of samples that do not fit the field of view of
the camera.
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Chapter ||

Introduction

This chapter is divided in five sections which will handle the prior knowledge needed
for the rest of this thesis. The first section will place the research in a general con-
text. The second section explains the working principle of thermography and describes
different methods of performing thermography. The third section focuses on the use
of passive thermography while the fourth section will elaborately elucidate different
active thermography principles. The last section will describe the need of the research
in this manuscript and the benefit of it.

1.1 Research context

Since several decades safety became more and more important in all kinds of
fields such as safety regulations at work, safety precautions in cars , etc. Due to
the increasing world population, transportation has grown immensely and in or-
der to reduce the increasing carbon footprint, salvation was sought in the use of
lightweight composite materials. In order to further reduce the CO, emissions, the
focus is no longer only on the transportation sector. Recycling and extending the
lifespan of objects is becoming more important in the fight against climate change.
Considering that safety and recycling are both very important, it is necessary to be
able to assess the structural integrity of a structure or object. Conventionally struc-
tural integrity was evaluated by manufacturing additional samples that would be
submitted to destructive tests. Performing destructive inspections however is not
sustainable since more objects have to be manufactured and consequently more
resources and energy was used. It is particularly pernicious for single-piece man-
ufacturing, since double the number of parts must be produced in order to subject
one to destructive testing. Furthermore it is impossible to asses the integrity of
a sample with the purpose of reusing it. Therefore the inspection method shifted
towards non-destructive testing (NDT) in the last decades with techniques such
as ultrasonic testing, magnetic particle inspection, eddy-current testing, radiogra-
phy, infrared thermography, etc. In this work there is only focused on the use of
thermographic inspections.
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1.2 What is thermography?

Infrared thermography, often called IR thermography or shortly thermography, is
an optical inspection technique that captures thermal radiation. This radiation is
situated in the electromagnetic spectrum between 0.4 and 14 um as represented in
Figure 1.1. Infrared rays can be further divided in several categories: Visible-Near
infrared (VisNIR) between 0.4 and 1.4 um, Short Wave infrared (SWIR) ranging
from 1.4 to 2.5 um , Mid Wave infrared (MWIR) starting at 2.5 um and extending
to 7 pum and Long Wave infrared (LWIR) beginning at 7 um and ending at 14
wm. The category of infrared rays emitted by an object is determined according to
Wien’s Displacement Law:

b

Tobject

)\peak = (11)

where A,cqr is the calculated wavelength in um, b (Wien’s displacement constant)
is approximately equal to 2898 um-K and T,4jc.: is the temperature of the object
to be inspected in Kelvin. Wien’s law is accurately applicable in a range above very
low (close to absolute zero) and below extremely high temperatures (temperature
of stars). However the equation is most frequently applied between 100 nm and
10 um or in other words in the corresponding temperature range between 300 K
and 28000 K. Using Equation 1.1 it can be clearly seen that radiation emitted by
objects around ambient temperature (300 K) will have wavelengths in the Long
Wave infrared spectrum.

<—— shorter longer — Wavelength (meters)
| 12 i ! 10 I | 8 l 6 [ [ 4 ] 2 [ I ]2
10 10° 107 10° 10° 10 1 10
Gamma rays X-rays uv Infrared Microwaves Radiowaves
108 10* 10? 1 107 107 10° 108
l | | | I | | | | | | | | |
<«—— higher Visible lower —— Energy (electronvolts)
500 600
[ Blue I Green [ Red | broad
) subdivision

400 450 480 510 550 570 590 630 700 wavelength 4 (nm)

Figure 1.1: Overview of the electromagnetic spectrum. Infrared rays have wavelenghts
between 0.4 and 14 um. [1]

The use of thermal cameras found its origin in military applications since an in-
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frared detector translates the incident infrared radiation to temperature informa-
tion making it possible to perform non-contact inspections of the thermal proper-
ties of an object. IR thermography enables the detection of human beings, animals
and every object that emits heat in pitch-black circumstances as can be seen in
Figure 1.2.

(@) (b)

Figure 1.2: Examples of images taken with a infrared camera. a) use of IR thermog-
raphy to detect wildlife during night [2], b) thermal inspection of a solar panel to
search for defects.

Infrared thermography can be performed in different manners depending on the
used approach, excitation source, excitation style and measurement configuration.
A visualisation can be seen in Figure 1.3. The various parameters will be discussed
extensively in following sections.
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Figure 1.3: Visual representation of different thermography techniques [3].

1.3 Passive thermography

The first division that can be made in performing IR thermography is based on the
used approach. Every object above absolute zero (0 K) will emit infrared radiation
according to its temperature. Using a thermal camera it is possible to detect ob-
jects during situations where other cameras such as an RGB camera for example
could not offer information. As shown in Figure 1.2 infrared thermography can
be used to monitor wildlife during night. Since this approach relies on the radi-
ation solely depending on the temperature of an object, no external excitation is
needed. Therefore the inspections are performed in nearly steady state conditions.
Performing passive thermography however is only possible if the contrast in ther-
mal radiation of the object and the surroundings is large enough. This technique
is commonly used in wildlife monitoring, hunting, search & rescue operations,
inspection for building insulation, inspection of electrical facilities, etc [4, 5, 6].
However passive thermography can also be used to perform inspections during
manufacturing such as weld inspections [7] or during load testing [8].



1.4. ACTIVE THERMOGRAPHY 7
1.4 Active thermography

The second approach of performing infrared inspections is active thermography.
As the name states, this technique uses an active excitation to induce a thermal
contrast in the object to be inspected. Unlike the steady state inspections of pas-
sive thermography, active thermography relies on the transient thermal response
of the sample on the excitation. Using this transient behavior it is possible detect
anomalies within the structure. The induced thermal wave starts at the surface of
the sample to be inspected and travels through the material. Inspecting sound ob-
jects (objects without an internal defect) using active thermography would result
in even heating and cooling of the whole sample, assuming the material possesses
isotropic thermal properties. However a defect in the sample will result be visible
on the recorded surface as a hotter region as can be seen in Figure 1.4.

[ Heater ] [ Heater ] [ Heater ]

[ Heater ] [ Heater ] [ Heater ]

(a)

[ Heater ] [ Heater ] [ Heater ]

[ Heater ] [ Heater ] [ Heater ]

(®)

Figure 1.4: The induced thermal wave propagates through the sample to be inspected.
a) Sound objects will heat and cool evenly. b) Defects in samples will result in a
hotspot on the inspected surface.
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The use of active thermography is widely recognized as a reliable, fast and con-
tactless method of performing non-destructive testing [9, 10, 11, 12]. Since active
thermography is used in several domains and on samples of different properties,
the excitation method is very dependent on the application. As can be seen in
Figure 1.3 a subdivision can be made according to the used excitation source (op-
tical, mechanical and inductive). The most accessible excitation method is through
the use of an optical source since this can be obtained by using widely available
halogen lamps. There exist commercially available lamps specifically designed for
active thermography in order to ensure an optimal heating, but these are not re-
quired in order to get an adequate measurement [13]. Performing inductive and
mechanical thermography require the purchase of specific equipment in order to
excite the object to be inspected.

Independently of the used excitation source, the manner in which the excitation is
applied differs according to the performed measurement technique. The excitation
can be performed using pulse excitation or modulated excitation as can be seen in
Figure 1.5.

100 - .

%l / \ ‘ “

80+ ‘ |\

70¢ ‘ \ |

60 I | ‘

501 | ‘

40t \ ‘ : |

%) | |

| |

\ O\
ol N \_
0 10 20 30 40 50 60

Figure 1.5: Visualisation of pulse (blue) and modulated (red) excitation signals over
a period of one minute. The excitation power varies between 0 and 100 %. Pulse
excitation uses a block wave during a certain amount of time, while modulated signals
are continuous during the entire measurement. The frequency and pulse lengths can
be adapted to the desired heating power during a measurement.

1.4.1 Mechanical thermography

Mechanical thermography is better known as vibrothermography or ultrasonic
thermography. The sample is excited through ultrasonic mechanical vibrations.
The defect induces friction in the sample, resulting in generated heat. This heat
diffuses to the surface and is recorded by the thermal camera. There is some
discussion whether this inspection method is non-destructive since there is a pos-
sibility that the defect enlarges due to the movement and friction in the sample to
be inspected. A major advantage of this inspection technique is that the mechan-
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ical energy is directly transformed into heat around the defect while the sound
areas are not affected. Ultrasonic thermography in often used to investigate the
integrity of joints [14] and delaminations [15].

1.4.2 Inductive thermography

Inductive thermography uses an inductive source to excite the sample to be in-
spected, therefore this method is only suitable for conductive materials. An induc-
tive coil is placed near the surface of the sample to be inspected. Induction heating
can be performed using both front and back heating as can be seen in Figure 1.6.
The distance between the coil and the sample has a significant influence on the
induced heating of the sample. Placing the induction coil closer to the conduc-
tive sample will increase the heating for the same amount of heating power. This
technique is often used to inspect welds [16] and detect cracks [17].

L1 d

»
»
Thermal Camera L | @

coil
sample

Figure 1.6: Visualisation of induction thermography whereby a sample is heated using
an induction coil. The coil can be placed between the thermal camera and the sample
(front heating) or behind the sample (back heating).

1.4.3 Flash thermography

The first method in the subdivision of the optical excitation method is flash ther-
mography. This technique often uses Xenon flash lamps in order to induce a short
pulse of high-power light. The light pulse can be described as a dirac pulse. The
short amount of exciting the sample will limit the heating of the sample to be in-
spected. Since the stimulus is short, the induced thermal wave will not penetrate
the object really deep. Therefore this technique is often used to inspect artwork
[18, 19]. Flash excitation can also be used to inspect materials with high thermal
conductance like metals. Exciting these materials for a longer amount of time will
heat the whole sample minimizing the temperature difference between the sound
area and the region of interest. Since the excitation relies on a powerful burst
of light, these measurements can not be performed without extensive safety pre-
cautions. In case someone would look into the lamps on time of flashing it could
make the person going blind. The measurement setup resembles the visualization
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in Figure 1.7 with the only difference that the halogen lamps are replaced with
Xenon flash lamps.

1.4.4 Lock-in thermography

Lock-in thermography relies on modulated heating signals in order to excite the
sample to be inspected. In general the induced wave is a sine-modulated signal de-
scribed by a chosen amplitude and frequency. In order to perform accurate lock-in
measurements, it is essential that the excitation signal and the camera are syn-
chronised properly. Since the excitation signal is a sine wave, the induced thermal
wave will also be a sine wave and is in phase with the original signal. However a
defect in the sample will reflect the thermal wave and will result in a reflected sine
wave out of phase with the original signal. If there are no defects the back of the
sample will reflect the induced signal wave and will result in the reflected wave.
Lock-in thermography measurements are typically processed using a Fast Fourier
Transform in order to create both amplitude and phase images during evaluation.
The phase shift between the emitted heat wave and the reflected heat wave can
be used to estimate the depth of the detected defect [20]. Another advantage of
the phase images can be found in the nearly insensitivity to non-uniform heating.
Amplitude images on the other hand experience less influence of noise, resulting
in higher contrast images [21]. The chosen frequency and amplitude of a lock-in
thermography inspection are very important in order to perform decent measure-
ments. The amplitude determines the total heat induced in the sample and there-
fore it is essential to keep the application in mind. For artwork inspections for
example the temperature difference as a result of heating can not exceed several
degrees Celcius. The frequency on the other hand defines the maximum penetra-
tion depth of the thermal sine wave. High frequent sine waves will only penetrate
the sample a small amount while long frequencies penetrate much deeper. The
maximal depth at which a defect can be discovered using lock-in thermography is
described by the thermal diffusion depth p of a material. The maximal penetration
depth can be calculated using Equation 1.2.

_ [ M
z=C1 % — (1.2)

with f;, the blind frequency, C a constant with typically a value equal to 1.82 and
"= C:*p' It is possible to always heat the sample using a low frequency sine wave
in order to ensure that defects at different depths can be detected. This however
would make it unnecessarily time-consuming since typically two periods are used
during lock-in thermography measurements.
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Figure 1.7: Measurement setup to perform active thermography using optical heat
sources. The heating lamps can both be placed in a front heating setup as well as
in back heating. The distances shown can be configured as wished depending on the
application. In our lab two lamps are used from the OTVis system. [13]

1.4.5 Pulse thermography

Besides lock-in thermography, it is also possible to perform inspections using pulse
optical heating. The measurement setup is identical to the setup in Figure 1.7. A
pulse wave, also called block wave, is used to induce a thermal excitation in the
sample to be inspected. A representation of a pulse wave can be seen in Figure
1.5. The excitation signal is constrained by the amplitude and the duration chosen
depending on the application. A linear correlation can be found between the sur-
face temperature of the object and the combination of these parameters. A higher
amplitude will result in more power being delivered to the surface of the object
and therefore the surface will heat up faster compared to a smaller amplitude.
Measurements with a longer heating duration on the other hand will allow the
thermal wave to propagate slower through the sample limiting the surface tem-
perature. Therefore it is very important to keep the dimensions and the maximum
use temperature of the object to be inspected in mind. Pulse thermography is the
most popular method of performing active thermography inspections because of
its simplicity and fast operation.

1.4.6 Dynamic Line scan thermography

All techniques mentioned above are performed in static conditions. The measure-
ments are considered to be static if the sample, camera and heating source are
stationary with respect to one another. Performing static inspection, there are
some disadvantages that have to be kept in mind. Objects to be inspected have
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to fit in the field of view (FOV) of the thermal camera, therefore the dimensions
are limited. It is possible to place the camera at a larger distance of the sample,
but this would reduce the spatial resolution and thereby the chance of detecting
a defect. A rule of thumb states that the diameter of a defect needs to be at least
covering a 3x3 square grid as can be seen in Figure 1.8. This is adopted to ensure
that measurements cannot be confused with noise and to allow for a temperature
gradient across an object. Consequently a camera with a higher resolution can
detect smaller defects when positioned at an equivalent height in comparison to a
camera with a lower resolution.

(a) (b)

Figure 1.8: Representation of a general rule of thumb whereby the area of a defect
has to be at least covering a 3x3 square grid of pixels in order to be able to detect
the defect. a) Visualisation of a defect that will not be objectively detectable. b) This
defect will be detectable since it is larger than a 3x3 square grid of pixels.

In order to be able to inspect larger objects using active thermography, salvation
can be sought in Dynamic Line Scan Thermography (DLST). Dynamic Line Scan
Thermography can be seen as performing pulse thermography, with the main dif-
ference that the sample has a relative translation to the heating source and the
thermal camera. The optical heating source used during DLST is a line heating
device since it is advantageous to minimize the heating area in order to maximize
the power density (W/cm?2) on the sample to be inspected. The line heating device
is placed in tandem with the thermal camera and move relatively to the object.
The object is heated in parts while moving and therefore the heating of a specific
part can be seen as pulse heating whereby the amplitude is defined by the power
density of the heating and the duration is determined by the translation speed.
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Figure 1.9: Representation of heating during Dynamic Line Scan Thermography.
From the point of view of a location on the samples surface, the heating can be con-
sidered as pulse heating.

Active thermography is still a recent non-destructive technique and therefore an
expert skilled in the field is still needed in order to determine the optimal parame-
ters for an inspection. Dynamic Line Scan Thermography is a subdivision of active
thermography and is still a challenging task even for experts in active thermog-
raphy. In comparison to static thermographic inspections, DLST measurements
are depending on much more parameters. These parameters will be thoroughly
explained in Part 3 of this doctoral thesis.

1.5 Focus and outline of the thesis

1.5.1 Research focus

Since active thermography and Dynamic Line Scan Thermography (DLST) in par-
ticalur, is still a recent technique and an expert skilled in the field is needed to
predict the measurement parameters, this technique is not yet widely incorpo-
rated in industry. Therefore this research will focus on optimizing DLST on both
the hardware as the software part of it. The objectives of this research are stated
as followed:

1. Define a relationship between the different parameters used in Dynamic Line
Scan Thermography. In order to achieve this, a finite element simulation
was performed and fed with multiple parameter sets. A correlation is sought
between the different parameters and between a set of input parameters and
the resulting surface temperature above a defect.

2. Use the gained knowledge and performed simulations to generate a response
surface to get a better knowledge and define optimal parameter sets depend-
ing on a set of fixed parameters.

3. Benchmark the response surface generation to new developed techniques in
order to find the most efficient way to predict the optimal parameter set for
a partially defined set of parameters. Investigating the possibility to use the
recent techniques to discover interesting insights in DLST measurements.
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1.5.2 Main innovations

The main innovations of this thesis can be found in the optimization techniques
used and the knowledge gained regarding dynamic line scan thermography. This
thesis explored various methods, including the use of Reinforcement Learning and
Bayesian emulation, to predict optimal parameter sets to perform dynamic line
scan thermography. Particularly, the use of Bayesian emulation has shown great
promise, as it not only predicts optimal parameter combinations but also provides
straightforward answers to industrially relevant questions. It allows a layperson
to quickly assess whether a specific combination will yield useful results. An ad-
ditional significant outcome of this research is a better understanding of the influ-
ence of various parameters in the measurement process. It has been found that
the distance between the camera and the heat source, in combination with the
movement speed, has the most significant impact on the extent to which a defect
is visible. If these parameters are chosen in the right proportion, the required
amount of heating energy can be kept to a minimum without sacrificing contrast
in the thermal images. To further reduce the amount of energy, a line emitter was
designed, which, through its elliptical shape and additional reflectors, focuses the
required heat into a narrow region.

1.5.3 Thesis outline

The thesis is structured in four main parts: Introduction, Thermography applica-
tions, Setup Optimization and Parameter Optimization. The first part places the
research in a general context, explains the basics of thermography needed for this
manuscript and the need for the research is clarified. The second main part will
explain some additional thermography measurements that have occurred during
my research in order to expand my expertise in hands-on thermography measure-
ments as well. Part three elaborates the need of an optimized line heating source
and describes the research performed to design an optimized line heater. The
fourth main part handles the software optimization of predicting the optimal pa-
rameter set based on some predefined variables. These optimizations happened
using response surface methodology, reinforcement learning and bayesian opti-
mization. The techniques are compared to each other based on the amount of
simulations needed to train a model that is capable of predicting the optimal pa-
rameter set for Dynamic Line Scan Thermography inspections. Since DLST mea-
surements are dynamic measurements, it is not possible to process them in exactly
the same way as static measurements. It is necessary to reshape the data and
therefore a novel technique is explained in the third part as well. The most impor-
tant innovations are explained in the third part of this manuscript as this handles
the parameter optimization. Among the optimization methods a comparison is
made between new methodologies and widely known ones. A visualisation of the
outline of this thesis can be seen in Figure 1.10.
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Figure 1.10: Visual representation of the outline of this manuscript. The main inno-
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Chapter _ //

Spot weld inspections using active
thermography.

The second Part of this doctoral thesis discusses the use of active thermography to
inspect spot welds using different excitation methods. A comparison is made between
optical heating and induction heating performed both in front and back heating in
order to find the most optimal solution for in-situ inspections within the manufactur-
ing process. The spot welds were inspected with the goal of determining whether they
were completely closed and whether a material change had occurred inside the weld.
This chapter is published in MDPI Applied Sciences as ” Spot weld inspections using
active thermography” [22].

