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Abstract

Cyber-Physical Systems (CPS) interconnect embedded computing technologies into the physical world,

forming a complex, multi-disciplinary, physically-effective system. However, interacting with the phys-

ical world brings unpredictability, as real-world events are uncertain and dynamic by its nature. Con-

sequently, CPS must be capable of reasoning about these unpredictable situations and adapt their be-

haviour accordingly. Therefore, it is essential to enhance the intelligence of CPS to overcome this chal-

lenge effectively, leading to the development of smart CPS. As an approach, a reasoning mechanism can

support the system to reason about its state and actions to handle unpredictable changes. In this study,

we employ intelligent Belief-Desire-Intention (BDI) agents to achieve this objective. Nevertheless, tradi-

tional logic approaches based on crisp numbers, which are used in typical BDI agents, may not effectively

handle uncertainty. Hence, the reasoning mechanism can be extended with fuzzy logic to deal with run-

time uncertainties. Thus, the target system’s suitable inputs, outputs and reasoning phases are fuzzified

to indicate the impact of the fuzzy logic on the CPS. To this end, an architecture is provided to deploy

BDI agents integrated with a fuzzy reasoning model for handling imprecise information and improving

process control. The approach is validated and evaluated on a complex case study with a heterogeneous

structure controlled by multiple agents, namely the "smart production system". The multiple modular

and end-to-end experiments conducted reveal that, on the whole, the fuzzy BDI agent outperforms the

classical one by up to three times, with only requiring approximately 10% more computation time.
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1. Introduction

The rapid advancement of network systems and sensor technologies has brought about a new paradigm

shift, namely Cyber-Physical Systems (CPS), posing new challenges for embedded systems. The merging

of information processing and computation with communication and control has given rise to CPS, an

advanced paradigm (Greer et al., 2019). This evolution expands embedded technology’s capabilities to

interact with the physical world through computation, communication, and control. It paves the way for

the integration of the cyber and physical world as well as considering human factors. CPS holds the po-

tential to greatly enhance various domains such as medical devices, vehicles, highways, robotic systems,

and factory automation. These areas can benefit significantly from the remarkable capabilities offered

by CPS.
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Despite the numerous benefits provided by CPS, they still encounter various challenges, with one

of the prominent ones being the presence of uncertainty originating from the physical environment. In

this context, the traditional programming approaches that use classical logic become inefficient and bur-

densome to define logical states for uncertainty handling (Calegari et al., 2020). Moreover, consecutive

unpredictable events can occur, requiring the system to interpret and adjust its configuration, such as

speed, motion, and movement, as these systems are physically intensive. This brings the need for defin-

ing the CPS’s operation range and behaviour, considering its constraints and thresholds based on its

sensor, actuator and somatic components. Besides, time-sensitive systems may also require momentary

decision-making solutions, providing explainable and interpretable white-box procedures and requiring

fewer data to model the system. In addition, along with the logic-based approaches, machine learning

methods can also provide long-term benefits for the system to lessen run-time uncertainty (Gheibi et al.,

2021). However, they are usually intense data-dependent approaches and provide a black-box approach

for which the results are not easy to explain. In this study, we focus on the former approach, considering

further extensions with the sub-symbolic AI approaches. Therefore, enhancing CPS with a symbolic AI

technique for short-term decision-making to handle run-time uncertainty becomes our goal. As one of

the symbolic AI approaches, fuzzy logic plays a significant role in addressing the uncertainty that arises

in the physical world within CPS (Calegari et al., 2020). Unlike classical logic, fuzzy logic incorporates the

system’s rule definitions, constraints, and thresholds, allowing for a more nuanced and flexible approach

to handling uncertainty. This extension enables CPS to make more informed decisions and take appro-

priate actions in response to the dynamic and uncertain nature of the physical environment (Leitão et al.,

2022).

Fuzzy logic is a mathematical model that works with imprecise data, which can rectify deficiencies

by smoothing the output actions, widening the perceptual capabilities, and enhancing the reasoning

mechanism. It also allows for rule definitions that can be easily added and modified when the system’s

component is changed or its operation/configuration parameters are altered. For these reasons, fuzzy

logic has been preferred as an AI method and the basis for providing intelligence to achieve a smart CPS

(Karaduman et al., 2022b,a, 2021b; Queiroz et al., 2022).

While fuzzy logic provides a way to deal with the uncertainty (Zadeh, 1983; Calegari et al., 2020),

the multi-agent systems (MAS), especially the intelligent BDI agents, offer a high-level programming

abstraction to deal with the complexity of the CPS, allowing the modular deployment of the intelligent

software entities. Therefore, many studies in the literature have proposed benefiting from the abilities of

multi-agent systems (Semwal & Nair, 2016; Karnouskos et al., 2018; Karaduman et al., 2022b) to deal with

the challenges of complex systems such as CPS. Accordingly, MAS can be preferred as the basic paradigm

to provide the smartness, decentralization, autonomy, and socialization of CPS (Leitao et al., 2016).

Mainly, MAS can increase the efficacy of CPS by furnishing fortified functionalities for production

and automation (Leitão et al., 2018). The software agents can decide on re-configuring the control pa-

rameters, monitor the transition between processes, and observe human errors considering the system

and human safety. Moreover, they can also decide on a suitable plan to preserve product quality and

prevent damage during critical processes for the current context (Calinescu et al., 2020; Weyns, 2020).

Specifically, one of the advantages of BDI-based MAS is the interoperability with theoretical approaches

and applicability with various methods. Ultimately, the BDI agents define a devoted model that adopts

a human-being mechanism. On the other hand, fuzzy-based approaches can be a way to deal with im-

precise information, creating even more resembling human reasoning. Therefore, this study integrates

and utilises these two approaches for the CPS, fuzzy-logic-based BDI agents.

The initial work of this study was achieved in (Tezel et al., 2016) and then refurbished for CPS in

(Karaduman et al., 2021b) in which the fuzzy-BDI approach was introduced and evaluated using an ab-

stract case study. The study (Karaduman et al., 2022a) revealed the applicability of the fuzzy-logic ap-

proach on a mobile system using a simple-reflex (SR) agent. Lastly, the study (Karaduman et al., 2022b)
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covered integrating a fuzzy-inference system (FIS) with a BDI agent using software artifacts. However,

the designed FIS was not included in the BDI agents’ reasoning mechanism.

The proposed approach has been evaluated using different scenarios in a complex, multi-phase and

heterogeneous case study. This method can alleviate the concerns towards the run-time sustainability

of the CPS. Furthermore, engineers can consider fuzzy logic as an alternative way to enhance the system

under scrutiny and apply it during the design phase. The incorporation of this multi-logic technique

constitutes the main contribution of this study, using a higher-level agent development language and

addressing uncertainty more effectively.

As the CPS paradigm comprises physical and cyber parts, a production line case study was consid-

ered using a physical prototyping technology such as LEGO. It provides a concrete case study and allows

the creation of physical segments of a CPS using somatic components that are LEGO bricks and parts.

LEGO has emerged as a popular technology in the literature for constructing tangible applications in a

range of CPS studies. It has been utilized in diverse research works, such as software development in CPS

(Schoofs et al., 2021; Semwal & Nair, 2016) and industrial operations’ simulation (Ltaief et al., 2022; Yal-

cin et al., 2021). In the context of our study, we leveraged LEGO as a foundational technology to create a

concrete case study. This case study aimed to showcase the effectiveness and validation of our proposed

approach, which integrates fuzzy logic and agent-based principles into a CPS framework. By utilizing

LEGO, we were able to implement a practical demonstration of our enhanced CPS, providing tangible

evidence of the feasibility and potential of our approach.

The focus of this paper is to thoroughly investigate the latest advancements in the field, including the

current directions of state-of-the-art approaches, thereby resulting in the introduction of several novel

contributions. These contributions include:

• Multi-Logic Technique: We propose the utilization of a multi-logic technique that combines fuzzy

logic and BDI agent approaches for CPS. This technique aims to address uncertainty by fuzzifying

the reasoning mechanism of BDI agents, encompassing perceptions, beliefs, plan selection, and

actions. By integrating fuzzy logic into the BDI agent framework, we enhance the agent’s ability to

reason and make decisions in uncertain environments.

• Enhancement of Reference Architecture: Building upon our previous reference architecture (Karad-

uman et al., 2023b), we extend and enhance it to accommodate logic-based improvements. Our

goal is to provide a framework that is adaptable, extensible, and suitable for the integration of BDI

agents, taking into account the diverse design options that can be contributed by a broad audience

of researchers and practitioners.

• From Feasibility to Effectiveness Validation: We demonstrate the feasibility, integrability, appli-

cability, and effectiveness of our fuzzy-logic-based distributed BDI agent approach. To validate

our approach, we utilize a multi-phase, heterogeneous, and complex case study: a smart produc-

tion line system. Through modular and end-to-end experiments, we evaluate the performance

and time metrics across multiple scenarios. The results are analyzed using statistical methods to

provide a comprehensive assessment of our approach.

These contributions collectively contribute to advancing the understanding and application of fuzzy-

logic-based distributed BDI agents in complex systems. By addressing uncertainty and enhancing the

reasoning capabilities of agents, we provide a valuable approach to decision-making in dynamic and

uncertain environments. In this regard, we aim to answer the following research questions.

1. R.Q.1 (Feasibility) How can we enhance and deploy the BDI agents using fuzzy logic to increase

their capacity to deal with run-time uncertainty?
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2. R.Q.2 (Integrability) How agents’ sensing, reasoning, plan selection and execution phases can be

fuzzified and bind to the device-specific software?

3. R.Q.3 (Applicability) How the proposed approach can be implemented and deployed on a con-

crete physical setup?

4. R.Q.4 (Effectiveness) Are fuzzy-BDI agents effective for the uncertainty of agent-based CPS?

The rest of this paper is organised as follows: Section 2 presents background information for this

work. Section 3 explores and dissects previous studies conducted in the field, specifically focusing on

identifying the research gap within the existing literature by means of a comparative manner. Section 4

introduces the fuzzy procedural reasoning model, the enhanced and extended fuzzy BDI architecture,

and presents the smart production case study. Section 5 provides a concrete implementation of the

fuzzy-BDI agents conforming to the proposed architecture, including enhancements and extensions,

showcased in the validating complex case study. Section 6 elaborates on the empirical evaluation and

provides detailed results. Section 7 discusses the study’s results. Finally, in Section 8, we conclude the

paper by summarizing the main findings and contributions. We also discuss the limitations of our paper

and propose directions for future research.

2. Background

This background section provides adequate details on the interrelated topics of cyber-physical sys-

tems, multi-agent systems, and fuzzy logic, referring to their basic concepts and definitions.

2.1. Multi-Agent Systems

The concept of agentification of a system provides an enhancement to the CPS by deploying intelli-

gent software entities which can achieve their goals by dealing with distributed complexity and hetero-

geneous structure (Pico-Valencia & Holgado-Terriza, 2018). These software entities (agents) should work

cooperatively with other agents in the same heterogeneous environment and in other systems to achieve

a global goal where a single agent is not enough to reach this global goal. Specifically, rational BDI agents

use a cognitive approach and contain a representative physical world model to develop plans and make

decisions using a reasoning mechanism.

Extensive research and development efforts have been dedicated to multi-agent systems, with a fo-

cus on achieving modularization for dynamic systems, decentralization for distributed systems, auton-

omy for production, and re-usability to facilitate the future development of physical systems(Merdan

et al., 2011). These systems can be widely adopted to enhance various functionalities in complex and

distributed systems by incorporating techniques from diverse application domains. By leveraging the

capabilities of multi-agent systems, these complex systems can be effectively improved and adapted to

meet specific requirements.

The software agent paradigm raises the abstraction level of designing, programming and develop-

ing applications using these autonomous software entities, which can be deployed in an environment.

These agents can autonomously achieve their goals by collaborating, interacting with the environment,

and communicating with other systems. The usefulness of these agents is augmenting the systems’ ca-

pabilities suited to operate in a dynamic and unpredictable environment. The agents can react to phe-

nomena expected to be perceived, managed and controlled by the CPS to sustain its operation.

The pursuit of a multi-agent system is to find a solution that can be a global problem in the space of

that system. Therefore, once a system deploys autonomous, goal-oriented, adaptive, and reactive agents,

these agents can produce specific solutions for the upcoming problems that emerge around the agents’

environment or internally. They behave towards collecting and sharing information to complete their

goals. Once a goal is achieved, they select the next plan that leads them to their next goal.
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2.2. BDI Agents for CPS

Logic-based reasoning mechanism studies root back to the late 50’s (McCarthy & Shannon, 1958)

with the idea of commonsense reasoning. Over the years, logic-based techniques have evolved, con-

sidering deduction on first-order logic. Other approaches have also been built upon the inductive and

abductive reasoning principles (Calegari et al., 2021). After this, some languages, such as the Prolog, have

been engineered on deductive principles.

Jason (Bordini et al., 2007; Boissier et al., 2020), as a prolog-like agent programming language, is

based on Agentspeak (Rao, 1996). It incorporates an environment layer that allows seamless integration

with Java applications. Furthermore, Jason utilizes the widely recognized Procedural Reasoning Sys-

tem (PRS) architecture mentioned in the study (Georgeff & Ingrand, 1989). It intelligibly represents the

belief-desire-intention (BDI) model mentioned in (Rao & Georgeff, 1998). By adopting the BDI model,

Jason provides a structured framework for agents to reason about their beliefs, desires, and intentions,

facilitating intelligent decision-making and action coordination. BDI is a kind of model logic for imple-

menting intelligent agents. When multiple BDI agents establish communication to achieve a global goal,

multi-agent systems emerge.

The BDI agents maintain continuous observation of their environment. They monitor and perceive

changes in the environment and respond accordingly by executing plans and considering contextual

information. This dynamic interaction between the agent and its environment allows BDI agents to

adapt their behaviour and decision-making in response to environmental changes, ensuring effective

and timely reactions to evolving conditions. According to their reasoning mechanism, it can behave

re-actively and goal-oriented based on their plan structure. The plan structure defines the system’s be-

haviours and actions that can be adapted for the same input. The cognitive ability emerges when the

agent can persistently reach a goal using its reasoning and simultaneously react to the instant changes

to sustain its operation. These reactions are selected according to the agent’s mental state and the current

context of its perimeter. Simple reflex agents, in contrast to BDI agents, are the most basic type of agents

that operate purely in a reactive manner, focusing on the behavioural level of abstraction. These agents

respond to specific inputs by executing predetermined actions without engaging in any form of planning

or taking into account the agent’s internal state or long-term implications. Therefore, the simple-reflex

agents may be summarized as a subset of the BDI agents from the logic and reasoning perspectives. As

previously mentioned, the BDI model consists of three mental components: beliefs, desires, and inten-

tions.

Beliefs encompass the information stored in the agent’s knowledge base, including information about

itself, other agents, and the surrounding environment.

Desires epitomize all goals that hold the potential to become successful states. Any desire can serve

as a catalyst for the actions of the agent.

Intentions pertain to the chosen course of action or plan that the agent decides to pursue. After a

deliberation process, the agent selects the most appropriate plan to achieve a given goal and transforms

it into an intention.

Beliefs serve as the foundation for agent reasoning. In each cycle, Jason aims to find a suitable plan

for a given goal by taking into account the contextual information or triggering events stowed in beliefs.

By serving as indicators, these triggering events signal environmental changes that may necessitate the

agent’s attention or engagement in some form of action.

As previously stated, BDI agents demonstrate their commitment to goals by executing plans. Fur-

thermore, BDI agents have the ability to simultaneously reason about events and react accordingly. Dur-

ing each reasoning cycle, they check the preconditions of plans, also known as the application context,

by utilizing the information stored in the belief base. When there is a change in the context, the agent

responds by applying a plan that is suitable and aligned with the updated application context. For the
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validation case study mentioned, the Jason BDI agent programming framework was utilized. It provided

an environment for agent development, encompassing the essential features and characteristics of the

software agents paradigm mentioned earlier.

Generally speaking, the core idea of CPS is inter-playing the cyber and physical components to make

them operate and influence each other in an environment where events occur over time connected in

a network. While a CPS is interacting with the physical world, there is a phenomenon that has to be

answered by the system. The cyber part causes the physical component of the system to change state

after it receives feedback from sensor input. The cyber part then adapts itself according to this change.

Therefore, the design of smart CPS requires a reasoning mechanism to deal with the unpredictable events

during the system’s run-time (Tepjit et al., 2019).

In this regard, Multi-Agent System technology can address some challenges (Leitao et al., 2016) in the

design of CPS (Karnouskos et al., 2019), such as distributed topology, integrity, modularity and collabora-

tion. Accordingly, intelligent BDI agents are required to establish smart CPSs, considering autonomous,

interactive and adaptive behaviour. Moreover, a CPS should be aware of its context, specifically the en-

vironment in which it is deployed. According to the contextual changes, it should be able to decide the

goals and adaptation plans for undesirable events that emerge because of uncertainty. Therefore, the

BDI agents can be deployed on the cyber side to manage the CPS (Karaduman et al., 2022b,a; Ltaief et al.,

2022; Karaduman & Challenger, 2022; Can et al., 2022; Karaduman et al., 2023a; Yalcin et al., 2021) pro-

moting the CPS to the sCPS, including logic-based enhancements. In the following subsection 2.3, fuzzy

logic to deal with uncertainty and enhancement for the BDI agents is mentioned in detail.

