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Summary

Electrons, X-rays and neutrons that pass through a thin crystalline sample will be
diffracted. Diffraction patterns of crystalline materials contain Bragg reflections (sharp
discrete intensity maxima) and diffuse scattering (a weak continuous background).
The Bragg reflections contain information about the average crystal structure (the type
of atoms and the average atomic positions), whereas the diffuse scattering contains
information about the short-range order (deviations from the average crystal structure
that are ordered on a local scale). Because the properties of many materials depend on
the short-range order, refining short-range order parameters is essential for understanding
and optimizing material properties.

The refinement of short-range order parameters has previously been applied to the
diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data
but not yet to the diffuse scattering in single-crystal electron diffraction data. In this
thesis, we will verify the possibility to refine short-range order parameters from the
diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows
to acquire data on submicron-sized crystals, which are too small to be investigated with
single-crystal X-ray and single-crystal neutron diffraction.

In Chapter 1, we will explain the effect of short-range order on the diffuse scatter-
ing. We will also explain how the three-dimensional difference pair distribution function
can be used to determine the origin of the observed diffuse scattering. Finally, we will
give an overview of the different methods that can be used to refine short-range order
parameters from single-crystal diffuse scattering data.

In Chapter 2, we will refine short-range order parameters from the one-dimensional
diffuse scattering in electron diffraction data acquired on the lithium-ion battery cathode
material Li1.2Ni0.13Mn0.54Co0.13O2. The number of stacking faults and the twin percent-
ages will be refined from the diffuse scattering using a Monte Carlo refinement. We will
also describe a method to determine the spinel/layered phase ratio from the intensities of
the Bragg reflections in electron diffraction data.

In Chapter 3, we will refine short-range order parameters from the three-dimensional
diffuse scattering in both single-crystal electron and single-crystal X-ray diffraction
data acquired on Nb0.84CoSb. The correlations between neighbouring vacancies and
the displacements of Sb and Co atoms will be refined from the diffuse scattering using
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a Monte Carlo refinement and a three-dimensional difference pair distribution function
refinement. To determine the accuracy of the refined correlation coefficients, the dis-
placements of Sb and Co atoms refined from the diffuse scattering will be compared with
the displacements refined from the Bragg reflections in single-crystal X-ray diffraction
data. The effect of different experimental parameters on the spatial resolution of the
observed diffuse scattering will also be investigated. Finally, the model of the short-range
Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.
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Dutch summary

Elektronen, X-stralen en neutronen die door een dun kristallijn materiaal worden ges-
tuurd, zullen worden verstrooid. Diffractiepatronen van kristallijne materialen bevatten
zowel Bragg reflecties (scherpe discrete intensiteitsmaxima) als diffuse verstrooiing
(een zwakke continue achtergrond). De Bragg reflecties bevatten informatie over de
gemiddelde kristalstructuur (het type atomen en de gemiddelde atoomposities). De
diffuse verstrooiing daarentegen bevat informatie over defecten in het kristalrooster
(afwijkingen t.o.v. de gemiddelde kristalstructuur die geordend zijn over korte afs-
tanden). Omdat de eigenschappen van veel materialen afhankelijk zijn van defecten in
het kristalrooster, is het belangrijk om het aantal defecten en de ordening van defecten te
kunnen kwantificeren.

Parameters zoals het aantal defecten en de ordening van defecten zijn eerder al
verfijnd geweest uit de diffuse verstrooiing in röntgendiffractie en neutronendiffractie
data, maar nog niet uit de diffuse verstrooiing in elektronendiffractie data. Het doel van
deze thesis is daarom om te kijken of deze parameters ook verfijnd kunnen worden uit de
diffuse verstrooiing in elektronendiffractie data. Met elektronendiffractie is het mogelijk
om kristallen te bestuderen die kleiner zijn dan een micrometer, wat niet mogelijk is met
röntgendiffractie en neutronendiffractie.

In Hoofdstuk 1 zullen we bespreken wat de invloed is van de ordening van defecten
op de diffuse verstrooiing. Vervolgens zullen we uitleggen hoe de driedimensionale
paarverderingsfunctie gebruikt kan worden om te bepalen welk type defecten verantwo-
ordelijk zijn voor de diffuse verstrooiing. Tot slot, zullen we een overzicht geven van
verschillende methoden die gebruikt kunnen worden om parameters te verfijnen uit de
diffuse verstrooiing.

In Hoofdstuk 2 zullen we parameters verfijnen uit de eendimensionale diffuse ver-
strooiing in elektronendiffractie data opgenomen op Li1.2Ni0.13Mn0.54Co0.13O2, een
kathodemateriaal dat gebruikt wordt in lithium-ion batterijen. Het aantal stapelfouten
en het percentage van de verschillende tweelingen zullen worden verfijnd uit de diffuse
verstrooiing door gebruik te maken van een Monte Carlo verfijning. Daarnaast hebben
we ook een methode ontwikkeld om de verhouding van de spinel fase en de gelaagde
fase te bepalen uit de intensiteit van de Bragg reflecties in elektronendiffractie data.

In Hoofdstuk 3 zullen we parameters verfijnen uit de driedimensionale diffuse
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verstrooiing in elektronendiffractie data en in röntgendiffractie data opgenomen op
Nb0.84CoSb. De correlaties tussen naburige vacatures en de atoomposities van Sb
en Co zullen worden verfijnd uit de diffuse verstrooiing door gebruik te maken van
een Monte Carlo verfijning en een driedimensionale paarverderingsfunctie verfijning.
Om de nauwkeurigheid van de verfijnde correlatiecoëfficiënten te bepalen, zullen de
atoomposities van Sb en Co verfijnd uit de diffuse verstrooiing vergeleken worden met
de atoomposities van Sb en Co verfijnd uit de Bragg reflecties in röntgendiffractie data.
Ook zullen we de invloed onderzoeken van verschillende experimentele parameters op
de resolutie van de diffuse verstrooiing. Het model van de Nb-vacature ordening in
Nb0.84CoSb zal ook worden toegepast op LiNi0.5Sn0.3Co0.2O2.
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List of abbreviations

ADT automated diffraction tomography
CCD charge-coupled device
cRED continuous rotation electron diffraction
DFT discrete Fourier transform
EDT electron diffraction tomography
FFT fast Fourier transform
HAADF-STEM high-angle annular dark-field scanning transmission electron microscopy
HPC high performance computing
HR-STEM high-resolution scanning transmission electron microscopy
IEDT integrated electron diffraction tomography
MicroED microcrystal electron diffraction
NED nano electron diffraction
PED precession electron diffraction
PEDT precession electron diffraction tomography
RED rotation electron diffraction
SAED selected area electron diffraction
TEM transmission electron microscopy
1D-PDF one-dimensional pair distribution function
3D-∆PDF three-dimensional difference pair distribution function
3D ED three-dimensional electron diffraction
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Chapter 1111111111111111111111111111111111111111111111111111111111111111111111111
Introduction

Diffraction patterns of crystalline materials contain Bragg reflections, arising from the
periodicity of the crystalline lattice, and diffuse scattering, arising from the disorder. Any
deviation from the average crystal structure gives rise to diffuse scattering. When the
deviations from the average structure are ordered on a local scale, they are referred to as
short-range order. Because the properties of many materials depend on the short-range
order, refining short-range order parameters is essential for understanding and optimizing
material properties.

The refinement of short-range order parameters has previously been applied to the
diffuse scattering in single-crystal X-ray and single-crystal neutron diffraction data
but not yet to the diffuse scattering in single-crystal electron diffraction data. In this
thesis, we will verify the possibility to refine short-range order parameters from the
diffuse scattering in single-crystal electron diffraction data. Electron diffraction allows
to acquire data on submicron-sized crystals, which are too small to be investigated with
single-crystal X-ray and single-crystal neutron diffraction.

In this chapter, we will first explain the difference between short-range order and
long-range order, and explain how the three-dimensional difference pair distribution
function (3D-∆PDF) can be used to determine the origin of the observed diffuse scat-
tering. Then, we will discuss the advantages and disadvantages of electron diffraction
compared to X-ray and neutron diffraction. Finally, we will give an overview of
the different methods that can be used to refine short-range order parameters from
single-crystal diffuse scattering data.
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CHAPTER 1. INTRODUCTION

1.1 Short-range order

1.1.1 Occupational, displacive and magnetic disorder

According to the International Union of Crystallography, a crystalline material is defined
as a material that exhibits essentially a sharp diffraction pattern [1]. The word essentially
means that most of the intensity of the diffraction is concentrated in relatively sharp
Bragg reflections, besides the always present diffuse scattering.

Diffuse scattering (i.e., the weak continuous scattering between the Bragg reflec-
tions) has been studied since the earliest days of crystallography [2, 3]. It occurs
whenever a crystal contains disorder – that is, when there are any deviations from the
average crystal structure [4]. Disorder in crystalline materials can be divided in three
categories: occupational disorder, displacive disorder and magnetic disorder [5].

Occupational disorder: Also referred to as substitutional or compositional disor-
der. A site in the unit cell can be occupied by more than one atom type.1

Displacive disorder: The displacement of atoms from their average positions.
For example the relaxation of atoms around vacancies.

Magnetic disorder: Disorder in the orientation of the spins of unpaired electrons
(i.e., magnetic moments) in magnetic materials.

The collective vibration of atoms about their average positions (phonons) is an
example of displacive disorder and can be described by lattice dynamics. The cor-
responding diffuse scattering is called thermal diffuse scattering [4].2 Because the
number of phonons increases with increasing temperature, thermal diffuse scattering can
be reduced by cooling the sample [8].

Some examples of disordered materials are listed below. These examples illus-
trate that in most materials the diffuse scattering is due to both occupational and
displacive disorder.

• KCl0.5Br0.5 has a disordered rock salt structure. The weak lines of thermal dif-
fuse scattering that connect neighbouring Bragg reflections in the hk0 plane recon-
structed from single-crystal X-ray diffraction data (Figure 1.1 (a)) are caused by
phonons (displacive disorder). Monte Carlo simulations showed that the formation

1In 2015, approximately 30% of the more than 800.000 structures in the Cambridge Structural Database
contained occupational disorder [6, 7].

2Since a temperature of 0 K is impossible to reach, the diffraction patterns of all crystals contain thermal
diffuse scattering.
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1.1. SHORT-RANGE ORDER

of Cl−- and Br−-rich domains (occupational disorder) and the resulting atomic dis-
placements due to different Cl− and Br− ionic radii (displacive disorder) cause an
increase in the width of the thermal diffuse scattering [9].