2.1 Introduction

Performing quality inspections during manufacturing has increased enormously
in the last decades and more and more manufacturers discover the use of non-
destructive inspection methods. Using non-destructive testing it is no longer needed
to manufacture additional parts in order to submit them to destructive inspections.
Those inspections are performed in a variety of fields such as aircraft construction,
metal structure manufacturing, composite manufacturing, etc. Several different
techniques are being used in order to examine the structural integrity of the man-
ufactured parts. Amosov et al. [23] performed ultrasonic testing on riveted joints
in aviation construction, Deepak et al. [24] compared different non-destructive
inspection techniques to assess the quality of welded joints and Jasiuniene et al.
[14] performed ultrasonic testing on complex titanium and carbon fibre compos-
ite joints. It is proven that non-destructive testing can offer a reliable inspection
method in order to investigate the structural integrity of materials and joints. In
the automotive industry many spot welds are used to combine parts together. On
average the body work of a car alone consists already of 5000 spot welds [25].
Nowadays the quality of the spot weld is investigated using destructive research
resulting in many disadvantages. If the quality of the spot weld is not sufficient

19
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a larger batch of spot welds will be disapproved since not every single spot weld
can be tested. Therefore car manufacturers search for alternative solutions in
non-destructive inspections. An easy inspection method can be found in visual in-
spections, however these examinations can only be performed by someone skilled
in the art. An alternative can be found in penetrant testing. This technique is
suitable to detect cracks, but is not capable of showing defects inside the mate-
rial. Besides penetrant testing, an other surface examination technique can be
found in eddy current testing [16, 26, 27]. Performing subsurface inspections is
possible using ultrasonic testing, but an extreme accuracy is needed to place the
transducer in the middle of the spot weld. Performing visual surface inspection
of spot welds is not sufficient since a spot weld can look decent, but no internal
structure change has occurred. As explained in [28] a proper spot weld contains
multiple sections. The weld nugget has a different internal structure in compari-
son to the region around it. Therefore it is important to inspect the surface of a
spot weld as well as the internal structure. An alternative approach can be found
in active thermography for non-destructive inspections [28, 17, 11]. Several ef-
forts have been performed regarding the use of active thermography for spot weld
inspections [29, 30, 31, 32]. Scientific research often focuses on the ability to
inspect spot welds using a specific measurement setup. Runnelmalm and Appel-
gren [16] and Jonietz [32] perform thermography using light sources as external
heating, Kastner [30] and Schlichting [31] combine thermography with laser ex-
citation. However in a manufacturing process not every measurement technique
can be used. It is for instance possible to inspect spot welds using laser thermog-
raphy, but due to safety issues it is not suitable to be used in the production hall
without extensive safety precautions. This study focuses on finding the most op-
timal measurement setup to perform active thermography inspections during the
manufacturing process. Multiple excitation methods are described in this chapter
divided in several paragraphs based on the used heating method. For each mea-
surement setup a variety of parameters is tested and compared. Besides a variation
in excitation parameters, a comparison between two post-processing techniques is
performed for each excitation type. The used measurement setups can be found in
Section 2 Materials and Methods. Section 3 describes the influence of the different
parameter sets and post-processing techniques.

2.2 Materials and Methods

Nine different samples are inspected using different active thermography tech-
niques in order to find the best inspection method. The samples are divided into
two groups: A and B. The A-series exists of four samples with the same thickness
(2.5 mm) and one sample that is 3.15 mm thick. All samples of series B have a
thickness of 2.5 mm. An RGB image of the samples can be seen in Figure 2.1. The
A-series samples are used to find the best measurement setup for the inspection of
spot welds using active thermography. The B-series will function as a validation
set to test the best suitable measurement method.
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Figure 2.1: Nine samples, divided into two series. The A-series consists of four samples
with a thickness of 2.5 mm (1-4) and sample 5A is 3.15 mm thick. The B-series only
consists of four samples with a thickness of 2.5 mm. The spot weld highlighted by the
blue cross is the inspected spot weld for each sample.

The parameters used to weld the samples can be found in Table 2.1.

The camera used for these experiments is a FLIR X6540sc with a 25 mm lens.
This cooled camera has a spectral range between 1.5 and 5.5 um and a thermal
sensitivity smaller than 25 mK. The thermal camera is mounted on a tripod and
placed in front of the sample.

2.2.1 Excitation methods

Different excitation techniques are used in order to find the optimal measurement
setup for spot-weld inspections. The used techniques can be divided by the heating
mechanics used: light heating and inductive heating. Heating the samples using
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Sample 1A 2A 3A 4A 5A 1B 2B 3B 4B
Current [KkA] 8 6 35 5 16 8 6 35 5
Weldtime [ms] | 400 200 600 200 300 400 200 600 200
Force [kN] 3 26 3 35 28 3 26 3 35

Table 2.1: Parameters used to weld the samples.

halogen lamps is performed using lock-in thermography and pulse thermography.

2.2.1.1 Light heating

Two halogen lamps of 1.8 kW each are used as heating source. These lamps are
from the brand Edevis and can be found online as the OTvis system. The lamps
are mounted on a tripod and placed on either side of the thermal camera. The
measurement setup for the light heating experiments can be found in Figure 2.2
and the according parameter values are discussed in Table 2.2.

L1
< i —
Thermal Camera C—

L2

//@\
! ,
\

Figure 2.2: Visualisation of the measurement setup used for light heating experiments.
The left image is a schematic representation of the setup and the right image is taken
during measurements. The cardboard is placed in front of the thermal camera to pre-
vent radiation emitted by the camera reflecting on the sample to be inspected. Since
the thermal camera generates heat itself, the camera can become visible in the cap-
tured thermograms. Using the cardboard as a barrier this adverse effect is removed.

sample

2.2.1.2 Induction heating

The measurements performed in this manuscript using induction heating are per-
formed using a 1.5 kVA Leon LIH-15 heater. The heating energy is transferred
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| Parameter Value |
Distance camera - sample 'L1’ [m] | 0.44
Distance lamp - lamp L2’ [m] 0.88
Distance lamp - sample 'L3’ [m] 0.44
Angle lamp - camera [°] 45

Table 2.2: Parameters used during light heating measurements. A representation of
the parameters can be found in Figure 2.2.

to the sample through an induction coil containing two windings. The induction
heating device is mounted using a clamp at the desired location and distance next
to the sample to be inspected. The sample is heated using inductive step heating.
The pulse duration can be found in Table 2.6. A visualisation of the measurement
setup can be seen in Figure 2.3.

L1 d
. 4: 4
Thermal Camera D E—— | @
coil
sample

Figure 2.3: Schematic overview of the measurement setup used for induction ther-
mography measurements. Both front and back heating have been performed. The
parameter values can be found in Table 2.3.

Table 2.3: Parameter values used during induction heating measurements for the
inspection of spot welds. A visual representation of the parameters can be found in
Figure 2.3.

| Parameter Front induction heating Back induction heating |
Distance camera - sample 'L1’ [m] | 0.053 0.055
Distance sample - coil ’d’ [m] 0.03 0.025

2.3 Results

Due to welding, the metallic parts are connected together resulting in a place
where the heat can be distributed through more material. In addition the internal
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structure of the metal has changed in welds that are properly performed. Using
infrared thermography a difference in heat transfer can be observed between the
welded area and the rest of the sample. The welded regions will show a different
cooling down in comparison to the non welded regions. This difference can be
emphasized using post-processing. The difference in internal structure of a decent
weld will also result in a difference in cooling down and can again being empha-
sized using post-processing. A more thorough explanation on why thermography
can be used to inspect spot welds can be found in [32]. In this research 75 sam-
ples are generated in three different categories: stick welds, optimal nugget size
and splash limit. Consecutively thermal measurements were performed in order
to investigate whether it is possible to differentiate the samples of each category.
The results were positive, however the measurements were performed using flash
thermography and therefore were not suitable to perfom in-situ.

The results of the different heating techniques and post-processing are shown and
discussed below. The results are divided into different sections depending on the
used excitation method.

2.3.1 Lock-in Thermography using light heating

Since lock-in thermography is based on sinusoidal excitation, the optimal ampli-
tude and frequency combination has to be found in order to increase the contrast
of the interesting regions. The amplitude corresponds to the amount of energy
injected in the sample to be inspected, the frequency on the other hand deter-
mines the time within which the heating energy is injected into the sample. A
lower frequency results in a longer heating time. Multiple experiments have been
performed on one sample in order to find suitable parameter combinations. These
experiments have shown that a lower frequency (e.g. 0.05 Hz) resulted in bet-
ter images. Higher frequencies (e.g. 1.4 Hz) generated noisy thermograms. The
influence of the amplitude was determined as well and a minimal amplitude of
2200 W was needed to be able to perform analyses on the thermal data. For each
sample two parameter combinations have been used. The used parameter sets can
be found in Table 2.4.

Table 2.4: Parameter combinations used for the inspection of each sample using lock-
in thermography. The number of periods is kept constant at a value of two and the
amplitude is kept constant at 2900 W. Only two periods are used since research has
shown that the use of two periods results in adequate measurements and more periods
have no significant improvement.

\ Parameter set 1 Parameter set 2
Frequency [Hz] 0.05 0.4
Amplitude [W] 2900 2900
Number of periods | 2 2
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1A 2A 3A 4A 5A

Figure 2.4: Amplitude images taken from Fast Fourier Analysis for the different sam-
ples during three measurements. Experiment A is performed using an excitation fre-
quency of 0.05 Hz and a Fourier frequency of 0.025 Hz, experiment B uses an excita-
tion frequency of 0.05Hz and a Fourier frequency of 0.05 Hz and during experiment
C the samples were excited using a frequency of 0.4 Hz and analysed using a Fourier
frequency of 0.2 Hz. Only the most interesting images are shown out of the large data
sets.

The experiments are analysed using both Fast Fourier Transform (FFT) and Prin-
ciple Component Analysis (PCA). PCA is based on singular value decomposition
and the goal of this technique is to reduce the amount of variables while losing
the least amount of relevant information. FFT on the other hand is based on the
approximation of the data through the sum of harmonic waves. The phase and
amplitude can be calculated from this approximation. A thorough explanation on
both post processing techniques can be found in [33] and [34]. Investigating the
FFT images in Figure 2.4, it is visible that samples 1A, 2A and 3A show a closed
circular shape around the spot weld and 4A only shows a part of the circle. The
images of sample 5A doesn’t suffice to make a conclusions about the shape of the
spot weld. Another interesting aspect of a spot weld is the internal material struc-
ture inside the spot weld. Spot welds should have a different internal structure
in comparison to the material around it. In samples 1A, 2A and 5A, a different
thermal behaviour can be detected inside and outside the spot weld what a differ-
ent material structure might suggest. In sample 3A and 4A this phase shift is not
visible. Besides the Fourier analysis, PCA is performed in order to generate relief
images. The first five principle components are calculated for each measurement
and the most characterising image is chosen in order to inspect the spot weld. The
remaining power In the PCA images of samples 1A and 2A the circular shape of
the spot weld is visible. Sample 2A has the most clear circle shape. Sample 3A is
less visible in the PCA in comparison to the FFT analysis, but the circle around the
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spot weld is still visible. Sample 4A has no closed boundary and sample 5A shows
a capricious relief. The images can be seen in Figure 2.5.

3A

Figure 2.5: Images taken from the Principle Component Analysis of the five samples
during two experiments. The excitation frequency of experiment A is 0.05 Hz and
the frequency of B is 0.4 Hz. The images serve as an indication on the shape of the
spot weld. The boundary of the weld itself shows clearly and therefore it is possible
to investigate whether or not the boundary is completely closed. Samples 1A, 2A and

3A show a closed boundary, while 4A only shows a partially closed boundary and the
inspection of sample 5A does not show a clear closed boundary.

1A 2A 4A 5A

2.3.2 Pulse Thermography using light heating

The second light heating technique investigated in this manuscript is pulse heat-
ing. The measurement setup is visualised in Figure 2.2 and the parameters cor-
responding to 'L1’, L2’ and L3’ can be found in Table 2.2. In order to investigate
the influence of the pulse duration, each sample is subjected to experiments using
different parameter sets. The amplitude is constant with a value of eight, which is
similar to the measurements using lock-in thermography. The parameter sets used
during the pulse thermography measurements can be found in Table 2.5.

Table 2.5: Parameter combinations used during the pulse thermography measure-
ments. The value of the amplitude is kept constant at 2900 W in order to ensure an
adequate heating intensity.

| Parameter set 1 Parameter set 2
Amplitude [W] 2900 2900
Pulse duration [s] | 1 3
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1A 2A 3A 4A 5A

Figure 2.6: Amplitude images taken from the fast Fourier transform analysis per-
formed on pulse thermography data. Experiment A is performed using a pulse dura-
tion of 1s and a Fourier frequency of 0.038 Hz. Experiment B has a pulse duration
of 1s as well and analysed using a Fourier frequency of 0.076 Hz. A pulse duration
of 3s is used for experiments C and D, the used Fourier frequencies are 0.035 Hz and
0.142 Hz.

Figure 2.6 visualises the results of the FFT analyses of the pulse thermography
inspections. Similar results can be observed between experiments using a pulse
duration of 1 and 3 seconds for samples 1A, 2A and 3A, however a longer pulse
time leads to better results regarding samples 4A and 5A. Both sample 1A and 2A
show a clear visible circle around the spot weld and a different thermal behaviour
between the region inside and outside the weld can be distinguished. The black
regions inside the spot weld of sample 1A shows a distinct phase shift, while in
sample 2A this phase shift is not visible. Sample 3A has a visible circular shape as
well, but there is no phase difference between the region inside the weld and the
region around it. This might mean that the weld is not optimal since no change
in metallic internal structure has occurred. Similar to the lock-in measurements,
sample 4A doesn’t show a contour of the spot weld. In the images of sample
5A, a difference can be seen between the inside and outside of the spot weld,
but there is no clear boundary visible. Besides FFT analyses, principle component
analyses have been performed on the pulse thermography data. The results of this
processing can be seen in Figure 2.7.
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1A 2A 3A 4A
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Figure 2.7: Results of the PCA processing of the pulse thermography data. The first
five principle components are calculated and afterwards the most pronounced images
are selected. Experiment A is conducted using an amplitude of 2900 W and a pulse
duration of 1 second. Experiment B is conducted using the same amplitude and a
pulse duration of 3 seconds. There is no data for sample 5A since the processing did
not result in useful information. Sample 4A shows a similar result to previous results,
namely no closed boundary can be detected. Samples 1A, 2A and 3A result in clear
closed boundaries.
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2.3.3 Inductive Thermography

The five samples of the A-series are subjected to induction thermography mea-
surements. The inspections are performed both in front and back heating and for
each heating method three heating times are compared. The heating times can be
found in Table 2.6.

Table 2.6: Parameters used during inductive thermography of spot welds. Each sam-
ple of the A-series is inspected using these parameters.

\ Parameter set 1 Parameter set 2 Parameter set 3
Induction time front heating [s] | 5 10 19
Induction time back heating [s] | 4 8 15

The thermal data captured during the experiments of sample series A, using induc-
tion heating are only processed using PCA since the FFT processing did not lead to
useful images. Snapshots taken from the PCA on the data captured during front
heating induction are shown in Figure 2.8.
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Figure 2.8: Images taken from the Principle Component Analysis performed on the
thermal data captured using induction heating of the front side of the sample. Only
the first five principle components are calculated and afterwards the most pronounced
images are selected. Experiment A is performed using an induction time of 5 seconds,
experiment B has an induction time of 10 seconds and the sample was heated for 19
seconds in experiment C.

Besides front heating, the back of each sample is heated during three experiments.
The induction times for each experiment are again noted in Table 2.6. The thermal
data is only processed using PCA since FFT did not result in useful images.
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Figure 2.9: Processed data images from experiments performed using back heating.
During experiment A an induction time of 4 seconds is used, during experiment B this
was 8 seconds and experiment C is performed using 15 seconds of heating. The data
is a selection of images out of the first five principle components.

Since induction thermography is a fast technique and it results in qualitative im-
ages, only this technique will be used for the inspection of the remaining four B
samples. The optimal parameters found during the experiments of series A can be
found in Table 2.7. These parameters will be used in the inspection of the samples
of the B series. In contrast to the processing of the A series, the thermal data of
the B series is processed using FFT and PCA. Both techniques resulted in decent
quality images for this series. The results of the FFT processing of the front heat-
ing of the samples can be seen in Figure 2.10 and the PCA results can be found in
Figure 2.11. The processed images related to back heating the sample can be seen
in Figures 2.12 and 2.13.

\ Front induction heating Back induction heating
Excitation time [s] 19 15
Distance coil - sample [m] | 0.03 0.04

Table 2.7: Best parameters found during the measurements on the A-series samples.
The samples of the B-series are inspected using these parameters.
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Figure 2.10: Amplitude images from the FFT processing of the thermal data captured
using induction heating from the front side of the B-series samples. Row A show the

phase images of the measurements using a excitation duration of 19 seconds and row
B visualises the amplitude images.

Figure 2.11: Snapshots taken from the Principle Component Analysis of the thermal
data of front induction heating. The most pronounced images are shown out of the
calculated first five principle components.
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Figure 2.12: FFT results of the B series samples heated from the back during 15
seconds. Row A shows the phase images and row B the amplitude images. The phase
images are not sufficient enough to make a conclusion about the spot welds, however
the amplitude images show a clear difference between the region inside and outside
the spot weld.

1B 2B 3B

Figure 2.13: Results of the Principle Component Analysis of the B series samples
heated from the back. From the raw data the first five principle components are
calculated and the most pronounced image is selected afterwards.

4B

2.4 Discussion

In this study a comparison is performed between different active thermography
techniques in order to find the most suitable solution for the inspection of spot
welds. The samples were heated using light heating and induction heating and
processed applying both Fast Fourier Transform and Principle Component Analy-
sis. As light heating excitation both lock-in thermography and pulse thermography
are investigated. For each excitation method multiple parameter sets have been
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explored such as: frequency variations for lock-in thermography and variations
in pulse duration for pulse thermography. For each parameter five different set-
tings are tested for both front and back heating in order to find the most adequate
measurement setup. Induction heating showed to be the most suitable technique
for spot weld inspections since it results in clear data images and low inspection
times. Improving the measurements using induction thermography can be possi-
ble by minimizing the distance between the coil and the sample and increase the
amount of windings of the excitation coil. Both front and back heating resulted in
good quality images in inductive thermography, making it possible to be used in
the manufacturing process. In decent spot welds a clear contour can be detected
and the region inside the circular boundary has a different thermal behavior in
comparison to the material around the spot weld. Considering the samples used
in this research, we conclude that samples 1A, 2A, 1B and 2B are the only valid
spot welds.

2.5 Conclusion

The aim of this research was to determine the best method to perform infrared
thermography during car manufacturing. Several heating techniques are not suit-
able to use in a manufacturing process without extensive changes such as safety
precautions. Since a car body is a complex shape it is not always possible to inspect
the welds using back heating, therefore a solution had to be found using only front
heating. An additional requirement was found in the use of robotic inspection. In
order to minimize the necessity of a human inspector, it should be possible to per-
form the inspections automatically using a robot. Keeping these requirements in
mind, the best inspection method can be found in inductive thermography. These
measurements can be performed using only front heating and the camera and
heating device can be mounted on the same robot. Using induction thermography
for the inspection of spot welds it is possible to determine if the different charac-
teristics that determine a good weld are present or not. A proper spot weld should
show a distinguishable circular shape with a closed boundary and a different ther-
mal behaviour inside and outside the welded regions. Boundaries that are not
fully closed or have an irregular shape indicate that parts of the weld are not fully
melt together or the weld puddle has blown out. It is not sufficient to evaluate
a spot weld only on the shape of the weld itself. In order to deliver the needed
strength the welded materials have to melt into each other inside the welding re-
gion. Therefore it is necessary to determine wether the internal structure of the
weld has changed in comparison to the surrounding area. Further investigations
can be made to the induction heating in order to minimize the needed heating
time. Improvements could be found in optimizing the distance between the induc-
tion spools and the sample and by increasing the amount of loops in the induction
coil. In future work the use of artificial intelligence will also be investigated in
order to automatically classify spot welds.

We would like to thank Volvo Ghent for providing the samples used in this manuscript.
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Excitation source optimization for
active thermography.