2.3. Fuzzy Logic for Handling Uncertainty

Zadeh (Zadeh, 1996) has introduced the fuzzy theory to handle problems that emerged because of

imprecise information and uncertain events. A fuzzy set can be seen as an extension of a classical no-

tation set. It is a collection of objects that are defined using a membership function. The membership

function is responsible for assigning a membership degree to each object, indicating the degree to which

it belongs to a particular class. The membership degree is typically represented as a value between zero

and one, where zero represents no membership or complete non-belonging, and one represents full

membership or complete belonging to the class. By using a membership function, fuzzy sets provide a

more flexible and nuanced way of representing uncertainty and partial membership compared to clas-

sical sets (Kinay & Tezel, 2022). The definition of a fuzzy set is given by Equation 1 (Cuevas et al., 2022;

Castillo et al., 2016).

Definition 1. A fuzzy set is a pair in the universe X and Ã = {(x,µÃ(x))|x ∈ X } where the element x =

(−∞,∞) is denoted with the aid of its membership function µÃ : X → [0,1] using to map each element

x ∈ X of the fuzzy set that has a value in the range of interval [0,1].

In 1973, Zadeh published his influential paper (Zadeh, 1973), presenting a novel approach to analyz-

ing complex systems by capturing human knowledge using fuzzy rules. A fuzzy rule typically follows the

form:

R : if x is A, then y is B

Here, A and B represent linguistic values defined by fuzzy sets on the discourse universes X and Y,

respectively. These fuzzy rules provide a way to express relationships and reasoning in a more flexible

and human-like manner, allowing for the representation of imprecise or uncertain information. By em-

ploying fuzzy rules, complex systems can be effectively analyzed and modelled, incorporating human

expertise and knowledge into the decision-making processes.
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In recent years, there has been an increased utilization of fuzzy set theory in the fields of complex sys-

tems theory and decision-making processes. Fuzzy set theory has gained recognition as a valuable tool

for dealing with uncertainty, imprecision, and complexity in various domains. Its ability to handle vague

or incomplete information and represent linguistic terms has made it particularly useful in modelling

and analyzing complex systems.

Fuzzy set theory provides a framework for capturing and manipulating imprecise or uncertain data,

allowing for a more nuanced and flexible representation of information. This has proven beneficial in

complex systems theory, where traditional mathematical models may fall short in capturing the intrica-

cies and uncertainties of real-world systems. Fuzzy set theory enables researchers and practitioners to

incorporate subjective and expert knowledge, as well as handle data with inherent fuzziness or ambigu-

ity.

Moreover, fuzzy set theory has found application in decision-making processes. It offers a means to

model and evaluate preferences, uncertainties, and trade-offs in decision-making problems. By using

fuzzy logic and fuzzy inference, decision processes can be enriched with the ability to handle imprecise

inputs, make approximate reasoning, and generate more human-like and interpretable outputs.

Overall, the increased adoption of fuzzy set theory in recent years reflects its growing recognition as a

valuable approach for addressing the challenges posed by complex systems and decision-making under

uncertainty.

Fuzzy logic applications have become widespread in many areas, from finance, marketing, and other

decision-making problems to microcontroller-based and large-scale process control systems (Tezel &

Mert, 2021). Subsequently, the fuzzy theory has gained much attention from academia and industry for

enhancing decision-making, solving the problems that emerged in control and automation engineer-

ing and increasing the impact of intelligent systems (Alcalá-Fdez & Alonso, 2015) during the past few

decades. Fuzzy-based approaches provide advantageous augmentations for dynamic systems to achieve

smooth measures instead of traditional logic.

Fuzzy logic offers a means to emulate the continuous nature of human decision processes, thereby

improving upon methods based on binary logic. In dynamic environments, external and instantaneous

changes can affect the system, requiring it to stabilize and adapt accordingly. Unlike conventional meth-

ods, fuzzy theory provides a platform-independent mathematical model that can be applied in CPS. Its

design methodology revolves around the representation of uncertainty and reasoning, enabling precise

decision-making outcomes that enhance system stability and mitigate uncertainty.

By incorporating fuzzy logic into CPS, it contributes to transforming them into smart CPS. Fuzzy

logic serves as an enhancement by enhancing the decision-making process, facilitating action execu-

tions, improving reasoning capabilities, and aiding in plan selection under run-time uncertainties. This

integration of fuzzy logic into intelligent BDI agents, known as fuzzy-BDI agents, aims to enhance their

overall functionality in dynamically changing environments. The utilization of fuzzy logic empowers

these agents to make more precise and adaptable decisions, allowing them to effectively cope with un-

certainties as they arise.

In summary, the integration of fuzzy logic theory into software BDI agents brings about improve-

ments in decision-making, action execution, reasoning, and plan selection capabilities, particularly in

scenarios where uncertainties are present during run-time. This integration paves the way for more ro-

bust and intelligent CPS systems.

2.4. LEGO Technology for Prototyping CPS

The integration of MAS and CPS opens up possibilities for employing agents in various domains re-

lated to CPS (Karnouskos et al., 2019; Leitao et al., 2016). When agents gain control over the physical

components of a CPS, they can contribute to solving cyber-related problems by reasoning at a high-level

abstraction. However, in certain situations, creating an actual CPS may not be feasible due to factors
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such as cost, safety concerns, or the size of the planned system. In such scenarios, it becomes essential

to downscale the intended CPS while preserving its functionality, accuracy, and goals. To achieve this,

the utilization of a composable and user-friendly technology can be beneficial in emulating the existing

system, offering re-usability that facilitates the modification or creation of another system. This can be

achieved by decomposing the current system or directly incorporating new materials. LEGO technology

presents an option for constructing a scaled-down version of the CPS. By integrating LEGO technology’s

sensing and actuation components into the hardware interface of the embedded hardware system and

utilizing LEGO bricks/parts for the creation of the physical plant, a functional CPS can be readily im-

plemented. This approach allows for a cost-effective and safe way to mimic and experiment with CPS

functionalities, making it a valuable tool for development and testing.

In summary, integrating MAS and CPS enables the utilization of agents in various CPS-related do-

mains. When it is not practical to create a full-scale CPS, scaling down the system using composable

technologies like LEGO allows for the construction of a functioning and adaptable CPS model. The

interested readers may find the process model of building a CPS plant using the LEGO technology in

(Karaduman et al., 2021a).

3. Related Work

In this section, related work of the study is given. The study (Calegari et al., 2020) discusses logic-

based technologies for intelligent systems by giving state-of-the-art from various perspectives. They also

mention that the logic approaches lay at the core of symbolic AI and the centre of the many agent-based

technologies. Notably, the Prolog language is one of the most exploited languages in AI applications.

(Dawson et al., 1996). Moreover, two of the mentioned reasoning approaches and techniques, the BDI

agent paradigm and fuzzy logic, are underlined as practical approaches, especially for manufacturing

technologies and industrial processes that suffer quantitative data about I/O operations. Accordingly, in

this study, we preferred to enhance the Jason BDI, a Prolog-like framework with fuzzy logic. Lastly, some

studies such as (Esfahani & Malek, 2013; Fredericks & Cheng, 2015; Ramirez et al., 2012; Fredericks et al.,

2014) do not consider applying a multi-logic approach (Calegari et al., 2020, 2021) and deployment of

the software agents. They focus on the user-level requirements specification (Cheng et al., 2009; Freder-

icks et al., 2014; Fredericks & Cheng, 2015), that conceptually and formally mention uncertainty in the

CPS using the possibilistic perspective. However, they have inspired us for our system-level current and

future works. We then have seen the necessity of the subtle shift from the single logic approaches (Cheng

et al., 2009; Fredericks et al., 2014; Fredericks & Cheng, 2015) to multi-logic augmentations (Calegari

et al., 2020, 2021) using a fundamental paradigm such as the BDI agents. Moreover, we have also consid-

ered the current challenges of (Karnouskos et al., 2020; Leitao et al., 2016) complex process control and

run-time uncertainties of the CPS, in addition to the need for autonomy, distributed deployment, reac-

tivity, goal-orientedness and collaboration. Thus, we have pertained our scope to the fuzzy-BDI agents

and then carried out our work by enhancing the BDI agents based on an integrated and extensible archi-

tecture.

The studies in the literature have similar approaches and disjoint methods that can be divided and

correspond to some categories: simple-reflex and BDI agents.

3.1. Simple-reflex agent-based studies

The study (Rocha et al., 2019) mentions the simple-reflex agents and fuzzy-inference system (FIS) at

the cloud level. Their architecture concentrates on the social ability of the agents to find the cheapest.

In contrast, they use fuzzy logic at the cloud level for algorithm selection; we use fuzzy logic at the edge

level to tackle the run-time uncertainties that emerge in the physical world. Their study also does not

mention how they integrated the FIS and the behaviours of the simple-reflex agents in detail. However,
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their work also inspires us for the possible future outcome of extending the fuzzy-enhanced proposed

architecture to the cloud level. Lastly, they evaluate their work in a simulation environment.

(Peres et al., 2017) mentions that the manufacturing systems of Industry 4.0 should have distributed

data acquisition and analysis techniques that support run-time decision-making and be self-adjustable

to mitigate the effect of unwanted events. Their study utilizes simple-reflex agents to exemplify their

approach.

(Queiroz et al., 2022) utilizes fuzzy logic to create a recommendation system to support the designers

in selecting data analysis tasks and computation layers in design time. Parallel with their vision, we

applied the fuzzy logic enhancement for the BDI agents’ run-time reasoning.

In study (Gomes et al., 2020), fuzzy logic is used to classify the various sensor inputs. However, their

approach includes no complex actuation or physical process execution. Moreover, they use a loosely

coupled approach to gather sensor data from the microcontrollers using network protocols. As can be

seen, some studies applied or envisioned using fuzzy logic with the simple-reflex agents for specific tasks

such as design-time recommendation, sensor data classification and simple on/off control. We aim to

shed light on the impact of the fuzzy-logic-based BDI agents on the CPS. In the following subsection,

the related studies which focused on BDI agents without fuzzy logic are given to indicate the rationale

for proposing an integrated architecture before applying the fuzzy-logic enhancement to the BDI agents

underlined.

3.2. BDI agent-based studies

Wei & Hindriks (2012) presented an architecture for agent-based cognitive robots using a loosely cou-

pled approach. Their approach was demonstrated using a single BDI agent without any enhancement.

In this study, we are motivated to benefit from multiple BDI agents enhanced with fuzzy logic.

Pantoja et al. proposed an architecture named ARGO (Pantoja et al., 2016), considering a case study

with a single agent without applying the fuzzy logic. They provide expansion hardware to dilate the

sensor/actuator components, causing a burden in terms of extra cost, power consumption and hardware

design complexity. Therefore, a fully integrated architecture and embedded hardware with an extended

interface may be a better solution.

In their work, Wesz (2015) developed a tool that establishes a connection between Jason agents and

ROS (Robot Operating System). Their study focused on creating a simulation environment that allows

for the programming of single-agent mobile robots. However, their work did not specifically address the

deployment of agents to embedded devices or incorporate fuzzy-logic enhancements.

Fichera et al. (2017) presented a framework called PROFETA, which implements AgentSpeak using

Python. Their work offers an integrated solution similar to other proposed architectures, but it falls short

in terms of providing a complete agent-oriented programming environment like Jason. Additionally, the

study does not address physical deployment on embedded devices or incorporate fuzzified decision-

making techniques. Furthermore, the study provides no actual deployment of the agents to an embed-

ded device or fuzzified decision-making. Similarly, (Vachtsevanou et al., 2023) proposes a constraint and

relegated version of Jason integration to the low-power embedded devices for the IoT domain using a

simple light switch on/off control case study with C++. Their study does not utilise fuzzy logic or any

other intelligence technique combined with the BDI. Moreover, their work requires further evaluation

of the deliberation overhead on complex case studies for the CPS domain, but it motivates us to apply

for our enhancements and extensions on low-power energy-efficient devices using fuzzy logic and con-

forming to our reference architecture.

Menegol et al. (2018b,a) aims to integrate the Jason and ROS. However, they utilized an additional

programming language and an extra thread to establish wireless communication. Moreover, they use a

simulation environment while we aim to augment the reasoning mechanism using fuzzy logic, consid-

ering an integrated and layered architecture where we can deploy the agent mechanism and low-level
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control on the same hardware without requiring extra board, programming language or thread mecha-

nism.

Semwal & Nair (2016) propose a prolog-based agent framework called Tartarus. They deploy their

agents into Lego NXT devices following a loosely coupled approach.

As can be noticed, so far, the studies which utilize the BDI agents mainly focused on a loosely coupled

architecture without considering the loss of autonomy and its logic-based augmentations. Therefore, a

tightly coupled architecture should be followed to deploy the BDI agents to eliminate the case of losing

the agents and their enhancements. Moreover, some studies only focused on a single agent and sim-

ulation environments. Thus, we validated the effectiveness of our method on a complex, multi-stage

and heterogeneous multi-agent system. In the following, the related works that implemented their BDI

agents with fuzzy logic are introduced.

The fuzzy logic and the software agents integration have roots back nearly two decades ago(Flake

et al., 1999; Long & Esterline, 2000; Shi & Xu, 2009; Shen et al., 2004; Tezel et al., 2016). However, these

theoretical and conceptual studies have not gained enough maturity and concreteness (Rosin et al., 2022)

to be applied to the cyber-physical systems domain to tackle the run-time uncertainties by indicating the

integrability, applicability, feasibility, usability and effectiveness of the method-based on a fuzzy-logic

enhanced architecture. Therefore, in this study, we aim to fill this gap. Thus, the following studies are

discussed comparatively to conform to this aim.

Alaya et al. (2017) proposes a method to deploy multi-agent systems based on an architecture offered

by Lee et al. (2015). They mention that logical approaches such as neural networks and fuzzy logic can

be used for decision-making with cognitive agents. However, their approach does not mention how the

agent and fuzzy logic were integrated, mainly how the reasoning mechanism for low-level control was

applied and achieved in detail. Also, their study does not evaluate the cognitive agents for decision-

making on a complex CPS.

Muto et al. (2021) provides a framework, namely CHANS, to simulate the small-scale farmer BDI

agents using the fuzzy logic similar to this and our previous work(Karaduman et al., 2022b,a, 2021b).

While their focus is decision-making for farming simulations, we aim to provide insights for the complex

CPS to deal with the run-time uncertainty, considering the usability, applicability, integrability and eval-

uation based on the proposed architecture. They also stated that their work has no detailed explanation

of the fuzzy logic and the BDI integration.

In a similar study (Rodriguez-Ubeda et al., 2015), the reasoning cycle of Jason was extended with the

fuzzy logic to control a conceptual and simple sprinkler system for irrigation such as in a prior work of

us (Karaduman et al., 2021b, 2022b). However, their study only focused on the input and output control

without considering the fuzzy-logic-based plan selection, usability of the method, and evaluation of the

approach as well as giving the applicability and integrability details of their implementation.

Xiaochao et al. (2019) proposes an agent-based simulation for combat simulation tests using the

fuzzy BDI approach to provide a basis for the content change. Correlated with our previous outcomes

(Karaduman et al., 2022b), they showcase their capacity to modify their membership functions in line

with the belief states. However, their study does not mention any plan selection based on the fuzzy

membership degrees and action triggering. Moreover, the study is constrained to a 2D simulation envi-

ronment. Eventually, a more complex case study, which consists of multiple components and processes,

is required to indicate the effectiveness of the fuzzy-BDI approach for CPS.

Cruz et al. (2021) provides formal definitions for the fuzzy BDI semantics similar to (Chen, 2015).

They also suggest that the fuzzy membership degrees can be used for plan selection, as we did both in

this work and our previous studies (Karaduman et al., 2021b, 2022b). (Garrab et al., 2017) proposed us-

ing the fuzzy-logic controller and BDI agents to reduce energy consumption by tuning the power use of

the home appliances as a similar study. However, their work does not mention how they integrated the

BDI agents and the fuzzy-logic controller created in MATLAB. Moreover, they only focused on reducing
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energy use using fuzzy logic, where the decision-making is only given to reducing the operation power

of the static entities. However, as the CPS is a physically intensive domain with complex and multi-stage

processes, uncertainty is mostly expected in the somatic system’s dynamic components, modules and

parts during the operation. Therefore, this also raises the need to define an integrated reference archi-

tecture first, then enhance the BDI agents with the fuzzy logic, and lastly deploy them on the embedded

hardware in a tightly coupled manner. In this way, both the fuzzy logic enhancement and the BDI rea-

soning mechanism work inside the same cyber container.

In study (Ben Mekki et al., 2016), a loosely coupled fuzzy logic using MATLAB, such as in (Garrab et al.,

2017), and BDI application was studied. Their work only focuses on supply chain monitoring for the eco-

nomic efficiency of the enterprises.Specifically, they discussed that their study only covers the economic

aspects while we devised our research method considering the cyber-physical systems.Their work also

does not evaluate the fuzzy-logic enhancement of the BDI agents comprehensively and comparatively,

such as the logic (Vu et al., 2013; Karaduman et al., 2021b) or any other logic-based approach. Therefore,

the method’s usability is not effectively exhibited. The integration of the fuzzy logic with the BDI agents’

reasoning mechanism was also not demonstrated, which relegates the replicability and usability of the

technique to an abstract form.

Vu et al. (2013) compares the crisp set and fuzzy set in an agent-based simulation of a 2D and two-

player soccer game using the BDI agents. Although their study was realised in a 2D simulation environ-

ment less complex than the real-world applications, we share a similar evaluation approach to display

the impact of the fuzzy logic, which is mentioned in Section 6. In addition, the integration between the

reasoning mechanism, plan selection and fuzzy logic is also not evident in their study, as mentioned in

Section 4.

