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Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders charac-
terised by impaired cognitive abilities and developmental challenges. Short tandem
repeats (STRs), repetitive DNA sequences found throughout the human genome, have
emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat
has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the
most common inherited form of intellectual disability and autism. This review focuses on
CGG STR expansions associated with NDDs and their impact on gene expression
through repeat expansion-mediated epigenetic silencing. We explore the molecular
mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifica-
tions, such as DNA hypermethylation and gene silencing. Additionally, we discuss the
involvement of other CGG STRs in neurodevelopmental diseases. Several examples,
including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex
relationship between CGG STR expansions and NDDs. Furthermore, recent advance-
ments in this field are highlighted, shedding light on potential future research directions.
Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to
uncover novel diagnostic and therapeutic strategies for these challenging disorders.

Neurodevelopmental disorders and short tandem
repeats
In humans, neurodevelopmental disorders (NDDs) represent one of the most clinically and genetically
diverse groups of disorders. These disorders arise from disruptions in early brain development and
can encompass conditions such as autism spectrum disorder (ASD), intellectual disability (ID), motor
impairments, seizures, learning difficulties, and attention issues. Symptoms of these disorders often
encompass cognitive limitations, delays in both gross and fine motor skills, hypotonia, and difficulties
in social and behavioural aspects. [1,2]. Short tandem repeats (STRs), previously known as microsatel-
lites or simple sequence repeats, are short DNA motifs of one to six bp that are consecutively repeated
in a head-to-tail-like fashion [1,2]. To date, multiple human diseases and disorders have been attribu-
ted to STRs. There appears to be a link between STRs and neurological disorders, as a large propor-
tion of STR disorders are neuromuscular, neurodegenerative, or neurodevelopmental in nature.
Currently, the primary repeat class that is associated with NDDs is the trinucleotide CGG STR.
Several NDDs have been definitively associated with CGG STRs and several other NDD and neurode-
generative phenotypes have had the involvement of CGG STRs implicated (Table 1). The majority of
these disorders involve some form of cognitive disorder including, but not limited to ID, developmen-
tal delay, and ASD. The typical mechanism linked to NDD-causative STRs is repeat expansion, which
we will discuss further.
CGG STR expansion may manifest as a folate-sensitive fragile site (FSFS). These are cytogenetically

visible breaks in the chromosomes that have been observed throughout the human genome, which are
inducible by culturing cells in a folate-deficient medium [3]. To date, 22 FSFS have been identified. At
the molecular level, FSFS are due to a CGG-repeat expansion. While for a long time, scientific interest
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in STR CGG expansions has been almost exclusively limited to the fragile X syndrome (FXS), recently, interest
in this class of STRs has exploded for a number of reasons. First, several FSFS due to CGG-repeat expansions
that have long been considered harmless polymorphisms have now been unequivocally linked to NDD [4,5].
Second, the bioinformatic discovery that CGG-repeats are much more common than anticipated [6] and third
the outcome of an epigenetic survey that discovered additional disease-relevant CGG Expansions [7]. The
purpose of this review is to highlight and connect these recent developments in this rapidly emerging field.

CGG-repeat expansion-mediated epigenetic silencing
CGG STRs mutations (at least from the perspective of the FMR1 gene) are typically divided into three different
mutation classes. These are ‘full mutation’ >200 repeat units [8,9], ‘premutation’ 200–56 repeat units [10,11],

Table 1. Summary of the CGG STR expansions detected within the boundaries of the folate-sensitive fragile sites

Folate-sensitive fragile site Chromosome [19] Localised gene/s Gene region Disease phenotype Reference

FRAXA Xq27.3 FMR1 50-UTR Fragile X syndrome [20]

FRAXE Xq28 AFF2 50-UTR Fragile XE syndrome [21]

FRAXF Xq28 TMEM185A1 50-UTR Developmental delay [22]

FRA1M 1p21.3 ABCD32 50-UTR Candidate [23,24]

FRA2A 2q11.2 AFF3 50-UTR/intron Intellectual disability [25,26]

FRA2B 2q13 BCL2L112 50-UTR/intron Candidate [23,24]
RGPD12 50-UTR/intron Candidate [24]

FRA2K 2q22.3 ACVR2A2 Promotor/50-UTR Candidate [24]

FRA5G 5q35 RASGEF1C2 50-UTR Candidate [6,7]
FAM193B2 50-UTR Candidate [24]

FRA6A 6p23 RANBP92 Exon Candidate [23,24]
GFOD12 Promotor Candidate [6]