Before investing time and effort in optimizing the measurement parameters, one must
be certain that the individual components are performing adequately. Since the move-
ment of the sample is the key feature of Dynamic Line Scan Thermography, it is im-
portant to optimize the components that are specifically related to the movement. The
movement can be achieved using a robot, cobot, conveyor belt, translation stage, etc.
which are widely used and highly optimized components. The heating on the other
hand is often performed using ordinary halogen lamps since commercially available
line heaters are significantly more expensive. This chapter will discuss the optimiza-
tion of a line heating device This chapter is published in MDPI Applied Sciences as
“Optimisation of a heat source for infrared thermography measurements : compari-
son to mehler engineering + service-heater.” [35]

3.1 Introduction

Non-destructive testing is globally progressing in the world of material inspections.
The purpose of these tests is to inspect the structural integrity of objects without
damaging the product itself. Until today, extra products needed to be produced
to put them through destructive tests. Those non-destructive evaluations provide
a swift, reliable and cost-effective manner to investigate objects without harming
their purpose [36, 37].

There exist two types of infrared thermography based on the source of the evalu-
ated temperatures. Every object exceeding absolute zero (0 K) emits infrared radi-
ation. In passive thermography, the measured temperature differences are solely
dependent on the emissivity and the temperature of the object to be inspected. Ac-
tive thermography depends on exciting the test object using an external source in
order to measure the temperature change between the heating and cooling phase.
Multiple excitation sources exist in active thermography based on different heating
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techniques such as halogen lamps, flash lamps, laser heating ultrasonic excitation,
microwaves, eddy currents excitation, etc. In order to choose the right source to
perform infrared measurements, one should consider the advantages and disad-
ventages of each source. Laser heating makes it possible to heat only small regions.
Halogen lamps on the other have the advantage to heat the specimen in a cheaper
and safer way.

Halogen lamps are widely used in infrared thermography because of the cost and
broad wavelength spectrum. A disadvantage of using halogen lamps is the large
heating region of the object to be inspected. One could try to minimise the heated
region by using a slit allowing only a part of the heating energy to leave the reflec-
tor of the heating source. With the aid of a slit, the rays outside the desired heating
area are blocked and a loss of possible heating energy occurs. One can see that the
amount of blocked rays should be minimised. Additionally, diffraction causes the
available rays to diverge out of the aperture further reducing the heating energy
density. Figure 3.1 displays two preliminary set-ups that are used in our lab to
minimise the heated region.

Figure 3.1: Two experimental set-ups are displayed as they are used in our lab:
(Left) empirical test-setup for Dynamic Line Scan Thermography on a conveyor belt.
A wooden plate wrapped in aluminium foil was mounted underneath a patio heater.
In the middle of the plate, a slit with desired width and length was cut in order to
create the reflector shape. (Right) cylindrical reflector constructed to concentrate the
radiation in a narrow line. This heater is used in dynamic measurements as a hand-
held heater. Starting from a hollow tube a slit was milled with the desired width in
order to create the reflector shape. Both setups use a thin slot to minimise the heated
region. Only the electromagnetic radiation passing through the slit will heat up the
specimen to be inspected. Other rays will be blocked and thereby a large amount of
energy is wasted.

Designing an optimised reflector could offer a safe and cost-effective heating source
when combined with a halogen tube lamp. It could be a great substitute for us-
ing laser excitation and could facilitate the further development of Dynamic Line
Scan Thermography. To increase the temperature difference between the heating
and cooling down of the object, the available heating power of the halogen lamp
needs to be concentrated in a small region. Concentrating the power enables the
possibility to deliver more excitation power in a small time period. This results in
a powerful heating. The heating source approximates rather flash excitation than
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long step heating.

Several studies are performed in order to focus electromagnetic radiation in order
to produce heat. Almost all these applications are powered by sunlight and use
parabolas in order to focus the radiation in a single point [38, 39, 40]. According
to the reflecting property of a parabola, rays originating in the focal point of the
parabola will be reflected parallel to each other. Lee et al. [41, 42] investigated
the possibility to use parabolic and elliptical mirrors to generate local heating of
high-strength steels. Unvala and Maries [43] checked the heating peculiarities of
a tungsten halogen lamp combined with an elliptical reflector shape. Using a 1
kW heating source, a heated region of 2 cm with heating temperatures of 1200 °C
were generated.

We propose an approach to merge the local heating of laser heating with the safety
of tungsten halogen tube lamps. A lamp reflector is designed using ray tracing
software in order to achieve the focused power.

3.2 Methodology

3.2.1 Requirements

The heat source should meet several predefined requirements: the focus length
is defined at about 10 cm based on the dimensions of the commercially available
Mehler Engineering Services (MES)-heater [44]. The radiation will be focused
into a small region at this distance from the emitting light source. Secondly, the
used source should be a tungsten halogen lamp, also known as a halogen lamp.
Tungsten halogen tube lamps are safe to use in almost all conditions and they
are universally accessible. Furthermore, the heated region has to be as small as
possible and we intend to concentrate a minimum of 80 % of the heat radiation.
The more the radiation is focused into a smaller region, the less energy is needed to
provide the same energy density. Radiation focusing can be performed in multiple
ways: for example, using mirrors/reflectors or using lenses. Heat rays on the
other hand cannot be focused using glass lenses because of the energy losses in
the lenses resulting in heating the lenses. A germanium lens on the other hand is
suitable for focusing heat radiation, but these are very expensive.

3.2.2 Geometry

Multiple mathematical shapes exist with all different reflection characteristics:
parabola, ellipse, etc. The reflective characteristic of a parabola is confirmed by
multiple studies [45, 46, 47, 48] and states that incident parallel rays are reflected
to the focus point of the parabolic reflector, provided that the rays are parallel
to the parabola axis. Consequently, rays originating in the focal point are always
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reflected parallel to the symmetry axis of the parabola. These reflected rays au-
tomatically create a wide heated region. We intend to concentrate the radiation
in a small point for every section of the reflector in order to minimise the heated
region; therefore, a parabola can not be used as a reflector shape for this purpose.

Another interesting mathematical shape is an ellipse because of its reflective prop-
erty and could offer a solution for our application. This reflective property is better
known as the focal property of an ellipse [49]. We could mount the tungsten halo-
gen lamp in F1 of the ellipse to focus the radiation in F2. Thanks to this approach,
all radiation originating in the halogen lamp will be reflected to the heated area
on the specimen (F2). Figure 3.2 visualises the different properties of a parabola
and an ellipse.

Figure 3.2: The reflecting characteristics of a parabola and an ellipse are visualised.
All parallel rays entering a parabolic reflector will be focused on the focal point. Each
ray leaving one focal point of the ellipse will be reflected to the other focal point of
the ellipse. One can see that cutting the ellipse on the red line will result in rays not
being reflected by the elliptical shape towards the second focal point.

According to the focal property of an ellipse, it is theoretically possible to focus
the electromagnetic radiation on a small point as long as the elliptical shape re-
mains closed, provided that the emitting source is concentrated on the other focal
point of the ellipse. As can be seen in Figure 3.2, cutting a part of the elliptical
reflector results in rays not being reflected towards the second focal point. For our
application, it is not possible to keep the elliptical reflector closed in order to be
able to heat the object. The radiation has to leave the reflector in order to induce
a temperature increase of the sample.

Removing a part of the elliptical reflector leads to a wider radiation pattern as
a result of the rays not being reflected towards the focus point. Using simple
mathematics, the percentage of direct heating rays reaching the object can be
calculated. In Figure 3.3, a simplified representation of the halogen tube lamp
and the direct heated region of the object can be seen.
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Figure 3.3: This figure shows a geometrical representation in order to calculate the
amount of the radiation not being reflected by the elliptical reflector. The left image
represents the complete set-up with the halogen tube lamp in point O and the focal
point in point F. E;F represents the width of the illuminated region by direct rays
leaving the tube lamp. The right image can be used to determine the angles needed
to calculate the unwanted illuminated area. Representation of the optimised reflector
shape and the related ray trajectories.

The desired focus distance of the heat source is represented by OF. The width of
the opening in the reflector shape is called F>E and HyH describes the wanted
illuminated region. In the right-angled triangle AOFE (the angle between OF and
FE equals 90 degrees), the length of OF can be found using Pythagoras Theorem:

OE = OF +FE" (3.1)

The value for a can be found using:

., OF
o = sin (@) (3.2)

The width of the total heated region equals FE and the wanted illuminated region
is presented by F'H. The length of the undesired heated region can easily be found
by subtracting F H of FE. In triangle AOHE, the length of OH can be found using
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the law of cosines:

OH’ =HE +OF — 2+ HE % OF * cos(a) (3.3)

Therefore, the angle between OH and OF can be calculated applying the law of
cosines a second time:

HE' =0FE" + OH" — 2+ OE % OH  cos(f) (3.4)

The area of the lamp heating the specimen outside the wanted region can be cal-
culated by:

Aogutside = B * r? (3.5)

This area is the combination of the circular sectors in the triangles AOHE and
OH,E,. One should note that 3 is in radians to calculate the area of the circular
sector. The percentage of the lamp heating the specimen directly can finally be

found:

Aoussi B
Pooutside = H‘:r‘; #100% = = * 100% (3.6)

Ending the elliptical reflector shape at 10 cm from the top leads to an illuminated
region of 2.7 cm and the wanted maximum width of the region is 1 cm. Conform-
ing to the previous calculations, the difference between the heated and desired
region of 1.7 cm equals an area of 2.68 % of our excitation source. The purpose of
the research is to focus the light in a heated region of maximum lcm. Because of
the opening in the elliptical reflector shape, a circular sector of the radiating tung-
sten halogen tube lamp will directly heat the specimen. To assure the wanted
1-cm-wide concentrated radiation area is attained, extra reflectors are added in
the reflector shape. The length and the placement of the additional reflectors can
be found using simple mathematics as can be seen in Figure 3.4.
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Figure 3.4: Visualization of how the additional reflectors are determined. The reflec-
tors can be found using the diagonal of the rectangle with the height of the desired
focus length and the width of half the desired heated region. The start and end point

of the straight reflector are defined by the intersection of the diagonal with the line
segments OH and OF.

Considering a rectangle with height OF and width FE, OF is a diagonal in this
rectangle. The other diagonal starting in point F has the same equation as the
additional reflector. The reflector starts at the intersection of the diagonal and
OH and ends at the intersection of the diagonal and OF. This way, the unwanted
heated region is nullified. The characteristics of the straight reflectors are there-
fore dependent on the desired heating width and the width of the opening in the
elliptical reflector. Figure 3.5 shows the optimised reflector geometry as result of
the ray-tracing simulations. The optimisation procedure is discussed further on in
this thesis. The halogen tube lamp has a diameter bigger than the focal point of the
ellipse; therefore, the radiation will not originate precisely in the focal point of the
ellipse. Assuming that the radiation leaves the halogen tube lamp perpendicular

to the length of it, the extended rays intersect the focus of the ellipse, authorising
the use of an elliptical reflector.
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Figure 3.5: (Left) Optimised reflector shape established through ray-tracing simula-
tions. The optimised heating source consists of an external reflector in the shape of
an ellipse and additional straight reflectors in the middle. The halogen tube lamp
is placed in the upper focal point of the ellipse. (Right) Ray trajectories according
to ray-tracing simulation. The vast majority of the electromagnetic rays are focused
in the second focal point of the ellipse. The minority that intersects with the sample
outside the focal point are reflected from the additional reflectors in the heat source.
The heating power coming from these rays is negligible.

3.2.3 Simulation

Designing the optimised reflector happened in multiple stages in order to divide
the research into small parts. Initially, a simplified simulation model was built
in COMSOL®. This model was used to validate all simulation parameters before
starting the optimising of the reflector shape. Secondly, the ray-tracing model was
combined with a batch-script to alter the parameters describing the parametric
geometries. The batch-script made it possible to use parametric sweep over the
parameters in order to find the reflector with the highest intensity in a prede-
fined region.

The following assumptions were made in order to design an optimised geometry:

*  The reflector is made of aluminium.
e The surface finish is very smooth, ensuring a reflection coefficient around 1.

e The halogen tube lamp emits electromagnetic-radiation uniform along its
length.

*  The heating source and reflector shape are considered to be infinite so the
sides can be neglected.
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3.2.3.1 Ray-Tracing Model

A 2D ray-tracing model was built in COMSOL® to find the optimal shape for a
section of the reflector. A 2D simulation can be used due to the simple geometry
of a halogen tube lamp. After parametrically designing the optimised section of
the reflector, it can easily been extruded over the length of the halogen tube. The
geometry in the simulation consists of the halogen lamp, the reflector and a speci-
men on which the incident radiation will be measured. Figure 3.6 shows the result
of a ray-tracing simulation in ideal circumstances.

3.2.3.2 Automated Batch-Script

In order to find the optimal reflector shape, multiple shapes were examined. The
curvature is described using the minor and major axis of the ellipse in order to
be able to automate the exploration for the best shape. A parametric sweep is
performed using a batch-script. The elliptical reflector can be described by using
two parameters: the width and the height (minor and major axis). These two
parameters are used during this parametric sweep. For each design, the radiation
intensity is calculated in a predefined region and this value is compared to the
best simulation design at that moment. The script generates a visualisation of the
optimised shape, the ray trajectories and the corresponding intensities.

As a result of the focal property of an ellipse, it is necessary to assemble the heat
source accurately. An additional Matlab®-script is programmed to investigate the
impact of faulty assembling the optimised heat source. Multiple placement heights
of the halogen tube lamp are simulated to check the error size. This error is
searched for three geometries to select the most appropriate one out of the sim-
ulated designs. Those designs are also compared to three experimental heating
sources. Two of them are visible in Figure 3.1. Figure 3.6 shows the output for
only one placement height to compare the different reflector geometries. The
benefit of the additional straight reflectors is clearly visible. Multiple placement
heights are analyzed in order to investigate the impact of faulty assembly for each
reflector shape.
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Figure 3.6: Several geometries are compared to each other. The benefit of additional
straight reflectors in the optimised heating source (right) is clearly visible in compar-
ison to the elliptical reflector shape without added reflectors (middle).

Figure 3.7 visualises the output multiple iterations of the Matlab®-script used to
investigate the impact of a faulty assembly. The results of the optimised reflector
shape are compared in order to determine how much larger the illuminated area
becomes in response to bad assembly.
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Figure 3.7: The placing height of the halogen tube lamp varies to identify the dif-
ference in heating as result of placing the lamp not exactly in the focus point of the
ellipse. Faulty assembly of the heating source will result in a wider illuminated region
which remains limited to a maximum of 1 cm.
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3.3 Results

The result of multiple simulations is an optimised line heating source with a heated
region of 4 mm wide as can be seen in Figure 3.8. Recently, our research group
bought a line heater source (MES) in order to perform dynamic line thermography.
We have chosen to match the dimensions of the MES-heater to the dimensions in
our simulation model. This makes it easy to compare the optimised heat source
to the commercially available source regarding the width of the heated region.
The overall dimensions of the MES-heater are 239 x 55 x 125 mm (L x W x H).
The width of the heated region of the MES-heater is inspected using a cooled IR
camera, FLIR X6540sc. According to the datasheet of the line heating source, the
distance between the bottom of the housing and the specimen should be 1.5 cm.
The gap is too narrow to measure the width of the heated region on the top of
the object to be inspected. As an alternative, the heated region is being inspected
using the IR camera in transmission: a piece of baking paper was inserted at a
distance of 1.5 cm of the line heater and the camera captured the heated region.
The measurement set-up can be found in Figure 3.9. The heated region of the
MES line heater has a width of 1.13 cm according to the measurements (Figure
3.10). The optimised reflector on the other hand should deliver a heated width of
4 mm. One should notice that the comparison between the optimised reflector and
the MES-heater only served the purpose to validate the results of the optimisation.
The optimisation process, however, is generally suitable to optimise line heaters.
Commercially available line heaters usually use an elliptical reflector [50, 44].
Consequently, the improvements with respect to the MES-heater should be com-
parable to other line heaters as well.
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Figure 3.8: The optimised reflector shape as a result of the ray-tracing simulation
can be found on the left, the rays are in the middle, and the intensity of each ray and
the width of the heated region are in the right image. This reflector shape resulted in
the smallest heated region and has the least adverse effects if the halogen tube lamp
is placed at a non-optimal height. Other reflector shapes that were investigated are
shown in Figure 3.6.

Figure 3.9: In the left picture, the MES-heater is visible in the measurement setup.
The setup consists of the line heating source, a baking paper clamped between two
wooden frames and the FLIR X6540sc infrared camera. The baking paper is used
to investigate the heated area of the sample in transmission mode. The baking paper

was placed at a distance of 1.5 cm from the bottom of the line heater as recommended
in the datasheet.
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Figure 3.10: Representation of the heated region with a temperature above 250 °C.
A width of 1.13 cm is calculated using a Matlab®-script.

3.4 Conclusions

It is possible to design a reflector in order to get a minimal heated region using
an elliptical shape and additional straight reflectors. The heated region can be
minimised to a width of less than 1 cm, which is similar to the heated region of
a commercially available line heating source. The biggest advantage of using an
optimised reflector is the ability to use widely available halogen tube lamps. An op-
timised line heating source is necessary in order to further optimise the process of
dynamic line scan thermography. The theoretical heated region of the optimised
heating source is 4 mm and the width of the commercially available source is 1.13
cm. The resulting heated region is only 35 % of the initial width leading to a better
focus of the available energy and thereby a higher energy density. The MES-heater
has an energy density of 44.25 [W/cm?2] and the optimised heat source a density
of 125 [W/cm?], which corresponds to an improvement of 282.5 %, at least theo-
retically. In future work, the proposed source could be experimentally developed
and tested in order to compare the theoretical data with experimental data.



50

CHAPTER 3. EXCITATION SOURCE OPTIMIZATION FOR ACTIVE
THERMOGRAPHY.



Part IV

Parameter optimization

51



52



(Chapter /L

DLST optimization using Response
Surfaces implemented on PVC flat
bottom hole plates.

The third main part of this doctoral dissertation will discuss the parameter opti-
migzation of Dynamic Line Scan Thermography using multiple techniques in several
chapters. The different techniques are developed based on the desired optimization
approach. Parameter optimization for detecting a specific defect is achieved using
Response Surfaces (RS). This technique is well-established and therefore served as an
ideal starting point to obtain insight in the correlation between the different measure-
ment parameters. The optimization routine using Response Surfaces is explained in
following chapter (chapter 4) and is published in MDPI Applied Sciences as "Dynamic
line scan thermography optimisation using response surfaces implemented on PVC
flat bottom hole plates” [51].

Simplified example of the Response Surface methodology:

Imagine a function y = f(x) depicted by the blue line in the Figure 4.1.
The objective is to approximate this blue curve using response surfaces. To
achieve this, data points are sampled from the blue curve, and a curve is fitted
through these points. The points are sampled at uniform intervals, with each
interval corresponding to the step size between two consecutive values that
the variable x can assume. The pink curve is an approximation of the blue
curve that can be obtained by sampling only the pink data points. It can be
observed that this approximation does not fully match the original function.
On the other hand, the red curve is an approximation obtained by adding
one newly sampled point, namely the red point, to the pink data points. As a
result, the red curve has become a more accurate approximation of the orig-
inal blue curve. As the name suggests, Response Surface Methodology uses
surfaces rather than individual curves. This can be achieved by sampling in a
multidimensional space instead of a 2-dimensional space.
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X

Figure 4.1: Visualisation of the Response Surface methodology. The blue function is
approximated by sampling data points to learn the shape of the curve.

4.1 Introduction

Active thermography is worldwide recognised as a promising technique to per-
form non-destructive inspections [36]. The technology found its place in diverse
domains versus before when the technique was mainly used in the aerospace in-
dustry. The main drawback of performing active thermography measurements on
large samples was the fact the thermal camera or the structure had to moved in
order to be able to inspect the whole object. Moving the camera or object in mul-
tiple steps is really sensitive for mistakes and therefore a solution was developed
by NASA. The technique was based on the ideas of Maldague [9] and Lindberg
[52] of moving the camera and heat source in tandem. When combining the heat
source and the camera in a solid set-up, the heating direction, homogeneity, dis-
tance, etc are the same for every frame. Constraining the heat source and the
camera together enables optimisation of the measurement set-up in an accurate
way. In figure 4.2 a visualisation of a Dynamic Line Scan Thermography set-up
with the most important parameters is shown.
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Figure 4.2: Visualisation of a Dynamic Line Scan Thermography setup with the most
important parameters to be optimised. The parameters in the representation are
the input parameters of the response surface, except the maximum temperature is a
constraint.