Othmane et al. (2018) presents the CARS, a spatiotemporal agent-based recommender system based

on the BDI agents. Using both position and time variables, they simulate a 2D traffic network in the

NetLogo. Their work is similar to our previous study, in which we used temporal information and hedge

modifier to arrange the membership function in study(Karaduman et al., 2022b). Their method can

also be future work for us. Still, at first, we aimed to reveal the impact of the fuzzy-logic-based BDI

enhancement on the CPS domain to pave the way for further symbolic and sub-symbolic augmentations

(Calegari et al., 2020) considering spatial and temporal information based on the reference architecture

(Karaduman et al., 2023a). Nevertheless, the 2D simulation environment may not be enough to tackle

the uncertainties in the 3D physical world. Therefore, a concrete, heterogeneous and complex case study

may conduct the expected impact of the fuzzy logic on the CPS.

Morris & Ulieru (2011) proposes an abstract and conceptual BDI architecture based on the neuro-

fuzzy paradigm for virtual reality games using body sensors. Although their work has similar architec-

tural layers to ours, we define the middleware layer as creating loosely coupled interactions to establish

a connection with external services. At the same time, they describe it at the same level as the API.

From our perspective, the middleware and API layers should be separated as the middleware may con-

tain different APIs for different hardware interfaces and embedded hardware preferences by creating the

device-specific and device-independent layers, considering the requirements of the CPS domain. More-

over, their study does not mention integrating this architecture with any BDI development framework,

concrete form of their architecture, application of their proposed method, proof-of-concept, and eval-

uation of the approach. Yet, their work inspires us to extend our work with the neuro-fuzzy systems

conforming to our proposed architecture.

In the study (Rosales et al., 2017), Type-2 fuzzy sets were utilised with the two BDI agents to simu-

late the human and machine interaction for improving the learning process of the visitors in a museum’s

room. They only fuzzified the perceptions of their agent using the Jason framework and did not apply

any approach for fuzzy logic-based plan selection and execution. In their work, the integration of the

fuzzy logic and the reasoning mechanism of the BDI agents is not apparent, nor is the deployment of
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the agents to the target systems. Moreover, their study lacks implementation details that narrow the

method’s reproducibility. In contrast to their controlled environment which is a museum room, a com-

plex and heterogeneous system, such as a production line with many process phases, may be prone to

more uncertainty as there are more dynamic parts and products. Lastly, their focus is human interac-

tion, so they evaluated their work based on ethnographic research by taking notes, which might not be a

suitable approach to assess cyber-physical systems.

A relevant reader can find additional information about the prior studies related to this work in the

following sources. In two of those works, (Yalcin et al., 2021; Schoofs et al., 2021), it was desired to fol-

low an integrated approach to demonstrate the implemented case studies. In the study (Schoofs et al.,

2021), simple-reflex agents were used to create a multi-robot case study. The study (Schoofs et al., 2021)

was expanded in (Can et al., 2022) using the mobile robots, and then a fuzzy-inference system was cre-

ated in study (Karaduman et al., 2022a) to enhance the simple-reflex agents. Moreover, in study (Yalcin

et al., 2021), SPADE1 and Python-based LEGO API was preferred to build a production line, then it was

extended in the study (Ltaief et al., 2022). In another previous study, we introduced a fuzzy-logic-based

fan controller system with a single Jason BDI agent (Karaduman et al., 2021b), heeded by the preliminary

work (Karaduman et al., 2022b), that employed the fuzzy-inference system using the CArtAgO artifacts

(Ricci et al., 2011) which combined with the Jason BDI agents. Table 1 summarizes the mentioned related

works.

In the literature, the deployment of software agents into embedded systems, formal approaches for

fuzzifying the BDI agents and conceptual architecture approaches have been studied. Moreover, most

of the related work has been explicitly reproduced for the CPS in our earlier works (Karaduman et al.,

2021b, 2022b,a). Ultimately, to the best of our knowledge, they have not offered an effective enhance-

ment using fuzzy-logic-based design architecture to apply it to the multi-agent systems by providing a

concrete, complex and multi-stage validating use case in a feasible integrated/tightly coupled manner.

In the following section, fuzzy BDI agents for CPS are introduced.

4. Fuzzy BDI agents for CPS

This section introduces the proposed architecture and fuzzy Procedural Reasoning Model to deploy

BDI agents with a fuzzy reasoning model to deal with imprecise information and run-time uncertainties

during the process control.

4.1. Motivating Example

In this study, we fuzzified the various agents’ monitoring and execution phases. We also benefited

from the fuzzy membership degrees for the plan selection phase, considering the rules defined in the

design time contained in the agents’ knowledge bases. Moreover, we utilized membership functions and

a temporal approach (Whittle et al., 2009) for uncertainty mitigation. Typically, an agent monitors the

environment through its sensors. However, the classical BDI agent development approach depends on

the conventional logic where the sensor data is imprecise mainly because of the environmental noise.

In addition, when the diversity of the data is increased, such as a colour sensor that consists of R (Red),

G (Green), and B (Blue) values, it becomes a burden or unlikely to achieve the engineering design, also

considering the time-consumption and cost. In a classical implementation, these R, G, and B values refer

to some integer value that specifies a few colours, relegating the range of variety by creating information

ambiguity, e.g., red and purple are represented by integer 5.

1https://spade-mas.readthedocs.io/
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Table 1 Comparison table of the related works for integrating and deploying the enhanced BDI agents

into CPS.

Publication Framework Multi-AgentReasoning Enhancement

Physical

Environment(PE)

Simulation Environment(SE)

Application

Field

Tightly

Coupled

Way of

Use

Arokiasami et al. SOIFRA/JADE✓ SR ✗ PE and SE
Obstactle Detection

and Avoidance
✗ Motion

Schoofs et al. JADE ✓ SR ✗ PE Multi-robot ✓ Motion

Can et al. JADE ✗ SR ✗ PE
Robot

Navigation
✓

Robot

Control

Ltaief et al. JADE ✓ SR ✗ PE
Production Line

and Robotic Arm
✓ Process Control

Yalcin et al. SPADE ✓ SR ✗ PE Production Line ✓ Process Control

Rocha et al. JADE ✓ SR Partial SE Production Line ✗ Algorithm Selection

Peres et al. JADE ✓ SR Conceptual N/A Production Line ✗
Data Analysis

and Self-adjustment

Queiroz et al. N/A ✗ N/A Fuzzy Logic PE Electric Machine ✗

Recommedation

System and

Data Analysis

Gomes et al. JADE ✓ SR Fuzzy Logic PE Workplaces ✓

Recommendation

System and

Data Analysis

Wei and Hindriks GOAL ✗
Belief and

Goal-oriented
✗ PE

Robot

Navigation
✗

Robot

Control

Karaduman et al. JADE ✗ SR Fuzzy Logic PE
Robot

Navigation
✓

Robot

Control

Karaduman et al. JaCa ✓ BDI Fuzzy Logic PE/SE Fan Controller ✓ Speed Adjustment

Pantoja et al. Jason/ARGO ✗ BDI ✗ PE Collision Detection ✗ Motion

Wesz and

Meneguzzi
JaCaROS ✓ BDI ✗ SE Mobile Robot ✗

Robot

Control

Fichera et al. PROFETA ✗ BDI ✗ PE Mobile Robot ✓
Motion &

Palet Control

KC et al. Jason+ROS ✗ BDI ✗ PE Social Robots ✗ Voice

Vachtsevanou et al.Jason ✓ embedded-BDI✗ PE Light Automation ✓ On/Off Control

Menegol et al. Jason+ROS ✓ BDI ✗ SE
Human-Robot

Interaction
✗ Robot Control

D’Urso et al. PHIDIAS ✓ BDI ✗ PE Light Automation ✓ On/Off Control

Alaya et al. Custom ✗ BDI Fuzzy Logic PE Plastic Manufacturing✗ Ejector Cylinder

Muto et al. CHANS ✗ BDI Fuzzy Logic SE Farming ✗ Negotiation and Sale

Rodriguez-

Ubeda el at.
Jason ✗ BDI Fuzzy Logic SE Irrigation System ✓ Sprinker

Xiaochao et al. CGF ✗ BDI Fuzzy Logic SE Air Combat ✓ Jet Control

Cruz et al. N/A ✗ BDI Fuzzy Logic N/A Formal Definition ✓ General Purpose

Mekki et al.
Custom/

MATLAB
✓ BDI Fuzzy Logic PE Logistics ✗ Data Analysis

Othmane et al. CARS ✓ BDI Fuzzy Logic SE Traffic Network ✓

Recommendation

System and

Data Analysis

Morris and Ulieru FRIEND ✗ BDI Neuro-Fuzzy SE Social Simulation ✓
Human-Agent

Interaction

Rosales et al. Custom ✓ BDI Fuzzy Logic SE Social Simulation ✓
Human-Machine

Interaction

This study Jason ✓ BDI Fuzzy Logic PE Production Line ✓ Process Control
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However, diverse colours cannot be represented in nature by a limited integer set. Therefore, these

R, G, and B values should be fuzzified and turned into linguistic variables. These linguistic variables can

even detect intermediate (blended) colour states between primary colours, widening the colour detec-

tion range (i.e., product recognition). Moreover, the combination of these colour types may have to be

defined into subcategories using quantifiers such as low green, high red, and middle blue that ease the

vagueness. In this case, classifying the data and achieving conjunctive statements became cumbersome

or unattainable for the developers using classical logic. Hence, fuzzy logic can be applied to conventional

agent development to enhance the abilities of the BDI agents.

Moreover, the aleatoric uncertainty that emerged from the sensors that do not have linear operation

characteristics or are imprecise can be fuzzified instead of defining many control statements bound to

relegated classical logic. Thus, fuzzy logic can lessen the engineering trial and error endeavour, develop-

ment burden and time consumption. The execution phase of the motor actions can be smoothed when

the velocity parameter should be decreased or increased calmly instead of being exposed to alternat-

ing and instant speed shifts. For instance, in case of any external epistemic uncertainty that leads the

product to suck occurs, a fuzzified manoeuvre may be required when a conveyor belt should be moved

back and forth so that the smooth movement transitions may not harm the motor, conveyor belt and

products. Furthermore, according to the colour of the products and benefiting from the membership

degrees, the speed and, consequently, the force of a dynamic system can be arranged considering or-

ganic products. This might be highly correlated between the colour of the products and their rigidness.

Therefore, a specific physical action might be required when the product characteristics vary concerning

the durability of that product. For instance, if the product is a red apple, it is likely a rigid one so that a

high force can be applied. However, if it is spoiled, it means that its colour is between red and purple, so

the same force cannot be used not to shatter the product. Therefore, the force can be arranged according

to membership degree to the red colour.

As a result, the fuzzification process can be dedicated to the system under scrutiny to mitigate the

uncertainty that can jeopardise sustainability and decrease the system’s efficiency. The BDI agents can

then perceive fuzzy inputs, store fuzzified data in their belief base, and select the plans according to

linguistic states and environmental context, applying a plan selection phase based on the membership

degrees. They then trigger the fuzzified actions within the selected plan, employing the membership de-

grees to configure the execution parameters. The fuzzy procedural reasoning model is further explained

in subsection 4.2.

4.2. Fuzzy Procedural Reasoning Model

The Procedural Reasoning System (PRS) is one of the most used approaches (Calegari et al., 2021) in

agent development, which understandably embodies the BDI paradigm (recall subsection 2.2). In PRS,

an agent does not plan from scratch. Instead, it has a collection of pre-tailored plans. The developer cre-

ates these plans in the development time to respond to possible scenarios the agent may face during the

run time. As mentioned, these plans have been designed using classical logic, which may not be enough

to handle the run-time uncertainties for the CPS. Moreover, fuzzy logic allows us to define execution and

sensing boundaries considering time-based and/or event-based operations. Hence, the fuzzy logic that

extends the classical logic can be applied to augment the monitoring, analysis, planning and execution

phases of the CPS, creating a rule-based system over a knowledge-based integrated with the BDI agents.

Therefore, in this section, the PRS enhanced with a fuzzy logic model is used to reveal the fuzzified

stages of the reasoning cycles of BDI agents. These stages are fuzzy perception, fuzzy analyses, fuzzy plan

selection, and fuzzy action execution. As the BDI agents are context-aware entities provided by the PRS,

they can collect data and store them in their belief base to select a plan according to the current context

(recall 2.2). Listing 1 directs the Jason plan structure:
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Listing 1: The structure of the Jason plan mechanism.

1 triggering_event: application_context <− plan_body.

The fuzzy membership functions transform the data perceived from the environment into verbal

variables. At the end of this transformation, the membership degrees of each verbal variable are also cre-

ated and stored as fuzzy beliefs in the agents’ belief base. Thus, instead of evaluating the preconditions

of the plans to be selected as true or false, they are instructed as fuzzy rules conforming to the rule base.

At first, the membership degree of each plan is fetched from the belief base. After evaluating the fuzzy

preconditions of the plans, the one with the most elevated membership degree is designated for execu-

tion. During the selected plan’s operation, the membership degree also ensures that the actions within

the plan are carried out in a fuzzified manner. In other words, the membership degrees are utilised as

quantities that can be multiplied by the configuration parameter assigned in the design time. In this way,

fuzzified actions can be performed in case of uncertainties. An illustration of the proposed fuzzy-logic-

based model and the enhanced cycle of the PRS architecture is displayed in Figure 1. A relevant reader

can further inspect our previous studies (Karaduman et al., 2022b; Karaduman & Challenger, 2022) that

illustrate this model on the MAPE-K loop and conceptually, respectively.

Figure 1 Procedural reasoning system enhanced with fuzzy logic.

At the first deployment and run of the system, each BDI agent is represented by a set of initial be-

liefs, goals, and a collection of plans. In the proposed model, beliefs are first-order logical expressions

enriched with certain membership degrees obtained by fuzzification of the crisp values perceived by the

environment. When a BDI agent starts, the goals desired to be achieved by the agent are pushed to the

intention stack via a triggering event (recall 2.2). The intention stack contains all the goals to be satisfied.

The agent, in turn, selects the goal at the top of the intention stack and determines the plans it can use

to achieve that goal. Only some suitable plans become possible options because the application context

of the plans (pre-conditions) should be matched with the terms in the agents’ current beliefs. Then, the

BDI agent runs the actions (i.e. post-conditions) in the selected plan body to reach their goals.

Choosing between different possible plans is based on using utilities, which are numerical values,

of plans in the traditional PRS system. When the plan has the highest utility, the agent considers it the

highest priority. If no priority exists among the existing plans, the priority levels are considered the same,

and any of them is selected. Therefore, the line order of writing multiple plans with the same priority
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level is regarded as the contextual checking order. In the proposed approach, the membership degree

is calculated for each plan to evaluate the pre-conditions. As a result, the picked plan is the one that

has the highest membership degree. The membership degrees of the plans are also considered as the

configuration parameter in corresponding actions within the plan in a fuzzified manner alternative to

the traditional defuzzification phase. In subsection 4.3, the fuzzy-logic enhanced proposed architecture

is mentioned considering the cyber, physical and network aspects.

Algorithm 1 Fuzzy Logic Enhanced Procedural Reasoning System of the BDI Agents, in pseudo-code

1: B̃ ← B̃0 /* B̃0 are initial fuzzy beliefs */

2: I ← I0 /* I0 are initial intentions */

3: K ← K0 /* K0 is the initial knowledge base */

4: while true do

5: get next percept p via sensors;

6: B̃ ← bff(B̃ , p);

7: D ← options(B̃ , I );

8: I ← filter(B̃ ,D, I );

9: [π̃,λ] ← pl an(B̃ , I , Ac); /* Ac is the set of actions, B̃ is the set of fuzzified

beliefs, and λ is the triggering degree */

10: while not (empty(π̃) or succeeded(I,B̃ ) or impossible(I,B̃)) do

11: α̃← first element of π̃;

12: execute(α̃,λ, B̃+);

13: π̃← tail of π̃;

14: observe environment to get next percept p;

15: B̃ ← bff(B̃ , p);

16: if reconsider(I,B̃ ) then

17: D ← options(B̃ , I );

18: I ← filter(B̃ ,D, I );

19: end if

20: end while

21: end while

22: procedure BFF(x) ▷ / bff - *Belief Fuzzification Function*/

23: [A, ũA] ← f uzzi f i er (p,K )

24: B̃
′

← [A, ũA]

25: B̃ ← brf(B̃
′

)

26: r etur n(B̃)

27: end procedure

Algorithm 1 shows the fuzzy logic enhanced procedural reasoning system considering the related

works (Rodriguez-Ubeda et al., 2015; Bordini et al., 2007; Bosello & Ricci, 2020). In line 3, the initial

knowledge base is defined. This knowledge base also refers to the fuzzy rules defined as Prolog-rules

mentioned in Section 5. In line 6, B̃ represents the fuzzified(∼) beliefs that contain the membership de-

grees ũA (recall Definition 2.3) in the BDI agents’ belief-base. In other words, B̃ is also a type of agents’

belief, but also in the form of fuzzy. In this regard, the belief fuzzification function (i.e., procedure) (bff )

fuzzifies the percepts p gathered from the environment. This function works as the belief revision func-

tion (brf ), but before revising the beliefs, it also fuzzifies.

Lines 22 and 25 define the bff. Specifically, in line 22, the percepts are fuzzified in the fuzzifier phase

using the fuzzy functions represented in Equation 1 mentioned in Section 5. These fuzzy functions are
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stored in the knowledge base K, which correlates them using linguistic terms and logical statements.

Moreover, membership degrees (ũA) of each percept are calculated to represent the percepts as the de-

gree of truth concerning their fuzzy sets defined by the fuzzy functions. For each agent cycle, the mem-

bership degrees ũA , are calculated, as new fuzzified beliefs B̃
′

. The fuzzified beliefs are then revised by

the brf. Lastly, the bff returns to line 6.

In lines 6-9 and 15-18, the desire option consideration and intention filtering are also done using the

fuzzified beliefs B̃ for selecting a plan using triggering degree (λ) and returning λ for fuzzified actions.

