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Abstract  94 

 95 

Environmental circumstances shaping soil microbial communities have been studied extensively, but 96 

due to disparate study designs it has been difficult to resolve whether a globally consistent set of 97 

predictors exists, or context-dependency prevails. Here, we used a network of 18 grassland sites (11 98 

sampled across regional plant productivity gradients) to examine i) if the same abiotic or biotic factors 99 

predict both large- and regional-scale patterns in bacterial and fungal community composition, and ii) 100 

if microbial community composition differs consistently with regional plant productivity (low vs high) 101 

across different sites. We found that there is high congruence between predictors of microbial 102 

community composition across spatial scales; bacteria were predominantly associated with soil 103 

properties and fungi with plant community composition. Moreover, there was a microbial community 104 

signal that clearly distinguished high and low productivity soils that was shared across worldwide 105 

distributed grasslands suggesting that microbial assemblages vary predictably depending on grassland 106 

productivity. 107 

 108 

 109 

Introduction  110 

 111 

Variation in the strength and sign of ecological relationships under different environmental, spatial, or 112 

ecological settings (i.e. context-dependency) is common in nature (Maestre et al. 2005; Chamberlain et 113 

al. 2014; Tedersoo et al. 2015). While biotic and abiotic predictors of microbial community composition 114 

have been thoroughly studied at particular spatial scales or environmental contexts (Fierer & Jackson 115 

2006; de Vries et al. 2012; Tedersoo et al. 2014), it is uncertain whether these predictors are generalizable 116 

across different settings. Context-dependency in the processes that structure microbial communities may 117 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470306doi: bioRxiv preprint 



4 

arise for several (non-mutually exclusive) reasons, including historical legacies (Fukami 2015), stochastic 118 

events in community assembly processes (Beck et al. 2015), or dispersal limitation (Peay et al. 2010), all 119 

of which can contribute to the detection of different drivers of microbial community composition 120 

depending on region, presence of keystone taxa (Banerjee et al. 2018), or environmental conditions 121 

(Hendershot et al. 2017). 122 

 123 

The existence of commonalities in predictors of microbial community composition patterns across sites 124 

has been challenging to confirm because most studies have either been restricted in spatial extent or were 125 

not designed to evaluate context-dependency. While global-scale studies strongly suggest that a 126 

restricted set of predictors such as soil pH (Fierer & Jackson 2006; Delgado-Baquerizo et al. 2018) or plant 127 

community composition (Prober et al. 2015) can universally predict some aspects of soil microbial 128 

community composition, the lack of local replication within these global studies complicates 129 

distinguishing between different possible drivers that may vary in concert across locations. For instance, 130 

microbial and plant communities on the one hand, and soil properties on the other, both strongly covary 131 

with geographical distances and climate (Steidinger et al. 2019). Regional- and local-scale studies may be 132 

better suited to assess the effect of soil properties and plant communities along an environmental (e.g. 133 

productivity or fertility) gradient, but findings may not generalize across multiple individual gradients 134 

(Alzarhani et al. 2019). Indeed, several studies have indicated that the drivers of microbial community 135 

composition may strongly vary with spatial and/or environmental contexts (Martiny et al. 2011; Shi et al. 136 

2018; Chalmandrier et al. 2019) and that predictability of the soil microbiome depends on spatial scale 137 

(Averill et al. 2021).  138 

 139 

Here, we used a network of 18 grassland sites (containing two to six 64 m2 plots; Fig. 1), 11 of which 140 

contained plots located along a regional gradient in plant productivity (Fraser et al. 2015), to examine the 141 
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consistency of predictors of soil bacterial and fungal community composition under different spatial scales 142 

and environmental contexts. Given that grassland productivity is intrinsically related to biodiversity, soil 143 

fertility and plant-soil interactions (Craven et al. 2016; Delgado-Baquerizo et al. 2017; Guerrero‐Ramírez 144 

et al. 2019), and therefore to the overall ecological functioning of the system, different regional 145 

productivity levels provide distinct underlying environmental contexts for the development of soil 146 

microbial communities. For instance, plant competition for light is expected to increase with productivity 147 

(Grace et al. 2016) favouring acquisitive, fast-growing plant species (DeMalach et al. 2016) with add-on 148 

effects for soils: high input of easily decomposable plant litter selects for more acquisitive microbiota such 149 

as many gram-negative and other bacteria (Marschner et al. 2011), to the detriment of fungi and microbes 150 

engaged in nutritional symbioses with plants (de Vries et al. 2007; Johnson et al. 2008). 151 