• Zr0.82Y0.18O1.91 is an ion conductor used in solid oxide fuel cells [10], oxygen
sensors [11] and oxygen pumps [12]. The oxygen sites are partially occupied by
vacancies. The diffuse scattering in the hk0 plane reconstructed from single-crystal
X-ray diffraction data (Figure 1.1 (b)) is due to correlations between neighbouring
vacancies (occupational disorder) and the relaxation of the Zr, Y and O atoms
around these vacancies (displacive disorder) [13].

• Cu1.95Se is a thermoelectric material. The 0kl plane reconstructed from single-
crystal X-ray diffraction data acquired on Cu1.95Se at 300 K is shown in Fig-
ure 1.1 (c). The diffuse streaks indicate that the structure is ordered in two di-
mensions but disordered in the third dimension. The diffuse streaks are due to
one-dimensional stacking disorder: mirrored and non-mirrored layers are shifted
along three possible inter-layer vectors (occupational disorder). The very weak
three-dimensional diffuse scattering in Figure 1.1 (c) is most likely thermal diffuse
scattering caused by phonons (displacive disorder) [14].

• Fe1.1Mn0.9O3 is a frustrated magnet. Figure 1.1 (d) shows the hk0 plane recon-
structed from single-crystal neutron diffraction data acquired on Fe1.1Mn0.9O3 at
7 K. The diffuse scattering close to the central beam is caused by correlations
between the magnetic moments of Mn and Fe atoms (magnetic disorder). Nearest-
neighbour Mn and Fe atoms have magnetic moments that tend to align in opposite
directions (antiferromagnetic correlations), while next-nearest neighbour Mn and
Fe atoms have magnetic moments that tend to align in the same direction (ferro-
magnetic correlations). The weak diffuse scattering further away from the central
beam is caused by occupational and/or displacive disorder. The thermal diffuse
scattering was removed by the neutron spectrometer [15].

9



CHAPTER 1. INTRODUCTION

Figure 1.1: Single-crystal diffuse scattering data acquired on a) KCl0.5Br0.5 [9], b)
Zr0.82Y0.18O1.91 [13], c) Cu1.95Se [14] and d) Fe1.1Mn0.9O3 [15].

1.1.2 Short-range order vs. long-range order

The diffraction pattern of a perfect crystal (i.e., a three-dimensional array of identical unit
cells) contains sharp Bragg reflections at integer hkl values (Figure 1.2 (a)). Real crys-
tals, however, only approximate this ideal. Their diffraction patterns contain both Bragg
reflections, arising from the periodicity of the crystalline lattice, and diffuse scattering,
arising from the disorder. In general, any deviation from the average crystal structure
gives rise to diffuse scattering [4]. When the disorder is completely random, a broad
diffuse background will be visible (Figure 1.2 (b)), which is called monotonic diffuse
Laue scattering [16]. For materials in which the disorder is correlated, highly structured
diffuse scattering can be observed between the Bragg reflections (Figure 1.2 (c)). When

10



1.1. SHORT-RANGE ORDER

the deviations from the average structure are ordered on a local scale, they are referred
to as local order or short-range order. Examples of technologically important materi-
als with short-range order include alloys [17], shape-memory alloys [18], ferroelectrics
[19], superconductors [20, 21], fast ion conductors [22, 23], semiconductors [24] and
pharmaceuticals [25, 26] [4]. Deviations from the average structure that are ordered
over longer distances are referred to as long-range order [27]. Structures that exhibit
long-range order are named modulated structures and can be divided in commensurately
and incommensurately modulated structures. The diffraction patterns of commensurately
modulated structures can be indexed with three hkl values, which is not the case for in-
commensurately modulated structures which should be indexed using superspace crys-
tallography [28]. Figure 1.2 (d) shows the diffraction pattern of a commensurately modu-
lated structure. The additional sharp Bragg reflections at non-integer hkl values are called
satellite reflections.

Figure 1.2: Structure models and their corresponding calculated single crystal X-ray
diffraction patterns. (a) The calculated h0l plane of a perfectly ordered NbCoSb crystal
without vacancies shows sharp Bragg reflections at integer hkl values. (b) Nb0.84CoSb
structure with a random vacancy distribution and without displacements of Sb and Co
atoms. The random vacancy distribution gives rise to monotonic diffuse Laue scattering.
(c) Nb0.84CoSb structure with correlations between nearest and next-nearest neighbour
vacancies. Displacements of Sb and Co atoms are indicated by arrows. The short-range
Nb-vacancy order in (c) results in highly structured diffuse scattering between the Bragg
reflections, whereas the long-range Nb-vacancy order in (d) results in sharp satellite re-
flections. Structure models were calculated in DISCUS. Single-crystal X-ray diffraction
patterns were calculated in DISCUS and Scatty.
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CHAPTER 1. INTRODUCTION

1.1.3 Interpretation of the diffuse scattering

The intensities and positions of the Bragg reflections contain information about the
average crystal structure, whereas the intensity distribution of the diffuse scattering
contains information about the short-range order (i.e., the deviations from the average
crystal structure that are ordered on a local scale). Diffuse scattering can occur in
one, two, or in three dimensions. A crystal that is ordered along two dimensions
but disordered along the third dimension will show one-dimensional diffuse streaks.
A common example are stacking faults, where two-dimensional periodic layers are
shifted relative to each other. When the crystal is ordered along one dimension but
disordered along the other two dimensions, then the diffuse scattering will be in the form
of two-dimensional diffuse planes. Finally, three-dimensional diffuse clouds indicate
disorder along all three dimensions [4].

In the 1940s, analytical models were developed to describe the observed diffuse
scattering (see [29, 30, 31, 32, 33, 34] for some examples) [4]. These first analytical
models were restricted to one-dimensional disorder problems. In 1950, Cowley and
Warren extended the theory to two- and three-dimensional disorder problems [27, 35, 16]
by using short-range order parameters αuvw

mn [4]:

αuvw
mn = 1−

Puvw
mn

occ
. (1.1)

αuvw
mn are referred to as ‘Warren-Cowley short-range order parameters’. Puvw

mn is the proba-
bility that sites m and n are occupied by the same atom type, uvw is the interatomic vector
and occ is the occupancy [36, 37].

1.1.4 Three-dimensional difference pair distribution function (3D-∆PDF)

The 3D-∆PDF is the Fourier transform of the three-dimensional diffuse scattering in
single-crystal diffraction data [38]. For Zr0.82Y0.18O1.91, Cu1.95Se and Fe1.1Mn0.9O3,
the 3D-∆PDF was used to determine the origin of the observed diffuse scattering as
it provides information about correlations between neighbouring atoms that are not
represented by the average structure. Figure 1.3 shows an example of the x0z plane of
the 3D-∆PDF calculated from the three-dimensional diffuse scattering in single-crystal
X-ray diffraction data after subtraction of the Bragg reflections. Positive 3D-∆PDF
values are displayed in red and negative 3D-∆PDF values in blue. Positive/negative
3D-∆PDF values mean that the probability of finding scattering densities separated by
the corresponding interatomic vector is higher/lower in the real structure than in the
average structure [39]. Because X-rays are scattered by the electron cloud, the scattering
densities in the X-ray 3D-∆PDF are electron densities. Neutrons, on the other hand,
are scattered by both the atomic nuclei and the spin of the unpaired electrons, and in
the latter case the scattering densities are magnetization densities [15]. Only recently,

12



1.1. SHORT-RANGE ORDER

Figure 1.3: Single-crystal and powder X-ray diffraction data calculated for a Nb0.84CoSb
crystal with short-range order. The diffuse scattering is due to correlations between near-
est and next-nearest neighbour vacancies and relaxations of Co and Sb atoms around
these vacancies. The 3D-∆PDF is the Fourier transform of the single-crystal diffuse
scattering while the one-dimensional pair distribution function (1D-PDF) is the Fourier
transform of the intensities in the powder diffraction pattern. Both the 3D-∆PDF and the
1D-PDF provide information about correlations between neighbouring atoms. The 1D-
PDF was calculated for a Nb0.84CoSb crystal with a random vacancy distribution and no
displacements of Co and Sb atoms (red) and for a Nb0.84CoSb crystal with short-range
Nb-vacancy order and with displacements of Co and Sb atoms (blue). Single-crystal and
powder X-ray diffraction data were calculated in DISCUS. The 1D-PDF was calculated
in DISCUS and the 3D-∆PDF was calculated in MANTID.

13



CHAPTER 1. INTRODUCTION

Schmidt and co-workers showed that the 3D-∆PDF can also be reconstructed from the
diffuse scattering in single-crystal electron diffraction data [40]. Electrons are scattered
by the atomic nucleus and the electron cloud, and the scattering densities in the electron
3D-∆PDF are thus atomic charge densities.

In this thesis, we will focus on the diffuse scattering in single-crystal electron
diffraction data and the corresponding 3D-∆PDF. Single-crystal electron diffraction
allows the study of submicron-sized crystals which are too small to be investigated with
single-crystal X-ray and single-crystal neutron diffraction. Alternative methods that are
frequently used to analyse the diffuse scattering in submicron-sized crystals are powder
X-ray diffraction and powder electron diffraction. Powder diffraction data are acquired
on powder samples (instead of single crystals) and show concentric rings. The X-ray
powder diffraction pattern in Figure 1.3 shows the intensity of these rings projected
onto one dimension in function of the scattering angle 2θ. The 1D-PDF in Figure 1.3
is the Fourier transform of the intensities in the powder diffraction pattern (both Bragg
and diffuse scattering) [41]. Because Bragg and diffuse scattering cannot be separated,
the 1D-PDF contains information about correlations between all neighbouring atoms
(unlike the 3D-∆PDF, which only contains information about correlations that are not
represented by the average structure). The peaks in the 1D-PDF correspond to the
interatomic distances between all pairs of atoms within the crystal. The main limitation
of powder PDF analysis is peak overlap. Peaks that correspond to interatomic vectors
of similar length but different spatial directions will overlap due to the one-dimensional
nature of the powder PDF [39]. This is not the case for the single-crystal 3D-∆PDF,
where correlations between atoms separated by interatomic vectors of similar length
but different spatial directions can easily be distinguished [39]. When a powder sample
consists of multiple phases, then the signals of all these phases will overlap, making the
analysis of the 1D-PDF even more difficult [42]. Because the 3D-∆PDF is the Fourier
transform of the diffuse scattering data from one single crystal, its analysis cannot be
hampered by the overlap of multiple phases.