Several studies have been performed in order to optimise a Dynamic Line Scan
Thermography set-up. Most of this optimisation research focuses on a specific use
case or a specific material group [53, 15, 54]. Dynamic Line Scan Thermogra-
phy (DLST) is often linked with carbon fiber reinforced plastic parts used in the
aerospace industry. The technique however is also used for different cases such as
paper, wood, concrete, etc [55]. Optimising the measurement setup in order to
inspect a certain sample results in showing that it is possible to use DLST. Peeters
et al [54] used finite element updating in order to find the best parameter set
for the sample to be inspected. The aim of this research is to provide a general
optimisation routine based on response surfaces. Instead of performing an opti-
misation for a specific use case the correlation between the set-up variables and
the measured contrast is investigated. Response surfaces are widely used in order
to find an optimum while reducing the amount of computationally intensive sim-
ulations [56, 57, 58]. Performing optimizations using Response surfaces is used in
a variety of applications [59, 60, 61, 62] and the use of response surfaces is still
being optimised [63]. As can be seen in figure 4.2 there are a lot of parameters
that influences the optimal measurement set-up for DLST. Some of these param-
eters can be hard to assess such as the defect diameter and the starting depth of
the defect. During production, a person involved in the process can estimate the
common properties of defects inside the object. The measurement set-up could
be optimised for these estimated properties using a computationally expensive op-
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timisation. If the estimations were faulty an additional optimisation should be
performed, resulting in supplementary simulations. Each variation in a parameter
results in the necessity to perform a new optimisation and therefore the use of
response surfaces is justifiable. This chapter discusses the creation of the response
surface used for the optimization and offers an explanation for the influence of
every variable used. How the response surface is employed in this research is de-
scribed in the second part of this chapter. Performing thermal inspections based
on the optimised parameters is explained in part three.

4.2 Materials and Methods

4.2.1 Finite element simulation

A finite element simulation was created using Siemens Simcenter 3D. The simula-
tion consists of a flat bottom hole plate with one circular cavity and a moving heat
source above it. PVC flat bottom hole plates are widely used as standard testing
samples for thermography applications.

a) b)

Figure 4.3: Visualisation of the finite element simulation. a) is a 3D representation
from the top in order to clearly see the flat bottom hole plate and the 2D mesh for
the moving heat source. b) is the bottom view of the components. The circular void is
placed in the middle of the flat bottom hole plate.

4.2.1.1 Flat bottom hole plate

The flat bottom hole plate is a rectangular cuboid with following dimensions: 330
x 170 x 10mm. The dimensions are chosen in order to minimise the influence
of the sides during the simulations. Edges cool down differently than the area
in the middle of a sample. Since the optimisation routine focuses on dynamic
measurements, a longer sample is desirable. The thickness of 10mm is chosen
since it is most of the time considered as the maximum depth at which defects can
be distinguished using active thermography. The dimensions of the flat bottom
plate can be chosen freely since it does not influence the effect of each parameter
on each other and on the contrast. Therefore the dimensions are chosen to match
the dimensions of the flat bottom hole plate that is used for the experimental
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Radiation Simple radiation to environment: GBVF 1 (Gray Body View Factor)
Convection Convection to environment: Inclined Plate, Top, Multiplier 1
Thermal Diffusivity PVC 0,08 mm?/s

Table 4.1: Settings used in the finite element simulation.

measurements. The circular cavity is located in the middle of the plate at the
bottom. The dimensions of the cavity are not fixed since these will be varied in
order to create a response surface depending on the diameter and the depth of the
cavity. A tetrahedral mesh is used on the flat bottom hole plate with a mesh size
of 16,4mm. The material linked to the 3D mesh is PVC since this is a widely used
material for testing new thermography methods. A radiation and a convection
constraints are placed on the top and sides of the flat bottom hole plate since
the sample lays on the bottom side. The ambient temperature is used as initial
condition on the whole flat bottom hole plate.

4.2.1.2 Moving heat source

The heat source is simulated as a 2D mesh with a ’radiative heating Simulation
Object’ in order to mimic the heating region of a line heater. The size of the heated
region is derived from the heating region of a commercially available line heater:
Mehler Engineering Services [64]. The heated region has a width of 10mm at a
height of 15mm above the sample to be inspected, as measured in [35]

There exist multiple approaches to simulate Dynamic Line Scan Thermography in-
spections. One method relies on the movement of the sample underneath the heat
source. The opposite approach is to move the heat source and thermal camera
over the sample to be inspected. This second method is used in the research since
it is less computing intensive.The 2D mesh representing the heating region has less
mesh elements than the meshed flat bottom hole plate. Each time step, the loca-
tion of each moving node has to be determined and how the radiation between the
heat source and the sample is affected. The movement is accomplished by using a
’Solid Motion Simulation Object’ on the 2D mesh in the longitudinal direction of
the flat bottom hole plate.
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Figure 4.4: Simulation file representation including constraints and simulation ob-
jects. The radiation and convection constraint are only placed on the top and side
faces of the flat bottom hole plate since the sample lays flat on the bottom surface.
The ambient temperature is applied on every surface as an initial condition.

4.2.2 Response surface Parameters

In order to generate a general response surface for DLST measurements, the most
important parameters are used as input parameters. The input parameters can
be divided in parameters declaring the size of the defect in the flat bottom hole
plate and parameters describing the measurement setup. The output parameter
visualised in the response surface is the temperature difference between the tem-
perature measured on the surface of the flat bottom hole plate above the middle
of the defect and a reference temperature next to the defect. The sound area is
chosen next to the defect in order to be heated at the same time as the defect. The
exact location is chosen at one centimeter from the edge of the sample. Placing
the reference too close to the edge of the sample will result in biased information
since the side of a sample cools down differently than the region in the middle
of the sample. Since the diameter of the defects is limited in the creation of the
response surface, a minimal distance between the sound area and defective area
is always minimal 50 mm. The temperature difference is used as the output pa-
rameter since thermographic inspections rely on the temperature contrast between
defect and sound regions. Despite the temperature difference being the most im-
portant output parameter a response surface is also created from the temperature
above the defect. This response surface will serve as a way to prevent the sample
from reaching it’s maximum use temperature.

4.2.2.1 Defect Diameter - D rect

The size of a defect has a direct influence on the amount of energy being reflected
towards the surface of the flat bottom hole plate. A bigger defect reflects more
energy and vice versa. Figure 4.5 shows the heat propagation through material
and the reflection of a heat wave on an internal defect. The energy injected in the
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sample travels via conduction through the material. Therefore the energy can be
seen as a thermal wave expanding in all directions. The diameter for this research
varies between 6 and 50 mm.

4.2.2.2 Defect Starting Depth - d,; .

A deeper laying defect will be less visible using active thermography than a sub-
surface defect. The farther the heat wave has to travel before reflecting on a defect
the smaller its energy density will be. Therefore the energy density of the heat
wave reflected on the defect is strongly dependent on the defects depth. Deeper-
laying defects will result in less contrast at the surface when inspected. Since the
sample has a thickness of 10 the startdepth is limited to 9 mm and the minimum
startdepth is 0,1 mm.

4.2.2.3 Heat Load - P+

The heat load has a direct influence on the contrast in thermograms caused by a
defect in the object to be inspected. Since the induced heat has to travel through
the sample towards the defect, be reflected and travel back to the surface, more
induced heat will result in more reflected energy. The value of the heat load lays
between 100 and 1000 W.

4.2.2.4 Source Velocity - vsource

The movement speed of the heating source has a dual influence on the contrast
caused by the defect. On the one hand the source velocity has a connection to the
available time for a specific region of the sample to be heated, on the other hand
the movement pace is linked to the optimal moment to inspect the object with
the infrared camera. The heat wave originating from the induced energy needs a
certain amount of time to reach the defect and reflect towards the top surface of
the object to be inspected. The needed period is solely dependent on the depth
of the defect and on the material properties of the sample. Using an inadequate
tempo will result in measuring the temperature while the heat wave has not yet
reached the surface or while the heat wave has reached the surface a decent time
before. The source velocity is demarcated between 5 and 20 mm/s.

4.2.2.5 Distance Between Heat Source and Thermal Camera - djcq:—cam

The second mentioned influence of the source velocity can be minimised by imple-
menting an additional parameter: the distance between heat source and thermal
camera. The optimal distance between the heat source and the thermal camera is
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dependent on the movement speed of the heat source relative to the sample to be
inspected and the starting depth of the defect measured from the top surface. A
visual representation can be found in Figure 4.5. The optimal spacing between the
heat source and the camera is the distance where the time needed for a sample
section to travel from the heat source towards the camera equals the required time
for the heat wave to travel through the sample, reflect on the defect and return to
the surface. Equation 4.1 represents this constraint. The minimal distance is 50
mm and the maximum distance is 600 mm for this research.

d ' d . d '
- - -

Figure 4.5: The distance between the heat source and the thermal camera has an
utterly importance in maximising the temperature difference between a sound region
and a defect region. The heat wave injected in the sample to be inspected needs an
amount of time to reach the defect and to reflect towards the surface. This period
is dependent on the depth of the defect and the material properties. A visualisation
of the travelling heat wave in an optimised scenario can be seen in multiple steps
starting at a) and ending in f).

In an optimised occasion the time needed for the heat wave to propagate through
the sample twice is equal to the time calculated by:

dheat—cam
th: heat—ca (41)

Usource

where ¢, represents the time needed for the heat wave to reach the defect and
reflect to the surface, djeqi—cam the distance between the heat source and the
camera and vs.yrce the velocity of the heat source relative to the sample.
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4.2.2.6 Height Thermal Camera - dj¢;ght

The distance measured from the sensor of the thermal camera to the surface of the
sample to be inspected is represented by the height of the thermal camera. This
parameter has no influence on the temperature difference of the sample surface,
but it is utterly important while performing thermal inspections. In order to be able
to measure a defect accurately, the size of the hotspot has to be at least 3 pixels
in diameter. This rule of thumb results in a correlation between the height of the
thermal camera and the minimal size of the detectable defect. This parameter
can be calculated using the Field Of View of the camera as well as using the focal
length of the lens. In this research the focal length is used, the calculation using
the Field Of View (FOV) can be found in [54].

Figure 4.6: Schematic representation used to calculate the minimum defect diameter
in order to be detectable for a certain camera height d. Using the detector pitch of the
camera and the focal length of the lens the region recorded by one single pixel H can
be calculated.

As can be seen in Figure 4.6 we can use opposite angles in order to describe the
correlation between the pixel pitch p and the minimal size of a defect at a certain
camera height d.

h=dx (4.2)

~ rors

with h the size of the inspected region by half a pixel, p the pixel pitch and f the
focal length of the lens. Since we are interested in the dimensions of a region
captured by one whole pixel the calculated size h has to be doubled.

H=2xh 4.3)

In order to determine the minimal dimensions of a defect to be detectable at a
certain camera height one should know how many pixels are needed in order to
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perform a decent thermography measurement. A rule of thumb indicates that a
defect has to be bigger than a square of 3 x 3 pixels, therefore the diameter of a
round hole has to be at least 3 times the region measured by a single pixel.

D>3xH (4.4)

Combining equation 4.2 and equation 4.4 results in following equation:

D>6xdx (4.5)

~ [ors

with D the minimal diameter of a defect in order to be detectable for the camera
at height dp,;g1+ above the sample to be inspected.

4.2.2.7 Ambient Temperature - Ty, pient

The ambient temperature has an influence on the measured temperatures during
the thermography inspections. There is no direct correlation with the measured
temperature difference, but it has an utterly importance on the maximum use
temperature. The higher the ambient temperature, the less power has to be added
in order to reach this temperature.

4.2.2.8 Case-specific parameters

The parameters discussed above are only dependent on the characteristics of the
sample to be inspected. As can be seen in [54] the image acquisition rate, fram-
erate of the camera, and the scanning path of the inspection are not considered
in this research. The framerate of the camera has no influence on the response
surface since the optimal measurement moment is calculated using the distance
between the heat source and the camera. The time difference between passing
the heat source and the camera is calculated. Therefore the amount of frames can
change accordingly to the framerate, but the time remains the same. The scanning
path is not taken into account since path optimisation is tremendously dependent
on the use case. Inspections whereby the width of the sample is smaller than
the heat source have no need for additional path optimisation. Two dimensional
inspections can be partly optimised using the parameter optimisation of this re-
search. There will remain the possibility for further path optimisation for example
by implementing the pre-heating of a sample region etc. Since these parameters
are so specific they will not be taken into account for this research.
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4.2.2.9 Constraints

One could think that the contrast can be maximized by using the maximum heat
load and the minimum source velocity. This actually could work, however one
could not call this optimising the use of dynamic line scan thermography. In order
to optimise the set-up parameters, constraints have to be imported depending on
the case. An utterly important constraint is the maximum temperature of the sam-
ple to be inspected since this can not reach the maximum use temperature. This
constraint always remains in force, but one can imagine temporary constraints de-
pending on the case. In mass-production environments the velocity of the sample
on the conveyor belt could become a constraint as well. In this case the optimisa-
tion problem shifts from finding the highest temperature difference to finding the
biggest contrast considering the minimal speed or a fixed speed. It is also possible
to change the way of thinking and optimise the parameters in order to use as lit-
tle power as possible. In order to have the freedom to add or remove constraints
response surfaces were used in stead of an optimisation for each scenario.

4.2.3 Response surfaces

In order to preserve the freedom of adding and or removing constraints without
the need of running an optimisation simulation, response surfaces are used in
this research. The response surfaces were created using specialised software to
perform multiple simulations, named Siemens Heeds. This software is used for
design space exploration and therefore combines multiple software packages such
as Siemens Simcenter 3D, Python, etc. Multiple simulations are performed using
a variety of parameter sets. The output for every simulation is plotted and stored
together with the parameter set and a surrogate surface is learned from this data.
This surrogate will be used in order to predict the optimal parameter set based on
the constraints. In order to create an accurate surrogate, 1000 simulations were
performed in the complete design space. The design exploration software used
in this research has the ability to draft the response surface in several ways such
as Least squares linear, Least squares quadratic, Kriging gaussian, Radial Basis
Function (RBF) thin plate spline and one can even program a new approximation
himself. In this research RBF thin plate spline approximation is used.

4.2.3.1 Correlation table

Using the design exploration software a correlation table is created using the mul-
tiple simulations. Using the correlation table one can see interesting and unex-
pected correlation between several parameters. One can see a correlation table
extracted from the simulations in figure 4.7.
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Figure 4.7: A correlation table drawn up while performing the 1000 simulations
needed to create the response surface. The chosen parameters are placed on the x-
and y-axis in order to get a relation between the parameters separately. The connec-
tions represented in the table are solely linearly approached, resulting in non-accurate
approximations. The color of each box gives a visual representation of the correlation
between the parameters. One should inspect the dispersion of the measurement points
for one parameter in order to find the correlation since the linearly approximation is
faulty. This visualisation focuses on the influence of the heating power in combina-
tion with the source velocity in order to predict the resulting temperature difference.
A correlation table can be drawn for every parameter combination as wanted.

4.2.3.2 Simplified surfaces

It is only possible to make visual representations of 3D response surfaces, therefore
only two input parameters can be evaluated regarding the resulting contrast. Since
the total response surface has more input parameters than two it is not feasible to
create a visual representation of the response surface. Creating the visualisations
can help to understand the correlation between several input parameters. This
knowledge can be useful in order to optimise a set-up where multiple parameters
are fixed as a result of an already existing inspection set-up. In figure 4.8 one
can see a 3D visualisation showing the influence of the heat load and the source
velocity on the temperature difference for a set of fixed parameters.
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Figure 4.8: A simplified 3D response surface extracted from the eight dimensional
response surface created using 1000 DLST simulations. An approximation has been
composed visualising the influence of the source velocity [mm/s] and the heat load
[W] on the contrast above the defect [°C]. Following values are used for the remaining
parameters: dpeqt—cam = 425 mm, dsiqr = 5.8 mm, Dyore = 9 mm, dpeight = 430
mm, Tompient = 48 °C. An ambient temperature of 48 °C is extremely high, but
since it doesn’t influence the temperature difference this example is chosen to show
that the response surface can be created under extreme circumstances as well. One
can clearly see the peak and valley in the response surface and therefore one can find
a combination that results in a high contrast. It is important to notice that a 3D
visualisation of a response surface only counts for the specific parameter set. One can
see that the optimal case is not found for the combination of a maximum heat load
and a minimal source velocity. The answer to this phenomenon can be found in the use
of the temperature difference as output parameter of the response surface. Combining
maximum power with minimum velocity will result in the highest surface temperature
of the sample, but will not automatically result in the biggest temperature difference
since the sound area is heated extremely as well.
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4.2.3.3 Joint response surface

As can be read in section 4.2.3.2 it is only possible to visualise a 3D response
surface for a specific parameter set of the remaining parameters. Performing the
simulations a joint response surface is created for all parameters simultaneously.
This approximation is exported as a Python script that describes the response sur-
face using several parameters. A software tool is programmed in Python in order
to predict the best parameter set according to the constraints provided by the
inspector. The purpose of this optimisation is to maximise the temperature differ-
ence while taking the fixed parameters in account. The user has to enter some
parameters in order for the script to function. The obligated parameter values
are the estimated start-depth of the defect, the estimated diameter of the defect,
the maximum use temperature of the sample to be inspected and the ambient
temperature while performing the inspections. One can consider the estimated
defect parameters as the minimal defect size and depth one wants to be able to
detect. The distance between the heat source and the camera, the height of the
camera, the source velocity and the heating power can be provided if they need
to be fixed. Performing the inspections in line with the manufacturing process
has a consequence for the parameters that can be optimised. It is not desirable to
change the speed of the manufacturing process, therefore every parameter can be
given as fixed. The remaining parameters will be optimised considering the given
parameters. This optimization is achieved as the Python algorithm searches for
the point with the greatest thermal contrast that meets the specified parameters.
This search is conducted through a grid-search, where each variable ranges from
the user-defined minimum value to the user-defined maximum value, with a step
size that can be specified by the user. This process involves a trade-off between
the speed at which one wants to obtain a set of parameters and the precision with
which one wants to achieve maximum contrast. A smaller step size can result in a
contrast that is slightly larger than what you would obtain with a larger step size.
Since the obtained Response Surfaces exhibit continuous behavior in this study,
there will never be a significantly large difference in contrast.

4.3 Results

The measurements were performed on a PVC flat bottom hole plate with a thick-
ness of 9,8 mm and a hole pattern consisting of 12 holes with various depth and
diameter. The diameters increase step by step between 6 and 25 mm: 6 mm, 12
mm, 20 mm and 25 mm. The hole depths vary between 2,5 and 8,5 mm: 2,5 mm,
5,5 mm and 8, 5mm. A visual representation can be found in Figure 4.9. Since the
used measurement technique is dynamic line scan thermography, the pulse length
is solely dependent on the movement velocity. The heating is initiated at the be-
ginning of the measurement and remains until the end of the movement. While
the sample moves underneath the heater, the pulse length for a specified region
can be calculated using the movement speed of the sample.
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Figure 4.9: Visual representation of the PVC flat bottom hole plate with various depths
and diameters. Holes 1-4 have a depth of 2,5 mm, 5-8 have a depth of 5,5 mm and
9-12 a depth of 8,5 mm. Every vertical set of holes have a different diameter starting
with 6 mm for holes 1, 5 and 9. The distance between the center of the holes is 45
mm in order to minimize the influence of one defect on another.

The parameter set is optimised for hole 2 and resulted in following combination:
dheatfcam =50 mim, Pheat = 16;7 W/sz, Usource = 5 mm/s, dheight = 300 mm,
Toumbient = 22 °C, dstqrt = 2,5 mm, Dy = 12 mm and Maximum use temperature
of 80 °C. Optimising the parameter set for hole 2 will result in the upper horizontal
row to be detectable in the inspections. The diameter difference has minimal
influence on the optimised parameter set. The diameter however will determine
the maximal height placement of the camera.