 152 

To examine whether similar predictors explain variation in microbial community composition across 153 

scales, we first analyse the importance of different broad-scale factors (climate, geographical distances, 154 

atmospheric nitrogen deposition) and ecosystem fertility-related factors (plant biomass and 14 soil 155 

properties) (Table S2) in explaining large-scale bacterial and fungal community dissimilarities. We also test 156 

if plant community composition can explain additional variation in microbial community composition 157 

when these factors are accounted for. We then examine whether important, regionally-varying, 158 

predictors (i.e. ecosystem fertility-related factors and plant community composition) identified at the 159 

large scale can likewise consistently predict regional-scale (within-site) microbial community composition, 160 

and thus truly ruling out any covariances between sites. Finally, we examine whether two different 161 

grassland productivity levels (low and high) have consistent effects on overall microbial community 162 

composition across different sites as well as on the correlation networks between major microbial groups, 163 

plant functional groups and soil properties. If the drivers of microbial communities are entirely context-164 

dependent, we expect that the important predictors identified at the large scale would be poor or 165 
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inconsistent predictors of regional-scale variability across sites. Likewise, if the effect of plant productivity 166 

on microbial community composition varies strongly across grassland sites (i.e. depending on climatic 167 

conditions, biogeography, or soil type), we expect no common signal in microbial community 168 

compositional changes between two productivity levels. 169 

 170 

 171 

Methods 172 

 173 

Sampling sites and data collection 174 

 175 

Data were collected from 18 Herbaceous Diversity Network (HerbDivNet) grassland sites (Fraser et al. 176 

2015) located in 12 countries distributed over six continents (Fig. 1). The sites include different types of 177 

grasslands (xeric, mesic and hydric) spanning a wide range of climatic conditions (mean annual 178 

temperature ranges from 1.5 °C to 20.1 °C  and mean precipitation ranges from 294 mm to 1237 mm). 179 

Peak annual biomass values spanned a range from 13 g/m2 to 1187 g/m2. Each of the 18 sites contained 180 

between two and six plots of 8 × 8 m: 11 sites contained six plots, one site contained four plots, one site 181 

three plots and five sites contained two plots (Table S1); to a total of 83 plots. Most sites were chosen to 182 

represent a gradient in productivity (low, medium and high; two per each productivity level) with six plots 183 

located within the same region with little to no variation in climatic conditions. However, some sites 184 

contained fewer plots and did not show a prominent productivity gradient. A clear gradient in biomass 185 

productivity was captured in 11 sites; including ten with six plots and one with four plots (Fig. 1). 186 

 187 

Soil sampling and storage 188 

 189 
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Soil samples were taken in a single sampling event at the peak of the growing season in the period 190 

between 2017 and 2018, depending on the site (Table S1). For each plot within a site, five subsamples 191 

were taken from four corners and the centre of the plot at 0-10 cm depth. Subsamples for microbial 192 

analyses were taken and stored in pure ethanol (a total of 415 samples) and the rest of the sample was 193 

pooled into one composite sample (a total of 83 samples), air-dried and sieved at 2 mm. All samples were 194 

further analysed at the University of Antwerp. Samples for microbial analyses stored in ethanol were kept 195 

cool until the DNA extraction (see below). Storage in ethanol has been shown to yield similar DNA recovery 196 

as cold conservation (Harry et al. 2000). 197 

 198 

Plant sampling 199 

 200 

We measured plant species presence and total aboveground biomass from each m2 of each 64 m2 plot at 201 

the peak of the growing season (Table S1). Litter was first excluded from the total biomass and live 202 

biomass was dried and weighed. Based on this, average peak biomass production [g/m2] was calculated 203 

for each plot. 204 

 205 

The data on the presence of different plant species at each m2 of the plot was used to derive the 206 

‘frequency’ of different species per plot (with the highest possible value of 64 for species present at each 207 

m2 of the plot) which was used as a measure of relative abundance. Further analyses of plant community 208 

composition distances were based on species aggregated to genera (as in Prober et al. (2015)) rather than 209 

to the species level because plant species turnover across different plots and sites would often be 100% 210 

and thus produce continuous data at highly similar communities only, reducing information content. 211 

 212 

Climatic, N deposition and soil data 213 
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 214 

Mean annual precipitation (MAP) and temperature (MAT) were derived from the CHELSA database 215 