FRA7A 7p11.2 ZNF7131 Intron Autism spectrum disorder [27]

FRA8A 8q22.3 FZD62 50-UTR Candidate [23,24]

FRA9A 9p21 C9orf722 Intron Candidate [23,24]
ELAVL22 50-UTR Candidate [24]

FRA9B 9q32 TMEM2682 50-UTR Candidate [6]
ZNF6182 Promotor/50-UTR Candidate [6]

FRA10A 10q23.3 FRA10AC1 50-UTR Neurodevelopmental disorder [28–30]

FRA11A 11q13.3 C11orf801 Exon Candidate [31]

FRA11B 11q23.3 CBL 50-UTR Jacobsen syndrome [32]

FRA12A 12q13.1 DIP2B1 50-UTR Intellectual developmental disorder [33]

FRA12D 12q24.13 TPCN12 50-UTR Candidate [6]
HECTD42 50-UTR/exon Candidate [6]

FRA16A 16p13.11 XYLT1 50-UTR Baratela–Scott syndrome [4]

FRA19B 19p13 LINGO32 Promotor/50-UTR Candidate [23,24]
SAMD12 50-UTR/exon Candidate [6]
GIPC12 50-UTR Candidate [6]
BRD42 Promotor/50-UTR Candidate [6]
CARM12 Promotor/50-UTR Candidate [6]

FRA20A 20p11.23 RALGAPA22 50-UTR Candidate [23,24]

FRA22A 22q13 CSNK1E1 50-UTR Autism spectrum disorder [34]

1CGG STR expansions within the given gene are known to be causative of the associated fragile site and have been observed within individuals with a NDD phenotype,
however, the association between the expansion and phenotype is not yet unequivocally linked;
2CGG STR expansions within this gene have been identified through either methylation epigenetic signal or bioinformatic repeat expansion detection analyses marking these
loci/genes as candidates causative for NDDs and folate-sensitive fragile sites.
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and ‘gray zone’ 55–41 repeat units [12,13]. Currently, full mutation repeat expansions appear to be the princi-
pal mutation mechanism linked to NDDs in humans. While the premutation and gray zone classes have been
linked to human disease phenotypes, they are primarily associated with neurodegenerative disorders, such as
Fragile X-associated tremor/ataxia syndrome and Neuronal intranuclear inclusion disease [14,15]. Furthermore,
the pathogenic mechanisms at play differ considerably between the full mutation and the premutation and gray
zone class mutations. Within this discussion, we shall focus on the full mutation class.
When a CGG STR locus expands beyond its full mutation length, for instance, 200 CGG units in the

case of FXS, this triggers an epigenetic methylation event. Here, the CpG islands within and immediately
surrounding the repeat tract all become methylated [16]. This hypermethylation of the repeat locus then
causes the hyper-condensation of the DNA strand and the surrounding chromatin [17]. If the hypermethy-
lated repeat in question is localised within a gene or gene promotor region (which is often the case for
CGG STRs), the hyper-condensation will block access to the binding sites required by cellular transcription
machinery in order to transcribe the gene in question [17]. Therefore, the gene is silenced as no mRNA is
produced and consequently, no gene product can be realised. This produces an effect similar to gene
loss-of-function or a gene deletion as no protein will be produced from that allele [18]. As stated above, a
further consequence of CGG STR expansion may be the manifestation of a cytogenetically visible FSFS that
is induced by culturing cells in a folate-deficient medium [3]. All 22 FSFS that have been described are
listed in Table 1. The STRs that have been associated or linked with disease due to repeat full mutations
are discussed in the following section.

FRAXA — FMR1
By far, the most well-known and comprehensively studied CGG STR is found within the 50-untranslated region
(UTR) of the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene on the X chromosome. Full mutation
expansions of the FMR1 CGG-repeat results in FXS. Not only was FXS the first defined CGG-repeat expansion
disorder, but it is also the most common inherited form of ID and syndromic ASD [8]. FXS occurs in 1 in
4000 males and 1 in 8000 females, with males generally displaying a more severe phenotype. Females may
display less severe phenotypes due to X-inactivation [35,36]. As females present with two X chromosomes,
during embryonic development, in each cell, most genes on one of the X chromosomes are randomly silenced
[36,37]. Therefore, in many cases, the expansion-containing allele would be silenced regardless and the healthy
allele would be available for the transcription of FMR1 [38]. To date, most research on the CGG STR is framed
within the context of the FMR1 repeat. Typically, the normal population length of the FMR1 repeat is ∼30
CGG units but ranges from ∼6 to 40 repeat units. FXS is primarily characterised by mild to moderate ID,
ASD, and particular facial appearance. Other common symptoms of FXS include joint laxity, macroorchidism
(in males), hyperactivity, seizures, social and language impairments, and increased anxiety [38,39]. The highest
levels of FMR1 expression have been observed within neurons and the foetal brain in the early stages of prolif-
eration and migration of nervous system cells [40,41]. Broadly, FMR1 plays a role in development, mRNA
binding, and translation regulation [42,43]. It seems that as FMR1 is a crucial gene in the development of the
central nervous system (CNS) that its absence during development results in FXS.