Therefore, during the precondition checking phase of the candidate plans, the plan with the highest ũA is

selected as the λ among the literals such as low, middle, high etc. in a fuzzified manner (π̃). The selected

fuzzified plan’s actions are also performed using its triggering degree (λ) within the fuzzified plan (π) as

fuzzified executions α̃.

In line 13, fuzzified plan execution α̃ also uses the B̃+ which is in the regular expression form where

at least one and at most many fuzzy beliefs are expected to execute the plan steps/actions using the

corresponding membership degrees or at least the triggering degree (λ). In the following subsection, we

mentioned the proposed fuzzy BDI architecture that we enhanced and extended on our previous work

(Karaduman et al., 2023b).

4.3. Proposed Fuzzy BDI Architecture

The proposed architecture has been devised to develop a distributed agent-based CPS established

on an integrated pattern that considers cyber and physical layers, allowing logic-based enhancements

and further extensions such as learning (Bosello & Ricci, 2020). Moreover, this architecture has also been

designed considering the requirements of deploying software agents into the embedded system with-

out requiring additional programming language, additional hardware, and loosely coupled connections

in study (Karaduman et al., 2023a). Using fuzzy logic, this study considers its enhancements and exten-

sions. The overall objective is to establish a tightly coupled platform that facilitates future logic-based

enhancements. This is achieved through the initial validation of our fuzzy logic-based approach inte-

grated with BDI agents. The architecture is illustrated in Figure 2. Initially, the layers had been defined

in study (Karaduman et al., 2023a) solely using the BDI agents. In this study, we briefly mention these

layers to maintain correlation and integrity. Each layer is re-elaborated and explained in the following

sub-sections.

4.3.1. Physical Layers

The physical aspect of the system is divided into four layers given below.

Environment Layer: portrays the habitat of the CPS created and a source of the unpredictable events.

This environment can also be in cyberspace, considering the simulation-based approaches. Eventually,

the simulated CPS should be deployed into a physical environment or have a hybrid establishment. A

Cyber-Physical System exerts an effect on its circumference and is susceptible to environmental occur-

rences triggered by both various natural and human-induced factors, which may lead to uncertainties.

Sensor and Actuator Layer: defines the physical monitoring and execution phases. An agent-based

CPS monitors the events generated by the environment using its sensors. Generally, these sensors are in-

fluenced by environmental noise and limited data processing due to the traditional approaches. There-

fore, the selected sensors’ information processing capability should be improved with intelligent meth-

ods for better perceptual ability. Actuators are the influencer components of a CPS controlled by the

agents to create motion and movement upon an entity. Therefore, the executions of the agent-based

CPS should be advanced smoothly and timely considering the state of the physical entities.

Embedded Hardware Layer: represents a microcontroller capable of computation using a programmable

microprocessor extended with additional hardware features such as input and output ports for sensors

and actuators’ connections. The chosen embedded hardware must possess the necessary capabilities
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Figure 2 The proposed enhanced and extended architecture’s platform-independent overview.

to effectively execute the desired agent framework and additional enhancements of the agents that may

bring extra computational costs, such as Bayesian methods, fuzzy logic, neural networks, and neuro-

fuzzy models.

Hardware Interface Layer: covers the extension hardware utilised for technology-specific applica-

tions. Optionally, these boards may also have specific computation elements or extra threads for time-

consuming computations.

4.3.2. Cyber Layers

The system’s cyber aspect comprises five layers introduced below.

API Layer: expresses the code library for a specific hardware technology. The conventional ap-

proaches provide a basic abstraction using the traditional logic approaches to access the functions of

the selected embedded hardware. These functions also depend on the hardware characteristics of the

chosen sensors and actuators. Therefore, the API operations must allow access to refined functionalities

such as data gathering modes, actuation types/parameters, etc. In this way, the enhancement(s) can be

applied to the refined or abstracted functionalities of the hardware.

Distributed Layer: enables creating scale-able network topology for distributed agent-based CPSs.

In this way, multiple agents can be contained by different containers/embedded devices while they can

send messages to each other using agent communication. In addition to the agent communication pro-

tocols, technologies such as the MQTT, OPC-UA, and TCP/IP can be preferred to inter-operate non-

autonomous paradigms.

The Wrapper Layer: describes wrapping the multiple computational steps, such as low-level de-

vice details, enhancement methods such as fuzzy, Bayesian and neural models, belief addition/deletion

and binding methods with agent mechanism into a method to provide an abstraction. These invariant
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steps are encapsulated to provide an easier way to use this method within the agent software. This way,

the complexity is lessened without creating an extra burden for the plan structure and reasoning mech-

anism instead of defining many consecutive actions. Moreover, design patterns and Agents&Artifact

approaches can also be utilised in this layer, having more modularity in replacing the low-level API func-

tions or enhancement models without altering the agent software.

Middleware Layer: provides an infrastructure for internally binding the wrapped functions to the

agent-oriented software and externally providing communications. It also allows for object-oriented

level programming, library inclusions and file operations. This layer may also provide a horizontal ex-

tension for data analysis and information gathering from external systems and services to support au-

tonomy. The enhancement models, such as fuzzy logic, can also be used within the middleware layer for

data filtering or data fusion delivered by the network. The fuzzified beliefs are also added to the agent’s

mind via this layer (also belief deletion/update). In this way, it reduces the complexity of the agent pro-

gramming. The middleware layer connects the wrapped functions with the agent’s actions in the plan

structure, bridging the reasoning mechanism and the low-level control established in the embedded

hardware layer.

Agent-based Reasoning Layer: is the layer of cognition for leveraging the CPS to sCPS, allowing mul-

tiple enhancements such as fuzzy logic, neural networks, learning, and neuro-fuzzy approaches. In this

layer, the procedural reasoning layer should be augmented by the proposed AI approach and blended

with the planning mechanism to create a more intelligent mechanism to sustain the system during run-

time. The reasoning mechanism should not be bound to conventional approaches. Instead, it should

follow multi-logic models integrated and interoperated with each other to form a better judgment of

uncertainties, then should execute the plans using the multi-logic methods. In addition, learning ap-

proaches can also be adopted by extending this architecture vertically. Figure 4 illustrates the Compo-

nent Diagram representation of the enhanced and extended points resulting in the impact on the sensor

actuator layer. As the CPS is a paradigm in which the cyber and physical aspects influence each other,

the enhancement and extensions on the cyber side impact the operation of the physical side.

We introduced the hypothetical structure of the architecture and its layers that advocate applying AI

methods to enhance these layers. The developers and practitioners should also extend the architecture

to achieve more sustainable systems to create various design choices conforming to its abstract repre-

sentation. Seeing the aforementioned abstract architecture described in Figure 2, we implemented the

proposed case study using the concrete architecture represented by Figure 3. As we aim to run this case

study in a physical environment, LEGO technology was selected to create a concrete system representing

the physical side. To run the Java program in an embedded device, we preferred to use RaspberryPI 3. To

facilitate the control of LEGO sensors and actuators, the implementation requires a hardware interface.

In this case, the BrickPI 2 board was chosen as the hardware interface. The BrickPI board serves as a

means to connect and interface with the LEGO components, forming the physical side of the implemen-

tation. It enables communication and control between the software agents and the LEGO sensors and

actuators, allowing for the integration of the agent-based control system with the physical components

of the CPS.

The Java-based API of the LEGO technology is utilized to program the BrickPI board on the cyber

side. This API provides a set of Java functions that allow for the control and interaction with the LEGO

sensors and actuators connected to the BrickPI. To improve usability and provide convenience, encap-

sulation of the LEGO API functions is achieved through the use of Java wrapper methods. These wrapper

functions serve as a layer of abstraction, simplifying the usage of the LEGO API and providing a more

user-friendly interface for programming the BrickPI and controlling the LEGO components. We used the

2https://www.dexterindustries.com/brickpi
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JADE infrastructure option of Jason to create a distributed MAS contained by two embedded devices,

layer 1 and layer 2. It should be noted that Jason creates a JADE environment and agent containers auto-

matically to establish a distributed MAS. The Jason Environment were integrated with the API methods

and then wrapped using the Java functions. The use of Literals definitions and Terms depictions of the

Jason Environment and its library allowed us to correlate the actions of the agents with their correspond-

ing Java functions to perform specific functionalities. Lastly, Jason is used to creating BDI agents and for

procedural reasoning and distributed BDI agents communicated using the JADE infrastructure within

Jason3.

The next section provides comprehensive details regarding the implementation and integration of

agents with the hardware components.

Figure 3 Concrete overview of the proposed enhanced and extended architecture.

4.4. Case Study: A Smart Product Line

This section presents LEGO’s agent-based smart production system, a concrete and composable

technology. Moreover, we have studied traditional simple-reflex agents without fuzzy logic enhance-

ment in an earlier study (Yalcin et al., 2021) using SPADE framework (Gregori et al., 2006) and have seen

the necessity of an enhancement, fuzzy-logic-based BDI agent approach (Calegari et al., 2020). A rele-

vant reader is guided to an earlier version of this study (Yalcin et al., 2021). This study used the Jason

framework to develop and deploy the BDI agents.

3https://jason.sourceforge.net/mini-tutorial/jason-jade
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Figure 4 The Component Diagram representation of the Enhancement and Extension points of the pro-

posed architecture and the resulting impact on the sensor actuator layer.

In general, the system mimics the behaviour and processes of industrial classes of CPS. However, it

simplifies their cyber and physical parts to the degree that allows fuzzy- and agent-based experimen-

tation for developing our approach. We aimed to mimic a sauce production process in the proposed

case study. The aim is to use red tomatoes to make sauces. To a certain degree, spoiled tomatoes can

be tolerable. However, adding too many spoiled tomatoes can be a problem for the product quality.

Moreover, green peppers can also be added to create a mixture of red tomatoes and green peppers to

make different sauces. It is also possible that other green peppers with various tones can be added to the

mixture. Before that, the system should be able to distinguish the spoiled tomatoes and try to eliminate

them. Nevertheless, the colour sensor is imperfect and has to work with uncertainty since only con-

straint colour information can be processed. Therefore, we should apply a fuzzy-logic-based approach

to mitigate these problems. In addition, during the system’s operation, a person may approach the sys-

tem as human behaviour is inherently unpredictable (Garlan, 2010), which accordingly causes external

uncertainty in the system. Therefore, ultrasonic sensors should detect human intervention. Still, the

system cannot stop the conveyor belt instantly not to delay the production process. The system should

also consider the person’s safety near the functioning system. According to the distance, the speed of

the conveyor belt should be controlled smoothly and considering safety/delay. On the one hand, if the

motor of the conveyor belt is stopped so fast, it may harm the motor and the product on the conveyor

belt.

On the other hand, if the conveyor belt speed cannot be controlled smoothly, this may harm a per-

son critically. In this regard, a fuzzy-based approach can be applied where it is a burden or impossible to

implement smooth speed transitions using traditional logic. Therefore, we can devote the fuzzy-based

approach to provide smoothness and easiness. Moreover, the products may be stuck during the conveyor

belt operation. Thus, the conveyor belt should be moved back and forth smoothly. Therefore, an adap-

tation plan should be applied to mitigate this problem. To satisfy these requirements, we implemented

a fuzzy and multi-agent-based approach to control the production line case study processes and tackle

a degree of uncertainty, benefiting from the BDI architecture. The BDI agents that were deployed in our

study are as follows:
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• Init Agent: The primary purpose of this agent is to handle the initialization, taking charge of send-

ing messages to initiate the sequence of actions of the system. It was also required to delay the

system start-up until device configurations were completed. There are two individual Init agents

to initialize the system configurations for the first and second conveyor belts. The First conveyor

belt includes Drop Agent, Shred Agent, and Sort Agent, while the second conveyor belt refers to

Push Agent and Press Agent. The division of these agents was realized according to the control

operations on two conveyor belts.

• Drop Agent: In charge of overseeing the product input, this agent actively manages the process by

dropping a product (brick) onto the first conveyor belt when a message is received. It also ensures

that products are properly dropped onto the first conveyor belt for further processing.

• Shred Agent: Tasked with controlling multiple components, including the first conveyor belt, the

motor of the shredding component and the ultrasonic sensor, this agent directs their operations

by managing the movement of the belt and activating the shredding motor when required, guided

by inputs from the ultrasonic sensor.

• Sort Agent: Taking on the role of colour determination, this agent’s task is to resolve the colour

of each product (brick) and exert control over the second conveyor belt. By employing the colour

information, this agent positions the products in front of their predefined buckets on the second

conveyor belt.

• Push Agent: Tasked with message handling for pushing the products (bricks), this agent exercises

control over the pushing movement. It stages the actions of the pushing component to put the

products in their respective buckets.

• Press Agent: Tasked with managing the combination of products (bricks), this agent receives the

products, utilizes the press component to hold the first product, merges it with the second product

to generate a concatenated products, and subsequently releases the concatenated products from

the press reservoir.

These agents work together to perform the necessary actions and coordination for the efficient

operation of the system, ensuring that bricks are processed, sorted, and combined according to

the desired specifications. Agents and their related segments are illustrated by Figure 5.

Figure 5 Agents and their corresponding sections.

The abstract architecture that allows for fuzzy logic enhancement and its concrete implementation

on the presented BDI agents deployed on the production line system is described further in Section 5.

5. An Implementation of the Proposed Architecture

This section mentions a concrete implementation of the proposed architecture enhanced with fuzzy

logic. As previously presented, software agents are self-contained entities that can achieve their goals
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by providing local control for the different parts of any system. Despite trying to achieve their goals,

distributed agents work harmoniously to control the heterogeneous parts of the proposed case study.

Accordingly, the BDI agents can perceive their environment through sensors, process the environmental

data and behave goal-oriented to achieve their goals enhanced with fuzzy logic. In the proposed case

study, agents are geared towards controlling heterogeneous segments of the system based on fuzzified

beliefs, pre-defined rules and fuzzified smooth execution inherited from the fuzzy logic. The two con-

veyor belts, somatic components and different functions construct the multi-stage, heterogeneous and

complex system.

First, the system is initialised to be ready to run. Then, the first colour sensor detects whether there

is a product (i.e., Lego bricks). Secondly, If any product is inputted, the product is dropped onto the first

conveyor belt. Once this action is triggered, the conveyor belt is started to deliver the product to the

next phases. A brick moves through the border between the first and second conveyor belts. The second

colour sensor detects the product and decides its colour based on the fuzzified R, G and B data. The

fuzzy-BDI agent’s belief towards the colour of the brick has to deal with both the noise and the reading

distance that varies from 0.5 cm to 2 cm. The random change of distance of each arrived product causes

the alternation of the R, G and B values, leading to vagueness and the need for linguistic definitions such

as low, medium, high, very high, ultra, and ultra-high.

Moreover, the conveyor belt is not stopped not to cause a processing delay, product loss and de-

generation of the physical components. In this case, the data may become more imprecise and hard to

interpret the combination of R, G and B values to extract the meaning. The fuzzy-BDI agent can mitigate

this uncertainty as the fuzzy logic provides generality and simplicity to group the data. The product’s

colour is decided based on the defined rules in the knowledge base using fuzzy beliefs. The highest

membership degrees of the membership functions are characterised by the mentioned linguistic vari-

ables and are calculated. Therefore, the Colour, ReverseAction and Speed columns, which are mentioned

in the following, are either decision result that creates another goal or actions within the BDI agent’s plan

(recall subsection 4.2). The source codes regarding the implementation details can be reached on this

link4. The agent software can be found under src folder5 and low-level API code can be reached in java

folder6. To balance succinctness and transparency, the implementation details refer to this repository.

The Prolog rules that belong to Sort Agent7 and Shred Agent8 are specified to select the highest mem-

bership degree for each term such as R, G, and B colours, conveyor belt speed and motor reversing force.

Referring to the Sort Agent’s and Shred Agent’s fuzzified plans (recall Listing 1), that apply the aforemen-

tioned Prolog rules, can be reached on9,1011. Moreover, these plans corresponding rules are listed in

Tables for colour distinguishment Table 4, reverse movements for the stuck brick Table 2 and emergency

control Table 3, respectively12.

In Sort Agent’s software, line 43, samplecolour plan is represented. This plan collects the R, G and B

values from the colour sensor, then runs reverseMoments action to check whether any activity is required

to perform in case of the stuck brick (if there is a stuck brick, it does not arrive at the Sort Agent’s colour

sensor, see Figure 5). Then, it intends to run the !decidecolourF plan (defined in lines 52 and 107). The

4https://github.com/micss-lab/FuzzyBDIAgents
5https://github.com/micss-lab/FuzzyBDIAgents/tree/main/src/asl
6https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/java/PLEnv.java
7https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/sortAgent.asl#L6-L14
8https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/shredAgent.asl#L6
9https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/sortAgent.asl#L52-L105

10https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/sortAgent.asl#L118-L124
11https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/shredAgent.asl#L43-L48
12For simplicity, the rest of the paper refers to these links using agents’ names such as Sort Agent, Shred Agent etc.
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plan !decidecolourF is triggered to decide red, purple, light green, middle green and dark green bricks.

The plan has an application context such as isitRed(high) & isitGreen(low) & isitBlue(medium) (recall 1)

that runs the previously mentioned Prolog rules provided by Jason. In this way, the Sort Agent determines

the brick’s colour. The Sort agent then guides the brick to either the Press agent’s build section or the

Push agent’s push section. Besides, this plan structure also represents the rules given in Table 4. In other

words, each !decidecolourF plan corresponds to precisely one rule given in the Table 4, e.g., isitRed(high)

& isitGreen(low) & isitBlue(medium) represents the Rule 1 and decision result is the colour type of the

product. According to the product colour, an action is performed to send the product to either the press

section or the push section on the system. In this regard, plans named !decidecolorF in Sort Agent lines

52-105 correspond to the rules 1-25, respectively. The variety of the rules (or plans) is because of the

reasons: i) our design approach of the membership functions, ii) the variable distance between the Sort

Agent’s colour sensor and the width of the conveyor belt that creates change in the R, G and B values.