One could see the influence of varying the measurement set-up parameters in
comparison to the optimal parameters as predicted by the response surface in
Figure 4.10. Performing measurements at higher speeds without varying the rest
of the parameters will result in a loss of contrasts. Placing the camera at a bigger
distance of the heat source than prescribed by the optimised parameter set will
result in a minor contrast loss but will majorly result in a loss of detail about the
size and shape of the detected defect.

The optimal parameter set for each hole can be found in Table 4.2.
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Figure 4.10: Comparison between measurements performed with alternating param-
eter set. The values on the x- and y-axis are pixel values and the colors represent
temperatures in °C. The range is fixed between 29 and 70 °C for measurements a, b
and c in order to facilitate the comparison between different measurements. Image
a shows the detection of hole 2 using the optimal parameter set (dpeat—cam = 50
mm, Pheat = 41:7 W/sz: VUsource = 5 mm,/s, dheight = 300 mm, Tambient =22 OCJ
image b shows the detection of hole 2 with the only difference that the inspection was
performed with higher source velocity (15 mm/s) and image c shows the detection of
hole 2 using a bigger distance between the camera and heat source (170 mm). As this
is a snapshot taken from the DLST measurement other defects are not clearly visible
in these images. The defects 1-4 were all clearly visible in the movie what can be ex-
plained by the fact that they have the same depth. Other holes such as 7 and 8 could
be detected in the movie as well, but were not as clear as hole 2. Measurement d, e
and f are performed on hole 8, whereby d is measured using the optimal parameter
set, e is performed with a movement velocity of 15 mm/s and in measurement f the
camera was placed too close to the heat source (150 mm in stead of 350 mm). The
bottom row of measurements (g, h and i) are measurements performed on hole 12.
Image g represents the optimal measurement where hole 12 can barely be detected.
In measurement h the movement speed was 15 mm/s while the optimal speed is 5
mm/s. The difference between g and i is the difference between the heat source and
the camera. The distance equals 300 mm for measurement g and 250 mm for mea-
surement 1.
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Contrast [°C]
16
8.9
12.1
27.7
34.2
15.8
10.4
27.3
12.5
7.7
13.4
29.2

Max. Temp. [°C]
80
80
80
80
80
80
80
80
80
80
80
80

Ambient Temp. [°C]
22
22
22
22
22
22
22
22
22
22
22
22

Cam. height [mm]
300
950
300
300
300
300
950
950
300
300
950
950

Velocity [mm/s]

Dist. cam - heat [mm] Heating [W]
50 300
550 900
150 400
50 600
50 300
50 900
100 800
350 300
50 800
50 500
250 900
300 300

5.5
5.5
5.5
5.5

Depth [mm]
2.5
2.5
2.5
2.5
8.5
8.5
8.5
8.5

g
E
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Table 4.2: Optimal parameter sets found for the holes in the flat bottom hole sample.
The ambient room temperature is 22 °C and the maximum use temperature is chosen
at 80 °C. This is not the maximum use temperature of PVC, but it limits the cooling
time the sample needs before performing a consecutive measurement. Since the tem-
perature difference is used as a measure of contrast, this limitation of the maximum
temperature causes no problems. Next to the optimal parameter values for each pa-
rameter, the predicted temperature difference is calculated. This contrast is calculated
between the sound area and the area above the defect.
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In order to compare the contrast objectively the contrast is calculated between a
pixel in the center of defect en 8 different pixels around the defect. The location
of the pixels is shown in Figure 4.11. The contrast is calculated as the absolute
value of the sum of the temperature difference between a pixel and the center
pixel divided by 8.

a 0,3590
b 0,0156
c 0,1638

100 200 300 400 500 600

Figure 4.11: Calculation of the contrast between 9 pixels. The center pixel is situated
in the middle of the defect, the other defects are spaced equally around the center
pixel. The distance between the pixels is 30 pixels. The contrast values are calculated
for the images a,b and c of Figure 4.10. A higher value equals a bigger contrast
between the defect and the surroundings.

4.4 Discussion

The optimization routine presented in this research can offer an insight in the
working principle of dynamic line scan thermography. Understanding the influ-
ence of the different parameters on each other helps an inspector selecting the
most appropriate measurement set-up reducing the time needed to perform in-
spections. In addition it enables to perform measurements without the need of
an expert skilled in the art of thermography. The optimal parameter combination
can be obtained by inputting the required parameters into the software describ-
ing the Response Surface and then searching for the combination that yields the
highest thermal contrast, while taking into account the specified values. In the
above study, this search was conducted using a grid search, where the step size,
minimum, and maximum values for each parameter can be input by the user. In
further research, this search could be carried out in a more intelligent manner.

It should be mentioned that the presented technique assumes that the defects are
sufficiently distant from each other. Defects near one another will influence the
contrast shown in the thermograms. The influence is shown in Figure 4.12. As can
be seen bigger defects experience less influence of nearby defects as the reflected
energy is greater. Defects starting at different distances beneath the top surface
however will minimally influence each other.
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Figure 4.12: The influence of the intermediate distance between samples on the con-
trast is visualised in four situations. Image 4.12a) represents a simulation of three
defects with a diameter of 25 mm, a depth of 5 mm under the surface and an inter-
mediate distance of 27 mm between the centers of the defects. The heat reflected by
the defects influences each other resulting in a reduction of the contrast between the
separate defects. The resulting hotspot is bigger than the area of the defects. Visualisa-
tion 4.12b) represents a similar simulation performed on defects of 12 mm diameter,
starting 5 mm underneath the top surface and at an intermediate distance of 15 mm
of each other. The heat reflected by the separate defects influences the contrast making
it impossible to distinguish the defects. Smaller defects however reflect less energy in
comparison to bigger defects making it harder to detect them. Multiple small defects
close to each other will show as a bigger defect, but with more contrast than the indi-
vidual defects. Defects of different diameters are simulated in figure 4.12c) where the
intermediate distance is 25 mm between the defects. The defects have a diameter of 25
mm, 20 mm and 12 mm. The two bigger defects can still be distinguished from each
other. The smallest defect however shows as a part of the other defect. Figure 4.12d)
shows the influence of defects placed at different starting depths from the top surface.
The defects all have a diameter of 25 mm and are placed at a depth of 5 mm, 10 mm
and 15 mm underneath the surface. Since the heat wave requires a specified amount
of time to reach the top of the defect and reflect to the top surface, the different de-
fects will not result in hotspots at the same moment in the inspection. Therefore the
influence of deeper defects will affect the top defect minimally. Deeper defects however
will be less visible to detect because of the hotter regions caused by defects above. The
defects closest to the surface will not have the biggest contrast since the parameters
are not optimal, but they will still remain hot, disturbing the detection of defects at a
greater distance from the top surface. This occurrence makes a flat bottom hole plate
with defects at different depths not the most suitable test case.
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4.5 Conclusion

Performing dynamic line scan thermography measurements is a difficult task with-
out consulting an expert. The various parameters have an impact on each other
making it challenging to estimate the correlation between one and another. Using
aresponse surface however it is possible to find the best parameter set based on the
defect parameters such as diameter and depth beneath the inspected surface. The
algorithm to find the optimal parameter set focuses on maximizing the tempera-
ture difference between the area above the defect and a sound area. In order to
prevent the sample from overheating a maximum use temperature can be given as
input parameter next to the defect parameters and the ambient temperature. The
resulting parameter set consists of following parameters: Defect Diameter Dge fect,
Defect Starting Depth dg;qt, Ambient Temperature T, mpient, Maximum Use Tem-
perature, Heat Load P..¢, Source Velocity vsurce, Distance Between Heat Source
and Thermal Camera dpeqt—com and Height Thermal Camera dpeign:. Measure-
ments performed with an optimized parameter set result in good contrast in a fast
way. Differing from the optimised parameter set will result in contrast loss and
even losing the possibility to detect the defects. This chapter only focused on the
creation of a response surface for DLST measurements on PVC samples since this
is the standard testing material for thermography.



DLST optimisation: comparison
Reinforement Learning and
Response Surfaces.

The second optimization approach used during this research is based upon the idea
of finding a variety of defects in a sample in the least amount of measurements.
The development of this technique is described in chapter 5. The optimization is
accomplished using Reinforcement Learning (RL). This machine learning technique is
based on self-learning of the computer algorithm in order to find the most suitable
parameter combinations. A virtual environment is created in order to mimic the DLST
measurement setup with the parameters to be optimized.

Simplified example of the Reinforcement Learning methodology:

Behold once again the blue curve describing a function y = f(x). The blue
curve is approximated by sampling data points selected by the ’reinforcement
learning agent’. This is a part of the algorithm that is being trained to select
adequate data points. There is a restriction on the number of data points
that can be sampled, such as in this example a maximum of 6 data points.
At the beginning of training, these points are randomly chosen, but as the
training progresses, the goal is to train the agent to select the points in a
more targeted manner. The pink curve is an approximation through a set of
points selected at the beginning of training. One can observe that this curve
does not provide a very good approximation of the original blue curve. The
red data points are chosen by the reinforcement learning agent after training
and result in a better approximation of the original function. In this example,
a 2D curve was used, but in the further discussed research, these curves are
replaced by surfaces.
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Figure 5.1: Schematic visualisation of the working principle of the Reinforcement
Learning Methodology as described in this thesis. The blue curve is approximated by
sampling data points that are chosen by the agent.

5.1 Introduction

Since artificial intelligence is growing exponentially worldwide, it was only a mat-
ter of time until it found its way in thermography. Nowadays the combination of
thermal images and artificial intelligence (AI) is mostly found in biomedical ap-
plications such as detecting cellulite [65], breast cancer [66, 67, 68] and Carpal
Tunnel Syndrome Diagnosis [69]. Dos Santos et al. [70] however used Al in an
industrial setting inspecting electrical transformers. It is commonly known that
the biggest issue using Al is the large amount of training data that is required to
create a reliable and robust network. Gathering so much thermal data is very time-
consuming and can be utterly expensive. Training a neural network requires data
of different situations that can occur in order to teach the network the possible fea-
tures it has to detect. In order to generate thermal data, it is necessary to produce
the needed samples and perform measurements on them. Manufacturing samples
and specifically carbon fibre samples just for the sake of training a neural network
is expensive and not environment friendly. A well-known alternative to thermal
inspections is the use of finite element simulations. Creating a thermal simulation
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minimizes the needed cost and time to analyse the thermal response of a defect in
an object to be inspected. Performing simulations enables to investigate multiple
situations that can occur at the same time. Several researches have been per-
formed on optimizing numerical models in order to mimic the real life situation
as much as possible [54]. Performing simulations is less costly than performing
actual measurements, but it also has a major drawback considering artificial intel-
ligence. The result of a thermal simulation can approach the numerical result of
a real measurement, but it will not show as a real thermogram. The goal of this
chapter will focus on creating thermograms using finite element simulations and
using them to train a reinforcement agent to find the optimal parameter set for a
measurement. Reinforcement learning is gaining interest in optimisation routines
since the agent could bring possible solutions forward of which a person would
not think. Sato et al. [71] used reinforcement learning to optimise the designs for
electrical machines. The first section handles the finite element simulation, after-
wards the link between the finite element simulation and Mathworks® MATLAB as
optimisation tool is explained. The third section handles the reinforcement learn-
ing process and finally a comparison is made between the use of reinforcement
learning and response surfaces for parameter optimisation.

5.2 Finite Element Simulation

5.2.1 Finite Element Model

A thermal simulation is created in Siemens NX and consists of a flat bottom hole
plate with following dimensions: 265 x 165 x 15 mm. The holes vary in diameter
and depth as can be seen in Figure 5.2. Flat bottom hole plates out of PVC are
often used as a reference material in thermography to verify new methods and
ideas. The simple geometry and material parameters enable the possibility to
compare new techniques to already existing ones.

Figure 5.2: Flat bottom hole plate used in the thermal simulations. The diameter gets
smaller from left to right: 25 mm, 20 mm and 12 mm. Every diameter has three
different depths starting at 12.5 mm, the second depth is 10 mm and the third is 7
mm.



CHAPTER 5. DLST OPTIMISATION: COMPARISON REINFOREMENT LEARNING
76 AND RESPONSE SURFACES.

Figure 5.3: FEM-model of the flat bottom hole plate. The holes are positioned on the
bottom of the sample and the sample is heated from the top. The plate is meshed in a
3D tetrahedral mesh. The heating source is meshed in a 2D mesh.

In the figures above a visualisation of the flat bottom hole plate as used in the finite
element simulation can be seen. Figure 5.2 is the representation of the bottom of
the flat bottom hole plate. The sample consists of a PVC plate with holes varying
in size and depth. In Figure 5.3 the meshed plate and the heating source can be
seen from the top.

The workflow can be used with any finite element simulation but for this research
a dynamic line scan (DLST) simulation will be used. The simulation is build in
analogy with the simulation used in [51]. A 2D meshed line heater moves above
the top surface of the sample. The heating load is connected to the moving line
heater to create a DLST simulation.

Figure 5.4: Dynamic Line Scan Thermography simulation during movement of the
heating source. The sample can be divided into three parts: the cold region (dark
blue) has not been heated yet, the region that has been heated and is cooling down
(light blue region) and the region right beneath the heating source (yellow region).

The initial temperature is set on 20 °C. In order to create a dynamic simulation a
transient solution is used. Since the length of the sample is fixed, the simulation
time can be calculated out of the moving velocity of the heating source using
following formula:
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length[mm]

heatingTime = (5.1

velocity[mm/ s

It is not possible to use the heatingTime as the total simulation time since this only
accounts for the time that the heating source moves. The total simulation time
consists of the heatingTime and coolingTime in order to minimize the influence of
the heating source in the last simulation step. The coolingTime can be calculated
as follows:

heat[W]
velocity[mm/s] x O[W/mm]

coolingTime = 10log( ) 5.2)

0 represents the thermal resistance which can be calculated using the thickness,
thermal conductivity and area of a sample. The thermal resistance in this case
means that for every millimeter of thickness, the material resists the flow of heat
with approximately 1.71 watts.

0.015[W]

b= 0.2[W/(m.K)] * 0.165[m] * 0.265[m]

~ 1.71[W/mm) (5.3)

If a large heating power and a small velocity is combined, longer cooling time
is needed and vice versa. Therefore a logarithm is used for the calculation of
the coolingTime. The total simulation time can be calculated as the sum of the
heatingTime and the coolingTime using equation 5.4.

heat[W]
velocity[mm/s] x O[W/mm]

length[mm]

endTime = + 10log( ) (5.4)

velocity[mm/s]

5.2.2 Expressions

Since artificial intelligence requires an enormous amount of data it is not desir-
able to create a finite element simulation for every defect possible. In order to
automate the simulating process 'Expressions’ are used in the finite element simu-
lation. ’Expressions’ can be linked to simulation parameters in order to bundle all
the needed variables in one place. The variables used in the simulation are heating
power and source velocity. The variables endTime, heatingTime and coolingTime
are then calculated. The advantage of using 'Expressions’ is the fact that you can
change dimensions, constraints and loads without the need of really editing the
simulation. The expressions used for this research are visible in Table 5.1. Since
the flat bottom hole plate in this research consists of a PVC plate with a variety of
indentations, the parameters defect diameter and starting depth of the defect are
excluded. The parameter camera height is not included either since the diameters
of the defects are fixed on values that cover a 3x3 pixel grid in the range of camera
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cooling 10log(heat/speed*1000000*thermal resistance)) | 65.26 | s Time
EndTime (width/speed) +cooling 85.64 Unitless
heat 25.5 255 | W Heat Flow Rate
speed 13 13 mm/s | Velocity
TimeStep EndTime/40 2.14 Unitless
width 265 265 mm Length
thermal resistance | 1.71 1.71 W/mm | Thermal resistance

Table 5.1: Expressions used in the thermal simulation. One can see the created vari-
ables heat, speed, endTime, coolingTime and heatingTime with their corresponding
values and units.

heights. The ambient temperature could easily be added as an input parameter,
but since the purpose of this research is to determine wether it is possible to de-
tect all defects in the least amount of measurements, the ambient temperature
should remain constant within the consecutive trials. Therefore there is no benefit
in adding the ambient conditions as an input parameter. The distance between
the camera and the heating source is discarded since all data from every mesh
node is used to detect the defects. Therefore the distance has no influence on the
detectability.

5.2.3 Journal File

The use of expressions facilitates editing a simulation in an efficient way. However
it does not enable to perform simulations automatically. It is possible to write a
dedicated script to handle the automated simulations, but Siemens NX offers a so-
lution for the automation. In Siemens NX it is possible to use a "Journal File’, what
can be described as an intelligent macro. The user records all necessary actions
once in order to create the ’Journal File’. The "Journal File’ is automatically created
in Visual Basic and consists of every step performed by the user. Afterwards the
created file can be used to perform automated simulations. The file created for this
research consists of four distinguishable parts: editing the expressions, solving the
simulation, exporting the results to a CSV-file and saving the simulations followed
by closing it. Each simulation starts with adjusting the parameters to the desired
values using the expressions. Thereafter the simulation is updated and solved to
generate results for the desired situation. Since the simulation is transient the
results will be generated for each time step in the process.

5.3 Matlab

The ’Journal File’ can be executed from the command line using the command
in equation 5.5. The variables heat and speed are changed in order to create
thermograms as if they were generated using different measurement parameters.
The variables SoftwarePath, JournalFile, GeneralFolderPath and Map are used to
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refer towards the proper places of the journal file, the simulation file and the
location where the CSV-files should be saved.

emd = sprintf(""%s""%s"" — args” % f%f” %s%s"", SoftwarePath,

5.5
Journal File, heat, speed, General Folder Path, Map); system(cmd) (5.5)

5.3.1 Result Sampling

Since the simulations in this research are transient, a CSV-file is exported for each
time step in the simulation. Each time step the temperature for all mesh points is
calculated and the heating source is moved. It can be compared to the frame rate
of a camera. The lower the frame rate the longer the time between two consecu-
tive frames. In order to create a sequence of thermogram, multiple images have
to be created using the CSV-file from different time steps. Inspecting a number
of successive thermograms enables performing post-processing in order to detect
defects in an object. Air voids or other defects will affect the cooling down of
an object resulting in hotspots where the defects are located. As the simulation
time is influenced by the movement speed of the heating source, the number of
time steps is also dependent on the movement speed. In order to investigate every
thermogram it is necessary to process all time steps generated by the simulation.
For each time step a table is generated from the CSV-file. This table consists of the
X,Y and Z location of a node in the finite element model and the corresponding
temperature of that node at that moment.
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5.3.2 Top Surface Filtering

Performing active thermography inspections, the top surface of a sample is recorded
in order to detect the temperature change of the surface. Finite element simula-
tions consist of 3D elements and the temperature of the whole object is calculated.
In an effort to create thermograms the top surface of the 3D object has to be fil-
tered out of the data points. The simulation exists of a flat bottom hole plate and
a 2D meshed heater that moves above the plate as explained in [51]. In order to
filter the top surface out, the nodes with the highest z-values are removed from the
results. These nodes represent the line heater and are therefore not desirable in
the results file. The second highest set of z-values correspond to the top surface of
the flat bottom hole plate. Consequently the corresponding x, y and temperature
values for these z-values are used to create the top surface as a 2D thermogram.