1.2 Electron diffraction

In a transmission electron microscope (TEM), electrons are directed to a thin sample.
The electrons that hit the sample are called the incident beam. Electrons coming through
the sample are separated into those that suffer no angular deviation (the direct beam)
and those scattered by the sample through measurable angles (the scattered beams). The
direct beam is responsible for the bright intensity in the centre of a diffraction pattern and
the scattered beams account for the spots that appear around the direct beam [8].
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1.2. ELECTRON DIFFRACTION

1.2.1 Elastic and inelastic scattering

Electrons going through a thin sample are either scattered or transmitted and either lose
energy (inelastic scattering) or don’t lose energy (elastic scattering). The Bragg reflec-
tions in electron diffraction patterns are caused by elastically scattered electrons. Be-
cause electrons have an electric charge, they are scattered by both the positively charged
atomic nucleus and the negatively charged electron cloud. Electrons scattered by the
electron cloud have angular deviations of only a few degrees, while those scattered close
to the atomic nucleus are scattered through much larger angles, up to 180°. Scattering
through angles θ > 90° is called backscattering and the probability for backscattering to
occur increases with increasing sample thickness. For thin samples, scattering is most
likely to occur in the forward direction and most scattered electrons have scattering an-
gles < 5°. Because inelastically scattered electrons lose energy, they have a higher
wavelength than the incident electrons. Electrons in the incident beam may lose energy
due to the ejection of electrons, the emission of X-rays or by the generation of phonons
or plasmons. Incident beam electrons that lose energy due to the creation of phonons are
responsible for the thermal diffuse scattering in electron diffraction patterns. The mean
free path for phonon scattering (the average distance that an electron travels between two
phonon scattering events) at room temperature varies from a couple of nm for Au up to
about 350 nm for Al [8].

1.2.2 Braggs’ law

The average structure of a crystalline material can be described by a three-dimensional
lattice. Each point in the crystal lattice can be described by a lattice vector r, which can
be written as a linear combination of the unit cell vectors a, b and c:

r = xa+ yb+ zc. (1.2)

The reciprocal lattice is the Fourier transform of the crystal lattice in real space, which is
constructed by the reciprocal unit cell vectors a∗, b∗ and c∗ [43]:

a∗ =
b× c

V
,b∗ =

c×a
V
,c∗ =

a×b
V
, (1.3)

With V the volume of the unit cell.

A set of parallel and equally spaced lattice planes with interplanar distance d can
be described by the Miller indices (hkl). Figure 1.4 shows an incident plane wave with a
fixed wavelength λ that is elastically scattered from a set of lattice planes (hkl) through
an angle θ (the scattering angle). Each point on the set of lattice planes (hkl) will act as a
source of spherical waves and these spherical waves will interfere. When the spherical
waves are in phase, then the amplitude will be increased by many orders of magnitude,
which is called constructive interference. Braggs’ law states that the spherical waves are
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Figure 1.4: Geometrical illustration of the Braggs’ law. An incident plane wave with
wave vector k0 is elastically scattered from a set of lattice planes (hkl). The path differ-
ence between the upper and lower ray is equal to 2d sin(θ), with θ the scattering angle
and d the interplanar distance. There is no path difference between rays scattered on the
same lattice plane. Constructive interference will occur when the path difference is equal
to nλ, with λ the wavelength. Figure inspired from [43].

in phase when the path difference, 2d sin(θ) (see Figure 1.4), is an integer number n of
the wavelength λ [43, 8]:

2d sin(θ) = nλ. (1.4)

The resulting waves are plane waves, scattered in different directions, and have the same
wavelength λ as the incident plane wave. The distance d between the lattice planes can
thus be calculated from the wavelength λ (which depends on the acceleration voltage)
and the scattering angle θ [8].

For a perfect crystal, constructive interference will only occur at specific points in
reciprocal space. Consequently, the reciprocal lattice will be a three-dimensional array
of points. Each reciprocal lattice point hkl corresponds to waves scattered from a set of
lattice planes (hkl) and can be described by a reciprocal lattice vector Q, which can be
written as a linear combination of the reciprocal unit cell vectors a∗, b∗ and c∗ [43, 8]:

Q = 2π(ha∗+ kb∗+ lc∗). (1.5)

The starting point of Q is the origin of the reciprocal lattice and its end is the reciprocal
lattice point hkl. The direction of Q is perpendicular to the lattice planes (hkl) and its
length is inversely proportional to the distance d between the lattice planes (hkl) [43, 8]:

|Q| =
2π
d
. (1.6)

The Ewald sphere is a visual representation of the reciprocal lattice points that satisfy
the Braggs’ law (Figure 1.5). When an incident wave with wave vector k0 is elastically
scattered from a set of lattice planes (hkl), then the length of the wave vector of the
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Figure 1.5: The Ewald sphere intersecting a two-dimensional array of reciprocal lattice
points. The wave vectors of the incoming (k0) and the scattered (k1) waves have their
origin in the centre of the Ewald sphere. The origin (O) of the reciprocal lattice is located
on the surface of the Ewald sphere at the end of k0. Reciprocal lattice points that intersect
with the surface of the Ewald sphere [e.g., point P (2̄1̄)] satisfy the Braggs’ law. Q =
−2a∗−1b∗ is the reciprocal lattice vector of point P. Figure inspired from [7].

scattered wave k1 will be identical to the length of the wave vector of the incident wave
k0 [43]:

|k1| = |k0| =
2π
λ
. (1.7)

When the starting point of k1 is translated to the starting point of k0, then the angle
between k0 and k1 is 2θ (Figure 1.4 and Figure 1.5). If the end of k0 is defined as the
origin of the reciprocal lattice, then constructive interference will only occur when the
end of k1 coincides with a point in the reciprocal lattice. All possible orientations of k1
delineate a sphere in three dimensions, which is called the Ewald sphere. The Ewald
sphere is a sphere of radius |k0| = |k1| = 2π/λ and its centre is the starting point of k0 and
k1. The Ewald sphere passes through the origin of the reciprocal lattice and reciprocal
lattice points hkl that intersect the surface of the Ewald sphere satisfy Bragg’s law [43].

From Figure 1.5, it is clear that:
k1 = k0+Q, (1.8)
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which is the Bragg’s law in vector form. The Bragg’s law in Equation 1.4 can also be
derived from Figure 1.5 [43]:

|k1|sin(θ) = |k0|sin(θ) =
|Q|
2
⇒ 2d sin(θ) = λ. (1.9)

A diffraction pattern is thus the intersection of the Ewald sphere with the reciprocal
lattice of the examined material. The reciprocal lattice points that coincide with the
surface of the Ewald sphere are called Bragg reflections. In a diffraction experiment
the crystal is rotated, which corresponds to a rotation of the reciprocal lattice around its
origin [43].

The smaller the wavelength of the incident radiation, the larger the radius of the
Ewald sphere. Since the wavelength of high-energy incident electrons is small (λ =
0.01969 Å at 300 kV), the radius of the Ewald sphere (∼ 319 Å−1) is large compared to
the distance between the reciprocal lattice points (order of Å−1). Therefore, the Ewald
sphere can be approximated as a flat plane perpendicular to the incident beam and an
electron diffraction pattern can be approximated as a two-dimensional section through
the three-dimensional reciprocal lattice. The sample examined in a transmission electron
microscope is very thin, causing the reciprocal lattice points to be elongated (also called
relrods or reciprocal lattice rods). Also reciprocal lattice points that do not perfectly
satisfy Bragg’s law will thus be intersected by the Ewald sphere [8].

The positions of the scattered beams are determined by the unit cell parameters
while the intensity of the scattered beams is determined by the atom types and atomic
coordinates. [8]

1.2.3 X-rays, electrons and neutrons

The scattered intensity I(Q) is obtained by multiplying the structure factor F(Q) by its
complex conjugate [43, 8]:

I(Q) = F(Q)F∗(Q), (1.10)

with Q a reciprocal lattice vector (Equation 1.5). The structure factor F(Q) is the ampli-
tude of the scattered wave and is defined as [43, 8]:

F (Q) =
N∑

j=1

f j(Q)exp(iQ · r j), (1.11)

with N the number of atoms in the crystal, r j = x ja+ y jb+ z jc the direct lattice vector
of atom j with atomic coordinates x j y j z j and f j(Q) the atomic form factor of atom j.
The phase factor exp(2πiQ · r j) takes account of the phase difference between waves
scattered from atoms on different but parallel lattice planes with the same Miller indices
(hkl) [43, 8].
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Diffraction from crystals can only be observed when the wavelength λ of the radi-
ation is of the same order of magnitude as the shortest interatomic distances, which is
the case for X-rays, electrons and neutrons [43]. Most structures in crystallographic
databases have been determined from single-crystal and powder X-ray diffraction
[44, 45, 46, 6, 47]. For instance, 84.5 % of the structures in the Inorganic Crystal
Structure Database have been determined from X-ray diffraction, 14.8 % from neutron
diffraction and 0.7 % from electron diffraction. The main differences between X-rays,
electrons and neutrons are compared in Table 1.1.

Table 1.1: Comparison of X-ray, electron and neutron diffraction. Z is the atomic number
[43].

X-rays electrons neutrons

Scattering by electron cloud atomic nuclei and
electron cloud

atomic nuclei and
electron spin

Atomic form
factor, f (Q)

f is dependent of
Q and f (Q) ∝ Z

f is dependent of
Q and f (Q) ∝ Z

1
3

f is independent of
Q (for nuclear
scattering)

Wavelength range,
λ

0.5–2.5 Å 0.019–0.025 Å ∼ 1 Å

Crystal size 1-500 µm 10 nm-1 µm >1 mm

Source diffractometer or
synchrotron

transmission
electron
microscope

neutron source

Theory of
diffraction

kinematical dynamical kinematical

For neutrons, the atomic form factors f j(Q) are replaced by the coherent neutron
scattering lengths, which are independent of Q. For X-rays and electrons, the atomic
form factors f j(Q) can be calculated by [43]:

f (Q) =
4∑

i=1

ai exp

−bi

(
|Q|
4π

)2+ c, (1.12)

The coefficients a1,a2,a3,a4,b1,b2,b3,b4 and c (X-rays and electrons) and the scattering
lengths (neutrons) of the different elements are tabulated in the International Tables of
Crystallography Volume C [48].
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The atomic form factor f j(Q) is a measure of the amplitude of a wave elastically
scattered from an isolated atom [8]. Figure 1.6 (a) shows a comparison between the
X-ray and electron atomic form factors and the coherent neutron scattering length of

oxygen as functions of d∗ =
|Q|
2π
= 2

sin(θ)
λ

. The X-ray and electron atomic form factors
of lithium, oxygen and cobalt are shown in Figure 1.6 (b-c). For X-rays and electrons,
f (Q) decreases with increasing scattering angle θ, while f (Q) increases with increasing
atomic number Z [8].