(Karger et al. 2017) based on the geographical position (latitude and longitude) of each plot, which was 216 

also used to calculate geographical distances [km] between the plots. Data on total inorganic nitrogen 217 

deposition [kg/ha/yr] were derived from Ackerman et al. (2018). We used the average values over the 218 

years available in the database to account for long-term fertilization by atmospheric N deposition.  219 

 220 

We analysed 14 soil properties: soil organic matter (SOM), total nitrogen (N), total carbon (C), total 221 

phosphorus (P), available P, base saturation (BS), cation exchange capacity (CEC), pH, soil texture (sand, 222 

clay, silt), extractable Ca, Mg and K. These soil properties are related to soil fertility and plant productivity 223 

(Vicca et al. 2018), they are known to affect soil microbial community composition (de Vries et al. 2012; 224 

Tedersoo et al. 2014; Zheng et al. 2019) and can be compared across different sites. Details on the 225 

analyses of soil properties are found in Appendix S1. 226 

 227 

Analyses of microbial communities 228 

 229 

Sample preparation, sequencing and bioinformatics analyses 230 

 231 

DNA was isolated from 415 soil samples using 0.25-0.35 g of soil with the DNeasy PowerSoil Kit according 232 

to the manufacturer’s protocol (Qiagen, Venlo, the Netherlands). The bacterial 16S V4 region was 233 

amplified using the 515F-806R primer pair (Caporaso et al. 2011) and the fungal ITS1 region was amplified 234 

using general fungal primers ITS1f (Gardes & Bruns 1993) and ITS2 (White et al. 1990), modified according 235 

to Smith & Peay (2014). The libraries were sequenced with 2x300 cycles using the Illumina MiSeq platform 236 

(Illumina Inc; San Diego, CA, USA). The sequences were analysed using the USEARCH (v8.1.1861) and 237 
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VSEARCH (Rognes et al. 2016) software following the UPARSE pipeline (Edgar 2013) to create operational 238 

taxonomic unit (OTU) tables for bacteria and fungi. Representative OTUs were aligned to the SILVA 239 

database (bacteria) (Quast et al. 2013) (release 138) and UNITE database (fungi) (Kõljalg et al. 2005) 240 

(release date 2.2.2019), using the sintax command in USEARCH with a 0.8 cut-off, resulting in 19,248 and 241 

13,967 OTUs for bacteria and fungi, respectively.  242 

 243 

Further steps were performed using R software  (R Core Team 2015). The number of reads per subsample 244 

was rarefied using the rrarefy function in vegan (Oksanen & et al. 2015) to 6,046 for bacteria and 1,231 245 

reads for fungi as rarefaction curves showed that the number of taxa was levelling off for most subsamples 246 

at these depths (Fig. S1). After removing subsamples with too few sequences and/or outliers, there were 247 

402 subsamples for bacteria and fungi (Appendix S1). The sequences from the subsamples were later 248 

aggregated to up to five subsamples per plot (see below) so that, overall, plots were represented by up 249 

to 30,000 and 6,000 for bacteria and fungi, respectively.  250 

 251 

More details on sample preparation, bioinformatics analyses, and fungal functional annotation can be 252 

found in Appendix S1. 253 

 254 

Analysis of microbial abundance 255 

 256 

DNA extracts of the five subsamples per plot were first pooled into one sample, leaving 83 samples in 257 

total. The abundance of bacterial and fungal gene copies per sample was quantified using qPCR targeting 258 

16s V4 region (with the 515F–806R primer pair) for bacteria and 18s region for fungi (primer set FR1 / 259 

FF390  (Chemidlin Prévost-Bouré et al. 2011)), chosen because high length variation of the ITS1 region 260 
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precludes accurate quantification. The details on qPCR conditions and quality control are described in 261 

Appendix S1. 262 

 263 

Statistical analyses 264 

 265 

Examining if large-scale predictors consistently explain the regional-scale variation in microbial community 266 

composition  267 

 268 

We averaged the OTU relative abundances of five subsamples per plot (83 plots in total) to obtain one 269 

community measure per plot. Broad-scale (climate, N deposition, geographical distances), ecosystem 270 

fertility-related variables (soil variables and plant biomass) and plant community composition were used 271 

as potential predictors of large-scale variation in microbial community composition (Table S2). To 272 

investigate how well these factors explain the dissimilarities between microbial communities, we created 273 

distance matrices using Bray-Curtis (BC) and Euclidean distances, for communities and environmental 274 

factors/geographical distances, respectively. All environmental variables (except pH and BS) were 275 

transformed using square root transformation, centred and scaled to reduce positive skewness and to 276 

allow for the comparison of effect sizes. Community data (fungi, bacteria, plants) were transformed with 277 