The Drop Agent13 informs the Sort Agent when it drops a brick on the conveyor belt. The Sort agent

checks whether there is a stuck brick by pursuing the !decideApplyReverse goal. As lines 113-114 describe,

if the bricks arrive in time, this counter is reset, and the goal switches to the !samplecolour. If the bricks

do not arrive in a pre-defined (i.e., threshold) time configured according to the expert’s opinion, the

Sort agent drives the !deciveRev goal. Then, according to the altering context, a plan is selected for the

!deciveRev goal, i.e., the time passes while the brick is kept in a stuck state, so the membership degrees

change. Therefore, the Prolog rule defined in line 6 of the Sort Agent is instructed to trigger the suitable

plan for this goal. The Sort agent’s !decideRev plan for executing the reverse actions for the brick recovery

defined in lines 118-122 are represented as Rules 1, 2 and 3 in the Table 4. Lastly, the Shred agent follows

the goal !emergency based on the collected data from the ultrasonic sensor considering the safety. The

emergency plan is to arrange the conveyor belt’s speed if an obstacle is near the production line system.

Lines 43 and 46 define two +!emergency plans corresponding to the rules in Table 3.

As can be noticed, changeConveyorSpeed action has two parameters that take the pre-defined speed

of the conveyor belt and the membership degree. When the suitable plan is according to the context

(i.e., highest membership degree) for each cycle, the membership degree is also used within the plan

to dynamically re-configure the system for adaptation. The complement of the membership degree is

taken by extracting from 1 to correlate the meaning of the membership function and its propagation on

the action within the plan. Referring back to the colour decision phase, after the Sort agent decides the

colour of the brick (product), that product is either pushed into the buckets applying the fuzzy-logic-

based execution or sent to the pressing process. Lastly, one brick is held by clippers of the pressing

platform. When the second brick arrives in the pressing platform, it is merged with the first one, and the

merged brick is ejected to the outside of the system through the exit bucket.

To control the aforementioned complex process, we implemented our BDI agents to control defined

actions of the production line system by applying fuzzy logic. In this way, they can communicate to work

in harmony when a process is completed and another process should be triggered next. Their collabora-

tive behaviour creates a sustainable and continuous system that applies fuzzy logic instead of traditional

logic. During the process steps, if any uncertainty occurs that prevents the product’s process, the system

tries to mitigate it using alternative plans of agents benefiting from the fuzzy logic enhancement.

As illustrated by Figures 6 and 7 described by Equation 1, we preferred to use the fuzzy triangular sets

as we have previous experiences (Ltaief et al., 2022; Karaduman et al., 2022b,a; Karaduman & Challenger,

2022; Yalcin et al., 2021; Can et al., 2022; Karaduman et al., 2023a) and considered the studies in the liter-

ature (Farias et al., 2010; Ben Mekki et al., 2016; Queiroz et al., 2022) that led us to the reasonable results.

To define a fuzzy set using a triangular function, we can use the functions represented by Equation (1).

13https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/dropAgent.asl
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Let us define a triangular fuzzy set with a lower limit a, upper limit b, and a midpoint m between these

limits, where a < m < b. The membership function for this fuzzy set can be defined as follows:

µtr i an(x) =





0, x ≤ a
x−a
m−a

, a < x ≤ m
b−x
b−m

, m < x ≤ b

0, x ≥ b

(1)

In this definition, the membership value µtr i an(x) represents the degree to which an element x be-

longs to the fuzzy set. For values of x below the lower limit a or above the upper limit b, the membership

value is zero, indicating no membership. For values of x between a and m, the membership value in-

creases linearly from zero to one. Similarly, for values of x between m and b, the membership value

decreases linearly from one to zero. By defining the membership function in this way, we can represent

a triangular fuzzy set with the desired lower limit, upper limit, and midpoint, allowing us to model and

reason with fuzzy concepts in a precise and flexible manner. In order to provide greater clarity for the

rest of this subsection, the fuzzy rules and membership functions are introduced, offering beneficial per-

spectives. As mentioned, the Prolog rules defined in lines 6 and 14 of the Sort Agent’s software and Shred

Agent’s line 6 select the highest membership degree among the defined fuzzy sets. Shred Agent’s line 6

is defined as the rule for speed control that was experimented in subsection 6.3.2 and selects the highest

membership for that agent cycle, which can be either low speed or high speed. Similarly, Sort Agent’s

line 6 represents the Prolog rule for selecting the highest membership among the membership func-

tions that define the Actionlow, Actionmedium, and Actionhigh manoeuvres to save the stuck brick(s)

experimented in subsection 6.3.3. Figure 714 and 615 illustrate the triangular membership functions we

integrated to enhance the procedural reasoning system with fuzzy logic.

Figure 6 Distance and Reverseaction Membership Functions.

14The jFuzzyLogic was only used for the illustrative purposes.
15The jFuzzyLogic was only used for the illustrative purposes.
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Figure 7 Colour Membership Functions.

Table 2 Brick Stuck Save Action Rules of the Sort Agent

RULES Time ReverseAction

RULE 1 low -> Actionlow

RULE 2 medium -> Actionmedium

RULE 3 high -> Actionhigh

Table 3 The distance and speed arrangement for the safety purposes of the Shred agent.

Rules Distance Speed

Rule 1 low -> SpeedLow

Rule 2 high -> SpeedHigh
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Table 4 Fuzzy rules of the Sort agent as logical condition representation

Rules Red Green Blue Colour

Rule 1 high AND low AND medium -> Red

Rule 2 high AND medium AND medium -> Red

Rule 3 high AND high AND low -> Red

Rule 4 medium AND high AND low -> Red

Rule 5 medium AND medium AND low -> Red

Rule 6 medium AND veryhigh AND low -> Red

Rule 7 high AND veryhigh AND low -> Red

Rule 8 medium AND medium AND medium -> Purple

Rule 9 medium AND high AND medium -> Purple

Rule 10 high AND high AND medium -> Purple

Rule 11 medium AND medium AND high -> Purple

Rule 12 high AND medium AND low -> Purple

Rule 13 medium AND veryhigh AND medium -> Purple

Rule 14 medium AND veryhigh AND high -> Purple

Rule 15 high AND veryhigh AND high -> Purple

Rule 16 medium AND ultramedium AND medium -> LightGreen

Rule 17 medium AND ultralow AND medium -> LightGreen

Rule 18 medium AND ultrahigh AND medium -> LightGreen

Rule 19 low AND ultralow AND medium -> MiddleGreen

Rule 20 low AND ultramedium AND low -> MiddleGreen

Rule 21 low AND ultralow AND low -> MiddleGreen

Rule 22 low AND ultramedium AND medium -> MiddleGreen

Rule 23 low AND high AND low -> DarkGreen

Rule 24 low AND high AND medium -> DarkGreen

Rule 25 low AND veryhigh AND low -> DarkGreen

So far, the plan selection and fuzzy membership functions have been mentioned. When an action

within the plan is instructed, it is mapped and instructed a corresponding method contained by the

Jason environment. For brevity, we only mention the fuzzy functions for the blue colour, as the other

functionalities are more or less the same. A relevant reader can access Jason’s Java environment for the

implementation of the smart production line on this link1617.

The Jason environment code in line 977 represents how the sampleColour action is performed (recall

Sort Agent’s line 6). Firstly, the Jason BDI instructs the action.equals command to check whether the

action is sampleColour. As the Sort Agent executes this action, the fuzzyColourSensor method is called.

As the wrapper layer describes, this method is a wrapper function that includes the low-level device

details, fuzzy function definitions and binding techniques. It wraps these invariant steps to provide an

abstraction for the reasoning layer. This way, the complexity is lessened without creating an extra burden

for the plan structure and reasoning mechanism instead of defining many consecutive actions. The

fuzzyColourSensor method is described in lines 409 and 553. At line 417, the colour sensor is set to RGB

mode. The sample is taken once at line 431, and sampled R, G and B data are transferred to the red,

green and blue variables. The BrickPI board provides these functionalities that conform to the Hardware

Interface layer and BrickPI’s API defined in the API layer.

When the fetchSample function is called, a reading is taken from the physical environment via the

colour sensor defined in the sensor and actuator layer. The previous perceptions related to the three

membership degrees of the blue colour are cleaned just in case in lines between 467 and 469. In lines

16 and 20, fuzzy functions are defined. The gathered blue value at line 434 corresponding to the mem-

16https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/java/PLEnv.java
17Hereafter, the paper mentions this file as Jason environment code
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bership functions is converted to the membership degrees. Lines 497 and 499 define the Literals for

these three membership functions described by the linguistic variables such as low, medium and high.

In the agent’s belief base, these linguistic variables can also be represented as beliefs such as colour-

Blue (low,0.7), colourBlue (medium,0.2), colourBlue (high,0.1). Lastly, these Literals are added to the Sort

agent’s mind as beliefs. Figure of the agent’s run-time mind with fuzzified beliefs and linguistic variables

can be accessed in the repository18 As can be seen, it gathers the RGB values from the sensor API and

then fuzzifies these inputs using the linguistic terms and membership degrees. In the next section, the

empirical evaluation of the study is mentioned.

6. Empirical Evaluation

In this section, demonstrating scenarios, experimental setup and carried-out experiments are intro-

duced.

6.1. Demonstrating Scenarios

This subsection demonstrates scenarios to provide insights for the experiments mentioned in 6.3.

6.1.1. Colour Distinguishing Scenario

Figure 8 illustrates the bricks that have various colours. In reality, these colours are slightly darker

than in Figure. As a traditional approach, the BrickPI API only supports certain tones of these colours

as it uses the crisp values of Boolean logic. For example, 1, 3, and 4 are perceived as blue or black, 5 are

recognized as red, 2 are identified as magenta, 7 are determined as blue, and 6 are decided as brown.

Therefore, this emerges as a necessity to enhance the monitoring ability of the Sort agent using fuzzy

logic for our candidate and specific products (bricks). In this way, we could provide correct grouping

and specific distinguishing between the same colour groups such as light green, dark green and middle

green.

Figure 8 Bricks that are recognized as wrong colours.

In our opinion, colour distinguishing has an external 19 aleatoric20 and internal21 epistemic uncer-

tainties22 that can emerge during the run-time, so the information processing capability of the BDI agent

can be enhanced and the imprecision range can be grouped using fuzzy logic.

Red and Spoiled Red

18https://github.com/micss-lab/FuzzyBDIAgents/blob/main/SortAgentMindHalf.png
19The uncertainty is referred to as external because the environment’s propagated effects caused imprecision in multiple

sampled data when the system entities were kept static.
20The uncertainty is referred to as aleatoric because the R, G and B values vary in specified boundaries due to random noise

from the environment.
21The uncertainty is also referred to as internal because the products (bricks) are controlled by and under the influence of the

BDI agents and conveyor belts.
22The uncertainty is referred to as epistemic because the two types of BDI agents’ logical abilities are evaluated to recognize

the colour based on the beliefs.
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As mentioned, the traditional configuration of the sensor API cannot distinguish between red and

spoiled red, which is described by Figure 9 since spoiled red is perceived as a red brick. Therefore, we

created and tuned membership functions based on our expert opinion (recall Figure 7). Spoiled red is a

tone of colour that can be perceived as neither purple nor magenta because it is a pretty close colour to

red. In this scenario, we aim to process more red tomatoes and eliminate spoiled ones as much as possi-

ble to achieve a healthy mixture. The demonstration that displays the red and spoiled red distinguishing

process can be reached on 23.

Figure 9 Red (left) and spoiled red (right) bricks.

Tones of Green

As mentioned, the traditional configuration of the sensor API only supports limited colours or incor-

rectly sees the different tones of type. Moreover, there is a vagueness in knowing which tone of green

is perceived, narrowing the scope of the usable products. Figure 11 illustrates the selected green bricks

(product). At first, we tried these green bricks and noticed that the colour sensor could not recognize

light green and dark green as green colour. We selected these bricks to work with light and dark tones as

well. The demonstration video, which displays the grouping of the green products in the same bucket,

can be accessed at 24. In the next subsubsection, the emergency control scenario is mentioned.

Figure 10 Colours of green: Light Green (left), Green (middle), Dark Green (right).

6.1.2. Emergency Control Scenario

To achieve smooth conveyor speed adjustment during the conveyor belt operation in case of emer-

gency, we fuzzified the Shred Agent’s perceptual ability on the ultrasonic sensor. To compare both the

traditional logic and fuzzy logic approaches, we implemented a traditional logic-based approach to con-

trol the speed of the conveyor belt. We observed that the ultrasonic sensor has no linear characteristic,

so it may cause sharper strikes on the conveyor belt’s motor during speed adaptation. In this case, the

BDI agent’s monitoring feature can be fuzzified.

Figure 11 illustrates a sample output of the fuzzy-BDI agent’s (blue line) and the traditional BDI agent

implementation control (black line) actions (actuation units of the motor) on the conveyor belt based

23https://youtu.be/SmSpZaDiBSI
24https://youtu.be/tWh5w6eEABQ
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on the sampled perceptions gathered from the emergency sensor. The sample video demonstrates how

the Shred agent applies the emergency plan using fuzzified beliefs, selecting the plan according to the

membership degree and arranging the conveyor belt’s speed by configuring the changeConveyorSpeed

action within the plan using the membership degree. The demonstration of the implementation can be

found on25.

Figure 11 Emergency sensor perceptions and corresponding actions of both approaches.

Thus, in this experiment, emergency control of the conveyor belt using the fuzzy-BDI agent and

classical-BDI agent was compared considering the external26 epistemic27 uncertainty may endanger

both systems and humans. In the following subsubsection, the stuck brick recovery scenario is ex-

pressed.

6.1.3. Stuck Brick Recovery Scenario

In this scenario, it was assumed that the bricks (products) were stuck as the internal epistemic un-

certainty because of the internal mechanism of the conveyor belt and the unpredictability of the stuck

event. It was considered that if the product does not arrive in front of the Sort agent’s colour sensor (see

Figure 17) in 5 seconds, then the Sort agent activates the brick recovery plan. The bricks were placed

vertically where bottlenecks on the conveyor belt are to realize this experiment, and the goal is turning

the bricks horizontally, which is their normal run on the conveyor belt.

As the fuzzy BDI approach, the fuzzified executions were performed to save the brick from the stuck

state. The demonstration that displays the recovery plan can be reached on28,29 and 30 for one, two and

three stuck bricks, respectively. The demonstration of the classical BDI version recovery capability can

be reached on31 and32.

Even though the videos show a short recovery time for the classical BDI approach, they were just

trials that should be repeated many times. Eventually, this led us to the comprehensive evaluation, as it

25https://youtu.be/fWr0hMObrXM
26The uncertainty is referred to as external because a dynamic factor outside the system border may affect the system’s oper-

ation during the run-time.
27The uncertainty is referred to as epistemic because of lack of knowledge about that dynamic factor’s collision to the system,

so the system’s dynamic behaviour is lessened.
28https://youtu.be/iY0N4tvq1Ms
29https://youtu.be/36KWT9vxYXo
30https://youtu.be/VUX6pi3R00E
31https://youtu.be/JsIo7AvA-fc
32https://youtu.be/UhJX3RXHg08
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was also observed that the traditional method might not resolve the case in 40 seconds, which is demon-

strated on33. Besides, this conventional approach reverses the motor instantly with a fixed speed. As

may be envisioned, it does not seem so convenient considering industrial conditions such as the motor

characteristics and abrasion of the system. It could also have led to a deadlock and could not resolve the

situation in 40 seconds sometimes.

It was aimed to compare the brick recovery success of both approaches. Therefore, the bricks were

placed by one, by two and by three in a stuck manner on the conveyor belt. The adaptation plan was

triggered when the Sort agent could not perceive any colour after 5 seconds (recall Sort Agent34). The

limit value to save the bricks was determined as 40 seconds. If this limit is exceeded, it was assumed

that the operator would manually intervene to save the stuck bricks. The brick recovery plan was then

triggered by the Sort agent to save the stuck brick(s) on the conveyor belt.

On the other hand, the classical implementation of the Sort agent tries to save the stuck brick(s)

by reversing the conveyor belt’s motor instantly with a fixed speed and angle in contrast to the fuzzy

BDI agent’s alternating fuzzified speed and angle executions. Figure 12 depicts a sample excerpt of the

fuzzified executions as the motor’s actuation units of the conveyor belt over the sampled perceptions to

save the stuck bricks.

Figure 12 Fuzzified executions to save the stuck brick(s).

The maximum speed that the fuzzy BDI agent can apply was limited to the same fixed speed as the

classical BDI agent can apply, considering the fairness of both methods. To determine the successful re-

covery, all brick(s) should be saved from their stuck places and gain the freedom to move on the conveyor

belt in 40 seconds. In the following subsubsection, the controlling push force scenario is introduced.

6.1.4. Controlling Push Force Scenario

In this scenario, the push force of the Push Agent is dynamically arranged using the membership

degrees according to the bricks’ colours and expected values in a fuzzified manner. The membership

degrees are multiplied by the pre-defined push force set by the domain experiment. Specifically, either

red or green membership degrees were considered based on the triggered plan/rule (recall Table 4) of the

colour groups (recall Figure 9 and 10) and multiplied by the maximum push force of the motor controlled

by the Push Agent.