Figure 1.6: (a) Electron and X-ray atomic form factors of oxygen and the coherent neu-

tron scattering length of oxygen as functions of d∗ =
|Q|
2π
= 2

sin(θ)
λ

. (b) X-ray and (c)
electron atomic form factors of lithium, oxygen and cobalt.

X-rays interact with both the electron cloud and the atomic nuclei, however, be-
cause the interaction is inversely proportional to the mass of the particle and a proton
is ∼2000× heavier than an electron, the interaction with the atomic nuclei is negligible
and it is allowed to say that X-rays are only scattered by the electron cloud [49]. Heavy
atoms have more electrons than light atoms, which means that heavy atoms scatter
X-rays stronger than light atoms. Figure 1.6 (b) shows that the X-ray atomic form factor
is proportional to the atomic number Z and decreases exponentially towards a constant
with increasing d∗. At d∗ = 0, the X-ray atomic form factor is the sum of a1, a2, a3, a4
and c, which is equal to the total number of electrons in atom j (or the atomic number Z)
[43]. Single-crystal X-ray diffraction data can be acquired at a synchrotron or using an
in-house diffractometer. Synchrotron sources require crystals larger than ∼ 1 µm, while
in-house X-ray diffraction experiments require crystals larger than ∼ 10 µm [49].

Because electrons have an electric charge, they interact with both the positively
charged atomic nuclei and the negatively charged electron cloud, which both contribute
to the electrostatic potential ϕ(r) of the atoms in the crystal [43, 8]:

∇2ϕ(r) = −4π(ρn(r)−ρe(r)), (1.13)
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where ρn(r) is the charge density of the atomic nucleus and ρe(r) is the charge density
of the electron cloud [36]. Because the electron atomic form factor is proportional to
Z1/3 [43] (whereas the X-ray atomic form factor is proportional to Z), it is easier to
detect light atoms nearby heavy atoms for electrons than for X-rays. This is illustrated
in Figure 1.6 (b-c) where the difference between the atomic form factors of light atoms
(lithium and oxygen) and heavy atoms (cobalt) is smaller for electrons than for X-rays.

The main advantage of electron diffraction is that electrons are scattered more
strongly than X-rays and neutrons. Electron diffraction can thus be used to acquire data
on submicron-sized crystals, which are too small to be investigated with single-crystal
X-ray and single-crystal neutron diffraction [42]. The kinematical theory of diffraction
assumes that a scattered wave is not scattered again before it leaves the crystal. This
assumption is reasonable for X-rays and neutrons, but not for electrons. Due to the
strong interaction of electrons with the atoms in the crystal, electrons can be scattered
multiple times while going through the crystal. When multiple scattering (or dynamical
scattering) occurs, the intensities are no longer directly related to the structure factor
(Equation 1.10). On average, multiple scattering increases the intensity of weaker Bragg
reflections, whereas strong Bragg reflections become less intense [50]. The intensities of
symmetry-related reflections are also expected to be different due to multiple scattering
[51]. The theory taking into account multiple scattering is referred to as the dynamical
theory of diffraction [36, 43]. Typical values of the mean free path (the average distance
that an electron travels between two scattering events) are of the order of tens of
nanometres and the single-scattering approximation is thus only valid for very thin
crystals. As the probability for multiple scattering to occur increases with increasing
sample thickness, it is important to acquire electron diffraction data on small crystals.
Multiple scattering will also be more likely in crystals with a higher density, crystals
with heavy elements and highly ordered crystals. Since higher-energy electrons are less
likely to be scattered by the sample than lower-energy electrons, higher acceleration
voltages will result in less electron scattering and will thus also reduce the amount of
multiple scattering [8].

Neutrons are scattered by both the atomic nuclei and the spins of the unpaired
electrons (magnetic moments). Because the atomic nucleus is much smaller than
the wavelength λ of the neutrons, the neutron scattering length is independent of the
reciprocal lattice vector Q (Figure 1.6 (a)). Unlike X-ray or electron diffraction, there
is no relationship between the magnitude of the neutron scattering length and the
atomic number Z. The neutron scattering length is also different for different isotopes
of the same element [43]. This makes neutron diffraction very helpful in calculating
site occupancies for materials with neighbouring elements in the Periodic Table and
for determining the positions of very light atoms such as hydrogen and lithium [52].
Because neutrons interact with the spins of the unpaired electrons, single-crystal neutron
diffraction can also be used to study local magnetic correlations in materials such as
spin liquids, spin glasses and frustrated magnets [53]. The disadvantage is that neutron
diffraction requires single crystals larger than 1 mm [43].
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1.3 Acquisition of diffuse electron scattering data

1.3.1 Precession electron diffraction

Precession electron diffraction (PED) is a method that is often used to record the intensi-
ties of the Bragg reflections with reduced multiple scattering [54]. In PED, the electron
beam is tilted away from the optical axis of the TEM by a certain angle (the precession
angle, typically 1-3°) and rotated on the surface of a cone with the vertex fixed on the
sample plane. The resulting PED pattern is obtained by integrating the intensities in
the acquired off-axis electron diffraction patterns. When the crystal is oriented along a
zone-axis, and the electron beam is tilted away from this zone-axis, the total number of
possible paths will be reduced, and consequently also the amount of multiple scattering.

1.3.2 Three-dimensional electron diffraction

The atomic structure of crystalline materials can be determined from both single-crystal
and powder diffraction experiments, using X-rays, neutrons or electrons. For a long
time, electron diffraction was considered unsuitable for structure solution and refinement
because the intensities in in-zone electron diffraction patterns are influenced by strong
multiple scattering. The development of three-dimensional electron diffraction (3D ED)
in 2007 [55, 56] allowed the acquisition of electron diffraction data with less multiple
scattering compared to in-zone electron diffraction patterns. Since 2009, the number of
structures determined by electron diffraction has grown rapidly (Figure 1.7) [47, 51].
The increasing attention on 3D ED is confirmed by the fact that it has been considered
one of the main scientific breakthroughs of the year 2018 [57].

Crystals large enough for single-crystal X-ray diffraction experiments often need
to be grown by adapted synthesis methods, which could potentially alter the local order
[59]. The main advantage of 3D ED is that it allows to determine the crystal structure
of materials for which no crystals large enough for single-crystal X-ray diffraction are
available [42].

In 3D ED, two-dimensional electron diffraction patterns are acquired while the
crystal is tilted around the goniometer axis of the TEM stage (Figure 1.8). The angular
range is limited by the presence of the objective lens pole pieces, and depends on
the sample holder. The tomography holder used in this thesis, for example, has a
tilt range of ±80°. The acquired electron diffraction patterns are used to reconstruct
the three-dimensional reciprocal lattice from which the unit cell parameters can be
determined. The positions and intensities of the reciprocal lattice points can be used for
structure solution and refinement [42].

The term 3D ED was introduced in 2019 by Gemmi and co-workers [42] and is
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Figure 1.7: Total and annual number of structures solved by 3D ED. Figure made from
data provided in the Supplementary Information of [58].

Figure 1.8: Schematics of the principle of 3D ED.

used as a unifying term for the data acquisition methods automated diffraction tomog-
raphy (ADT [55, 56]), electron diffraction tomography (EDT [60]), rotation electron
diffraction (RED [61, 62]), precession electron diffraction tomography (PEDT [63, 64]),
microcrystal electron diffraction (MicroED [65]), integrated electron diffraction to-
mography (IEDT [66]) and continuous rotation electron diffraction (cRED [67, 68])
[49]. In ADT, EDT and RED the crystal is tilted with fixed angular steps and each step
an electron diffraction pattern in acquired. In PEDT the electron diffraction patterns
are acquired in precession mode while in MicroED, IEDT and cRED the electron
diffraction patterns are collected while continuously rotating the crystal at a constant
speed (analogous to X-ray and neutron diffraction [51]).
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The crystals analysed in 3D ED are usually smaller than 1 µm and may move out
from the illuminated area due to the mechanical instability of the goniometer, especially
at high tilt angles. To guarantee that the crystal stays entirely illuminated during the
whole data collection, the crystal position can be checked every few degrees and, if
necessary, the crystal can be moved to stay in the beam [42]. This procedure can also be
automated by compensating the sample drift through an equivalent shift of the electron
beam, which is called crystal tracking [55].

When refining the average structure from single-crystal X-ray diffraction data us-
ing a standard least-squares refinement, it is assumed that the intensities of the Bragg
reflections are proportional to the square of the absolute value of the structure factor
(Equation 1.10). Because electrons are scattered multiple times while going through
the crystal, this assumption is not valid for 3D ED data. A least-squares refinement
in which the intensities are calculated using the dynamical theory of diffraction was
developed by Palatinus and co-workers [69, 70, 71] and is implemented in JANA2020
[72]. The dynamical refinement in JANA2020 requires 3D ED data collected with
precession (PEDT), continuous rotation (MicroED, IEDT or cRED) or stepwise 3D ED
data acquired with a tilt step ≤ 0.1° (ADT, EDT, RED) [51], and processed using the
program PETS2 [73].

1.4 Calculation of the diffuse scattering

In the kinematic approximation, the intensity of the diffuse scattering and the Bragg
reflections is proportional to the square of the absolute value of the structure factor
(Equation 1.10). This equation is also used to calculate the diffuse scattering from a
model crystal with short-range order. The structure factor F(Q) in Equation 1.11 then
needs to be calculated for each reciprocal lattice point hkl within the plane or volume of
interest. The structure factor can be calculated explicitly from the atomic coordinates
x j y j z j and the atomic form factors f j(Q) of the atoms in the model crystal. This
method is called the discrete Fourier transform (DFT). An alternative approach for the
calculation of the structure factor is to use a fast Fourier transform (FFT) algorithm
[74, 75], which accelerates the calculation of the diffuse scattering by two or three orders
of magnitude. The FFT algorithm requires sampling atomic positions on an equally
spaced grid and is exact for systems in which the disorder is occupational, magnetic, or
in which atomic displacements are drawn from a discrete set of values. For systems in
which the atomic displacements can take a continuous range of values, the FFT can only
be applied to a specified order of approximation [53].