Hellinger transformation using the decostand function in the vegan package in R. 278 

 279 

The influence of different factors on the dissimilarity in bacterial/fungal communities was analysed using 280 

multiple regression on distance matrices (MRM) in the ecodist package (Goslee & Urban 2007). MRM 281 

model was first fitted using bacterial/fungal distances as response variables and broad-scale and 282 

ecosystem fertility-related environmental variables as predictors. The variables that did not significantly 283 

contribute to the model were removed leaving only the variables with a significant effect (P < 0.05). This 284 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 30, 2021. ; https://doi.org/10.1101/2021.11.29.470306doi: bioRxiv preprint 



11 

was done to comprehensively capture the effect of the environment (and geographical distances) on 285 

microbial community composition and to retrieve the effect sizes of different important variables that 286 

were later used to construct regional-scale environmental variable (see below). To test if plant community 287 

distances can explain any unique (non-shared) variation in microbial community composition, we included 288 

it in the model with broad-scale and ecosystem fertility-related variables and we partitioned the variation 289 

explained by these three groups of variables. Therefore, given that microbial and plant community 290 

distances can be related due to shared environmental conditions, we accounted for a vast number of 291 

environmental variables (without necessarily attempting to disentangle the effect of different correlated 292 

environmental predictors) before assessing if plant community composition explains additional variation 293 

in microbial community composition. 294 

 295 

To examine if the observed large-scale relationships (across all the plots and all the sites) persist at the 296 

regional scale (i.e. between the plots within each site, which share a similar climate and are part of the 297 

same species pool), we created a common variable that represents the influence of the important 298 

ecosystem fertility-related variables by first multiplying each variable by its coefficient in the MRM large-299 

scale model and then summing them. In this way, we were able to ‘weigh’ the importance of different 300 

fertility-related variables (while accounting for climate and geographical distances) and test if the resulting 301 

‘environmental variable’ can consistently explain the regional-scale variation in microbial community 302 

composition. The within-site (Euclidean) distances in the environmental variable were then regressed 303 

against the within-site distances in bacterial and fungal communities. Finally, the within-site microbial 304 

distances were also regressed against the within-site plant community distances to examine how well 305 

plant community dissimilarities can predict microbial community dissimilarities at the regional scale. To 306 

assess the consistency of these relationships (environment – bacteria, plants – bacteria, environment – 307 
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fungi, plants – fungi) across sites that contained more than three plots, we calculated the variance in their 308 

slope values and reported their mean R2 values and standard deviations. 309 

 310 

Microbial community composition at different regional relative productivity levels 311 

 312 

Our regional productivity gradients allowed us to test whether there is a general difference between 313 

relatively low-productivity and high-productivity grasslands replicated at large scale. For this analysis, the 314 

dataset was divided into two subsets: one containing two plots with low productivity and the other 315 

containing two plots with high productivity from each site. Eleven sites with a clear productivity gradient 316 

were selected yielding two datasets each containing 22 plots. These sites had a strong difference in plant 317 

biomass between the plots of low and high productivity (two plots with high productivity within a site had 318 

on average at least 100% higher biomass than those with low productivity).  319 

 320 

To test if bacterial and fungal communities differed significantly between the two productivity levels with 321 

a consistent pattern across globally distributed sites, we performed PERMANOVA analysis using the 322 

adonis function in vegan adding ‘site’ as strata to control for inherent community differences between 323 

sites. We used multidimensional scaling (MDS) ordination to visualise the BC distance in bacterial and 324 

fungal communities at different productivity levels after removing the effect of ‘site’ differences using the 325 

dbrda function in vegan. To examine if the best predictors of bacterial and fungal community composition 326 

differed at different productivity levels, we repeated the model selection described above (using the MRM 327 

function) for microbial communities for each of the productivity levels. Furthermore, using the multipatt 328 

function (with 999 permutations) from the indicspecies package, we determined bacterial and fungal 329 

OTUs which were significant (P < 0.01) indicators of low and high productivity levels. We also examined if 330 

there was a significant difference (P < 0.01) in the relative abundances of bacterial and fungal groups 331 
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(taxonomic and functional, respectively) and total bacterial and fungal abundances (number of gene 332 

copies) at low compared to high productivity levels using the lme function in nlme package with ‘site’ as 333 

a random effect. The normality of residuals was tested using the Shapiro-Wilk test. 334 