It was assumed that darker colours, such as spoiled red and dark green, represent rotten products that

can be soft and more prone to be defective because of the applied force. In other words, we considered

their rigidness and durability. For example, if it is a fresh tomato, it should be durable and red. However,

if it is spoiled, then the colour becomes purple. Therefore, spoiled products should be hit using less force

33https://youtu.be/mt5CiGStacI
34https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/sortAgent.asl#L113-L114

31



to avoid fragmentation and shattering. Accordingly, the membership degrees can set the pushing force

for the product groups in a fuzzified execution. The excerpt demonstration can be accessed on35.

In the classical BDI approach, the push forces for different bricks were kept constant. In other words,

the Push Agent applied fixed pushing force to the bricks to send them outside the conveyor belt. At first,

the red and spoiled red brick group had been (recall Figure 9), and then the dark, light and middle green

bricks were inputted into the system (recall Figure 10).

Both the Classical BDI agent and Fuzzy BDI versions of the Push Agent were compared with the as-

sumption of the Ideal Agent version that fulfils the expected push forces for five different colours without

any deviation. In the next subsubsection, the end-to-end scenario is noted.

6.1.5. End-to-end Scenario

In this scenario, end-to-end regular product processing was followed, starting from the Drop Agent to

the Press Agent (see Figure 5). Specifically, it was aimed that the system should push the Dark Green and

Spoiled Red into the buckets, allowing the pairing of any Red, Middle Green, or Light Green combination

in the Press phase.

For instance, a series can be Spoiled Red, Red, Dark Green, Middle Green, Red, Spoiled Red, Red, Dark

Green, Light Green, Middle Green, Red, Spoiled Red, Red, Spoiled Red, Dark Green, Middle Green, Red,

Spoiled Red, Spoiled Red, Middle Green. In this case, the ideal sequence as pairs is Red-Middle Green,

Red-Red, Light Green-Middle Green, Red-Red, Middle Green-Red, Middle Green (no pair as sequence ends)

and expected exclusions, i.e., expected pushed products, is six Spoiled Red and three Dark Green.

The production line processes these products (bricks) and presses two products to combine them as

pairs. In this regard, each series has its ideal sequence that can be compared with the produced products

by the system, both using the fuzzy BDI and classical BDI agents. A representative demo of the press-

ing action can be reached on36 and a representative demo regarding the end-to-end operation can be

accessed on37. The experimental setups of the scenarios are mentioned in the following subsection.

6.2. Experimental Setup

To evaluate our approach, we have created six experiments. At first, we aimed to be sure that any

environmental variable may affect our experiments. We then carried out our experiments in a modu-

lar manner, which can be grouped as the first and second conveyor belts, resulting in the end-to-end

evaluation as well.

6.2.1. First Conveyor Belt

We established mindful setups for the emergency control and stuck brick recovery experiments.

Emergency control experiment uses the ultrasonic sensor and a weighted brick on the first con-

veyor belt side. The ultrasonic sensor gathers the distance to the object approaching the conveyor belt.

The operation range was measured using a ruler on the physical system, and its corresponding values

were saved on the cyber side. The operation range was constrained to 5.5 cm at most, considering the

ultrasonic sensor returns the maximum integer value when the distance is quite far.

According to the closeness of the approaching object, the classical BDI agent halves the speed of the

conveyor belt if the object’s length is between 4 and 5.5 cm. Similarly, if the object approaches further

and goes below 4 cm, then the conveyor belt is stopped. On the fuzzy-BDI agent side, it slows down the

35https://youtu.be/CRyQvjKg4bQ
36https://youtu.be/WPk96bD9cl4
37https://youtu.be/dRUyXYuDPlY
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conveyor belt according to the defined membership functions, membership degrees, and their multipli-

cation with the speed of the conveyor belt (recall Shred Agent code38 and Figure 6).

The fuzzy-BDI agent thus provides smooth stopping for the conveyor belt. Moreover, at first, an ordi-

nary LEGO brick was tried to evaluate the emergency control effectiveness of both approaches. However,

as the regular brick was quite a light product for this goal, a particular brick was designed by adding ad-

ditional LEGO parts for a more concrete entity. In this way, it could stand on when the conveyor belt was

idle and perform minimal movements initiated by the conveyor motor 1. Figure 13 depicts the brick used

for experimenting with the emergency control scenario both for the fuzzy-BDI and classical-BDI agents.

Figure ?? illustrates the mentioned components, such as the weighted brick, the ultrasonic sensor, and

the conveyor belt 1, from the sensor viewpoint. Moreover, Figure ?? depicts the conveyor motor one and

the weighted brick from the motor viewpoint.

Figure 13 The weighted brick used for experimenting with the emergency control scenario.

Stuck brick recovery required multiple ordinary bricks and stuck points to carry out this experiment

in a controlled manner. Figure 15 depicts the stuck brick (bottleneck) locations on the first conveyor

belt. Initially, these bricks are at least 5 cm away from each other. These bottlenecks were created by

constraining the conveyor belt’s wideness from 4 cm up to 2.5 cm using the LEGO parts, considering that

the length of the bricks is 3 cm. The reverse actions are then performed by the Sort agent using Conveyor

Motor 1. In the following subsubsection, the experimental setup regarding the second conveyor belt is

introduced.

6.2.2. Second Conveyor Belt

Two cautious setups were established for colour distinguishing and controlling the push force exper-

iments on the second conveyor belt. Figure 16 depicts the conveyor belt 2 we carried out the mentioned

experiments.

Colour distinguishing setup required the consideration of environmental influences. Therefore, we

checked whether the sensor was operational or any component that may create a significant effect on

our cause39. We also inspected whether light intensity affects the colour sensor’s red, green and blue

values40. Ultimately, we concluded that light intensity does not affect our setup. Moreover, as the bricks’

wideness is 1.5 cm and the conveyor belt’s wideness is 4 cm, we constrained the brick distance to the

sensor. Otherwise, in case of a brick arrives at the Sort agent’s phase and the furthest point, it becomes

2.5 cm away from the sensor. This exceeds the sensor’s reading frame (out of scope), which should be

less than 2 cm. Therefore, as Figure 17 illustrates, we used distance limiters to guide the incoming bricks

to a specific distance interval [0.5cm,3cm]. We also measured the sensor’s related null value in RGB

mode. In other words, the corresponding and randomly altering R, G, and B values where there is not

38https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/shredAgent.asl#L43-L48
39http://www.legoengineering.com/ev3-sensors
40https://education.lego.com/v3/assets/blt293eea581807678a/bltc5b2d4e8f6b6ccdc/5f8806d2f6a0a50f825b03da/ev3_user_guide_us.pdf
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Figure 14 Viewpoints of the Conveyor Belt 1 and its components.

(a) Sensor Side

(b) Motor side

Figure 15 The sample bricks and stuck locations used for experimenting with the brick recovery scenario.

any product in front of the Sort agent’s sensor are given as their means and standard deviations [7.86,±

1,1913], [10,7241,± 1,4605], [7.4655,± 1.2871], respectively. In the following subsection, the

colour-distinguishing experiment is mentioned.

Controlling push force required calibrating the push motor controlled by the Push agent based on

the rotation angle and speed. As can be seen from Figure 18, the calibration of the push mechanism was

done using the trial and error approach in three steps. Considering Figure 18, firstly, the push rod was

set to the initial position with zero angles. Secondly, the correct angle was tried to be found by increasing

the rotation angle of the push motor. Lastly, the configuration parameter (angle) that moves the push

mechanism from the zero point to the border of the conveyor belt was found. When the fixed angle was
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Figure 16 Conveyor belt 2.

Figure 17 Distance limiter parts and the colour sensor.

set as the first parameter, then the rotation speed was arranged by the Push agent.

Lastly, it should also be noted that, for the end-to-end scenario, situations such as emergency control

and stuck brick recovery were not considered as the aim is to measure the system’s performance and

process time based on regular operation.

Figure 18 Calibration of the push mechanism.

6.3. Experimental Results and Analyses

In this subsection, colour distinguishing, emergency control, stuck brick recovery, controlling push

force, execution time, and end-to-end experiments are introduced, considering the performance and ex-

ecution time evaluation. Their analysis results are given as well. Generally, our focus was evaluating the

system performance and time consumption. Specifically, performance evaluation considers the system

performance evaluation based on the experiments such as colour distinguishing, emergency control,

stuck brick recovery, controlling push force and end-to-end process performance. Moreover, time eval-

uation focuses on evaluating the process and execution time aspects of the system based on the experi-
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ments, such as execution time evaluation and end-to-end process time. The results are then highlighted

in Section 7.

6.3.1. Colour Distinguishing Experiment

As mentioned, the colour-distinguishing effectiveness of the fuzzy BDI agent was evaluated and com-

pared with the conventional BDI agent. Therefore, in this experiment, every five different colours, dark

green, green, light green, red and spoiled red, were inputted 40 times to compare colours determining

capabilities between two agents. Lastly, the chi-square test was carried out to indicate whether there was

a significant difference between the fuzzy BDI and traditional BDI agents.

Table 5 Chi-Square Test results of the five different colours of the colour distinguishing experiment.

Chi-Square Tests

Colour Value dfAsymptotic Significance (2-sided)Exact Sig. (2-sided)Exact Sig. (1-sided)

Dark Green

Pearson Chi-Square 76.098c 1 <.001

Continuity Correctionb72.245 1 <.001

Likelihood Ratio 101.501 1 <.001

Fisher’s Exact Test <.001 <.001

N of Valid Cases 80

Green

Pearson Chi-Square 2.222d 1 .136

Continuity Correctionb1.250 1 .264

Likelihood Ratio 2.315 1 .128

Fisher’s Exact Test .263 .132

N of Valid Cases 80

Light Green

Pearson Chi-Square 65.455e 1 <.001

Continuity Correctionb61.869 1 <.001

Likelihood Ratio 84.096 1 <.001

Fisher’s Exact Test <.001 <.001

N of Valid Cases 80

Red

Pearson Chi-Square .157f 1 .692

Continuity Correctionb.000 1 1.000

Likelihood Ratio .157 1 .692

Fisher’s Exact Test 1.000 .500

N of Valid Cases 80

Spoiled Red

Pearson Chi-Square 68.837g 1 <.001

Continuity Correction 65.167 1 <.001

Likelihood Ratio 89.142 1 <.001

Fisher’s Exact Test <.001 <.001

N of Valid Cases 80

Total

Pearson Chi-Square 124.612a1 <.001

Continuity Correction 122.293 1 <.001

Likelihood Ratio 135.933 1 <.001

Fisher’s Exact Test <.001 <.001

N of Valid Cases 400

Table 5 displays the results of the chi-square test for the five different colours, as well as the overall

results. The classical BDI agent performs slightly better in primary colours like red and green. How-

ever, when considering side colours such as spoiled red, dark green, and light green, the fuzzy BDI agent
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outperforms the classical agent not only in side colours but also in the overall results. The null hypoth-

esis, which states that there is no significant difference between the two samples, can be rejected with a

confidence level of 99% for dark green, light green, spoiled red, and the total.

Figure 19 illustrates fail and success counts of the classical and fuzzy BDI agents for dark green, green,

light green, spoiled red and red, respectively. In the following subsection, the emergency control experi-

ment is mentioned.

Figure 19 Failure and success counts of the Classical and Fuzzy BDI Agents for the dark green, green,

light green, spoiled red, and red of the colour distinguishing experiment.

6.3.2. Emergency Control Experiment

In the experiment, the brick was put on the conveyor belt’s predefined location for each iteration. Af-

ter 1 second, the agents’ emergency plan was triggered. In the end, if the brick was kept up, this counted

as a success, and if it lost its balance and fell, this phenomenon was counted as a failure. If the brick hit

the corners and dropped or stayed still, that iteration was redone as it could affect the brick’s state.

40 different hand (object) movements with 70 samples were gathered to provide fairness for com-

paring both approaches. For each different hand movement, various conveyor belt speeds starting from

350 units to 1000 were experimented with, increased by 50 units. Table 6 displays the failure and success

counts of the classical and fuzzy BDI agents. As described by Table 7, a chi-square test was carried out

based on this data. The results of the Pearson Chi-Square test indicate a significant difference between

the fuzzy BDI and classical BDI agents with a confidence level of 95%.

The bar chart in Figure 20 illustrates the failure and success counts of the classical and fuzzy agents.

The classical BDI agent encountered 106 failures and 454 successes, while the fuzzy BDI agent had 77

failures and 483 successes out of 560 iterations. Therefore, the fuzzy BDI agent performs slightly better

than the classical one in this experiment. In the following subsection, the stuck brick recovery experi-

ment is mentioned.
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Table 6 Fail and success counts of the classical BDI and the fuzzy BDI agents of the emergency control

experiment.

AgentType
Test

Fail

Test

Success
Total

ClassicalBDIAgent 106 454 560

FuzzyBDIAgent 77 483 560

Total 183 937 1120

Table 7 Chi-Square Test results of the Classical BDI and the Fuzzy BDI agents of the emergency control

experiment.

Value df

Asymptotic

Significance

(2-sided)

Exact

Sig.

(2-sided)

Exact

Sig.

(1-sided)

Pearson Chi-Square 5.493 1 .019

Continuity Correction 5.121 1 .024

Likelihood Ratio 5.513 1 .019

Fisher’s Exact Test .023 .012

N of Valid Cases 1120

Figure 20 Failure and success counts of the classical and the fuzzy agents of the emergency control ex-

periment.

6.3.3. Stuck Brick Recovery Experiment

In order to carry out this experiment, 40 iterations were conducted for each brick sequence of both

approaches, leading to 240 endeavours.

Table 8 presents the failure and success counts for both approaches in the brick recovery experi-

ment. Table 9 provides the chi-square test results for the failure and success counts of the fuzzy BDI and

classical BDI agents in this experiment.

Figure 21 displays the bar charts representing the results of the brick recovery experiment. It can

be observed that the classical BDI agent failed to recover half of the stuck bricks in the one, two, and

three-brick trials. The statistical tests conducted indicate that there is no significant difference between

the classical and fuzzy BDI approaches in the one and two-brick trials. However, a significant difference

exists between the approaches in the three-brick trial.
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Table 8 Failure and success counts of the fuzzy BDI and the classical BDI agents for the brick recovery of

the stuck brick recovery experiment.

Agent Type Fail Success Total

Classical BDI Agent 19 101 120

Fuzzy BDI Agent 4 116 120

Total 23 217 240

Table 9 Chi-square test results of the brick recovery plan of the stuck brick recovery experiment.

Brick Count Value df Asymptotic Significance (2-sided) Exact Sig. (2-sided)

1.00

Pearson Chi-Square 1.013 1 .314

Continuity Correction .000 1 1.000

Likelihood Ratio 1.399 1 .237

Fisher’s Exact Test 1.000

N of Valid Cases 80

2.00

Pearson Chi-Square 1.013 1 .314

Continuity Correction .000 1 1.000

Likelihood Ratio 1.399 1 .237

Fisher’s Exact Test 1.000

N of Valid Cases 80

3.00

Pearson Chi-Square 18.660 1 <.001

Continuity Correction 16.529 1 <.001

Likelihood Ratio 20.872 1 <.001

Fisher’s Exact Test <.001

N of Valid Cases 80

Total

Pearson Chi-Square 10.819 1 .001

Continuity Correction 9.425 1 .002

Likelihood Ratio 11.669 1 <.001

Fisher’s Exact Test .002

N of Valid Cases 240

Thus, in order to evaluate the three stuck brick trial’s joint success iterations for a fair comparison of

both methods in terms of time, the Paired Simple T-test was also applied.

In other words, the successful trials corresponding to 97 trials in both approaches were considered

for our evaluation. Table 10 pre-describes the means, and Table 11 shows the mean difference of ap-

proximately 11 seconds. The standard deviation of the differences is 7.74 seconds with a 95% confidence

interval of 9.87 and 12.88. As a result of the paired sample t-test, the classical BDI agent is ahead of the

fuzzy BDI agent regarding recovery time.

Table 10 The Statistics of Paired Samples Test of the Stuck Brick Experiment for recovery time.

Mean N Std. Deviation Std. Error Mean

FuzzyBDIAgent 19.1546 97 4.86985 .49446

ClassicalBDIAgent 7.8247 97 6.08620 .61796

Table 11 The Paired Samples Test Results for the Stuck Brick Experiment for Recovery time.

Paired Differences

t df

Significance

Mean
Std.

Deviation

Std.

Error Mean

95% Confidence Interval

of the Diff.

95% Confidence Interval

of the Diff. One-Sided p Two-Sided p

Lower Upper

Pair
FuzzyBDIAgent -

ClassicalBDIAgent
11.32990 7.74021 .78590 9.76990 12.88989 14.416 96 <.001 <.001

The classical BDI agent saves by one and by two bricks faster than the fuzzy BDI agent by pulling the
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conveyor belt back sequentially. The reason is that the fuzzy BDI agent begins by making the conveyor

belt minimal back-and-forth movements by smoothly switching to maximal ones. These initial slow and

minimal movements were our implementation choice and not the effect of the computation time. How-

beit, we also measured the computation time, which will be mentioned in subsection 6.3.7. Therefore,

such a movement was required when the number of bricks was increased as the bricks cause to keep

stuck by colliding with each other as a part of the solution. When the classical BDI agent begins instant

reversing the conveyor belt, the same movement was not able to perform better success in recovering

the multiple bricks. On the other hand, the fuzzy BDI agent created variable displacements among the

bricks that made them resolve from their stuck state, even though the initial minimal movements of the

conveyor belt caused a bit of time loss.

Consequently, when the difference between the two methods is inspected by one and by two bricks,

it can be said that there is no significant difference between the classical BDI and fuzzy BDI agents.

However, if we examine the three stuck bricks iteration, it can be seen that there is a significant differ-

ence between the two approaches where the fuzzy BDI performs better recovery. In other words, the

fuzzy BDI provides superior performance when the number of stuck bricks is increased. In the following

subsection, the controlling push force experiment is mentioned.