Because the simulation of a model crystal with short-range order is computation-
ally very demanding, the model crystal usually contains far fewer unit cells (104) than
the real crystal (1023), which introduces high-frequency noise in the calculated diffuse
scattering. High-frequency noise occurs because the calculated diffuse scattering is
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dominated by many essentially uncorrelated atom pairs that are large distances apart
[53]. One approach to reduce this high-frequency noise, is to divide the model crystal
into a set of smaller overlapping regions, called lots, and to average the diffuse scattering
from these lots [76, 77]. If each lot has a size of nlot × nlot × nlot unit cells, then nlot

should be larger than the correlation length of the longest correlations, but smaller than
or equal to ncrystal/2, to avoid contributions from periodic images of the crystal [53]. The
lots should be randomly distributed within the crystal, and the number of lots should
be chosen so that each atom is included at least once [78]. This approach is effective
at reducing high-frequency noise but has the disadvantage that the diffuse scattering
is artificially blurred. An alternative approach to reduce the high-frequency noise, is
to use Lanczos resampling [79, 80]. Lanczos resampling has the advantage that the
calculated diffuse scattering is less blurry than the diffuse scattering calculated using the
lots approach. Another method that is frequently used to reduce noise in the calculated
diffuse scattering, is to average the diffuse scattering intensities from many individual
crystals [37].

Many different programs exist that allow diffuse scattering calculations. The pro-
grams used in this thesis are DISCUS [77] and Scatty [53]. Both programs allow the
user to choose between the DFT and the FFT approach for the calculation of the diffuse
scattering. Scatty uses Lanczos resampling to reduce the high-frequency noise while
DISCUS uses lots in the DFT approach and Lanczos resampling in the FFT approach.

For the calculation of the structure factor in DISCUS with the DFT method, the
finite size of the model crystal gives rise to additional, unwanted intensities in the
calculated diffraction pattern. To avoid these finite size effects, the number of grid points
(pixels) along a certain direction in reciprocal space should be chosen according to [37]:

pixels = m · length ·ncrystal+1. (1.14)

With m ∈ N0, length the length of the reciprocal space segment and ncrystal the number of
unit cells along the corresponding direction in real space.

1.5 Refinement of the short-range order

Structure solution and refinement are used to solve and refine the average structure
of crystalline materials from the intensities of the Bragg reflections. Parameters that
are most commonly refined are the average atomic positions, site occupancies and
atomic displacement parameters (atomic displacement parameters take into account
the collective vibration of atoms about their average positions). However, for many
materials, the local structure differs significantly from the average structure. When the
deviations from the average structure are ordered on a local scale, they are referred to
as local order or short-range order. Materials with short-range order have diffraction
patterns that contain both Bragg reflections and diffuse scattering. Because the properties
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of many materials depend on the short-range order, refining short-range order parameters
is essential for understanding and optimizing material properties.

In most studies on the diffuse scattering in single-crystal electron diffraction data,
the diffuse scattering in experimental data is qualitatively compared with the diffuse
scattering in calculated data [81, 82, 83, 84, 85, 86, 87, 88]. The development of 3D ED
in 2007 [55, 56] allowed the acquisition of three-dimensional electron diffuse scattering
data with less multiple scattering compared to in-zone electron diffraction patterns. A
quantitative analysis of the diffuse scattering in 3D ED data has only been reported
by Krysiak and co-authors in the case of one-dimensional diffuse scattering [89, 90].
The authors employed a fitting procedure to a series of simulated data to determine the
number of stacking faults in two zeolites.

Unlike the refinement of the average crystal structure, there is no general approach to
refine short-range order parameters from single-crystal diffuse scattering data. Over the
last decades, three approaches have been developed: the Monte Carlo refinement, the
Reverse Monte Carlo refinement and the 3D-∆PDF refinement, which will be explained
below.

In this thesis, we used a Monte Carlo refinement to refine the short-range order
parameters in Li1.2Ni0.13Mn0.54Co0.13O2 (Chapter 2). The short-range order parameters
in Nb0.84CoSb were refined using both a Monte Carlo refinement and a 3D-∆PDF
refinement (Chapter 3).

1.5.1 Monte Carlo refinement

The Monte Carlo method is based on the Metropolis algorithm [91] and requires the
construction of a model crystal with short-range order. Information on the type of
short-range order can be obtained from the diffuse scattering itself (one-, two- or three-
dimensional), the interpretation of the features in the 3D-∆PDF, the average structure
refinement (refined occupancies, displacements and atomic displacement parameters),
high-resolution scanning transmission electron microscopy (HR-STEM) images and
other prior knowledge.

Monte Carlo simulations are used to create a model of the short-range order. The
total energy of the crystal is expressed as a function of short-range order parameters
such as the interactions between neighbouring atoms or the displacement of atoms from
their average positions. During the Monte Carlo simulation, the desired short-range
order parameters are obtained by minimizing the total energy of the crystal. Each
refinement cycle, the short-range order parameters are adjusted, and the model crystal is
recalculated. The diffuse scattering is calculated and compared with the observed diffuse
scattering. This process is repeated until the best agreement between calculated and
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observed diffuse scattering intensities is obtained [92, 4].

The Monte Carlo method allows the accurate refinement of short-range order pa-
rameters from the intensity distribution of the diffuse scattering in single-crystal
diffraction data (see [93, 25, 4, 94] for some examples). The disadvantage, however,
is that Monte Carlo refinements are computationally very slow since each refinement
cycle requires the full construction of the disordered structure and the calculation of the
corresponding diffuse scattering.

The short-range order parameters can be adjusted by using a least-squares refine-
ment algorithm [95] or a differential evolutionary refinement algorithm [78]. Both
algorithms are implemented in DISCUS.

1.5.1.1 Least-squares refinement

One approach to obtain the short-range order parameters that best describe the experi-
mentally observed diffuse scattering intensity is to use a least-squares algorithm [95].

Each refinement cycle, the short-range order parameters are adjusted and the model
crystal is recalculated. This process is repeated for a certain number of refinement cycles
until the goodness-of-fit parameter χ2 converges to its minimum [95].

χ2 =

N∑
i=1

[Iobs(Qi)− Icalc(Qi)]2

Iobs(Qi)
(1.15)

The sum is over all measured reciprocal lattice points Qi, Iobs and Icalc are the experi-
mental and calculated diffuse scattering intensities.

Each refinement cycle, the short-range order parameters p = (p1, p2, p3, ..., p j, ..., pn) are
adjusted by a small amount ∆p j [95]:

∆p j =

n∑
k=1

A−1
jk Bk (1.16)

With n the number of short-range order parameters. The least-squares matrix A and the
vector B contain the partial derivatives of ∆I = Iobs(Qi)− Icalc(Qi) with respect to each of
the short-range order parameters p j [95].

A jk =

N∑
i=1

1
Iobs(Qi)

∂∆I
∂p j

∂∆I
∂pk

(1.17)

Bk = −

N∑
i=1

1
Iobs(Qi)

∆Itrial
∂∆I
∂pk

(1.18)
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The model crystal is calculated for two sets of short-range order parameters
p+ = (p1, p2, p3, ..., p j+δ j, ..., pn) and p− = (p1, p2, p3, ..., p j−δ j, ..., pn).

The corresponding diffuse scattering is calculated and numerical estimates of the
partial derivatives ∂∆I/∂p j are calculated as [95]:

∂∆I
∂p j
=

N∑
i=1

∆Ip+ −∆Ip−

2δ j
(1.19)

The least-squares refinement has been successfully applied for the refinement of
short-range order parameters in [95, 93, 96, 97]. However, when the initial short-range
order parameters are not sufficiently close to the global minimum, the refinement
may converge to a local minimum. To overcome this problem, several sets of initial
short-range order parameters should be tested [78]. An alternative approach is to use a
differential evolutionary algorithm, as will be discussed in the next section.

1.5.1.2 Differential evolutionary refinement

For the refinements in this thesis, the differential evolutionary algorithm [98] in DISCUS
was used to find the short-range order parameters that best describe the experimentally
observed diffuse scattering. The advantage is that the probability to get stuck in a
local minimum is lower than for a least-squares refinement. The disadvantage is that a
differential evolutionary refinement is slower than a least-squares refinement [37].

The differential evolutionary algorithm mimics the changes in a plant or animal
population similar to the Darwinian principle of natural evolution. The algorithm starts
with a group of M members (parents). Each member represents a set of N short-range
order parameters. Next, the algorithm creates a new group of M members (children) by
adjusting the short-range order parameters of their parents. The parents and the children
with the lowest R-values (Equation 1.20) survive and will be the parents of the new
generation (survival of the fittest). This procedure is repeated for a number of refinement
cycles (generations) until the R-value converges to its minimum [37].

Rw =

√∑
i wi[Iobs(Qi)− Icalc(Qi)]2∑

i wi[Iobs(Qi)]2 (1.20)

The sum is over all measured reciprocal lattice points Qi, Iobs and Icalc are the observed
and calculated diffuse scattering intensities. The weights wi assign an appropriate statis-
tical weight to each data point i. A schematic diagram of the differential evolutionary
algorithm for M = 3 and N = 2 is shown in Figure 1.9.

The process by which new children are generated is illustrated in Figure 1.10 for
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N = 2. For each parent P, the algorithm starts by choosing three random members I, II
and III. The difference vector v between the members I and II is multiplied by a scale
factor f and added to member III. The resulting point in parameter space is called the
donor D. By random choice, short-range order parameters are taken either from the
donor D or from the parent P. To ensure that the parent P is not replicated, one parameter
is always taken from the donor D. The probability by which the other short-range order
parameters are taken from the donor D is called the cross-over probability. If both
parameters are taken from the donor D, the child is the donor D itself. If the parameter
p1 is taken from the donor D and the parameter p2 taken from the parent P, the child will
be the position labelled (D,P). Alternatively, if the parameter p1 is taken from the parent
P and the parameter p2 is taken from the donor D, the child will be the position labelled
(P,D). To prevent convergence into a local minimum instead of the global minimum, the
number of children should be chosen equal to the number of parents M, and both should
be chosen at least 10 times the number of refined short-range order parameters [37]. The
optimal values for the cross-over probability and the scale factor were determined by
[99] and are respectively 0.9 and 0.81.