 335 

Finally, we examined whether the correlation networks between microbial groups/total microbial 336 

abundances, plant functional groups and soil properties across different sites differed between low and 337 

high productivity levels. To this end, we analysed the pairwise correlations (using corr.test in the ‘psych’ 338 

package) between the three most dominant bacterial phyla, three most dominant fungal functional 339 

groups, three plant functional groups (grasses, forbs, legumes), fungal and bacterial abundances, plant 340 

biomass and the most important soil properties (SOM, CEC, BS, pH, total N, C:N, total P, available P and % 341 

sand), for low and high productivity datasets. Only the correlations with Spearman r > 0.5 and P-value < 342 

0.01 were retained and visualised in the form of correlation networks.  343 

 344 

 345 

Results 346 

 347 

Predictors of microbial community composition at large vs regional scale  348 

 349 

Our results revealed that a composite environmental variable created using the most important fertility-350 

related variables in the large-scale model (with the strongest effect of base saturation and pH; Table S3) 351 

consistently predicted regional-scale (within-site) variation in bacterial community composition across 352 

sites (slope variance = 0.05; mean R2 = 0.58, sd = 0.32) (Fig. 3a). Plant community composition explained 353 

additional variance in bacterial community composition at the large scale after important broad-scale and 354 

ecosystem fertility-related variables were accounted for (explaining more unique variation than broad-355 
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scale predictors, Fig. 2). At the regional scale, plant community composition was also consistently and 356 

strongly associated with the variation in bacterial community composition for most sites (slope variance 357 

= 0.06; mean R2 = 0.64, sd = 0.28) (Fig. 3b).  358 

 359 

The consistency between large- and regional-scale predictors was found for fungi as well, where the best 360 

large-scale predictor (plant community composition) was also  consistently associated with the within-site 361 

variation in fungal community composition for most sites (slope variance = 0.05; mean R2 = 0.64, sd = 0.26) 362 

(Fig. 3d). Plant community composting was a better predictor at the large-scale than all broad-scale and 363 

ecosystem fertility-related variables combined (R2 = 0.51 and R2 = 0.44, respectively) (Table S3, Fig. 2). 364 

Accordingly, the relationship between fungal community composition and the composite environmental 365 

variable varied considerably from site to site (slope variance = 0.16; mean R2 = 0.50, sd = 0.32) (Fig. 3c).  366 

 367 

Microbial community composition at different plant productivity levels 368 

 369 

Bacterial and fungal community composition differed significantly (P < 0.001) between the two 370 

productivity levels (Fig. 4) when site differences were accounted for. This indicates that there is a common 371 

community, shared across the globally distributed sites, which can separate more and less productive 372 

grasslands. Despite the compositional differences, the predictors of microbial community composition at 373 

low and high productivity levels were similar. In line with the results in the previous section, soil properties 374 

(particularly base saturation and pH) were the most important predictors of bacterial community 375 

composition, whereas fungal community composition was best predicted by plant community 376 

composition (Appendix S2). Therefore, while distinct microbial communities were found at contrasting 377 

productivity levels, their associations with the abiotic or biotic environments across sites were largely 378 

similar. 379 
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 380 

To further disentangle the effect of different productivity levels on microbial communities, we examined 381 

the most important bacterial phyla and fungal functional groups. The most abundant (> 10% relative 382 

abundance) bacterial phyla in the dataset were: Actinobacteria (42%), Firmicutes (16%) and 383 

Proteobacteria (14%) (Fig. S3, Table S4). Saprotrophs were the most dominant fungal functional group 384 

with 54% of sequences followed by 14% of potential plant pathogens, 7% of arbuscular mycorrhizal fungi 385 

(AMF), whereas the other groups together accounted for 4% of the total number of sequences (Fig. S3).  386 

 387 

We further used indicator species analysis to identify the OTUs that significantly associate with different 388 

productivity levels. There were 109 and 134 bacterial OTUs indicators of high and low productivity sites, 389 

respectively. The highest number of indicators for low productivity belonged to Actinobacteria (33.6%; 390 

dominant order was Thermoleophilia) while for high productivity, they predominantly belonged to 391 

Firmicutes (25.7%), many of which were from the order Clostridia (22.9%) (Fig. 4a). In the case of fungi, 392 

the high productivity sites had 13 indicators, most of which were assigned as putative plant pathogens, 393 

predominantly from the Nectariacea family (smut fungi). On the other hand, low productivity sites had 394 

only 3 indicator OTUs whose trophic lifestyle was unassignable at the genus level (Fig. 4b). 395 