5.3.3 Top Surface Resampling

Finite element simulations require meshed objects for their working principle. The
element size of a mesh influences the accuracy of the results as can be seen in
[72, 73]. On the other hand there is a strong correlation between the mesh size
and the solve time of a simulation. Smaller mesh sizes typically resolve in more
accurate results, but at the cost of longer simulation times. Performing a conver-
gence study however it is possible to find the minimal mesh size after which the
result does not improve despite shrinking the mesh size. When generating large
datasets it is desirable to keep the simulation time as low as possible. Therefore
the mesh size found in the convergence study is used. Thermal cameras on the
other hand have a certain resolution. In favor of creating simulated thermograms
as close as possible to real thermograms, the resolution of thermal cameras needs
to be mimicked. The filtered top surface from section 5.3.2 has a resolution de-
pending on the amount of mesh nodes in the simulation. The temperatures of the
top surface are interpolated and then resampled to resemble the resolution of a
thermal camera. The resampled thermogram is compared to the result view of the
finite element simulation in Figure 5.5.
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Figure 5.5: A comparison between the visualisation in the finite element simulation
(left) and the thermogram provided by the processing algorithms (right). The holes
can be detected in both the images, however the resampled top surface is more suitable
for Al training data. Due to the interpolation, the edges of the mesh elements are not
visible and therefore the neural network algorithm will not be affected by them.

5.4 Reinforcement Learning

Generating data for artificial intelligence applications is time-consuming and can
be very expensive since every possible occurrence of parameter combinations has
to be recorded. Multiple samples have to be manufactured, heated, recorded and
in between measurements the sample has to cool down to its surroundings con-
ditions. By the use of finite element simulations the cost and time required to
produce data for one specific case can be minimized as can be read in [54]. This
research focuses on creating training data for reinforcement learning automati-
cally out of finite element simulations.

Reinforcement learning is a subdomain of artificial intelligence where the model
learns how to react on the environment. The agent, the computational entity or
program that is responsible for decision-making, gathers knowledge of the envi-
ronment in which it works trough trial and error at first. The environment exists
of the possible actions the agent can perform, called action space, and the obser-
vations that are carried out, the observation space. For this research the possible
actions are the parameter values that can be chosen in analogy with the param-
eters in [51]. The main objective of the reinforcement learning agent is to find
the best parameter set to detect as many defects as possible in the flat bottom
hole plate in the least amount of measurements. The best decisions are saved and
thereby the agent becomes smarter with every attempt. In order to distinguish a
bad from a good attempt a decent reward function has to be declared.
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Amount of episodes Defects detected
Q-learning agent 800 8or9
Deep Deterministic Policy Gradient agent | 400 7
Policy Gradient agent 400 8
Policy Gradient with Baseline agent 400 9

Table 5.2: Comparison of different training methods applied in this research.
The policy gradient agent with baseline performed the best for this application.

5.4.1 Reward

For this research the reward is a combination of the amount of steps/tries the agent
performs and the amount of holes it detects. For each try a point is deducted in
order to train the agent to perform as little steps as possible. The amount of
detected defects functions as a reward since the best parameter set ensures to
find the largest amount of defects in the least amount of measurements. Using the
resampled images from Section 5.3.3 the holes can be easily counted after creating
a binary image.

5.4.2 Training

The creation and training of the agent is performed in Matlab using the Reinforce-
ment Learning Toolbox. The training algorithm used in this research is the policy
gradient agent. This method provided the best and fastest training sessions with
eventually a convergence to the maximum number of defects as can be seen in
Table 5.2. In order to train the agent, the reinforcement learning episode manager
is used. The training parameters were optimised and resulted in a policy gradi-
ent agent with baseline, entropy weight loss = 1, discount factor gamma = 0.3
and sample time = 0.05. These parameters were found by conducting various
training sessions, carefully examining the influence of each parameter. Multiple
values were used for each parameter in order to find the most optimal one. The
training outcome is visualised in 5.6. Each training episode existed of maximal 60
steps, in other words the agent can try 60 possible parameter combinations in ev-
ery episode. After every episode the policy is evaluated and if necessary adjusted
by the agent. In this research an average of 400 episodes was needed to find the
maximum amount of holes in one episode. The agent learned what combinations
of parameters needed to be used consecutively in order to find all nine holes in
the flat bottom hole plate.
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Figure 5.6: Screenshot of the Matlab Reinforcement Learning Episode Manager. The
yellow line represents the value of the baseline, the red line is the average reward and
every blue point is equal to the episode reward. This Matlab tool is used during the
training of the agent in order to inspect the improvement. The vertical axis represents
the reward received during the training and the horizontal axis equals the amount of
episode numbers needed.

5.5 Discussion

It is possible to use reinforcement learning in order to train an agent to find the
holes in a flat bottom hole plate. Using a policy gradient agent with baseline re-
sulted in the best outcome and is able to find all nine defects in the sample to
be inspected. In comparison to the optimisation paper of Verspeek et al. [51]
the agent is not trained in finding the best parameter combination for one specific
defect. The agent is trained to find all defects in the least attempts possible. In
order to find the best parameter sets in order to detect all nine holes, the agent
needed 400 episodes consisting of 60 steps each. In total 24 000 attempts needed
to be performed in order to train the agent. Optimizing the parameter set using
response surfaces as written in previous work [51] took 1000 simulations to create
the response surface. Once this approximating surface was created, the optimal
parameter set for each defect can easily be found. One step for the reinforce-
ment learning consists of performing a finite element simulation and detecting the
amount of visible holes and thus takes minimum the same amount of time as an
individual simulation during the creation of a response surface. Therefore it is
faster to create a response surface for the parameters of DLST in comparison to
training a reinforcement learning agent.
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5.6 Conclusion

The goal of this chapter was to investigate how thermograms could be generated
from finite element simulations in an optimal manner. Using expressions, the
simulation file can be changed without opening the finite element software. The
results produced by the finite element simulation are exported automatically for
each time step making it possible to distinct a thermal image sequence. In order
to visualise the data as a thermogram, the 3D result data from the simulation
need to be processed in order to create 2D thermograms. These generated images
can be used as learning data for artificial intelligence applications in a cheaper
and faster way than performing real thermal inspections. It is possible to train a
reinforcement learning agent to find the optimal parameter set for DLST. However
it is faster and more reliable to create a response surface using simulations. Future
work will investigate the use of gaussian processes compared to the use of response
surfaces.



(Chapter [\

Thermography Parameter Design
via Gaussian Process Emulation

The following chapter elucidates the use of Bayesian emulation to perform parameter
optimization. This technique has the benefit of performing optimization based on a
limited amount of data. Moreover this technique is capable of providing answers to
multiple relevant industrial questions. Chapter 6 is published in MDPI Algorithms as
“Dynamic line scan thermography parameter design via Gaussian process emulation”
[22].

Simplified example of the Bayesian Emulation methodology:

Behold the blue function y = f(x) one last time. In Bayesian Emulation, an
approximation is formed by intelligently selecting data points for sampling.
With each sampled data point (pink points), one obtains an uncertainty inter-
val for the regions between two consecutive sampled points (pink regions).
These colored regions represent all the possible curves that can be formed
by these sampled points. The further the curves are from the original blue
curve, the greater the uncertainty in that area. The next data point is chosen
at the location where the uncertainty is greatest, and a new approximation is
formed using the sampled data points. By sampling in this manner, it is pos-
sible to form a good approximation of the original curve in a faster and more
efficient way. This approximation is represented by the red curve, which is
formed by sampling the red points. Once again, this example used a curve,
but this technique can also be extended to higher-dimensional spaces.
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Figure 6.1: Visualisation of the Bayesian Emulation methodology. The blue curve
is approximated by sampling data points in a smart manner based on the biggest
uncertainty.

6.1 Introduction

Active thermography is widely recognized as a fast, reliable and contactless non-
destructive inspection technique. It can be performed in a stationary manner in
which the sample to be inspected remains at the same location. This way the
object is easily heated using a heating source and the cooling down of the sample
is registered using a thermal camera. This method limits the size of the object
since the sample has to fit in the field of view of the camera. It is possible to
examine larger samples by placing the thermal camera at a greater distance of the
sample. The downside of placing the camera further away of the sample, is the
resolution reduction in a specified region. In order to detect a defect with sufficient
certainty, the defect has to have an area of at least 3x3 pixels [51]. Larger samples
can be inspected using dynamic line scan thermography (DLST). This technique
uses a heat source and a thermal camera in tandem, which moves relative to the
sample to be inspected. This can be achieved in two ways: either the camera and
heating source are moved above the object using a robotic arm, or the specimen
can translate on a conveyor belt underneath the heating source and the camera
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[74]. Since dynamic line scan thermography is a relative new technique, it is less
widely spread in comparison to other nondestructive testing methods.

An expert skilled in the art has to define the DLST measurement parameters in
order to prevent time-intensive trail and error attempts to find a workable param-
eter set. In this work, we focus on the movement velocity, the distance between
the heat source and the camera, the heating power, the start depth of the defect,
the diameter of the defect, the height of the camera and the ambient temperature.

Several studies have been performed in order to simplify the search for these DLST
measurement parameters. Finite element simulations have been used in order to
update the parameters according to measurements. Response surfaces are used as
approximation in order to find the best parameters based on the characteristics of
the defect (depth, dimension) and the thermal properties of the material [51]. Us-
ing the response surface and some fixed parameters provided by the inspector of a
specimen, the best matching set of parameters is predicted. A response surface can
be generated using data from multiple measurements. However, in order to create
such a response surface, a large amount of measurements are needed. Generally,
this is a time-consuming and costly endeavour. Therefore, a response surface is of-
ten built from data gathered in multiple finite element simulations. The amount of
simulations matches the amount of needed measurements, nonetheless perform-
ing simulations is cheaper cost-wise and time-wise. The simulation performed for
this manuscript consists of a flat bottom hole plate heated by a line heater moving
above the sample. The simulated object is a flat bottom hole plate since this is
widely used in scientific research on thermography. The thermal behaviour of flat
bottom holes resembles best the response expected by most defects whereby ac-
tive thermography is used as inspection method. Such defects are delaminations,
lateral cracks, areas of porosity, etc. Attempts are made to create a standard for
thermal imaging based on the use of flat bottom hole plates [75, 76]. Therefore
this research is limited to flat bottom hole plates. However a flat bottom hole
plate does not resemble above-mentioned defects, therefore further validation of
the proposed research is needed.

A different approach to predict an optimal parameter set, is to use artificial intel-
ligence. For instance, it is possible to train a reinforcement agent to search for the
best parameters to detect multiple defects in a flat bottom hole plate. However,
training the reinforcement learning algorithm required more simulations than gen-
erating the response surface and therefore is less interesting.

Computer simulations are used in a wide range of scientific and engineering chal-
lenges [77]. In this work we follow their definition of a simulation, stating that
it is any computer program that imitates a real-world system or process. Being
able to simulate an experiment instead of actually conducting it in the real world,
greatly reduces the required time, cost and other and practical implications such
as possible health risks or consequences for the environment.

However, since simulators are programmed to a specific task, they are not insensi-
tive to bias. Moreover, for more complex simulators, the amount of time needed to
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run the simulations can become cumbersome. In order to overcome these draw-
backs, the simulation itself can be modelled by a machine learning algorithm,
which predict the outcome of the simulator. Popular choices for these models are
Gaussian processes [78], random forests [79] and neural networks [80]. In this
sense, the emulator is a 'model of a model’. The gain stems from the fact that a
complex simulation is much more computationally expensive than a computation-
ally cheap emulation. Over the past years, emulation has found its way in several
domains. In [81], a Gaussian process was implemented to emulate a mechanical
model of the left ventricle, which allowed for a more rapid discovery of the opti-
mal parameter set for the design. The authors of [82] build an emulator to model
to calibrate an engine. The spread of an infectious disease was modelled in [79].

For machine learning models that are probabilistic by nature, they serve as a sta-
tistical surrogate model. This allows for the quantification of uncertainty of their
predictions, which plays an important role in decision making or risk assessment.
For this reason we focus on Gaussian processes in this work. By following the
Bayesian paradigm, their predictions consist of both a mean and a variance, which
is interpretable as a measure of uncertainty. A more detailed description is given
in Section 2.

The rest of this paper is structured as follows. In the next section we explain
how we generated the data and give some theoretical background on Gaussian
processes and uncertainty sampling. The third section describes our results. In
Section 4 we discuss these findings. Finally, conclusions are provided.

6.2 Materials and Methods

6.2.1 Data generation

The simulated data used in this manuscript is provided by a finite element simula-
tion. The simulation consists of a flat bottom hole plate and a line heater. The flat
bottom hole plate has following dimensions: 330 x 170 x 10 mm. The material
linked to the plate is PVC and the circular pocket is located in the centre of the
sample. A representation of the simulation can be found in Figure 6.2.
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Figure 6.2: Simplified schematic visualisation of the finite element simulation as
described in Chapter 3. The simulation consists of a flat bottom hole plate (blue) and
a line heater (yellow). The line heater moves above the sample in a linear motion.

The line heater translates above the flat bottom hole plate and the thermal re-
sponse of the sample is examined. The sample to be inspected is a PVC flat bottom
hole plate with defects varying in size and depth. The simulation uses the fol-
lowing variables: movement velocity, distance between the heat source and the
camera, heating power, start depth of the defect, diameter of the defect, height of
the camera and ambient temperature. This allows for a variety of scenarios to be
mimicked. The result of the simulation is the temperature difference between a
position on the surface above a defect and a position that is not above a defect.
The result of each simulation is used to generate a response surface as explained
in Chapter 3.

Running a simulation is much faster and cheaper than performing actual measure-
ments, since there is no need for a cooling time between consecutive simulations.
However, as thoroughly described in Chapter 3, every simulation still requires solv-
ing time. The data provided by these simulations serve as input for the training
of the underlying model in the emulation. In this work, the model is a Gaussian
process.

6.2.2 Gaussian processes

Here we give a brief overview of Gaussian processes. A more comprehensive treat-
ment can be found in [78]. The authors define a Gaussian process (GP) as a
continuous collection of random variables, any finite subset of which is normally
distributed as a multivariate distribution.

We denote a dataset of n observations as {(x;, y;)}!~,, where x is an input vector
of dimension d and y is a scalar-valued observation. In regression, the objective is
to find a function f : R — R,

y=r(x) +e e~N(0,07), 6.1
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with e being identically distributed observation noise. This function can be drawn
from a GP, which is fully defined by its mean m(x) and covariance function k(x,x’),
also denoted as

f(x) ~ GP(m(x), k(x,x)). (6.2)

The covariance function is parametrized by a set of hyperparameters 6, that can
be learned by maximizing the log marginal likelihood. In our experiments we use
BFGS, a quasi-Newton method described in [83]. The squared exponential kernel
(SE), also called the radial basis function kernel, is applicable in a wide variety of
situations because it generates smooth (infinitely differentiable) functions. It has
the form:

_ o~/ 2
ksp(x,x) = % exp (—"‘2;'> 7 (6.3)

in which 0? is a height-scale factor and [ the length-scale that determines the ra-
dius of influence of the training points. Since our data is both very smooth and
stationary (covariances only depend on the distance between two data points, not
their location), the squared exponential kernel is a more than reasonable choice.
We do however implement a different length-scale parameter for every input di-
mension. This technique is called automatic relevance determination (ARD) and
allows for functions that vary differently in each input dimension [84]. The kernel
used in this work has the form:

d —
k’SEARD(X,X)—O’feXp %Z (!Xj XJ‘) (6.4)

6.2.3 Active learning

The process of simulating the values for the temperature difference given a large
amount of inputs is very time consuming. The strategy to overcome this via em-
ulation, is to train a machine learning algorithm to predict those values. The aim
is now to train the model as accurately as possible given a limited number of data
points. This is achieved by the following steps:

1. A small selection of data points is sampled uniformly from the dataset. Al-
ternatively, those points could lay an n-dimensional grid, be Latin hypercube
sampled or chosen from a Sobol sequence. In [81], a comparison between
the different sampling methods is made. In this work, we restrict ourselves
to uniform sampling, as it is the most simple method. For a more compre-
hensive study on this topic, we refer the reader to [85] and [86].

2. The model (in our case the Gaussian process) is trained on this initial small
dataset.

3. The point from the input space with the highest uncertainty (variance) in
the GP’s posterior distribution is chosen and added to the data set of the
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GP, which is then retrained. This method is called Uncertainty Sampling
(US). Alternatively, the point which reduces the total variance of the poste-
rior could be chosen. This method is called Integrated Variance Reduction
(IVR). We implemented US because it is cheaper to compute [87].

4. Step 3 is repeated until a certain criterion is met. When limited by a compu-
tational budget, this could be a fixed number of iterations. Another criterion
is convergence in the posterior distribution, which means that adding a new
data points no longer has a significant result on the predictions of the GP.

This process is called active learning and has been well studied by the machine
learning community [78, 88, 89, 90]. A more recent view on the subject in the
context of information theory can be found in [91]. This algorithm is summarised
in Algorithm 6.1.
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Algorithm 6.1 Active Learning with Uncertainty Sampling

1: trainset < dataset(n) > start with a training set of n random points
2: testset < dataset - trainset > put remaining points in test set
3: GP.train(trainset) > train Gaussian process on trainset
4: oldPosterior < GP.predict(testset + trainset) > get the GP posterior
5. while nrOfIterations i maxNrOflIterations > check computational budget
6: or diffPosterior ¢ minDiffPosterior do > check for convergence
7: ActiveLearninglteration(GP) > perform one iteration
8: newPosterior < GP.predict(testset + trainset) > get the GP posterior
9: diffPosterior <— newPosterior - oldPosterior > calculate the change
10: oldPosterior < newPosterior > store for next iteration

11: end while

12: procedure ACTIVELEARNINGITERATION (GP) > Active Learning iteration
13: trainset «+ dataset(US(testset)) > update training set
14: testset < dataset - trainset > update test set
15: GP.train(trainset) > retrain GP

16: end procedure

17: procedure US(testset) > Uncertainty Sampling
18: for all xg € testset do > evaluate every test point
19: if var(Xest) > var(Xmostvar) then

20: XmostVar <— Xtest > this point becomes new candidate
21: end if

22: end for

23: return Xmostvar > return test point with most variance

24: end procedure

6.3 Results

The purpose of this manuscript is to investigate the feasibility to use emulation
for dynamic line scan thermography. Predicting the optimal parameter set is dif-
ficult and highly dependent on the defect characteristics. Generating a sufficient
detailed response surface requires a large number of data points. The incentive of
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using Gaussian Process emulation for parameter prediction, is based on the idea
that it takes less data points to learn the effect of the different design parameters
in comparison to generating a response surface.

We evaluate the benefits of dynamic line scan thermography emulation by means
of a Gaussian process in two ways. First, we assess the ability of the model to
capture the underlying physical truth. Second, we formulate several design spe-
cific queries that arise in a practical setting and investigate to which extend the
emulation can be utilized to answer these.

6.3.1 Model performance

In order to assess the accuracy of the model, we need a ground truth. We ran
the simulator, as described in [51], 45000 times. However, the movement velocity,
height of the camera and the ambient temperature were kept constant at 10 mm/s,
450 mm and 20 °C respectively. The remaining input variables are:

1. distance between the heat source and the camera, range 50 mm to 600 mm
2. heating power, range 50 W to 800 W
3. start depth of the defect, range 2 mm to 9.8 mm

4. diameter of the defect, range 12 mm to 24 mm

These four-tuples are the inputs of our dataset. The reason we limited the dataset
to four variables, is that composing a dataset of seven input variables with enough
resolution to assess the accuracy of the model, would take a lot more data points
and thus time to simulate. Moreover, in an industrial context, one does not always
have full control over the parameters we fixed in this demonstration, as they are
dictated by the production process and installation itself.

For each of those four-tuples, the temperature difference between a position on
the surface above a defect and a position that is not above a defect is calculated.
This temperature difference is the output of our dataset.

Via active learning, as described in Section II, we iteratively pick data points from
the dataset and move them to the training set of the Gaussian process. The re-
maining data points in the dataset serve as test points. After the Gaussian process
is trained, two calculations on the test points are performed:

1. The root mean square error between the posterior mean in each test point
and the actual values from the simulations. This number will serve as a
measurement for the deviation of the model from the underlying truth.
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2. The average posterior standard deviation for all remaining test points. This
is a measurement for how much uncertainty there still is in the system. The
point with the highest variance, i.e. the highest uncertainty, becomes the
point that will be moved from the test set to the training set of the Gaussian
process in the next iteration.