Figure 1.9: Schematic diagram of the differential evolutionary algorithm in two-
dimensional parameter space. The parents I, II, and III generate the children i, ii, and
iii by modification of the short-range order parameters p1 and p2. The children ii and iii
and the parent I have the lowest R values and will thus be the parents of the new genera-
tion. The lines of equal R values are shown in blue [37].

The differential evolutionary algorithm in DISCUS has been successfully applied
for the refinement of short-range order parameters from powder X-ray diffraction data
[100, 101, 102, 103, 104, 105, 106]. The possibility to apply the differential evolutionary
algorithm on the diffuse scattering in single-crystal X-ray diffraction data has been
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Figure 1.10: Schematic diagram of the differential evolutionary algorithm in two-
dimensional parameter space. The members of the current generation are shown as cir-
cles. The possible children of the parent P are shown as squares.

demonstrated by Weber and Bürgi [78]. Seven short-range order parameters were
refined: three pair interaction energies Ja, Jb and Jc, three spring force constants ka, kb

and kc and one displacement d from the average position. The refinement resulted in a
good visual agreement between observed and calculated diffuse scattering intensities and
in a relatively low value of R = 0.148(3). However, due to the relatively large number of
parameters, the refinement took 29 days for 220 generations with ten processors running
in parallel. The differential evolutionary algorithm used in this thesis is a modified
version of the original algorithm used by Weber and Bürgi.

1.5.2 Reverse Monte Carlo refinement

The Reverse Monte Carlo method was developed by McGreevy and Pusztai in 1988
[107]. The Reverse Monte Carlo method can be used when the origin of the diffuse scat-
tering is unknown since it does not require to build a model of the short-range order. One
can for example start from the average crystal structure. Each Reverse Monte Carlo step,
the occupancy or displacement of a randomly selected atom is changed by some random
amount. After each Reverse Monte Carlo step, the diffuse scattering is calculated and
compared with the experimentally observed diffuse scattering [92, 4]. Every move which
improves the fit to the data is accepted. The moves which worsen the fit are accepted
with a probability P = exp(−∆χ2/2). The refinement is repeated until the goodness-of-fit
parameter χ2 (Equation 1.21) converges to its minimum (i.e., until the best agreement
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between calculated and observed diffuse scattering intensities is obtained) [92, 37, 4].

χ2 =

N∑
i=1

[Iobs(Qi)− Icalc(Qi)]2

σ2 (1.21)

The sum is over all measured data points Qi, Iobs stands for the experimentally observed
intensity and Icalc for the calculated intensity. The parameter σ controls the fraction of
‘bad’ moves that are accepted. A successful Reverse Monte Carlo refinement requires
careful selection of constraints to end up with a chemically and physically sensible
structure model [37].

Reverse Monte Carlo refinements are much faster than direct Monte Carlo refine-
ments. The disadvantage, however, is that Reverse Monte Carlo refinements do not
allow the refinement of short-range order parameters [92, 4]. The atomic positions and
occupancies are randomly adjusted, and possible correlations should be calculated after
the refinement (see [108, 109, 110, 111, 112, 113, 114, 115, 116, 117] for examples on
single-crystal diffuse scattering).

Programs that allow Reverse Monte Carlo refinements from single-crystal diffuse
scattering data are DISCUS and rmc-discord [117]. Both programs allow to calculate
correlations for occupational, displacive and magnetic disorder from the refined model
[37, 117].

1.5.3 Three-dimensional difference pair distribution function refinement

A different approach to refine short-range order parameters from single-crystal diffuse
scattering data is the 3D-∆PDF refinement, which is implemented in the program Yell
[118].

The intensity of the diffuse scattering in Yell is calculated as the sum of signals
from all atomic pairs in the crystal:

I(Q)diff =
∑
uvw

∑
mn

(
puvw

mn exp(−QTβββuvw
mn Q) exp[iQ · (ruvw

mn +uuvw
mn )]

− cmcn exp[−QT(βββm+βββn)Q] exp[iQ · ruvw
mn ]

)
f ∗m(Q) fn(Q),

(1.22)

with ruvw
mn the vector between the average positions of atoms m and n that are (u,v,w) unit

cells apart, cm and cn the average occupancies, βββm and βββn the matrices of the average
atomic displacement parameters, and fm(Q) and fn(Q) the atomic form factors [39, 118].

Yell allows to refine three types or short-range order parameters: substitutional
correlations puvw

mn , size-effect parameters uuvw
mn and atomic displacement correlations

βββuvw
mn . Substitutional correlations puvw

mn describe the probability of finding the atoms m
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and n separated by the vector ruvw
mn . Size-effect parameters uuvw

mn quantify the difference
between the real and the average interatomic vector between atoms m and n. Atomic
displacement correlations βββuvw

mn describe correlations between the atomic displacement
parameters [39, 118].

Yell provides the choice of two algorithms for calculating the diffuse scattering
intensities from a disorder model [118]. One option is to use Equation 1.22, which is
precise but very slow. As an alternative, Yell allows to calculate the three-dimensional
diffuse scattering from the 3D-∆PDF via a FFT algorithm.

The short-range order parameters are refined by using a least-squares refinement.
Each refinement cycle, the short-range order parameters are adjusted and the R-value in
Equation 1.20 [37] is calculated. This process is repeated until the R-value converges to
its minimum. The short-range order parameters are refined against the three-dimensional
diffuse scattering, and not against the 3D-∆PDF, because experimental artefacts (e.g.,
due to saturated reflections) are more easily detected if refinements are done against the
diffuse scattering [39].

3D-∆PDF refinements are much faster than Monte Carlo and reverse Monte Carlo
refinements since they do not require the construction of a model crystal. The disad-
vantage, however, is that 3D-∆PDF refinements may result in non-physical structure
models [119]. Yell is designed to be used on desktop computers and refinements can be
performed within minutes or hours (in contrast, Monte Carlo refinements may take a few
days or weeks) [118]. The refinement time is roughly proportional to NpixNpairsNparams,
where Npix is the number of pixels in the experimental diffuse scattering data, Npairs is
the number of interatomic pairs and Nparams is the number of refined short-range order
parameters. The number of interatomic pairs is proportional to the square of the number
of atoms per chemical unit, which may grow quickly with the number of atoms in the
unit cell [118]. 3D-∆PDF refinements have been successfully applied on the diffuse
scattering in single-crystal X-ray diffraction data [120, 121, 122, 123, 124, 125].
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One-dimensional diffuse scattering -

Li1.2Ni0.13Mn0.54Co0.13O2

The results of this chapter were published in:

• Poppe, R., Vandemeulebroucke, D., Neder, R. B., & Hadermann, J. (2022). Quan-
titative analysis of diffuse electron scattering in the lithium-ion battery cathode
material Li1.2Ni0.13Mn0.54Co0.13O2. IUCrJ, 9(5), 695-704.

• Quintelier, M., Perkisas, T., Poppe, R., Batuk, M., Hendrickx, M., & Hadermann,
J. (2021). Determination of Spinel Content in Cycled Li1.2Ni0.13Mn0.54Co0.13O2
Using Three-Dimensional Electron Diffraction and Precession Electron Diffrac-
tion. Symmetry, 13(11), 1989.

The goal of this thesis is to verify the possibility to refine short-range order parameters
from the diffuse scattering in single-crystal electron diffraction data. In this chapter, the
approach will be demonstrated on Li1.2Ni0.13Mn0.54Co0.13O2, which is a cathode material
for lithium-ion batteries. Electron diffraction data acquired on Li1.2Ni0.13Mn0.54Co0.13O2
show one-dimensional diffuse streaks. The number of stacking faults and the twin
percentages will be refined from the intensity profile of the diffuse streaks using a Monte
Carlo refinement in DISCUS.

The effect of background subtraction, symmetry averaging and multiple scattering
on the intensity profile of the diffuse streaks in three-dimensional electron diffraction
(3D ED) data will also be discussed.

The commercialization of lithium-ion batteries with Li1.2Ni0.13Mn0.54Co0.13O2 as
a cathode material is still hampered by a significant capacity and voltage decay on
cycling. The capacity and voltage decay is mainly due to the transformation of the
layered structure to a spinel structure. In this chapter, we will also describe a method to
determine the spinel/layered phase ratio from the intensities of the Bragg reflections in
3D ED data.
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2.1 Introduction

Li-rich Mn-rich layered oxides (Li1+xM1−xO2, with M = Ni, Mn, Co) are promising
cathode materials for lithium-ion batteries due to their high specific capacity of more
than 250 mAh g−1. However, their commercialization is still hampered by a significant
capacity and voltage decay on cycling [126, 127, 128, 129]. Where the contributions of
transition metal ion migration and spinel domain formation to the capacity and voltage
decay have been extensively studied [130, 131, 132, 133, 134], the contribution of the
number of stacking faults has so far only been investigated in [135]. In lithium-ion
battery cathode materials, stacking faults are formed during crystal growth but the
number of stacking faults may change when recharging the battery. The authors of [135]
refined the average number of stacking faults in Li2MnO3 from the diffuse scattering
in powder X-ray diffraction data using the program FAULTS [136] and found that the
voltage decay is smaller for crystals with a larger number of stacking faults. However,
further research is required to determine a possible correlation between the number of
stacking faults and the voltage decay on cycling.

An alternative approach to determine a possible correlation between the number
of stacking faults and the voltage decay on cycling would be to quantify the change in
the number of stacking faults upon charging and discharging. This could be done by
charging and discharging the powder sample in an electrochemical cell filled with a
liquid electrolyte inside a transmission electron microscope, and by acquiring several
3D ED data sets at different stages during cycling [137]. The number of stacking faults
could then later be refined from the intensity profile of the one-dimensional diffuse
streaks in the reciprocal space sections reconstructed from these 3D ED data.

The first step towards this goal, however, is to accurately refine the number of
stacking faults, which will be the scope of this chapter.

2.2 Experimental details

2.2.1 Synthesis

The Li1.2Ni0.13Mn0.54Co0.13O2 powder was prepared by a carbonate co-precipitation
method followed by calcination. The details of the synthesis were published in [138].