FRAXE — AFF2
Fragile XE (FRAXE) syndrome is a rare genetic condition of X-linked ID. The syndrome was initially identified
in individuals who had been referred for FXS testing [21]. It is named for the FRAXE fragile site observed
within the patients occurring on chromosome Xq28 distal to the FRAXA site. FRAXE syndrome is categorised
by mild ID, however the phenotype can be highly variable between individuals and symptoms can include
learning difficulties, language delay, hyperactivity, and a shortened attention span [44]. The cause of this dis-
order is a full-mutation CGG STR in the 50-UTR of the ALF Transcription Elongation Factor 2 (AFF2) gene
(formerly known as FMR2) which results in transcriptional silencing of the gene [45,46]. Though the exact
molecular consequence of AFF2 silencing and why FRAXE syndrome arises is unknown, it is suggested that
AFF2 is an RNA-binding protein that regulates alternative splicing through interaction with G quartet RNA
structures and silencing of the gene may disrupt crucial gene regulation during development [44,47].

FRA2A — AFF3
ALF Transcription Elongation Factor 3 (AFF3) is a gene, like AFF2, which is part of the AF4/FMR2 gene
family. Interestingly, AFF3 contains two CGG-repeats that are capable of expanding to large sizes. There is a
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CGG-repeat present within the 50 promotor region and another repeat present in intron 2 of AFF3, which is a
brain-active alternative promoter [6,25]. Expansion of the brain-specific promotor CGG STR beyond 200 units
results in hypermethylation of the repeat and the adjacent CpG islands which accounts for gene silencing [25].
However, while the FRA2A fragile site was associated with neurodevelopmental phenotypes such as delay of
motor and language skill acquisition, it was not possible to unequivocally link this expansion to neurodevelop-
mental delay as yet [25]. Recently, an enrichment of the AFF3 STR expansion was observed in 6371 probands
with neurodevelopmental problems [26]. cSNP analysis indicated monoallelic expression of the AFF3 gene
within FRA2A carriers, which may indicate that AFF3 is a functionally haploinsufficient gene [27].
Haploinsufficiency of AFF3 within the developing brain may cause an NDD phenotype. Two other independ-
ent studies by Shimizu et al. [48] and Voisin et al. [49] have indicated heterozygous de novo missense or dele-
tion mutations within the AFF3 gene within individuals displaying KINSSHIP (horseshoe kidney, Nievergelt/
Savarirayan type of mesomelic dysplasia, seizures, hypertrichosis, ID, and pulmonary involvement) syndrome.
This lends further credence to the possibility that the heterozygous silencing of the AFF3 gene through the
FRA2A repeat expansion would result in an NDD or ID phenotype. A potential reason behind the phenotypic
differentiation between KINSSHIP syndrome patients versus FRA2A patients may be due to the localisation of
the STR expansion in the alternate brain-specific transcript of the AFF3 gene.

FRA7A — ZNF713
Zinc Finger Protein 713 (ZNF713) is a gene found on chromosome 7p11.2 in relative proximity to the centro-
mere and has a significantly enriched expression within the brain in comparison with the other body tissues
[27]. It is a member of the Kruppel-type zinc finger protein family, and it contains a Kruppel-associated box
(KRAB) regulatory domain [27]. While very little is known about the ZNF713 gene, it is known to contain two
large and polymorphic CGG-repeats and has been implicated in ASD. One within the 50-UTR and another
within intron 1 [6]. Using FISH analysis, the 50repeat was identified as the causative repeat for the FRA7A
FSFS [27]. While a definitive link was not established, the full mutation and subsequent silencing of the
FRA7A repeat has been associated with ASD within two unrelated families [27]. Interestingly, the relatives (of
ASD-affected family members) who harboured a premutation-sized CGG-repeat allele displayed increased
expression of the ZNF713 gene [27], which is consistent with what is known and previously discussed of
premutation-length CGG-repeat alleles.