When both of these numbers flatline, then there is little to be gained in running
more simulations. In that case, the Gaussian process is able to approximate the
ground truth. Since Gaussian Processes are used in this research to approximate
a surface rather than to find an optimum, the RMSE and the standard deviation
represent the total error between the approximation and the ground truth. If the
total error becomes smaller, this means that the approximation is improving as a
whole.

We performed the active learning process for 500 iterations. We started with 25
training points randomly chosen from the dataset. This makes for a total of 525
data points in the Gaussian process of the last iteration. In Figure 6.3 the learning
curves of the Gaussian process are visualised. The exact curves of the iterations
depend on the initial random points, that are drawn from the dataset described
above. Therefore, we repeated the experiment five times.
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Figure 6.3: Graphical visualisation of the learning process of the Gaussian process
for five runs of 500 iterations. The top figure represents the Root Mean Square Error
(RMSE) of the learned surrogate compared to the response surface created in Chapter
3. The error describes the difference between the trained Gaussian process and the
generated response surface of Chapter 3. Both are approximations of the real-world.

The bottom figure shows the average standard deviation of the Gaussian process pos-
terior prediction.
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The hyperparameters for the covariance functions, as described in Equation 6.4,
of the trained Gaussian processes, can be found in Table 6.1.

Table 6.1: Hyperparameters of the trained Gaussian processes

Run ‘ I1[mm] I2[W] I3[mm] ly[mm)] a3[C]
1 142.81 246.17 2.28 2.35 11.97
2 150.00 255.99 2.30 241 11.75
3 182.72 216.52 2.23 1.98 10.87
4 177.48 223.02 2.26 1.96 10.97
5 153.98 238.46 2.60 2.37 12.84

The values for the hyperparameters of the covariance function of the trained Gaussian
processes for each of the five runs.

6.3.2 Parameter Design

Generating a response surface is a technique used in Design Of Experiments (DOF)
often with the idea of investigating the interference between several factors in a
process. It is possible to determine which factors have an influence on the output
effect and in what way the output responds on a change in one or a collection
of input parameters. Afterwards the insight in the process and the response sur-
face itself can be used to optimize the parameters in order to minimize/maximize
the output effect of the process. In industrial applications, one is generally not
interested in the influence of the different input parameters on the output effect.
There, focus lies on how to optimize the efficiency of the inspection process itself,
or in other words, how to reduce its economical impact on the overall production
process.

Once a Gaussian process has been trained to emulate the simulations up to an ade-
quate level, we can query the model with real world engineering design questions.
Below, we give a few examples. We picked the threshold values in these examples
in an arbitrary way. Here, they only serve for demonstration purposes. They are
of course application specific. In a practical setup, they depend on the type of the
camera used, the ambient temperature in the production facility, the material of
the sample under inspection, etc.

Example 1: From a practical and economical point of view, the most crucial input
parameter is the heating power. The reduction of the energy needed to heat a
sample under inspection, results in a drastic reduction of the inspection cost. To
accommodate this, we can ask the question: What parameter combination should
be used to be able to detect a predefined defect with a certain start depth and
diameter, with a minimal of amount of heating energy needed? For instance, we
want to be able to detect a defect with a diameter of 14 mm, which is situated
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6 mm below the surface. We query the GP posterior prediction for all test and
training points, by filtering on the input variables start depth and diameter. Then,
we filter the temperature difference on a range from 5 °C to 10 °C. A temperature
difference that is lower, might make it hard to detect with a given camera. A tem-
perature difference that is higher, means the sample under inspection is heated
to a value that is too high, resulting in a waste of energy and undesirable effect
on the material itself. From all the remaining possible inputs, we choose the ones
with the lowest heat load. In our case this is 50 W. We end up with a range for the
distance between the camera and the heat source of 335 mm to 420 mm. All these
values yield a temperature difference between 5 °C and 10 °C for the given defect.
On the other hand, when the distance between the heat source and the camera is
below this range, we can observe that the heat load has to be increased to 75 W
to still yield a temperature difference between 5 °C and 10 °C.

Example 2: In some practical scenarios, it is possible that the distance between
the heat source and the camera has to be a fixed value. For instance due to con-
straints on the physical setup in the production environment. We can ask the
trained model: What parameter combination should be used to be able to detect
a range of defects with only adjusting the heating power? Again, we filter the
temperature difference on a range from 5 °C to 10 °C. We fix the distance between
the heat source and the camera to 100 mm. We observe that we need a minimum
of 500 W to be able to detect all defects from our dataset. When the heat load is
below 500 W, we can no longer detect defects that are lower than 9.8 mm below
the surface.

Example 3: The model can also be used to visualize regions in the input space
that result in undesirable temperatures for the sample. For instance, we can high-
light regions where the temperature of the sample would become too high. This
serves as a warning, as temperatures that are too high might cause damage to the
sample under inspection. In Figure 6.4, we provide an overview of the predicted
temperature differences per defect diameter. Regions that are coloured are to be
avoided when designing the dynamic line scan thermography setup. These plots
also reveal that some regions of the input space are workable for some defects,
but not for others. The full benefit of these plots comes into its own when using
software that allows the end user to rotate the generated cubes, which is trivial
to set up in Matlab or any Python environment equipped with a graphing library
such as Matplotlib.

Example 4: In this last example, we visualize the plots from Example 3 in a dif-
ferent way too highlight regions of the input space that correspond to appropriate
temperature differences. In Figure 6.5, we colour regions that result in hard to
detect (or even undetectable) temperature differences red. For this example, we
set the threshold to an arbitrary value of 5 °C. Regions that result in temperature
differences above 25 °C are coloured yellow. Ideal regions lie in between those
values and are given the colour green.



CHAPTER 6. THERMOGRAPHY PARAMETER DESIGN VIA GAUSSIAN PROCESS
98 EMULATION

Table 6.2: Optimal parameter sets found for the examples explained above.

Parameter Example 1 Example 2 Example3 Example 4
Ambient Temperature [° C] | 20 20 20 20
Velocity [mm/s] 10 10 10 10

Camera Height [mm] 450 450 450 450
Diameter Hole [mm] 14 12-24 22 12
Startdepth Hole [mm] 6 2-9.8 2-9.8 2-9.8
Heating Power [W] 50 500 200 - 400 600 - 800
Distance cam. - heat [mm] | 335 - 420 100 500 - 600 50 - 200

Example 1 handles the question 'What parameter combination should be used to be able
to detect a predefined defect with a certain start depth and diameter, with a minimal of
amount of heating energy needed?’.

Example 2 searches for the best parameter combination to detect as many holes as
possible with only adjusting the heating power.

Example 3 predicts the regions in the input space that result in undesirable temperatures
for the sample. Consequently the interesting regions can be found as the remaining
parameter combinations.

Example 4 visualizes the regions of the input space that correspond to appropriate tem-
perature differences. Depending on the colours one can find a suitable region.
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Figure 6.4: Visualization of the temperature difference for six different defect diam-
eters. (a) 12 mm, (b) 14 mm, (¢) 16 mm, (d) 18 mm, (e) 20 mm and (f) 22 mm.
Red indicates temperature differences that might result in damaging the sample under
inspection. These plots serve as a warning when designing a setup. One can combine
different plots to find a suitable region to perform measurements without the danger
of damaging the sample regardless of the size of the defect.
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Figure 6.5: Visualization of the temperature difference for six different defect diam-
eters. (a) 12 mm, (b) 14 mm, (¢) 16 mm, (d) 18 mm, (e) 20 mm and (f) 22 mm.
Red are temperature differences below 5 °C, yellow above 25 °C and green in between.
Only the green regions are of practical value in a real world application.

6.4 Discussion

Both the RMSE and the average standard deviation show an initial steep decline
that gradually flatlines. All our experiments have shown to converge to the same
values after enough iterations. These curves support the decision making pro-
cess whether or not to continue to add more data points (costly simulations). For
our application, one could conclude that after 350 iterations the RMSE and the
standard deviation are sufficiently low enough and do not change significantly
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anymore. The total amount of iterations needed to train the Gaussian process
such that it can approximate the simulations up to an adequate level, depends on
the application itself. It is a function of the available computational budget and
the amount of uncertainty that can be tolerated. Similarly, generating a response
surface is also subjective in the sense of deciding when a surrogate has a sufficient
resolution and accuracy for the specified application. Therefore this manuscript
does not focus on the exact numbers or percentage of data points needed to ap-
proximate the response surface.

Simulators and emulators are models of an underlying truth and as such nothing
more than an approximation. This means that one has to be prudent about the
outcomes of such models. For instance, it is possible for the model to predict values
that do not correspond with reality or, even worse, that do not have any physical
meaning. For instance, we noticed that for some test points (points were we make
predictions) far away from the data, it is possible to obtain negative values for the
temperature difference, even though the data only contained positive values. This
issue can be dealt with in two ways. First, one could implement constraints on the
model. In our case we could alter the covariance function, such that only positive
values can be predicted by the model. This is an approach thoroughly explained in
[92]. Second, in this research, we chose the Gaussian process for the underlying
machine learning model. By following the Bayesian paradigm [78], this stochastic
model makes predictions that are not just numerical values (in our case for the
temperature difference). They are also accompanied by a variance. As such, each
prediction for every test point is in fact a normal distribution. The variance can
be interpreted as a measurement of uncertainty about the prediction. This extra
information should be taken into account when evaluating the predictions.

As mentioned throughout the text, several optimisations could further improve
the performance of the model. They were not investigated in this work, because
we wanted to restrict ourselves to a basic implementation of the core idea of ap-
proximating dynamic line scan thermography parameter design via emulation. We
consider these to be future work. First, the initial sampled points were drawn uni-
formly from the input space. Several alternatives are described in the literature
[81, 85, 86]. As the total number of sampled points increases, the influence of the
initial points becomes less important. Still, on very tight computational budgets,
this could become a factor of interest. Second, the Uncertainty Sampling method
sometimes favours points on the boundary of the input space. This is due to the
fact that the density of data points is lower in those regions and thus the uncer-
tainty is higher (there are no data points beyond the boundary). Integrated Vari-
ance Reduction takes this drawback into account and calculates the total amount
of uncertainty reduction a new data point yields. It does so for each point in the
test set. This reduces the score of points in the vicinity of the boundary. It is
to be expected that Integrated Variance Reduction would reduce the number of
time consuming sampled input points, but at a higher computational cost. This
is also stated in [87]. The effect of this remains an open question. Third, as also
stated above, the Gaussian process used in this study can be further developed to
incorporate prior knowledge in the form of constraints.
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6.5 Conclusion

We have described a method to emulate the time consuming simulations for a
dynamic line scan thermography setup. By means of a Gaussian process, the sim-
ulator can be approximated. We have shown that the accuracy increases for every
simulation that is added to the training set of the Gaussian process. However,
the increase flatlines after a certain application specific number of simulations. At
this point, adding more simulations, a time consuming effort, does not add to the
overall usefulness of the model. We also posed several parameter design ques-
tions relevant in real world engineering design challenges. We demonstrated that
a trained emulator can be queried to help find solutions to those questions. This
method facilitates the process of finding an economic viable set of design parame-
ters for a dynamic line scan thermography setup in industrial applications.



(Chapter _//

A novel line scan algorithm for
unsynchronised dynamic
measurements.

The final chapter of part 3 explicates a novel line stacking technique to enable the
processing of Dynamic Line Scan Thermography data without the need of synchro-
nizing the movement of the sample to the framerate of the camera. This enables the
implementation of dynamic measurements in processes where the translation speed
is fixed. The following chapter explains the algorithm itself and shows the data as
a result of applying the algorithm on UV measurements, hyperspectral images and
thermal images. Besides converting the spatial thermal data to temporal data, the
proposed algorithm also resolves the negative effects of heterogeneous illumination
that can occur during inspections.

7.1 Introduction

Non-destructive testing is an attractive way to evaluate the performance, integrity,
or deterioration of an object or structure. With nondestructive testing, the object
or structure being inspected does not have to be disassembled to find hidden fea-
tures that are not visible on the surface. Another advantage is that, compared to
destructive analysis methods such as fracture or accelerated corrosion testing, the
inspection can be performed without affecting the material itself.

There are several methods of nondestructive testing, such as magnetic particle in-
spection (MPI) [93], radiographic testing, ultrasonic testing (UT) and eddy current
testing (ECT). However, there are several drawbacks using these methods such as:
MPI can only inspect metallic samples, RT requires extensive safety precautions,
UT and ECT are point based methods which are not suitable for a large sample
size. To compensate the aforementioned drawbacks, camera-based methods can

103
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be used in a wide variety of applications. Camera based methods include: In-
frared Thermography (IRT), Hyperspectral Imaging, Ultraviolet Imaging or RGB
Imaging.

Infrared thermography is becoming increasingly important in nondestructive test-
ing for applications such as subsurface defect detection [94, 95, 74, 96], biomed-
ical applications such as DIEP-flap research [97], and historical objects can be
inspected with IRT [98]. A typical IRT setup contains a modulated heat source
and a thermal camera that can record the heating or cooling curve of each pixel
in the detector array. Based on these temperature differences, it is possible to ob-
tain information about the subsurface material properties, since heat dissipation
depends not only on the surface but also on the subsurface material properties.
Another NDT camera technique is hyperspectral imaging (HSI). In this technique,
we record the reflectance intensity of hundreds of narrow wavelength bands, for
each pixel. This measurement technique allows us to obtain more information
about the chemical composition of the scanned object. HSI is commonly used in
agriculture [99, 100](to quantify plant health), forensics [101, 102] , drug detec-
tion [103, 104], NDT [105, 106] and remote sensing [107]. Most hyperspectral
imaging techniques are based on line scan measurements. Recently, snapshot hy-
perspectral cameras developed by Imec [108, 109] have seen a resurgence. These
cameras are capable of operating as full area cameras instead of line scan cameras.
Another camera-based NDT technique is the use of ultraviolet (UV) cameras. These
cameras operate in the ultraviolet region of the electromagnetic spectrum. This
UV range includes wavelengths between 100 and 400 nm. An ultraviolet light
source is used to illuminate the object, creating fluorescence in the object that
can be measured with a detector that is sensitive in the UV range. Typical appli-
cations for these cameras are: Forensics (fingerprint and bodily fluid detection)
[110, 111],Painting inspection [112], Emission monitoring [113], Coating inspec-
tion [114]. Compared to light in the visible spectrum, UV light has a larger diffrac-
tion limit, making it possible to distinguish smaller objects or defects than when
using visible light [115]. In this article we use a subpart of the UV range, namely
the UV-A, spanning from 320 nm to 400nmn.

When using camera-based techniques, objects are usually examined from a sta-
tionary position, which limits the size and/or resolution of the samples that can
be examined. Larger samples require greater distance between the camera and
the sample to examine the entire object. Consequently, the resolution of the cap-
tured images is lower in a given area. Small defects may not be visible due to
insufficient resolution. For example, in thermography, the rule of thumb is that
the diameter of a defect must be at least the area of 3x3 pixels. [51] Dynamic
line thermography (DLST) is often used when inspecting large surfaces or surfaces
in a continuous process such as cold-rolled steel fabrication. [51]. This technique
uses a linear heat source and a thermal imaging camera at a specific distance from
that heat source. The object of interest moves relative in a linear motion using a
traverse system or conveyor belt. The resulting images are reconstructed from the
sequence of captured images. This reconstruction is called transforming a spatial
matrix into a temporal matrix and is shown in Figure 7.3.



7.1. INTRODUCTION 105

When creating reconstructed images in thermography and hyperspectral inspec-
tions, the motion of the sample and the frame rate of the camera are synchronized.
In this way, it is relatively easy to extract the desired area from each frame of the
recorded sequence, as described in [116]. In industry, however, it is rarely possi-
ble to match the movement speed of the object to the frame rate of a camera, as
this would result in fewer objects being produced per hour. Cameras, on the other
hand, often have a fixed frame rate, making it impossible to adjust the speed at
which an object moves.

In this manuscript, an algorithm is proposed for reconstructing images acquired
with an unsynchronized dynamic measurement. This algorithm can be used for dy-
namic line scan thermography measurements and hyperspectral analysis, but also
provides a solution for measurements with a heterogeneous illumination source,
as is often the case when using HSI or UV cameras.

It is possible to image samples in multiple sections and then stitch them together
to examine the entire sample with sufficient resolution. This method only works if
the light source used is homogeneous. The slightest difference in illumination will
cause a deviation in the recorded data, making it pointless to stitch the different
sections together. This is illustrated in Figure 7.1, where the individual images are
stitched together to reconstruct the original object.

Figure 7.1: Three UV images that are composed of separate images, taken at different
locations for the same sample. (Left) Six separate images; (Middle) Four separate
images ; (Right) Three separate images. The stitching lines are clearly visible, this
could result in misclassifications in defect detection.

In this Chapter, we first explain in detail the algorithm used, followed by a descrip-
tion of the equipment used for the measurements. In Section 7.3, the algorithm
is applied to three different camera technologies: UV, IR and RGB, demonstrating
the usefulness of this novel algorithm.
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7.2 Materials and Methods

To evaluate the applications and show the robustness of the proposed algorithm,
different camera types are used. Each camera operates at a different wavelength
and has a different frame rate. The cameras used in this study are:

* UV Camera: IMPERX GEV B1620M, frame rate: 35 fps

* Hyperspectral Camera: Photonfocus MV1-D2048x1088-HS02-96-G2, frame
rate: 42 fps

* Infrared Camera: Flir A715, frame rate: 30 fps

The objects of interest were placed on a translation stage that moved with a fixed
speed of 15 mm/s. The cameras were placed above the translation stage and
pointed downward, perpendicular to the translation. Corresponding light source
(heating source for IR), provided continuous illumination during the experiments.
An image of the setup can be seen in Figure 7.2. An enclosure was made to block
harmful UV radiation during the measurement.

uv RGB MSI IR
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Figure 7.2: Image of the experimental setup with the housing open. Multiple cameras
and corresponding light sources are mounted above a translation stage to allow ex-
amination of a sample in multiple wavelengths.



7.2. MATERIALS AND METHODS 107

7.2.1 Algorithm
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Figure 7.3: Transformation of the spatial matrix of the raw images into a temporal
matrix. The first two rows of the images show the raw image sequence, the middle
two rows visualize the division into parts corresponding to the pixel shift between
successive images, and the last two rows show the stitched temporal matrix. The colors
correspond to the moment after passing the light source. The color red corresponds
to the spatial directly after passing the light source. Matching colors are combined in
the same image from the temporal matrix.

Several steps are required to correct an image sequence where the camera and
object speed is not matched. However, the object has to move in a constant linear
motion. For an overview of the correction algorithm, see Figure 7.9. The following
list explains the algorithm in detail.

1. Capture raw data
The images are captured during translation of the object. While making sure
that the start and end of the object is fully recorded.
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Frame 1 Frame 2

Figure 7.4: Raw data as captured in a measurement. One can find a pixel shift of 1.5
between two consecutive frames.

2. Preprocess data
Depending on the camera type, preprocessing is required, e.g. NUC (Non
Uniformity Correction) for IR cameras or demosaicing for snapshot HSI cam-
eras. Demosaicing, also known as debayering, is an image processing tech-
nique to reconstruct full-color images from raw data. Demosaicing involves
interpolating missing color information for each pixel by considering neigh-
boring pixels with known color data.

3. Find pixel shift
To calculate the pixel shift from frame n to n+1, we present two meth-
ods. The first method is to detect and track a checkerboard in a sequence of
frames. The upper left corner of the checkerboard is tracked across a series
of frames and fitted with a first degree function to minimize the error. The
other method is to calculate the pixel shift. This is possible if the camera
parameters are known. For more details, see Section 7.2.1.1 [117]

4. Factorize pixel shift
The pixel shift is converted to a fraction with a maximum denominator of
10. The maximum denominator is chosen empirically to limit the compu-
tational cost while still providing an accurate result. One should consider
the necessary accuracy needed for the application versus the computational
cost.
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Upscaled (x10)

Raw data

Figure 7.5: A pixel shift of 1.5 can be represented as 15/10. Therefore a denominator
of 10 is used in this example. Consecutively the raw data is upscaled by a factor of
10.