2.2.2 Data acquisition

Samples were prepared by dispersing the powder in ethanol. A few droplets of the
suspension were deposited on a copper grid covered with an amorphous carbon film.
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In-zone selected area electron diffraction (SAED) patterns were acquired with an
FEI Tecnai G2 electron microscope operated at 200 kV using an FEI Eagle 2k charge-
coupled device (CCD) (2048 x 2048 pixels with 16-bit dynamic range). In-zone
precession electron diffraction (PED) patterns were acquired with a precession angle of
1° using a DigiSTAR precession device from NanoMEGAS.

High-angle annular dark-field scanning transmission electron microscopy (HAADF-
STEM) images and 3D ED data were acquired with an aberration-corrected cubed FEI
Titan 80-300 electron microscope operated at 300 kV using a GATAN US1000XP CCD
(4096 x 4096 pixels with 16-bit dynamic range). For the acquisition of the 3D ED data,
the crystal was illuminated in SAED mode with an exposure time of 1 s per frame.
Electron diffraction patterns were acquired with a Fischione tomography holder (tilt
range of ±80°), in a stepwise manner (step size of 0.2°), using an in-house developed
script. Energy filtered 3D ED data were acquired with a Quantum 966 Gatan Image
Filter, with a slit width of 10 eV. The crystals were entirely illuminated during the whole
data collection.

2.2.3 Data processing

The PETS2 software was used to process the 3D ED data. The reciprocal lattice of
all 3D ED data was indexed with a monoclinic C2/m unit cell with cell parameters a
= 4.9360(2) Å, b = 8.5479(3) Å, c = 5.0172(2) Å, α = γ = 90° and β = 109.017(3)°
[138]. No inversion symmetry was applied to the three-dimensional reciprocal lattice.
The reciprocal space sections were reconstructed with a pixel size of 0.007 Å−1 and a
slab thickness of 0.014 Å−1. The background of the 3D ED data as well as the SAED
patterns was subtracted using PETS2.

2.3 Description of the disorder

The crystal structure of Li1.2Ni0.13Mn0.54Co0.13O2 consists of alternating layers of oxy-
gen atoms, layers of lithium atoms, and layers that contain both transition metal atoms
and lithium atoms [see Figure 2.1 (a)]. The monoclinic C2/m unit cell [139, 140, 141] is
indicated in black. The honeycomb ordering of the lithium-rich positions in the transition
metal layers – also called honeycomb layers [142, 143, 144] – is shown in Figure 2.1 (b).

Figure 2.2 shows two HAADF-STEM images of Li1.2Ni0.13Mn0.54Co0.13O2. The
honeycomb ordering of the lithium-rich positions in the transition metal layers manifests
itself as pairs of 0.14 nm separated bright dots with less bright dots in between. As
the intensity of the atom columns in the HAADF-STEM images is proportional to the
atomic number of the element (I ∼ Z2), the bright dots correspond to atom columns of
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Figure 2.1: (a) Crystal structure of layered Li1.2Ni0.13Mn0.54Co0.13O2 seen along the
[010] direction of the monoclinic C2/m unit cell (indicated in black). Purple octahedra
represent MO6 octahedra, with M = Ni, Mn, Co. (b) Honeycomb ordering of the lithium-
rich positions in the transition metal layers. Green, purple and red spheres represent
lithium atoms, transition metal atoms, and oxygen atoms, respectively.

transition metal atoms, whereas the less bright dots correspond to atom columns that
contain both lithium atoms and transition metal atoms. The atom columns that contain
lithium atoms and oxygen atoms are too weak to be observed [138].

Figure 2.2: (a-b) HAADF-STEM images of Li1.2Ni0.13Mn0.54Co0.13O2. The bright dots
correspond to atom columns of transition metal atoms, whereas the less bright dots corre-
spond to atom columns that contain both lithium atoms and transition metal atoms. The
lines in (a) and (b) show the lateral displacements of the honeycomb layers. At the scale
of a few unit cell repetitions, stacking faults and twin boundaries can be observed. (c)
The two stacking faults indicated in (a) are equivalent to the C2/m unit cell seen along
the [100] and [1̄1̄0] directions. Green, purple and red spheres represent lithium atoms,
transition metal atoms, and oxygen atoms, respectively.

Figure 2.2 (a) shows the HAADF-STEM image of a Li1.2Ni0.13Mn0.54Co0.13O2
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crystal seen along the [1̄10] direction of the monoclinic C2/m unit cell. In a crystal
without stacking faults, all lithium-rich positions would lie in rows parallel to the c axis
of the monoclinic C2/m unit cell. However, in reality, stacking faults occur due to lateral
displacements of the honeycomb layers. If the stacking direction of adjacent layers is the
same over several unit cells, but not over the whole crystal, then these adjacent layers
will form twin domains. The difference between stacking faults and twin domains is
clarified in the HAADF-STEM image in Figure 2.2 (b) in which the twin boundaries are
indicated. In the following, we thus make a distinction between twin domains as groups
of adjacent layers with the same stacking direction; and stacking faults as single layers
with a different stacking direction.

The twin domains indicated in Figure 2.2 (b) are rotation twins with 3-fold twin
axis [103] (the [103] direction in real space corresponds to the c* direction in reciprocal
space) [145]. The twin matrices for a rotation of respectively 120° and 240° around
[103] are:

UUU120° =

−1/2 3/2 1/2
−1/2 −1/2 1/6

0 0 1

 ,

UUU240° =

−1/2 −3/2 1/2
1/2 −1/2 −1/6
0 0 1

 .

(2.1)

Application of both twin matrices on the [100] zone axis results in the [1̄10] and [1̄1̄0]
zone axes. Figure 2.2 (c) illustrates that the two stacking faults indicated in Figure 2.2 (a)
are equivalent to the C2/m unit cell seen along the [100] and [1̄1̄0] directions.

Figure 2.3: (a) Li1.2Ni0.13Mn0.54Co0.13O2 crystal. (b-c) [1̄1̄0] and [2̄10] reciprocal space
sections reconstructed from a 3D ED series acquired on the crystal in (a).

Figure 2.3 (a) shows an image of a single Li1.2Ni0.13Mn0.54Co0.13O2 crystal on
which 3D ED data have been acquired (this crystal will further on be denoted as
crystal 1). The reconstructed [1̄1̄0] and [2̄10] reciprocal space sections are shown in
Figure 2.3 (b-c). The diffuse streaks along the c* direction are due to stacking faults
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whereas the intensity maxima along the diffuse streaks are due to rotation twins with
3-fold twin axis [103]. Figure 2.4 shows the effect of 3-fold rotation twinning on the
[001], [010], [100], [1̄10] and [1̄1̄0] reciprocal space sections. Rotation twinning with
3-fold twin axis [103] will cause overlap of the reflections in the [1̄1̄0], [1̄10] and [100]
reciprocal space sections.
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Figure 2.4: Column 1: [001], [010], [100], [1̄10] and [1̄1̄0] reciprocal space sections
reconstructed from a 3D ED series acquired on Li1.2Ni0.13Mn0.54Co0.13O2 [crystal 1].
Column 2: calculated electron diffraction patterns for a crystal without twinning. Column
3: calculated electron diffraction patterns for a crystal with rotation twinning with 3-fold
twin axis [103]. The intensity maxima along the diffuse streaks in column 1 are thus due
to overlap of the reflections in the [1̄1̄0], [1̄10] and [100] reciprocal space sections. The
electron diffraction patterns in column 2-3 were calculated in SingleCrystal.
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2.4 Effect of different parameters on the observed diffuse scat-
tering

2.4.1 Orientation of the grid in the sampleholder

To see if the orientation of the crystal in the sample holder affects the intensity profile
of the diffuse streaks in the reciprocal space sections, three 3D ED series were acquired
on the same crystal (denoted hereafter as crystal 2), with the same settings (beam size,
intensity, exposure time), but with a different orientation of the grid in the sample holder.

Figure 2.5 (a-c) and Figure 2.5 (e-g) show respectively the [21̄0] and the [1̄1̄0] re-
ciprocal space section reconstructed from series 1, 2 and 3. For series 2, the grid was
rotated 45° clockwise compared with series 1. For series 3, the grid was rotated 90°
clockwise compared with series 1. The intensity profiles of the diffuse streaks indicated
in Figure 2.5 (a-c) and Figure 2.5 (e-g) are shown in respectively Figure 2.5 (d) and
Figure 2.5 (h). When comparing the green, pink and blue curves, it becomes clear that
the intensity profile of the diffuse streaks is different for series 1, 2 and 3. Since all three
3D ED series were acquired with exactly the same settings, this implies that the orien-
tation of the crystal in the sample holder affects the intensity profile of the diffuse streaks.

From the dynamical theory of diffraction, we know that the reflection intensities
depend on the orientation and thickness of the crystal [70]. Since we acquired data on
a rod-shaped crystal, the crystal thickness may change during the collection of the 3D
ED series, depending on the rotation axis. The rotation axes corresponding to series 1, 2
and 3 are indicated in Figure 2.5 (i). For series 1 the crystal thickness is larger at high tilt
angles than at low tilt angles (±340 nm vs. ±175 nm). For series 3 the crystal thickness
stays approximately the same during the whole tilt series (±175 nm). Consequently, the
amount of multiple scattering will be larger for series 1 than for series 2 and 3, which
might explain the differences in the intensity profile of the diffuse streaks of series 1, 2
and 3.