FRA10A — FRA10AC1
The FRA10A-associated CGG-Repeat 1 (FRA10AC1) gene is known to contain the CGG STR responsible for
the FRA10A fragile site. The original study that identified the repeat expansion in FRA10AC1 observed that in
their tested population the repeat length was variable, however, all observed individuals that exhibited a
FRA10A fragile site were heterozygous, displaying a normal-sized repeat and an expanded repeat of at least 200
CGG unit [28]. Furthermore, it was observed that in the allele containing the expanded repeat was hyper-
methylated and FRA10AC1 was not transcribed [30], providing further evidence for the full-mutation mechan-
ism of the CGG STR. Due to the lack of a disease phenotype in these individuals combined with another study
where a FRA10A carrier lacked any discernible phenotype, it was concluded that (at least in the heterozygous
state) the CGG-repeat full-mutation in FRA10AC1 was not pathogenic [28,50]. This would indicate that
FRA10AC1 is not a haploinsufficient gene. However, recently it was determined by von Elsner et al. [5] that
bi-allelic loss-of-function mutations of FRA10AC1 result in a NDD with growth disruption, dysmorphic
features, and corpus callosum abnormalities. This was further supported by several other studies that identified
homozygous loss-of-function mutations within FRA10AC1 in NDD patients [29,30]. However, as of yet, an
NDD patient exhibiting a loss-of-function mutation along with a full-mutation FRA10AC1 repeat has not been
reported. Much like the XYLT1 repeat (to be discussed), if such a case were to arise, we would expect a similar
phenotype as reported by von Elsner and colleagues to manifest.

FRA11B — CBL
The FRA11B CGG-repeat is located on chromosome 11q23.3 immediately upstream of the CBL
Protooncogene (CBL) gene [51]. The FRA11B CGG-repeat has been implicated in Jacobsen Syndrome [52].
This is an interesting case as the proposed manner in which the full-mutation contributes to Jacobsen syn-
drome is unique in comparison with the other cases of CGG full-mutations. Jacobsen syndrome is a con-
tiguous gene syndrome caused by partial deletion of the q arm of chromosome 11 [52]. The symptoms of
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Jacobsen syndrome can be quite varied as the breakpoint of the deletion can vary along the q arm of
chromosome 11. However, typical characteristics include particular facial features, Paris–Trousseau syndrome
(a bleeding disorder), delayed motor and speech development, and cognitive impairment [53]. In a subset
of Jacobsen patients, the breakpoint of the 11q arm deletion is localised at the FRA11B fragile site or
within proximity to it [32]. In the FMR1 gene, It is thought that secondary structures produced by the
expanded CGG-repeat cause replication stress during DNA replication, which causes stalling of the replica-
tion fork and results in a double-stranded break (DSB) [54,55]. Then through the initiation of break-
induced repair, mutations are realised downstream of the CGG-repeat [56]. It is suggested that through a
similar mechanism of replication stress, a DSB is induced at the FRA11B site which then results in the loss
of the chromosome 11q arm downstream of the CGG-repeat [57]. While a distinct correlation has been
established between the CBL CCG-repeat expansion and Jacobsen syndrome [57], it is unclear if this mech-
anism of CGG-repeat mediated chromosomal breakage is replicated elsewhere. While deletions proximal to
the FMR1 repeat have been reported [58,59], large deletions with breakpoints at the other FSFSs have not.
Heterozygous mutations in the CBL gene have been implicated in Noonan Syndrome, Noonan
Syndrome-like Disorder, and leukaemia [60,61], however, expression of FRA11B has not.

FRA12A — DIP2B
Giraud et al. [62] first identified the FRA12A fragile site occurring on chromosome 12q13 within a male
patient presenting with ID and congenital complications. It was determined that this fragile site is caused by a
CGG-repeat expansion (full-mutation) within the disco-interacting protein 2 homologue B (DIP2B) gene [33].
Since several studies have identified the FRA12A site co-occurring with ID [33,63–65], the disorder has been
termed Intellectual developmental disorder, FRA12A type. However, the association of the FRA12A fragile site
with ID can be controversial, as the expression of this fragile site has been observed in healthy individuals.
However, there may be a dosage effect relating to the effect of the DIP2B expansion. As in patients, the pres-
ence of the FRA12A site was observed in 43.7% of lymphocytes, whereas in unaffected carriers of FRA12A,
observation was far lower at 16.6% of lymphocytes [23]. Furthermore, in individuals without ID but with the
presence of FRA12A, DIP2B expression was reduced to approximately two-thirds of the levels observed in con-
trols. However, in individuals where both FRA12A and ID were present, DIP2B expression was reduced to half
that of controls [33]. DIP2B has been determined to be a regulator of axonal development and is essential for
the development of neuron cells [66]. Therefore, if DIP2B were to be transcriptionally silenced in a large pro-
portion of cells during early neuronal development this may be a contributing mechanism towards neurocogni-
tive disorders.