 396 

When considering total bacterial and fungal abundance (number of gene copies) and the three most 397 

dominant fungal and bacterial groups, the linear mixed-effect model with ‘site’ as a random effect showed 398 

that Actinobacteria and total fungi were more abundant in low than in high productivity sites, and the 399 

opposite was observed for Firmicutes (Fig. 5a). The relative abundances of Proteobacteria, saprotrophs, 400 

AMF and total abundance of bacteria, did not differ significantly between the two productivity levels.  401 

 402 
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Although microbial community composition was explained by similar predictors at low and high 403 

productivity grasslands, at higher levels of taxonomic and/or functional integration this was not the case. 404 

The correlation networks between the three most dominant bacterial and fungal groups with plant 405 

functional groups (graminoids, herbs and legumes), soil properties and total fungal and bacterial 406 

abundance differed substantially between the two productivity levels. At high productivity, there were 407 

only a few correlations; e.g. between C:N and both Actinobacteria and Proteobacteria. On the other hand, 408 

the number of associations was much higher at the low productivity level (Fig. 5b) where different soil 409 

properties were associated with fungal and bacterial groups. Moreover, there were negative correlations 410 

between putative plant pathogens and forbs as well as between Firmicutes and total bacterial and fungal 411 

abundances. 412 

 413 

 414 

Discussion 415 

 416 

Despite considerable literature describing the most important predictors of soil microbial community 417 

composition in the grassland biome, until now it has been unclear whether these relationships persist 418 

across different spatial and environmental contexts. In this study, we show that there is generality in the 419 

way bacterial and fungal communities are shaped across two different spatial scales and productivity 420 

levels in worldwide distributed grasslands. 421 

 422 

Generality in the predictors of microbial community composition 423 

 424 

Our results reveal that soil abiotic factors (primarily base saturation and pH) are key predictors of bacterial 425 

community composition both across and within different grassland sites and at contrasting plant 426 
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productivity levels. The potential role of soil chemical properties (i.e. soil pH) as important drivers of 427 

continental-scale bacterial community turnover (Fierer & Jackson 2006; Lauber et al. 2009), as well as of 428 

globally dominant bacterial phylotypes (Delgado-Baquerizo et al. 2018) has previously been established. 429 

However, besides soil properties, bacterial community composition was also strongly and consistently 430 

associated with plant community composition, particularly at the regional scale. These results suggest 431 

that at the regional scale, plant community composition and soil chemical properties might jointly 432 

influence bacterial communities and their individual importance may be difficult to disentangle. Fungal 433 

community composition was consistently related only to plant community composition, indicating that 434 

plant communities, rather than soil properties (Egidi et al. 2019), are important in shaping fungal 435 

community composition in grasslands.  436 

 437 

Large-scale association between grassland plant community composition and both fungal and bacterial 438 

community composition has previously been demonstrated (Prober et al. 2015). The consistency of the 439 

relationship between plant and microbial (particularly fungal, but also bacterial) community composition 440 

across different grasslands in our study shows that these relationships are not just a matter of coincident 441 

spatial community turnover between fungi (bacteria) and plants, but rather indicate a direct influence on 442 

each other and/or a high similarity in ecological niches. Plant communities can affect soil microorganisms 443 

both directly by providing a diverse set of hosts for mutualistic and antagonistic microorganisms, and 444 

indirectly by altering edaphic factors and providing different quantity and quality of root exudates and 445 

litter (Wardle et al. 2004; Van Der Heijden et al. 2008; Berg & Smalla 2009). Local experiments have 446 

previously shown that plant community composition can shape microbial community composition 447 

(Schlatter et al. 2015; Reese et al. 2018; Heinen et al. 2020) and that plant-microbe feedbacks might play 448 

a central role both in microbial and plant community assembly processes (Wubs et al. 2019; Radujković 449 

et al. 2020). 450 
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 451 

Universal influence of plant productivity on soil microbial community composition  452 

  453 

Bacterial and fungal community composition were found to be more similar within low and high 454 

productivity grasslands than between them when site-specific differences were accounted for. This 455 

suggests that plant productivity as an indicator of a myriad of factors related to it (including soil fertility, 456 

plant diversity, and plant-soil interactions (Craven et al. 2016; Delgado-Baquerizo et al. 2017; Guerrero‐457 