Figure 21 Representation of the failure and success counts of the stuck brick recovery experiment.

6.3.4. Controlling Push Force Experiment

In this experiment, it was tried to comprehend whether there is a significant difference between the

expected behaviour of the Ideal Agent and the behaviour of the fuzzy and classical BDI agents using the

ANOVA method. To assess the homogeneity of variances, Levene’s tests were conducted as indicated by

Table 13. Descriptive statistics for this experiment can be found in Table 12. Table 14 shows the ANOVA

test results.

Upon examining the p-values, significant differences between the groups are observed. Therefore,

multiple comparisons need to be conducted to understand the source of these differences, as shown in

Table 15. According to the results of multiple comparisons, there is a significant difference between the

Ideal Agent and the Classical BDI agent but no significant difference between the Ideal Agent and the

Fuzzy BDI agent. Lastly, Figure 22 illustrates the means plot, which describes the distance to the Ideal

Agent. The Classical BDI Agent deviates significantly from the Ideal Agent, while the Fuzzy BDI Agent

is slightly closer to the Ideal Agent. In the following subsection, the execution time measurements are

mentioned.
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Table 12 The statistical descriptives for the Push Force experiment.

N Mean Std. Deviation Std. Error

95%

Confidence

Interval

for Mean

Lower Bound

95%

Confidence

Interval

for Mean

Upper Bound

Minimum Maximum

ClassicalBDIAgent 200 540.0000 280.70264 19.84867 500.8593 579.1407 200.00 800.00

ExpectedValue 200 680.0000 75.02094 5.30478 669.5392 690.4608 600.00 800.00

FuzzyBDIAgent 200 687.2604 166.83330 11.79690 663.9974 710.5234 250.00 1000.00

Total 600 635.7535 204.68114 8.35607 619.3427 652.1642 200.00 1000.00

Table 13 Test results of Homogeneity of Variances for the Push Force experiment.

Levene Statistic df1 df2 Sig.

Based on Mean 489.205 2 597 <.001

Based on Median 81.753 2 597 <.001

Based on Median and with adjusted df 81.753 2 310.148 <.001

Based on trimmed mean 463.008 2 597 <.001

Table 14 The ANOVA test for the Push Force experiment.

Sum of Squares df Mean Square F Sig.

Between Groups 2755889.357 2 1377944.679 36.825 <.001

Within Groups 22338836.872 597 37418.487

Total 25094726.229 599

Table 15 Tukey HSD Multiple Comparision for the Push Force experiment.

(I) AgentType (J) AgentType Mean Difference (I-J) Std. Error Sig.

Tukey HSD

ClassicalBDIAgent
ExpectedValue -140.00000* 19.34386 <.001

FuzzyBDIAgent -147.26041* 19.34386 <.001

ExpectedValue
ClassicalBDIAgent 140.00000* 19.34386 <.001

FuzzyBDIAgent -7.26041 19.34386 .925

FuzzyBDIAgent
ClassicalBDIAgent 147.26041* 19.34386 <.001

ExpectedValue 7.26041 19.34386 .925

Figure 22 Means Plot that shows distances for the compared types.
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6.3.5. End-to-End Process Performance Experiment

In this experiment, the classical and fuzzy BDI approaches were evaluated based on the end-to-end

processes and their impact on product success. 30 series that consist of 20 product sequences were

randomly generated, and each 30 series was used to evaluate both approaches end-to-end. Each series

was repeated thrice by measuring the end-to-end process time.

Table 16 present the group statistics of the end-to-end process performance experiment. The col-

lected data were analyzed using an independent samples t-test to evaluate the end-to-end process per-

formance experiment, and the results are displayed in Table 17. There is a significant difference between

the fuzzy and classical BDI with the 99% confidence interval.

Figure 23 illustrates the mean count of accepted products by sequence and agent type, while Figure

24 displays the rejected product count by sequence and agent type.

Considering the statistics, it can be concluded that there is a significant difference between the fuzzy

and classical BDI agents. The fuzzy BDI agent performs a superior outcome compared to the classical

one. In the following subsubsections, time evaluations, which are execution time and end-to-end pro-

cess time, are mentioned.

Table 16 The group statistics of the end-to-end process performance experiment.

Agent Type N Mean Std. Deviation Std. Error Mean

Accepted Products Count
ClassicalBDIAgent 90 3.0556 1.49427 .15751

FuzzyBDIAgent 90 6.1000 1.17129 .12346

Rejected Product Count
ClassicalBDIAgent 90 2.4222 1.48383 .15641

FuzzyBDIAgent 90 .0667 .25084 .02644

Table 17 The Independent Samples t-test results of the end-to-end process performance experiment.

t-test for Equality of Means t-test for Equality of Means t-test for Equality of Means

df
Significance

Mean Diff. Std. Error Diff.
95% Confidence Interval of the Diff.

One-Sided p Two-Sided p Lower Upper

Accepted

Products Count

Equal variances

assumed
178 <.001 <.001 -3.04444 .20013 -3.43938 -2.64951

Equal variances

not assumed
168.395 <.001 <.001 -3.04444 .20013 -3.43953 -2.64935

Rejected

Product Count

Equal variances

assumed
178 <.001 <.001 2.35556 .15863 2.04252 2.66859

Equal variances

not assumed
94.083 <.001 <.001 2.35556 .15863 2.04060 2.67051

6.3.6. End-to-End Time Experiment

In this experiment, the end-to-end processes of both the classical and fuzzy BDI approaches were

experimented with regarding time success. 30 series that consist of 20 product sequences were ran-

domly generated, and each 30 series was used to evaluate both approaches end-to-end. Each series was

repeated thrice by measuring the end-to-end process time.

Table 18 represents the group statistics of the end-to-end experiment in terms of process time. The

collected data were subjected to an independent samples t-test to evaluate the experiment, and the re-

sults are revealed in Table 19. The results point out that there is a significant difference between the fuzzy

and classical BDI approaches with a 99% confidence interval.

Figure 25 represents the multiple timelines by sequence by agent type. When assessing the statistical

results, it can be inferred that there is a significant difference between the two approaches. Specifically,

the classical BDI is a bit faster than the fuzzy BDI agent as it is approximately 30 seconds quicker.
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In the following subsection, the execution time experiment is mentioned.

Table 18 The group statistics of the end-to-end time experiment.

Agent Type N Mean Std. Deviation Std. Error Mean

Time
ClassicalBDIAgent 90 277.8778 39.33601 4.14638

FuzzyBDIAgent 90 305.9000 27.89106 2.93998

Table 19 The Independent Samples t-test results of the end-to-end time experiment.

t-test for Equality of Means t-test for Equality of Means t-test for Equality of Means

df
Significance

Mean DifferenceStd. Error Difference
95% Confidence Interval of the Difference

One-Sided pTwo-Sided p Lower Upper

Time

Equal variances

assumed
178 <.001 <.001 -28.02222 5.08291 -38.05273-17.99171

Equal variances

not assumed
160.434<.001 <.001 -28.02222 5.08291 -38.06025-17.98419

Figure 23 Multiple Line Mean of Accepted Products Count by Sequence by Agent Type

6.3.7. Execution Time Evaluation

As mentioned in subsection 6.3.3 and to explore that the membership functions do not cause com-

putation costs for the fuzzification of the BDI agents, computation costs of the classic and fuzzy BDI

agents’ colour reading methods were measured 40 times with different sample sizes, such as 1, 5, 10 and

15. This part was selected as it has the most complex fuzzy computation and is often called the data

sampling method by the !+samplecolour plan (recall Sort Agent’s code41). As mentioned, the software is

run by the RaspberryPI 3 B+ board.

41https://github.com/micss-lab/FuzzyBDIAgents/blob/main/src/asl/sortAgent.asl#L43
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Figure 24 Multiple Line of Rejected Product Count by Sequence by Agent Type

Figure 25 Multiple Line of Time by Sequence by Agent Type
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Initially, the success rate of the sampling sizes in deciding on the correct colour was compared. Sec-

ondly, it was observed that the best result was achieved when using a sample size of 15 on the classical

BDI agent’s side.

Subsequently, the execution time of both sizes was compared, considering the sufficient perfor-

mance of both sides for detection, where the fuzzy BDI agent has one sample size, and the classical

BDI agent has 15 sample sizes.

At first, the sample for the classical BDI agent was set to 1 and increased to 5, 10 and 15. As seen in

Table 20, the increase in sample size created a significant difference. Moreover, Figure 26 shows that the

most significant and favourable outcome was obtained with a sample size of 15, particularly for success-

fully detecting red bricks. In other words, increasing the sample size positively affected colour detection

success. Eventually, 15 sample size selection for the classical BDI agent was compared with the one sam-

ple size operation of the fuzzy BDI agent. Since it was already observed that increasing the sample size on

the fuzzy BDI side did not yield any significant difference, the decision was made to use a single sample

size for the fuzzy BDI agent.

Figure 26 Failure and success counts of the Classical and Fuzzy BDI Agents based on the sampling time

the dark green, green, light green, spoiled red, and red of the execution time experiment.

Then, the independent samples t-test, a parametric test, was applied as a statistical analysis to com-

pare the fuzzy BDI agent with one sample size and the classical BDI agent with 15 sample size. Table 21

represents the sample size, mean standard deviation, and standard error mean. Table 22 provides the

45



Table 20 Chi-Square Tests results of the execution time experiment using different sample sizes for the

classical BDI agent.

Chi-Square Tests

SampleSize Value df Asymptotic Significance (2-sided)

1.00

Pearson Chi-Square 136.327b 4 <.001

Likelihood Ratio 157.444 4 <.001

N of Valid Cases 200

5.00

Pearson Chi-Square 133.382c 4 <.001

Likelihood Ratio 157.687 4 <.001

N of Valid Cases 200

10.00

Pearson Chi-Square 160.726d 4 <.001

Likelihood Ratio 199.184 4 <.001

N of Valid Cases 200

15.00

Pearson Chi-Square 172.495e 4 <.001

Likelihood Ratio 215.179 4 <.001

N of Valid Cases 200

Total

Pearson Chi-Square 579.321a 4 <.001

Likelihood Ratio 703.641 4 <.001

N of Valid Cases 800

t-test results.

Based on the t-test results in Table 22, no significant difference was found between the fuzzy BDI

agent with one sample size and the classical BDI agent with 15. This indicates that the execution times of

the two approaches were not significantly different. Therefore, from a statistical standpoint, the choice

of a single sample size for the fuzzy BDI agent and 15 sample sizes for the classical BDI agent did not

result in a significant difference in terms of execution time.

In the following subsection, the mentioned experiments’ results will be spotlighted. The research

questions will be answered according to the research findings, and threats to the validity will be given,

considering the implications and limitations of the experiments. Technical spottings and potential en-

hancements/extensions will be discussed for further research.

Table 21 Group Statistics of the execution time measurement for both approaches of the execution time

experiment.

AgentType N Mean Std. Deviation Std. Error Mean

Time
ClassicalBDIAgent 40 .0433 .03430 .00542

FuzzyBDIAgent 40 .0441 .01212 .00192

Table 22 The Independent Samples t-test for execution time experiment.

Levene’s Test for

Equality of Variances
t-test for Equality of Means

F Sig. t df
Significance

Mean Diff. Std. Error Difference

95% Confidence

Interval of the Diff.

One-Sided p Two-Sided p Lower Upper

Time

Equal variances

assumed
13.047 <.001 -.135 78 .446 .893 -.00078 .00575 -.01223 .01067

Equal variances

not assumed
-.135 48.589 .447 .893 -.00078 .00575 -.01234 .01078
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7. Discussion

In this section, the experimental results are highlighted, the research questions are examined, threats

to the validity are mentioned and future directions are discussed.

7.1. Highlighting the Results

In this subsection, the experimental results mentioned in subsection 6.3 are highlighted. Begin with

the colour-distinguishing experiment; at first, it aimed to increase the distinguishing ability of the BDI

agent. The classical BDI approach was not enough to approximately precisely separate the different

colours within the same type. In addition, the classical BDI agent is not only to distinguish the colours,

but it also detects them as another type of colour that can lead to unwanted results both from the system

and human perspectives. The precision was tried to be improved by increasing the sampling size to 1, 5,

10 and 15, especially for detecting the red-coloured bricks. Even though 15 sample sizes enabled us to

successfully detect the primary colours, such as Red and Green, it did not provide the desired success on

the side colours, such as separating the Red and the Spoiled Red products. Moreover, the green colours

are also diverged as Light Green, Middle Green and Dark Green. Labelling all of them as only Green

may not be the desired case for different scenarios and process phases. In this regard, we needed an

approach that generalizes, specifies and harnesses these values by allowing logical statements despite

the noise in the data. Therefore, the R, G and B values were gathered from the sensor API, and their fuzzy

functions were created based on our expert opinion and manual interpretation of the data, which was

achieved using one sample size. The slight drop in the fuzzy BDI agent to detect the primary colours

might be because of the variable reading distance between [0.5cm,3cm]. This variable reading distance

puts additional shifts in the data that require deep knowledge. Therefore, the fuzzy functions could be

improved using machine learning techniques by aggregation and classification methods to detect better

the boundary cases among the fuzzy sets and fine-tuning.

In the emergency control experiment, it was devised that the conveyor belt might need to be stopped

or slowed down during the run-time. The ultrasonic characteristic may not allow linearly slowing down

the conveyor belt. Moreover, the dynamic operation may harm both products and people nearby. The

instant change in the speed may not be tolerable using the traditional logic as the speed is halved, which

is a sharp change. Therefore, fuzzified actions can be preferred according to the distance change to the

object approaching the conveyor belt. As another parameter, the conveyor belt’s speed can be set to

different values ranging from 350 to 1000 units. The fuzzy functions may require to be tuned according

to various speed settings. At 1000 and 850 speed levels, the classic BDI approach showed a bit more

success but under-performed in total. This could be because of our initial fuzzy functions setting for

400 units. The success of the fuzzy-BDI can be improved by fine-tuning the membership functions for

specific settings or using different fuzzy function forms more suitable for motor control, such as Gaussian

or bell-shaped. Alternatively, the fuzzy hedges can also be used (Zadeh, 1972).

A temporal approach was followed in the stuck brick recovery experiment to detect the stuck bricks

state. Firstly, one brick-stuck state was experimented with, and a shorter recovery time compared to the

classical BDI approach resulted compared to the fuzzy BDI one. Secondly, two bricks stuck state experi-

mented on the classic BDI agent approach, and a slight drop but still faster recovery time was observed

compared to the fuzzy BDI agent. Lastly, in the case of the three bricks stuck experiment, the classical

BDI agent approach became ineffective as the number of stuck bricks increased. The bricks started col-

liding with each other, and reversing the conveyor belt instantly provided a kind of deterministic move-

ment that led the system to deadlock states, sometimes resulting in time exceeds. On the other hand,

the fuzzy BDI begins with minimal back-and-fort fuzzified actions as our flexible design choice is given

thanks to fuzzy logic. This action creates a wave trend movement (recall Figure 12) that causes sequen-

tial and variable displacements among the bricks. In other words, the bricks’ position and rotation were
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often influenced, increasing the speed smoothly. As a drawback, the necessity of minimal to maximal

movements for creating sequential and variable position changes created a bit of time loss. As another

design choice, the frequency of the minimal movements and transition from minimal to maximal ones

can be increased by modifying the boundaries of the fuzzy sets and creating more overlapped regions.

However, this also depends on the system requirements and product conditions. As a result, the fuzzy

BDI provided superior performance when the number of stuck bricks was increased.

In the controlling push force experiment, the Push agent dynamically arranged the push mecha-

nism’s hitting speed on the fuzzy BDI approach. At the same time, it was static on the classical BDI

agent approach. The membership degree that belongs to the highest linguistic set was selected and mul-

tiplied by the pre-defined speed. As this value depends on the colour-distinguishing performance of

the Sort agent, few hitting force differences among the fuzzified actions resulted. As discussed for the

colour distinguishing experiment, this might occur because of the variable reading distance between

[0.5cm,3cm]. However, as an improvement, type-2 fuzzy sets (Mendel, 2007) for further enhancement

of the perceptions and/or different fuzzy operators (Cordón et al., 1997) to approximate the ideal ex-

pected values for further enhancement of the fuzzified actions. Lastly, we compared our classical BDI

and fuzzy BDI agents according to the ideal agent that always satisfies the expected value. As a result, the

fuzzy BDI agent showed a closer outcome with respect to the ideal agent.

As previously discussed in the stuck brick recovery experiment, we were motivated to measure the ex-

ecution time. Therefore, we compared the execution times of the Sort Agent for the colour sampling plan.

Despite the fuzzy logic enhancements and extensions on the different layers, there was no significant dif-

ference between the execution overhead between the two methods. The fuzzy BDI logic approach only

puts approximately %0,2 overhead (recall Table 21) compared to the classical BDI method. However, this

minimal difference may cause considerable delays for larger systems. In this regard, we also carried out

the end-to-end experiment. In the end-to-end experiment, the system’s performance and time metrics

were evaluated. As mentioned, the classical BDI agent is a bit faster than the fuzzy BDI agent, around

30 seconds. This time delay also depends on the selected embedded hardware’s computation capability.

The time delay can be reduced by selecting industrial-level sensors, actuators and hardware. Moreover,

optimal device-specific APIs and device libraries can also be considered.

Despite the short time overhead, the end-to-end performance of the fuzzy BDI approach performs

a superior outcome compared to the classical BDI method. When the product quality, cost, and peo-

ple’s health are considered, this may be a considerable option to improve the efficiency of the complex

systems using a logical approach based on the domain experts’ opinions. Using the fuzzy-BDI method,

expert and domain knowledge can be extracted from the domain specialists and then integrated into

the system. In this way, the system’s performance can be improved using a tangible method in the short

term. The system can then gradually gain mid- and long-term enhancements and extensions using dif-

ferent symbolic and sub-symbolic approaches. In the subsequent subsection, the research questions are

examined.