FRA16A — XYLT1
Baratela–Scott syndrome is an interesting case. The syndrome is categorised by short stature, dysmorphic
facial features, skeletal dysplasia, and developmental delay [67]. In the past, Baratela–Scott syndrome was
thought to be caused by pathogenic variants or total and partial deletion of the XYLT1 gene, which
encodes for the XT1 xylosyltransferase enzyme, which catalyses the primary step in chondroitin sulfate and
dermatan sulfate proteoglycan biosynthesis [4]. It was noticed in several Baratela–Scott syndrome patients
that a pathogenic variant or deletion could not be detected in the XYLT1 gene by standard sequencing
techniques [4]. In these patients, a CGG-repeat expansion was detected, which was undergoing hypermethy-
lation and silencing expression of the XYLT1, the mechanism observed in FXS [4]. The genomic position
of this CGG STR correlates with the previously reported FSFS FRA16A [4,68]. Interestingly, what was
demonstrated by LaCroix et al. [4], was that the XYLT1 gene is not haploinsufficient, and for a patient to
manifest Baratela–Scott Syndrome they must contain either a pathogenic variant, a deletion, or a repeat
expansion on both alleles of the XYLT1 gene. In this case, the repeat-associated disorder is autosomal reces-
sive, whereas the majority of known repeat-associated disorders are autosomal dominant [4]. This case
coupled with the difficulty of detecting repeat expansions in patients through standard sequencing means
illustrates how repeat expansions could be an overlooked disease-causing mechanism and likely contributes
towards the missing heritability problem. Furthermore, it demonstrates how STR expansions and gene silen-
cing through CGG-hypermethylation can replicate disorders that are typically thought to be caused by
either pathogenic variants or deletion events.
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FRA22A — CSNK1E
The casein kinase 1 epsilon (CSNK1E) gene is a known member of the circadian rhythm control genes and has
been previously implicated in neuropsychiatric disorders such as bipolar disorder, schizophrenia, and opiate
addiction [69–71]. Through an epigenetic analysis of over 23 000 individuals, hypermethylation signatures in
CSNK1E were detected and it was determined that CSNK1E contains the CGG STR that is responsible for the
FRA22A fragile site through CGG STR expansion [7]. Recently, a heterozygous de novo variant in CSNK1E (p.
Glu117Lys) has been reported in patients presenting with hypotonia, speech apraxia, and ASD [34]. As
CSNK1E is expressed in all human brain regions during natal development and is co-expressed with multiple
neurological disorders candidate genes this positions the FRA22A CGG STR as another strong candidate for
NDD contributing repeat [34].

The discovery of CGG-STRs beyond fragile sites
In addition to the CGG-repeats that were discovered as FSFS Recent studies have identified ∼6000 CGG STR
loci throughout the human genome [6,24]. Interestingly, it was observed that hundreds of these CGG STR loci
displayed characteristics, such as native repeat length, genetic context, and polymorphism and mutation rates,
in line with those observed within the CGG STR loci that have been confirmed to be disease-causing. [6]. An
Independent cohort study that aimed at identifying epivariations in the human genome identified 25 loci
where rare hypermethylation coincided with the presence of an unstable CGG tandem repeat [7]. In many
cases, the presence of CGG expansions at these loci was confirmed.
Taking the bioinformatic approach and the epivariation study together, we now are able to present candidate

repeat expansions as the molecular defects underlying most of the known FSFSs in the genome as included in
Table 1. In some cases, multiple CGG STR expansion candidates were identified within the breakpoints of the
same FSFS. These may represent different CGG-repeat expansions beyond the resolution of discrimination by
cytogenetic analysis. For instance, while FRAXA, FRAXE, and FRAXF are now known to be distinct repeat
expansion loci, they cannot be discriminated cytogenetically, and in the past, this has led to misidentification.
The identification of multiple repeat candidates within a single FSFS may be suggestive of a similar phenom-
enon as observed on chromosome X.
Many of these repeat-containing genes present as additional candidate genes for NDD. Altogether, the com-