Ramírez et al. 2019)) selects for some of the same microbial taxa regardless of differences in climate and 458 

grassland type. A link between bacterial taxa and plant productivity across contrasting biomes worldwide 459 

(forests, shrublands, grasslands) has previously been reported (Delgado-Baquerizo et al. 2018), where 460 

particular groups of globally dominant soil bacteria with a preference for low-productive sites were 461 

identified. Here, we show that similar conclusions hold for bacterial and fungal taxa even within the 462 

grassland biome, where differences in plant productivity are much smaller than across contrasting 463 

biomes. 464 

 465 

The differences in bacterial community composition between the two productivity levels in our study are 466 

corroborated by a higher relative abundance of Firmicutes and lower relative abundance of Actinobacteria 467 

at high productivity. OTUs belonging to the phylum Firmicutes were also found to be the most dominant 468 

indicators of high productivity soils. This is consistent with the findings of several other studies showing 469 

an increase in Firmicutes abundance under elevated nutrient inputs suggesting that many members of 470 

this phylum may be associated with fertile soils (Ramirez et al. 2010; Wakelin et al. 2013; Yao et al. 2014; 471 

Ling et al. 2017). Among the indicators of low-productivity grasslands, many belonged to the phylum 472 

Actinobacteria, particularly the order Thermoleophilia. Members of this order are known to thrive in 473 

conditions of reduced soil moisture (Pereira de Castro et al. 2016; Ochoa-Hueso et al. 2018; Preece et al. 474 
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2019) which might explain their presence in low-productivity grasslands with their predominantly sandy 475 

soils and poor water-holding capacity. 476 

 477 

The relative abundances of the three dominant fungal functional groups (saprotrophs, AMF and putative 478 

plant-pathogens) did not differ significantly between productivity levels. However, total fungal abundance 479 

was significantly higher at low compared to high productivity levels. Higher fungal abundance is common 480 

in less fertile soils (Bardgett & McAlister 1999; Innes et al. 2004) where fungi are favoured over bacteria 481 

as the predominant decomposers due to the higher recalcitrance of plant litter and their generally more 482 

resource-conservative lifestyles (Marschner et al. 2011). Moreover, plant reliance upon, and allocation to 483 

AMF is often higher to secure P, N and other nutrients (Verbruggen et al. 2013; Ven et al. 2019). Most of 484 

the indicators of highly productive grassland soils belonged to the groups of putative plant pathogens. 485 

Plant pathogens are known to thrive under the conditions of high productivity (Reynolds et al. 2003) and 486 

our result suggests that some of their members are broad generalist appearing in different highly 487 

productive grasslands. Low-productivity grasslands appear to share few fungal taxa, possible because 488 

these grasslands are more heterogeneous with higher levels of endemism.  489 

 490 

The associations between microbial groups and the environment vary with plant productivity  491 

 492 

We explored the factors that potentially drive the total microbial abundances and relative abundances of 493 

dominant, bacterial taxonomic groups and fungal functional groups at different productivity levels. 494 

Microbial groups from low-productive soils were significantly correlated with many more environmental 495 

factors (either plant functional groups or soil properties) than those from high-productive soils. For 496 

instance, at low productivity, the relative abundance of putative plant pathogens was negatively 497 

associated with the abundance of forbs and tended to increase with increasing graminoid abundance. The 498 
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tendency of graminoids to accumulate fungal pathogens relative to forbs is a commonly observed 499 

phenomenon (Heinen et al. 2020) and may be related to their typical high density (Mitchell et al. 2002). 500 

At the high productivity level plots, plant pathogens and saprotrophs were not correlated with other 501 

groups of biota or with soil properties, possibly indicating relaxation of biotic/abiotic interactions when 502 

resources are abundant.  503 

 504 

These examples suggest that microbial groups at high productivity plots might not be substantially 505 

affected by a further increase in resource availability and they might be forming fewer consistent 506 

interactions (symbiotic or competitive) with each other or with plant groups. This has been demonstrated 507 

in agricultural settings where fertilization reduced rhizosphere microbiome dependency on plant-derived 508 

carbon leading to simpler plant-microbe associations (Ai et al. 2015). Similarly, it has been shown that 150 509 

years of fertilization has weakened the complexity of plant-microbiome networks in a managed grassland 510 

(Huang et al. 2019). Our results support that these tendencies also appear to hold for non-agricultural 511 

grasslands. Therefore, bacterial taxonomic and fungal functional groups (and by extension, the functions 512 

performed by these groups) in low-productivity grasslands may be more strongly influenced by changes 513 

in soil properties and plant functional groups than those in high-productivity grasslands. 514 