5. Upscale the images
The preprocessed images are resized in length, through interpolation, by a
factor equal to the denominator of the previously calculated fraction.

6. Create a temporal matrix
This step consists of a main loop and a nested loop. The main loop iterates
over all the different frames of the temporal matrix. The number of frames is
calculated by ft = [ * Fraction, where ft is the resulting number of frames
in the temporal matrix and / is the length of a single frame from the original
sequence. The nested loop iterates over the original sequence and copies the
corresponding rows from the original sequence into the temporal matrix.
This step is shown below in pseudocode:
fori« 1, ft do
forj < 1, fodo
TMat — OMat
Where Thsq: = line: j« N : (j * N) + N from frame k
Where Upsq: = line: (i x N) + N : i N from frame j
end for
end for

with fo as the amount of original frames, T),; as the temporal matrix,Up;q;
as the upscaled sequence, N as the numerator and D as the denominator of
the fraction pixel shift.
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Upscaled (x10) Combined

Part 1

Part 2

Figure 7.6: The temporal matrix is created by combining parts of the upscaled data.
During this process a shift of the object to be inspected can be seen.

7. Correct temporal matrix
The temporal matrix indicates a shift of the object in the direction of trans-
lation. This can be corrected by shifting the image.

Combined — Corrected

Part 1 Part 1

Part 2 Part 2

Figure 7.7: The shift in the combined data can be corrected by shifting the whole
image in the direction of the image.

8. Downscale the images
The resulting temporal matrix is scaled down in length by a factor equal to
the denominator of the previously calculated fraction.
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Corrected

Part 1

Downscaled
Part 2

Part1
Part2

Figure 7.8: The corrected combined image is downscaled to the original image size.

Capture raw data
Preprocess data

Measure pixelshift using Calculate pixelshift using
Checkerboard detection camera parameters

\/

[Factorize Pixelshiﬂ]

Upscale images

[Create temporal Matrix]

[Correct temporal matrix]

v

[Downscale temporal Matrix]

Figure 7.9: Flowchart of the different steps in the
proposed algorithm.
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7.2.1.1 Calculating correction factor without the use of a checkerboard

The algorithm uses a checkerboard pattern to calculate the required correction
factor, as explained in step 3 of the proposed algorithm in Section 7.2.1. However,
it is also possible to determine this factor without the use of a checkerboard. The
factor can be calculated using the Equations 7.1, 7.2 and 7.3.

p
H:2*d*% (7.1)

The distance (H) detected by a pixel line of a camera can be calculated using the
focal length (f) and the height of the camera above the sample (d), as explained
in [51]. The calculation can be done similarly using the field of view of a camera.
The number of pixels by which the object is translated per second can be calculated
using the Equation 7.1 and the translation speed of the object (v).

px/sec = % (7.2)

Using the pixel shift per second and the recording rate of the camera, you can
calculate the pixel shift for each frame of the image sequence.

px/sec

(7.3)

actor = ——
/ framerate

7.2.1.2 Algorithm performance

For the stacking algorithm, a Dell XPS notebook is used with following specs:

1. CPU: Intel i7 6 cores - 2.6 Ghz
2. RAM: 32 GB

The calculation for the provided examples is performed purely on CPU-power,
further improvements could be made through parallellization on CPU and/or GPU.
The time needed to complete the stacking algorithm is very dependent on the
processing power, the desired accuracy (scale factor) and the image size. In Table
7.1 the processing times for each experiment can be found.

7.3 Results

In the following section, several applications are presented, one per camera tech-
nology, to show the results of the proposed algorithm. The results are presented
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Camera Technology
uv HSI IR
Frame Size (pixels) | 1208x1608 | 408x208 | 640x480
Number of frames 498 710 1008
Duration (s) 434 89 101

Table 7.1: Overview of the processing times measured for each experiment, as shown
in Section 7.3.

in separate subsections.

7.3.1 IR camera

A commonly used inspection sample in active thermography is a flat bottom-hole
plate, as shown in Figure 7.10. The air trapped in the voids cools differently
than the surrounding material. As heat is trapped, the air remains at a higher
temperature and therefore shows up as a hotspot in the thermograms. Depending
on the thermal properties of the sample material and the characteristics of the
defects (depth, size, type of defect, ...), the time needed to show a hotspot in the
thermogram may vary. For this reason, the spatial image sequence, as shown in
Figure 7.11 must be converted into a temporal image sequence. In the temporal
data set, as shown in Figure 7.12, the sample under investigation remains at the
same location and the cooling can be investigated.

Figure 7.10: RGB image the inspected bottom wooden sample, so the defects are
visible. The dimensions are following: 160x100x5.8 mm.
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Figure 7.11: Three frames from the sequence captured by the IR camera, while mov-
ing the object. (Left) Frame 300; (Middle) Frame 550; (Right) Frame 800. The
frames correspond to an amount of seconds after passing the heating source. (Left)
10 seconds; (Middle) 18.3 seconds; (Right) 26.67 seconds.

Figure 7.12: Three frames from the temporal matrix. (Left) Frame 1; (Middle)
Frame 428; (Right) Frame 856. From the figure, it is apparent that the object
dimensions are corresponding to the actual dimensions of the object. The air pockets
are visible as circular hot spots. A less accurate stitching would result in a elliptical
hot spots.

7.3.2 UV camera

UV cameras can be used to detect scratches with higher contrast than with normal
RGB cameras. However, an additional UV light source is required. These light
sources are often very narrow and produce uneven illumination in the image, as
can be seen in Figure 7.14. The sample studied, which was used for this measure-
ment, is an epoxy-coated carbon steel sample. Several incisions of varying depth
were made in this sample using a knife blade. An RGB image of this sample can
be seen in Figure 7.13. From the RGB image, it is difficult to see all the different
incisions. When looking at the UV sequence in Figure 7.14, the lowest cuts are
very visible in the first image and second image, but they become less visible in
the last image.
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Figure 7.13: RGB image of the epoxy coated steel sample with incisions. The incisions
are marked with red squares. The sample has following dimensions: 100x50x13 mm.

Figure 7.14: Three frames from the spatial matrix (Left) Frame 90 (2.57 seconds);
(Middle) Frame 150 (4.29 seconds); (Right) Frame 230 (6.57 seconds).

When the spatial matrix is converted to a temporal matrix, the object under study
is recreated. Three separate frames from the spatial matrix can be seen in Figure
7.15. Each frame in the spatial matrix represents a different physical location and,
in this case, a different intensity of the light source used. In the first image, the
incisions are most obvious, but there are also other artifacts that enter the image
due to the reflection of the UV light. The second figure is better suited to analyze
this type of defect since the reflections of the heterogeneous lighting are no longer
present.
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I----.-.;‘n
Figure 7.15: Three frames from the temporal matrix (Left) Frame 1; (Middle) Frame
50; (Right) Frame 100. Notice that due to heterogeneous illumination from the UV
light source, the different frames of the temporal matrix show a different brightness
value.

7.3.3 HSI camera

When using hyperspectral cameras, an additional dimension (wavelength) is added
to the processing. In Figure 7.17, three different bands are displayed by the HS
camera. The object shown is a piece of fabric with weaving imperfections and a
black and white woven pattern. This pattern makes it difficult to examine with an
RGB camera, as shown in Figure 7.16. When selecting a specific band, the woven
black and white pattern will not be visible and the weaving will be clearer.

Figure 7.16: RGB image of the textile sample with defects. The defects are marked
with red squares. The dimensions of the sample are: 200x200x4 mm.
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Figure 7.17: Three separate bands from the HS camera for a single frame in the se-
quence. The identification of weaving errors is complicated through the heterogeneous
illumination. (Left)Wavelength: 677 nm; (Middle) Wavelength: 776 nm; (Right)
Wavelength: 959 nm.

Figure 7.18 shows the temporal matrix for a single hyperspectral band. It can be
seen that not only the choice of wavelength is important, but also the temporal
position in order to obtain a high contrast between the weaving defects and the
normal tissue. In the third image, for example, the illumination of this spatial
position is too large, causing the object to be over saturated.

Figure 7.18: Three frames from the temporal matrix for a single wavelength
(776nm). Notice that these images display a homogeneous illumination, which im-
proves the detection of weaving defects. The shadows that were present in the original
data are no longer present and therefore will no longer be falsely classified as a weav-
ing defect. Throughout the consecutive images in the temporal matrix the influence
of the textile color becomes less apparant making it easier to focus on the weaving
pattern itself. (Left) Frame 1; (Middle) Frame 107; (Right) Frame 215.
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7.4 Discussion and Conclusion

The algorithm discussed in this manuscript allows industry to perform nondestruc-
tive inspections during manufacturing without having to adjust the translation
speed of the objects to the frame rate of the camera. Nowadays, it is necessary to
synchronize the translation speed of an object with the acquisition rate of the cam-
era used. The frame rate of a camera is often fixed, consequently the production
process has to be adapted to the capture rate. With this algorithm, the production
process is no longer dependent on the camera used. The results show that we are
able to successfully apply the algorithm to three different cameras, each camera
operating a different wavelength. We are able to achieve an accuracy of 0.1 pixel
while stitching the temporal matrix. This accuracy can be further increased by
changing the upscaling factor, if this is necessary for the specific purpose. The
proposed algorithm can measure the pixel shift in two different ways, through
checkerboard detection or field of view calculation.

In addition to the aforementioned advantage of this algorithm, it also allows sam-
ples to be examined without the adverse effects of a heterogeneous light source,
as can be seen in the sample inspected using an UV camera and light source. In
future work, the redesigned matrix can be used to perform automatic inspections
using artificial intelligence. The processing time is very dependent on the used PC,
the desired accuracy and the size of the images. Additional gains can be found
through parallel computing and/or GPU implementation. This will be handled in
future work.
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General conclusion and future work.

8.1 General conclusion

This doctoral manuscript provides the basic knowledge of thermography with the
aim of understanding the working principle of Dynamic Line Scan Thermography.
Various IR techniques were explained in Part 1 of this doctoral dissertation. It is
shown that thermography inspections are widely used in several scientific fields.
However there are still restrictions when using active thermography for real in-
dustrial applications such as the limited field of view. This constraint has proven
to become increasingly significant since thermography is more frequently applied
to inspect larger composite materials such as wind turbines, plane parts, bicycle
frames, etc. Keeping the rule of thumb in mind, a defect has to be bigger than a
3x3 square pixel grid in order to be objectively detectable. Therefore it is unde-
sirable to inspect larger objects in its entirety at once. There exist high resolution
thermal cameras but they are much more expensive than regular ones and are
larger and heavier which complicates the use in-situ. Hail can be sought in the
use of Dynamic Line Scan Thermography whereby the heating source and thermal
camera move in tandem relatively to the specimen to be inspected.

The second main part of this doctoral study handles the inspection of the qual-
ity of spot welds using thermography. Using active thermography it is possible to
assess whether the boundary of the spot weld has a closed circular shape and if
the welded area has undergone a change in material properties. Both inductive
as halogen heating can offer a solution to inspecting spot welds, but inductive
thermography works best to be performed automatically using robot inspections.
Since spot welds are often performed in the automotive industry, it is important
to be able to reach inside the car body. The advantage of inductive heating is the
small size and the possibility to place the heating coils in line with the camera
using front heating.

Within the third part of this doctoral study the measurement setup is scrutinized
with a view to assess the reliability of the individual components. In order to

123
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optimize the parameters used during Dynamic Line Scan Thermography, it is nec-
essary to ensure an optimized operation of all individual components. Using ray-
tracing software an optimized line heating source was designed with the aim of
minimizing the heated region and consequently maximizing the power density. In
comparison to the commercially available line heaters, the newly designed source
combines an elliptical reflector shape with additional straight reflectors. This way
the irradiated region is 65% narrower than its commercially available counterpart.
The first tests performed with the practical achieved line heater are promising, but
further tuning has to be performed in order to have a reliable functioning heating
source.

The last main research part describes the parameter optimization of Dynamic Line
Scan Thermography in various manners. A finite element simulation was created
to mimic the process of DLST whereby the parameters can easily be altered. Ini-
tially response surfaces were used in order to predict the most suitable parameter
combination according to the desired defect to be inspected. Eight different pa-
rameters were included in the tool: movement speed, heating power, distance
between the camera and the heat source, the height of the camera above the sam-
ple, the ambient temperature, the diameter of the defect, the depth of the defect
beneath the surface and the maximum use temperature of the sample. Besides the
optimization tool, an insight in the importance of the different parameters and a
correlation between the parameters reciprocally could be gathered. The optimiza-
tion using response surfaces offers the possibility to find the optimal parameter
set for the inspection of a specific sample with predefined diameter and depth be-
neath the surface. It is possible to fix other parameters as well depending on the
hardware and/or available liberty in a manufacturing process. However for each
different defect the optimization routine has to be performed in order to find the
most suitable parameter set. Therefore there is a need for a priori information to
find the most optimal parameter set. However in industry, one often knows the
possible defects that can occur. The starting depth of the defect for example is
often linked to a place in the sample where different layers are bonded together.

Another optimization approach can be found in the idea of minimizing the
amount of needed measurements in order to detect all defects in a certain sam-
ple. This method was tested using Reinforcement Learning in order to assess the
possibility of performing machine learning with the aim of optimizing the mea-
surement parameters. The machine learning environment is fed with the output
of the finite element simulation and afterwards extracts the surface temperatures.
The retained data points are interpolated to resemble the view of a thermal cam-
era and using an edge detector the defects are automatically found and counted.
According to the amount of detected defects a reward is granted to the machine
learning agent. It is proven possible to train an agent to detect all defects in a
sample, however it takes more training data to achieve this goal in comparison to
generating a response surface.

The third optimization approach described in this doctoral study is the use
of Gaussian Process Emulation. This technique is based on the conditional proba-
bility of an event happening from which a posterior can be extracted. Afterwards
this posterior probability can serve as a surrogate function. It is proven that using
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this method less simulations are needed to learn the correlation between the pa-
rameters used in Dynamic Line Scan Thermography. Besides the limited amount of
needed data points, this technique has multiple advantages in comparison to the
use of response surfaces. Through Gaussian Process Emulation it is relatively easy
to provide an answer to possible questions rising when establishing the parame-
ters of a DLST inspection. It is not only possible to predict the optimal parameter
set based on a specific defect, but also to supply the most suitable measurement
parameters with the boundary condition of using the smallest amount of heating
power. The emulation enables to provide a visible insight in the input space in
order to see which regions could be suitable for measurements. An inexperienced
inspector could determine at a glance what parameter combinations would result
in damaging the sample to be inspected. A second insight provided by the emula-
tion is dividing the input space in regions according to the predicted temperature
difference between the surface above a defect and above a sound area. This makes
it possible to define measurement parameters without the need of an expert skilled
in the art.

Processing DLST measurements is not as straight forward as post-processing ther-
mal data from static measurements. The output of a Dynamic Line Scan Ther-
mography measurement consists of a series of images that can be seen as spatial
data. The sample translates beneath the camera resulting in images where the
location of the sample is changing. In order to perform post-processing using the
well-established techniques in thermal inspections, the sample has to remain in
the same location. The conversion between spatial data and temporal (tempera-
ture) data is described in main part three as well. A novel technique is proposed to
remove the need for synchronisation between the translation speed and the frame
rate of the used camera. In industry it is often not possible to match the translation
speed and consequently the production speed to the frame rate of an inspection
device since this would likely imply changes in the rest of the manufacturing pro-
cess. It is often not desirable to slow down the established working facility in order
to perform quality inspections.

This dissertation answers different questions varying between finding the param-
eter set to detect a specified defect and providing an insight in the input space in
order to remove the need for an expert skilled in the art. Through this doctoral
study an insight is achieved in the working principle of Dynamic Line Scan Ther-
mography and the correlation between the measurement parameters. The main
insight discovered in this doctoral study is the importance of the distance between
the camera and the line heater. The time needed for a specified part of the sample
to translate from the heating location to the camera location has to be equal to
the time needed for the heat wave to reach the defect and be reflected towards
the surface of the sample. This parameter will mainly determine whether or not a
defect will be visible in the thermal images. Other parameters such as the heating
power, height of the camera, ambient temperature, etc. will affect the appearance
of the hotspots in the thermograms.



126 CHAPTER 8. GENERAL CONCLUSION AND FUTURE WORK.

8.2 Future Work

Further research may still be conducted on the use of DLST in processes where
heat is already present. The techniques, as described in this doctoral manuscript,
are based on the use of an external heating source. However many manufactur-
ing processes require the sample to be heated already: extrusion of molten steel,
pressing of wooden flooring, etc. Removing the need of external excitation could
speed up the inspection process since the thermal wave no longer has to travel
from the surface to the underlying material before being reflected again. The ac-
quired knowledge in this doctoral dissertation however can not simply be applied
in such situations since the heating power can no longer be directly correlated to
the other setup parameters. The link between the temperature of an object and its
material properties will have to be taken in account.

Improvements can also be made in the area of used cameras. In order to make
DLST accessible for a large variety of users it is appropriate to use cheaper cam-
eras. This will enable companies to invest more easily in the technique and even
makes it affordable to combine multiple thermal cameras in one inspection pro-
cess. In order to achieve this, the influence of rolling shutter cameras has to be
taken into account. If not the images will be blurry and not usable for determining
the structural integrity of the inspected object.The influence of rolling shutters and
solutions to overcome the corresponding issues are described by Peeters J. in his
doctoral dissertation [118].

Furthermore the acquired knowledge can be used to implement in robotic inspec-
tions as an additional parameter to optimize the inspection path. This way the
duration of the total measurement could be reduced and therefore more samples
could be inspected. Besides conventional robotic inspections, the know-how ob-
tained in this study can be applied to design inspection platforms such as drones
to inspect larger objects such as planes, windmills, bridges, etc. The placement
of heating source and camera can be chosen in a smart manner based on the de-
sired inspection speed of the unmanned vehicle. However in order to be able to
inspect above-mentioned objects, an extension of the used techniques has to occur
towards composite materials. One can imaging the difficulties of an anisotropic
material and therefore changes will have to be implemented.

Hopefully this doctoral study can provide an aid to implement Dynamic Line Scan
Thermography in industrial manufacturing processes.
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Active thermography is a non-destructive inspection technique which is praised
for its fast, reliable and non-contact manner of working. The technique is being
utilized more and more in a variety of domains such as industrial applications, art
inspections, during medical interventions, etc. The inspection principle is based
on the infrared radiation emitted by every object above absolute zero. A thermal
wave is induced in the sample to be inspected and afterwards the heat dissipation
is recorded. Commonly the technique is performed in a static manner in which
the heating source, sample and thermal camera remain stationary during the mea-
surement. However this limits the dimensions of the sample since it must fit in the
field of view of the thermal camera. Hail can be found in performing Dynamic Line
Scan Thermography to remove this restriction. Dynamic Line Scan Thermography
is a way of performing pulse thermography where the sample moves relatively to
a heating source - thermal camera tandem.

Dynamic Line Scan Thermography is depending on multiple measurement param-
eters and therefore until now an expert skilled in the art had to prescribe the best
parameter set or the parameters had to be found using trial and error. This doc-
toral thesis provides several techniques to enable a layman to optimize the needed
measurement parameters based on the application. This optimization is performed
in three methods, firstly based on the premise of detecting a specific hole, secondly
to find all defects in the least amount of inspections and thirdly to minimise the
needed input data and to answer industrial relevant questions. A novel processing
algorithm for Dynamic Line Scan Thermography is proposed and prior to optimiz-
ing the measurement parameters, an optimization of the line heating source is
performed in order to exploit the heating power as efficient as possible.

This doctoral dissertation enables the use of Dynamic Line Scan Thermography in
a more accessible manner in industrial and scientific inspections. An insight in the
working principle and correlation between the different parameters is provided.
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