parison of the genomic location of these genes with known disease genes illustrates that there is an overwhelm-
ing enrichment of CGG STRs within genes in which mutations are known to be causative or linked to NDDs
(Figure 1). Overall, of thousands of gene-localised CGG STRs, Figure 1 highlights the genes that contain many
of the largest and most polymorphic CGG STRs within the human genome. These were detected through the
bioinformatic genotyping of a large cohort of whole genome samples [24].
Additionally, through the comparison of CGG STR mutation rate and mutation size in ASD-affected indi-

viduals, compared with their unaffected siblings, multiple CGG STR-containing genome regions were deter-
mined to display higher rates and degrees of STR mutation with the ASD-affected individuals [24].
Specifically in ASD, multiple other studies have established a link between the incidence of rare, large repeat
expansions in ASD patients when compared with controls [72,73]. Further linking the mutation of STRs to
NDDs.
Beyond neurodevelopment disorders, CGG STRs have been implicated in other forms of congenital and

developmental disorders, mostly due to the expansion of exon-based repeats encoding for polyalanine tract
[74–77]. In these cases, the pathogenic repeat length breakpoints appear far lower than that seen in repeat
expansion-mediated epigenetic silencing, with lengths of 20 to 30 repeat units being observed. Furthermore,
what is surprising is that it appears that the trinucleotide repeats are over-represented within developmental
and congenital disorders [78]. While other STR classes have been associated with neuromuscular and neurode-
generative disorders, such as the GAA, CAG and CCGGGG STRs, few other classes have been definitively asso-
ciated with NDDs beyond the CGG class. STRs are fascinating in the sense that though they are grouped as a
class of genetic features, however depending on their nucleotide composition and the context of their position
within the genome, they can exhibit wildly distinct pathogenic mechanisms. Not only that, but the pathogenic
mechanism at play can vary greatly within the same class of STR depending on repeat length, the CGG STR is
the classical example of this.
The CGG STR remains the primary class of STR linked to NDDs, and as each year goes by the evidence

for this mounts. Beyond the known disease-causing CGG STRs, hundreds of CGG loci localised with
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NDD-related genes have now been identified, with many of these repeat loci reflecting the characteristics
exhibited by the disease-causative repeats. Furthermore, with several studies having now identified higher
rates and degrees of STR mutation within individuals presenting an NDD, such as ASD, this further solidi-
fies the link between neurological function and repeat expansion [24,72,79]. As we now have many STR
loci as strong novel candidates which may contribute towards NDDs, it may only be a matter of time
before these diagnoses are matched with patient phenotypes. These efforts are surely bolstered through the
development of sequencing technologies, such as the long-read sequencing platforms, and the increased

Figure 1. Genome distribution of all known CGG short tandem repeats localised within genes known to contribute or be

associated with NDDs.

Genomic positioning (GRCh38) and HGNC names of NDD-linked genes can be observed lining the outside of the ideogram.

Track A displays the largest repeat length recorded at that given locus, while Track B demonstrates the rates of heterozygosity

of the given repeat locus. The chromosomes and their displayed data are separated by colour for differentiation. The data to

generate this figure was taken from Annear et al. [24] where large-scale CGG STR genotyping of NDD patients and their family

members was performed.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and the Royal Society of Biology and distributed under the Creative Commons
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availability of sophisticated DNA analysis pipelines. With the rise of these technologies, we may potentially
detect new classes of STRs that contribute to NDDs through mechanisms similar to or differing from the
CGG STRs.

Summary
• CGG trinucleotide STRs are the primary repeat class that is associated with NDDs.

• The principal mechanism behind CGG STR-associated NDDs is repeat expansion-mediated
epigenetic silencing.

• Repeat expansion-mediated epigenetic silencing is where a given repeat expands to or
beyond the full mutation threshold (>200 repeat units for the FXS CGG STR) and the CpG
islands within and flanking the repeat become hypermethylated, consequently preventing
gene transcription.

• 22 folate-sensitive fragile sites have been reported. These are cytogenetically visible breaks
on the metaphase chromosomes, caused by STR expansions. Approximately half have had
the causative CGG STR identified. Several of these CGG STRs are known to be causative of
NDDs.

• Recently, hundreds of new CGG STRs have been categorised, which reflect the characteristics
of known NDD-causing repeats. Therefore, this raises the question of to what degree add-
itional CGG STRs contribute towards NDDs.
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