 515 

Conclusion 516 

 517 

Universal ecological patterns are the exception rather than the rule (Lawton 1999) and several studies 518 

have argued that there are few if any, general drivers of microbial community composition. If estimates 519 

derived from one system or spatial scale cannot be extrapolated to another, it is challenging to predict 520 

the effects of altered environmental conditions on soil microbial communities and the functions they 521 

drive. Our findings suggest that the main factors that shape overall microbial (bacterial and fungal) 522 
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community composition in grasslands agree in a highly consistent manner, regardless of the spatial scale, 523 

productivity, or climatic conditions while the drivers of the (relative) abundance of specific bacterial and 524 

fungal groups may depend on grassland productivity. Moreover, particular, regional productivity levels 525 

are typified by relatively similar soil microbial communities across the grassland biome and are 526 

distinguishable by that characteristic. These findings suggest that it is possible to extrapolate and upscale 527 

the general trends regarding the drivers of microbial community composition and that modelling soil 528 

microbial community composition under environmental changes, or using microbial fingerprints to 529 

distinguish fertile from infertile systems, are feasible tasks. 530 
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Figure captions 739 

 740 

Figure 1 The location of 18 HerbDivNet sites in relation to global precipitation values. Red diamonds indicate 11 sites 741 

that contained a clear productivity gradient and yellow circles indicate other sites (containing from 2 to 6 plots but 742 

with no clear productivity gradient). All plots (n = 83) were used in the analyses of large-scale predictors of microbial 743 

community composition while 11 sites with the productivity gradient (11 pairs of plots with relatively low and high 744 

productivity; a total of 44 plots) were used in the analyses of microbial community composition at high and low 745 

productivity levels.  746 

 747 

Figure 2 Variance partitioning between selected variables in the large-scale model explaining a) bacterial and b) 748 

fungal community composition. The variables were grouped in three categories: i) broad-scale variables (climate, N 749 

deposition and geographical distance); ii) ecosystem fertility-related variables (soil properties and biomass) and iii) 750 

plant-community composition. The sizes of bubbles correspond to the percentage of variance explained by each 751 

group (indicated by the numbers in the bubbles). 752 

 753 

Figure 3 Relationships between regional (within-site) environmental/plant community distances and bacterial and 754 

fungal community distances a) bacterial distances vs environmental distances; b) bacterial distances vs plant 755 

distances c) fungal distances vs environmental distances; d) fungal distances vs plant distances. Colours of points 756 

and corresponding regression lines correspond to 18 different sites. Dashed lines represent general regression lines. 757 

The relationship between regional geographical distances and bacterial/fungal distances per site are shown in Fig. 758 

S2. For site references, see Table S1. 759 

 760 

Figure 4 Partial MDS ordination showing a) bacterial and b) fungal Bray-Curtis distances (partialling out the effect of 761 

the site differences) coloured according to the productivity level of the sampling plots. The bar plots on the sides 762 

present a) the number of bacterial OTUs split by phylum and b) fungal OTUs split by order, which were found to be 763 
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significant indicators of low and high productivity grassland soils. For fungi, putative trophic lifestyles of these OTUs 764 

are indicated in bold.  765 

 766 

Figure 5 a) Boxplots showing the mean values of Actinobacteria and Firmicutes relative abundances and total fungal 767 

abundances at two productivity levels (the differences are significant in all cases). The grey area depicts the 768 

distribution of samples. b) Correlation networks between the three most dominant bacterial phyla (Actinobacteria, 769 

Firmicutes, Proteobacteria), three dominant fungal functional groups (saprotrophs, putative plant pathogens, AMF), 770 

three main plant functional groups (grasses, forbs, legumes), total bacterial/fungal abundance (number of copies 771 

per g soil) and soil properties at high and low productivity. Soil variables that had at least one significant correlation 772 

are shown. The red lines depict significant negative correlations, while blue lines depict significant positive 773 

correlations (P < 0.01 and Spearman r > 0.5). Soil variables included C:N (carbon to nitrogen ratio), N (total nitrogen), 774 

CEC (cation exchange capacity), percentage sand, P (available phosphorus), BS (base saturation). SOM* = the same 775 

links were observed for total N and P, which were all strongly correlated to each other and only one of them is 776 

shown. The correlations between soil properties are not shown.  777 
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