7.2. Examining the Research Questions

R.Q.1 (Feasibility) How can we enhance and deploy the BDI agents using fuzzy logic to increase their

capacity to deal with run-time uncertainty?

R.A.1: As mentioned, fuzzy logic was selected as it is an enhancement method to deal with uncer-

tainty. Usually, the BDI agents use traditional logic. As traditional logic is a subset of fuzzy logic, the

fuzzy sets needed to be defined in a feasible method. Since fuzzy logic is a platform-independent math-

ematical model that makes it an inherently feasible enhancement, it was represented using triangular

functions. In the design time, these membership functions were implemented using Equation 1 from

scratch based on expert knowledge. In our study, we used Jason and Java BDI agent development envi-
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ronment, but the fuzzy logic can also be applied to other frameworks. Lastly, the reference architecture’s

corresponding layers are then extended one by one.

R.Q.2 (Integrability) How agents’ sensing, reasoning, plan selection and execution phases can be

fuzzified and bind to the device-specific software?

R.A.2: In order to achieve BDI agents and fuzzy logic integration, considering the impact on the

device-level sensing and actuation, the designed membership functions were integrated into the mid-

dleware layer and wrapped. The fuzzy membership functions were added to the perceptions as an inter-

mediate step to convert the crisp numbers to membership degrees. This way, the beliefs were fuzzified

and added to the belief base. The reasoning cycle then uses the fuzzified beliefs and selects the plan with

the highest triggering degree (i.e., maximum membership degree) in a fuzzified manner using the Prolog

rules. The selected plan’s triggered degree is used within the plan’s actions to create fuzzified actions. In

this way, the fuzzy logic and Jason’s BDI agents were integrated. Lastly, the Java API allows the BDI agents

to manipulate the input/output ports of the selected device.

R.Q.3 (Applicability) How the proposed approach can be implemented and deployed on a concrete

physical setup?

R.A.3: The application of the fuzzy-BDI approach was performed using Jason and its Java environ-

ment. The fuzzy logic enhanced BDI agents perform fuzzified sensing, reasoning and actions on a con-

crete case study both for the regular operation and in case of uncertainty according to the context. The

entire complex system is autonomously controlled and coordinated by a network of fuzzy-BDI agents,

collaborating with each other throughout the run-time. Moreover, as also demonstrated in subsubsec-

tion 6.1, the fuzzy-BDI method has been applied to modular and end-to-end scenarios.

R.Q.4 (Effectiveness) Are fuzzy-BDI agents effective for the uncertainty of agent-based CPS?

As mentioned in Section 6, multiple modular and end-to-end experiments showed that there is a

significant difference between the fuzzy-logic and traditional logic BDI agent approaches. Generally, the

fuzzy BDI agent performs approximately 3 times better than the classical one despite around 10% more

computation time. When the modular experiments and end-to-end ones are considered, mostly the

fuzzy BDI agent approach outperforms the classical BDI agent method. In other words, the fuzzy logic

and BDI agent-based operation impact a complex CPS. At the same time, a bit of additional computation

costs can be expected or tolerated, considering the continuous evolution of embedded technologies.

Therefore, it can be concluded that fuzzy-BDI agents offer several advantages for the development of

complex and heterogeneous systems. In the subsequent subsection, we discuss the threats to the validity

that need to be considered in this study.

7.3. Threats to the Validity

The section discussing threats to validity addresses potential limitations or factors that could affect

the validity of the experiments conducted and the results obtained. These threats highlight areas of con-

cern that could introduce biases or inaccuracies in the study’s findings. By acknowledging these threats,

researchers aim to provide a transparent assessment of the study’s limitations and potential impact on

the validity of the results.

7.3.1. Conclusion Validity

In the context of conclusion validity, the focus is on examining the relationship between the subjects

(experimental units, participants) and the obtained results. The goal is to establish a statistical relation-

ship that supports the observations and hypotheses with a meaningful level of significance. In order to

achieve this, a range of scenarios were derived from different experiments conducted on the system. The

statistical tests used in these experiments were carefully selected to ensure reliable and valid results.

Additionally, a complex, modular, and heterogeneous case study was established to provide a versa-

tile platform for conducting various experiments at different stages. This comprehensive setup allows for
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the exploration of different aspects and variables of the system, enabling researchers to perform in-depth

analyses and draw meaningful conclusions.

By carefully designing the experiments, selecting appropriate statistical tests, and utilizing a robust

case study, the study ensures a strong foundation for establishing the relationship between the subjects

and the obtained results. This contributes to the conclusion validity of the research and enhances the

reliability of the findings.

7.3.2. Internal Validity

Internal validity refers to the extent to which a causal relationship between the treatment (indepen-

dent variable) and the outcome (dependent variable) can be established while minimizing the influence

of uncontrolled events or entities. In order to ensure internal validity in our study, we took various mea-

sures to account for external effects and potential confounding factors.

One potential external effect we considered was light, as it could impact the performance of the

sensors used in the experiment. To address this, we examined the technical documents of the sensors
42 and specifically assessed the noise data collected by the colour sensor in dark environments with a

light source. We found that the difference in the sensor readings under these conditions did not show

a significant variation, indicating that the presence of light did not significantly affect our experimental

results.

Furthermore, the choice of the case study was not incidental. In line with previous research con-

ducted by (Barbosa et al., 2016; Vieira et al., 2020; Leitão et al., 2016; Leitão & Barbosa, 2016), we decided

to utilize an industrial-like case study for our analyses.

These studies also focused on conveyor belts and provided insights into particular scales and com-

plexities. In our case study, we extended the functionality by incorporating additional operations such

as push and press actions. This allowed us to assess a broader range of functionalities and evaluate the

performance of the system under different scenarios.

The case study itself was carefully designed to have multi-stage, multi-component, and modular

features, providing a controlled environment for conducting experiments. This design enabled us to

isolate and examine specific aspects of the system while maintaining internal validity.

To enhance the understanding of our study, demonstration videos were provided, offering visual

insights into the experimental setup and results. These videos serve as supplementary evidence and

contribute to the transparency and credibility of the research.

By considering external effects, selecting a relevant case study, conducting controlled experiments,

and providing demonstration videos, we aimed to establish a strong internal validity in our study and

ensure the reliability and integrity of the observed causal relationships.

7.3.3. Construct Validity

Construct validity concerns the generalization of results based on the conducted experiments. In

this study, both the fuzzy-BDI agent approach and the comparison methods are logical approaches that

have been extensively studied for many years. They operate at the same level of abstraction, using BDI

agent programming and the same API, hardware, sensors, and actuators. To mitigate the possibility of

obtaining results by chance, we conducted multiple repetitions of our experiments. The measurements

were based on high-quality sampling within the system, which we also aimed to enhance. Therefore,

generalization is not expected to have a negative impact on construct validity.

42ht t ps : //w w w.mi kr ocontr ol l er.net/at t achment/338591/

har d w ar e_developer _ki t .pd f
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7.3.4. External Validity

External validity refers to the extent to which the findings of a study can be generalized to real-world

situations or other contexts beyond specific experimental conditions. In our study, we took measures

to address potential threats to external validity and ensure the relevance and applicability of our experi-

ment results to industrial techniques.

To mitigate this threat, we carefully selected a case study that closely resembles an industrial pro-

duction line system. In making our decision to focus on an industrial-like case study, we relied on the

insights and findings from various studies in the field, including the works of (Alves et al., 2019; Sakurada

et al., 2019; Barbosa et al., 2018; Rodrigues et al., 2013; Peres et al., 2018; Ribeiro et al., 2018; Vieira et al.,

2020). These studies provided insights into industrial-oriented scenarios that closely aligned with our

study objectives.

Additionally, we opted to use LEGO as the physical platform for our case study due to its flexibility

and adaptability to meet the physical requirements of the system (Karaduman et al., 2023a). This allowed

us to modify and customize the case study according to the specific needs and constraints of industrial

techniques.

Through our experimental observations and analysis, we did not identify any significant threats that

would undermine the validity of the experiment results in terms of their generalizability to industrial

techniques. This suggests that the chosen case study, combined with the use of LEGO as a flexible plat-

form, provided a solid foundation for drawing meaningful conclusions that can be applied in industrial

contexts. In the next subsection, future directions are discussed.

7.4. Future Directions

As uncertainty is a fact that should be considered even during the design time, we believe that multi-

logical modelling (MLM) techniques (Calegari et al., 2020, 2021) supported with learning methods (Bosello

& Ricci, 2020) should be used in a combinatorial manner for short-, medium- and long-term objectives

at the system level. The modelling term refers to the mathematical formulation (modelling for enhance-

ment) to leverage the systems’ smartness. In this way, the CPS can become more sustainable to un-

certainties. Moreover, as these systems are highly complex because of their structural and behavioural

aspects, they should be tackled using the multi-paradigm modelling (MPM) techniques (Challenger &

Vangheluwe, 2020) (modelling for abstraction). In this regard, the MLM suggests combining proper logic

paradigms to mitigate uncertainty by providing system-level enhancements and benefiting from the MPM

philosophy of modelling the system in an appropriate level of abstraction employing well-fit formalisms

to reduce the complexity.

However, there is still a need for research on the integration of BDI agents and CPS. In their work,

(Menegol et al., 2018b) underscore the lack of comprehensive evaluations for agent-oriented program-

ming approaches that integrate well-established practices for developing systems with embedded tech-

nologies. Moreover, (Leitao et al., 2016) suggest that in order to demonstrate the effectiveness of Multi-

Agent Systems (MAS) in the domain of CPS, it is binding to carry out evaluations through the implemen-

tation of complex systems. Furthermore, comprehensive systematic literature reviews (SLRs) such as

(Calegari et al., 2021; Tepjit et al., 2019) indicate the significant potential of logic-based approaches, such

as fuzzy logic, for addressing uncertainty in MAS. However, most of the surveyed research works in (Cale-

gari et al., 2021) did not translate their theoretical contributions into tangible MAS and CPS integration

technologies. Based on the unaddressed aspects of prior studies, it is apparent that there is a significant

need to explore methodologies that facilitate the deployment of agents in embedded systems, leveraging

a range of APIs, development boards, and agent-oriented languages. This requires to lead us to design the

proposed architecture, as described in (Karaduman et al., 2023a), and enhance the corresponding layers

by incorporating and integrating fuzzy logic to ensure run-time feasibility and effectiveness. Therefore,

our study focuses on addressing the identified gaps in the literature and the research needs identified by
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SLR studies and related works. These gaps include the challenges of establishing smart and distributed

CPS, deploying BDI agents on resource-constrained devices, and reducing run-time uncertainty. To ad-

dress these needs, we propose enhancing BDI agents with fuzzy logic and providing a fuzzy-logic-based

architecture for deploying these enriched software entities on embedded boards.

In this regard, our study provides a concrete case study that is agent-based, fuzzy-enhanced and has

BDI-based reasoning. As also mentioned in (Esfahani & Malek, 2013), the uncertainties of the CPS mostly

emerge from a lack of knowledge. This requires an additional logic-based paradigm that can provide

reasoning on the run-time uncertainties, distributed deployment for instrumenting the complex, multi-

stage processes and autonomy for self-sufficiency. Therefore, software agents can present more coverage

and information sharing among the system components to reduce uncertainty. The reasoning capability

of the BDI agents allows them to perform rational actions by selecting the adaptation plans when the

system encounters unpredictable situations. When the BDI agents are enhanced with AI approaches

such as fuzzy logic (Calegari et al., 2020, 2021), their combined abilities may guide the system to behave

more intelligently. In pursuit of this objective, the first step involved deploying fuzzy-logic enhanced

Jason BDI agents onto the embedded hardware, enabling them to operate the production line system in

a distributed and collaborative manner. Most of the studies in the literature have focused on simulation

and single CPS instances to evaluate their work. In contrast, we conducted our study on a complex,

multi-stage and concrete case study considering the composite process control run by multiple agents.

Furthermore, considering the distributed and tightly coupled approach, they have been less interested

in providing a fuzzy-enhanced architecture.

As mentioned in (Boissier et al., 2020), incorporating new technologies, including network proto-

cols and simulation technologies or logic-based approaches, into the BDI agents’ internal architecture

can be accomplished through two methods: using software artifacts or customising the BDI architec-

ture. Our study reported in (Karaduman et al., 2022b) addresses the former method. This study explores

the latter method, to assess the implications of integrating fuzzy logic with intelligent BDI agents for

CPS. The fuzzy-BDI establishes rules within the agent software by utilizing membership functions and

membership degrees to ensure the system’s sustainability at runtime. The major concern is to reveal the

efficacy of the fuzzy-logic BDI agents. In its forthcoming trajectory, the study desires to advance the BDI

agent’s architecture by specifically customizing Jason’s BDI architecture to facilitate the construction of

a versatile and domain-agnostic framework that can be generically applied across different domains. By

enhancing the architecture of the BDI agent in this manner, the study intends to enable a more flexible

and widespread adoption of the approach, thereby enabling its broad applicability and utilization.

One of the reasons that we benefited from the BDI agents is generally known that embedded pro-

gramming benefits from high-level languages such as C and Basic, and the outshining abstraction agent-

based programming provided a broad umbrella to merge different paradigms and technologies to achieve

this study. However, it can be foreseen that there is still a need for higher abstractions and cognitive ap-

proaches for developing and programming CPS. Significantly, the cyber-physical system of systems (CP-

SoS) requires distributed programming where the software agents can be well-fit software entities(Leitao

et al., 2016) to program, create and collaborate with multiple CPSs. The fuzzy logic-enhanced integrated

architecture can provide integrity and facility towards devising multiple CPS to form a CPSoS. This con-

siders that every CPS has an internal integrated structure with the horizontal extensibility of the software

agent’s cognitive capabilities. In addition, the middleware layer allows binding the agent actions within

the plans to the API at the low-level hardware layer for actuation/sensing. Study (Karaduman et al.,

2022b) also draws attention to MAS’s social capabilities and distributed features in enabling the collabo-

rative operation of CPS and encouraging interoperability with additional paradigms, notably the IoT.

The middleware layer can also provide fuzzy-logic-based analysis for network uncertainties or in-

formation processing/filtering (Leitão et al., 2021). Nevertheless, the concrete examples of deploying

the enhanced BDI agents using multi-logic approaches for the short-term and learning abilities for the
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long-term objectives should be studied and validated on the concrete examples using the embedded

technologies conforming to the proposed architecture (Karaduman et al., 2023a). These enhancements

and architectural extensions should be diversified and merged regarding the CPS’s cyber, physical and

network facets.

Moreover, study (Leitão et al., 2022) discusses that the intelligent behaviour of the CPS is charac-

terised by autonomy, cooperation, context awareness, cognitive computation, learning and adaptation.

This also motivates and supports our work as the BDI agents provide reasoning mechanisms, coopera-

tive messaging, context awareness, internal/external mental notes, proactivity and planning as cognitive

computation. In our study, the fuzzy logic also enhances the adaptation, and our suggested architecture

considers the extendability of the machine learning approaches for future works (Bosello & Ricci, 2020).

However, initially, the integrability and interoperability of the logic paradigms should be researched

to create a mature infrastructure for future studies. For example, subjective approaches (Petrovska et al.,

2021) can be incorporated with the BDI agents. As also pointed out in (Calegari et al., 2021), fuzzy and

probabilistic methods can be inspected regarding Bayesian or Markovian approaches to enhance MAS

and CPS integration capabilities. In the following section, the conclusion of the paper and planned future

works are mentioned.

8. Conclusion & Future Work

This study presents a novel approach to enhancing the BDI agent model with fuzzy logic using an

extended multi-logic architecture to address run-time uncertainty in CPS. By combining the reasoning

mechanism of BDI agents with the capabilities of fuzzy logic, the proposed approach aims to provide

better mitigation of unpredictable events in CPS.

The research questions addressed in this study focus on investigating the impact of fuzzy logic-based

agents on CPS. To validate the proposed multi-logic approach, a heterogeneous and complex case study

is selected, and a comparison is made with the traditional BDI approach. Various experiments are con-

ducted, and statistical analyses are performed to evaluate the appropriateness and effectiveness of the

fuzzy BDI approach.

The results of the experiments show that the fuzzy-based BDI agents are efficient in mitigating uncer-

tainty and outperform the classical BDI agents in most cases. The modular experiments and end-to-end

evaluations demonstrate the positive impact of the fuzzy-logic and BDI agent-based operation on com-

plex CPS. It is worth noting that there may be some additional computation costs associated with the

fuzzy BDI approach, but these costs can be tolerated considering the continuous evolution of embed-

ded technologies.

This study is limited to ordinary type-1 fuzzy sets used to ignite the primary initialization of fuzzy-

BDI application and integration. The membership degrees are used within the plans by multiplying the

configuration parameters as an alternative to the defuzzification phase. In further studies, we plan to

extend the approach by employing advanced fuzzy sets and learning approaches. Furthermore, our in-

tention is to raise the level of abstraction benefiting from the model-driven development to engineer

a modelling language specific to the domain that automates the generation of software artifacts. This

approach aims to streamline the software development process by abstracting away low-level imple-

mentation details and allowing developers to focus on higher-level modelling concepts. By using this

domain-specific modelling language, software artifacts can be automatically generated, reducing the

manual effort required for implementation and ensuring consistency and coherence within the system.

Overall, this study contributes to the field of BDI agent-based CPS by introducing a multi-logic ap-

proach that combines fuzzy logic and BDI reasoning. The findings highlight the effectiveness of the fuzzy

BDI approach in addressing uncertainty and provide directions for further research and improvement in

this area.
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