The reciprocal space sections in Figure 2.3, Figure 2.4 and Figure 2.5 were recon-
structed without frame scaling (frame intensity scale equal to 1 for all frames) because
the frame scales calculated by PETS2 are less reliable for low-symmetry crystal systems.
To calculate the frame scales, PETS2 matches the intensities of symmetry equivalent
reflections. The presence of rotation twins with 3-fold twin axis [103] reduces the Laue
class from 2/m to −1. For Laue class −1, the only symmetry equivalent reflections
are on the same frames or on the immediately neighbouring frames, making the frame
scaling less reliable.
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Figure 2.5: (a-c, e-g) [21̄0] and [1̄1̄0] reciprocal space sections reconstructed from three
3D ED series acquired on the same crystal, but with the grid rotated over 45° (series 2)
and 90° (series 3) clockwise compared with series 1. (d, h) The intensity profiles of the
diffuse streaks indicated in (a-c) and in (e-g). (i) Li1.2Ni0.13Mn0.54Co0.13O2 crystal on
which all 3D ED series and SAED patterns have been acquired. The rotation axes corre-
sponding to series 1, 2 and 3 are indicated. (j) [1̄1̄0] SAED pattern, which corresponds
to the same orientation as the reciprocal space sections in (e-g). (k) The same in-zone
SAED pattern but acquired with a precession angle of 1°. The reflections circled in blue
in (j-k) are due to multiple scattering. (l) The intensity profile of the diffuse streaks indi-
cated in (j-k).
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2.4.2 In-zone electron diffraction

3D ED allows the acquisition of three-dimensional electron diffuse scattering data with
less multiple scattering compared to in-zone SAED patterns. To compare the difference
between reciprocal space sections reconstructed from 3D ED data and in-zone SAED
patterns, the 3D ED data and in-zone SAED patterns in Figure 2.5 were acquired on
the same crystal. Figure 2.5 (j) shows the [1̄1̄0] SAED pattern, which corresponds to
the same orientation as the reciprocal space sections in Figure 2.5 (e-g). Figure 2.5 (k)
shows the same SAED pattern but acquired with a precession angle of 1°. The in-
tensity profile of the diffuse streaks indicated in Figure 2.5 (j-k) is shown in Figure 2.5 (l).

The increase in intensity between l = −1 and l = −2 in the intensity profile of the
diffuse streaks in the reciprocal space sections reconstructed from 3D ED [Figure 2.5 (h)]
is not visible in the intensity profile of the diffuse streak in the SAED pattern [Fig-
ure 2.5 (l)]. Because reciprocal space sections are reconstructed from a set of off-zone
electron diffraction patterns, they exhibit less multiple scattering compared to in-zone
SAED patterns. The intensity distribution of the diffuse streaks in the in-zone PED
pattern is very similar to the one in in-zone SAED pattern (Figure 2.5 (j-k)). The main
difference is that the higher-order Bragg reflections have higher intensities in the in-zone
PED pattern than in the in-zone SAED pattern. Comparing the in-zone PED pattern
with the reciprocal space sections reconstructed from 3D ED data acquired on the same
crystal shows that several reflections in the PED pattern are solely due to multiple
scattering (reflections indicated by the blue circles). Bragg reflections are distinct points,
whereas diffuse scattering is continuously distributed in reciprocal space. An in-zone
PED pattern is obtained by integrating the intensities within a volume in reciprocal space
(determined by the precession angle). Higher precession angles will thus decrease the
spatial resolution of the observed diffuse scattering.

2.4.3 Background subtraction

For the 3D ED data in Figure 2.5, the background of the individual frames has been
subtracted in PETS2 before the reconstruction of the reciprocal space sections. The
background of the in-zone SAED pattern and in-zone PED pattern in Figure 2.5 has also
been subtracted in PETS2.

The background in electron diffraction data is due to inelastic scattering of the in-
coming electrons (thermal diffuse scattering), electrons scattered by the amorphous
carbon film, and sensor intrinsic background noise of the CCD. Thermal diffuse
scattering can be subtracted using an energy filter. Figure 2.6 shows the [100] recip-
rocal space section reconstructed from 3D ED data acquired with and without energy
filter on the same crystal (crystal 2). The energy filter blocks inelastically scattered
electrons with an energy loss of more than 10 eV. Except for using an energy filter, the
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Figure 2.6: Comparison of the [100] reciprocal space section reconstructed from 3D ED
data acquired with and without energy filter, before and after background subtraction in
PETS2. Data acquired on Li1.2Ni0.13Mn0.54Co0.13O2 [crystal 2].

experimental settings were identical for both 3D ED data sets. The [100] reciprocal
space section reconstructed from 3D ED data acquired without energy filter shows
strong diffuse intensity bands (Figure 2.6 (a)). The diffuse intensity bands are weaker
in the [100] reciprocal space section reconstructed from 3D ED data acquired with
energy filter but can still be observed (Figure 2.6 (b)). An energy filter with a slit
width of 10 eV reduces the thermal diffuse scattering but does not entirely remove
it. The [100] reciprocal space sections after background subtraction in PETS2 are
shown in Figure 2.6 (c-d). After background subtraction in PETS2, the [100] reciprocal
space section looks similar for the energy-filtered and non-energy filtered data. The
experimental background and the thermal diffuse scattering are subtracted, while the
elastic diffuse scattering remains. Subtracting the background of the individual frames
in PETS2 before the reconstruction of the three-dimensional reciprocal lattice is thus
the best method to obtain diffuse scattering data that can be used for quantitative analysis.
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Another way to estimate the background would be to repeat the 3D ED data ac-
quisition under the same conditions but without the crystal illuminated by the electron
beam. In the case of one-dimensional or two-dimensional diffuse scattering, the
background intensity could also be estimated from the intensities of the surrounding
voxels. However, both methods do not subtract the thermal diffuse scattering, and would
thus require energy-filtered 3D ED data.

Another difference between Figure 2.6 (a) and Figure 2.6 (b) are intensity differ-
ences in the intensity profile of the diffuse streaks. The diffuse streaks indicated in blue
and red are more intense for the data acquired with energy filter. However, because of the
asymmetry in the intensities in Figure 2.6 (b), these intensity differences are more likely
due to small deviations in the orientations of the individual frames than due to the use
of the energy filter. The orientations of the individual frames could not be optimized in
PETS2 due to the diffuse streaks. Several effects (the limited accuracy of the goniometer
of the TEM stage, the inaccuracy of the orientation matrix or small unpredictable
movements of the crystal under the electron beam) may cause the orientation of a frame
as calculated from the orientation matrix to be inaccurate [71].

2.4.4 Symmetry averaging

The volume percentages of the three different twins are not identical. The Laue class
of the average crystal structure (2/m) can thus not be applied to the diffuse scattering.
The highest symmetry that can be applied to the diffuse scattering is inversion sym-
metry (Laue class -1). Figure 2.7 shows the [1̄1̄0] and [2̄10] reciprocal space sections
in Figure 2.3, before and after applying inversion symmetry. Applying inversion sym-
metry does not allow to fill the missing wedge in the three-dimensional reciprocal lat-
tice. Because full reciprocal space coverage is required for the calculation of the three-
dimensional difference pair distribution function (3D-∆PDF), the 3D-∆PDF could not be
reconstructed. A solution could be to increase the data completeness by combining data
sets from several crystals, or combining several data sets from the same crystal acquired
with a different orientation of the grid in the sample holder.
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Figure 2.7: Comparison of the [1̄1̄0] and [2̄10] reciprocal space sections reconstructed
from 3D ED data, before and after applying inversion symmetry. Data acquired on
Li1.2Ni0.13Mn0.54Co0.13O2 [crystal 1].

2.4.5 Different types of twinning

The reflections between the diffuse streaks in the [1̄1̄0] reciprocal space sections of
crystal 2 in Figure 2.5 (e-g) are not present in the [1̄1̄0] reciprocal space section of crystal
1 in Figure 2.3. At first glance, these additional reflections could be due to the presence
of the spinel phase [146]. However, careful inspection of the 3D reciprocal lattice shows
that they are due to rotation twins with 4-fold twin axis [323] (a rotation about 90°
around [323] in the monoclinic unit cell with space group C2/m corresponds to a rotation
about 90° around [010] in the parent cubic unit cell with space group Fm3̄m). These
rotation twins are domains with a different orientation of the lithium and transition metal
layers [145, 126, 147]. Figure 2.8 gives an overview of the zones that will overlap with
the [001], [010], [100], [1̄10] and [1̄1̄0] zones as a result of both rotation twinning with
3-fold twin axis [103] and rotation twinning with 4-fold twin axis [323]. The reflections
between the diffuse streaks in the [1̄1̄0] reciprocal space sections in Figure 2.5 (e-g) are
thus due to overlap of the [1̄1̄0] zone axis with the [3̄1̄6̄], [3̄16̄] and [001̄] zone axes.
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Figure 2.8: Column 1: [001], [010], [100], [1̄10] and [1̄1̄0] reciprocal space sections
reconstructed from 3D ED data acquired on Li1.2Ni0.13Mn0.54Co0.13O2 [crystal 2, series
3 in Figure 2.5]. Column 2: calculated electron diffraction patterns for a crystal with
3 rotation twins with 3-fold twin axis [103] and 4 rotation twins with 4-fold twin axis
[323]. Column 3: calculated electron diffraction patterns for a crystal with 3 rotation
twins with 3-fold twin axis [103] and 3 rotation twins with 4-fold twin axis [323]. The
weak reflections in the reciprocal space sections in column 1 are thus due to the presence
of 2 additional twins with a different orientation of the lithium and transition metal layers.
The weak reflections in the [001] reciprocal space section are too weak to be observed.
The electron diffraction patterns in columns 2-3 were calculated in SingleCrystal.
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The twin matrices for a rotation of respectively 90°, 180° and 270° around [323]
are:

VVV90° =

 1/2 3/2 −1/2
−1/6 1/2 1/2

1 0 0

 ,

VVV180° =

−1/2 3/2 1/2
1/3 0 1/3
1/2 3/2 −1/2

 ,

VVV270° =

 0 0 1
1/2 1/2 −1/6
−1/2 3/2 1/2

 .

(2.2)

Application of these three twin matrices on the [1̄1̄0] zone axis, results in the [6̄1̄3̄], [3̄1̄6̄]
and [01̄1̄] zone axes. Rotation twinning with 3-fold twin axis [103] causes additional
overlap of the [6̄1̄3̄] zone axis with the [011̄] and [32̄3̄] zone axes; of the [3̄1̄6̄] zone axis
with the [3̄16̄] and [001̄] zone axes; and of the [01̄1̄] zone axis with the [6̄13̄] and [323̄]
zone axes. Consequently, the [1̄1̄0] zone will overlap with 11 other zones ([1̄10], [100],
[6̄1̄3̄], [011̄], [32̄3̄], [3̄1̄6̄], [3̄16̄], [001̄], [01̄1̄], [6̄13̄] and [323̄]).

Comparison of the reflections in the reciprocal space sections in Figure 2.8 (col-
umn 1) with the calculated electron diffraction patterns for a crystal with 3 rotation
twins with 4-fold twin axis [323] (column 3), shows that only 3 of the 4 rotation twins
with 4-fold twin axis [323] are present in crystal 2. Since some of the reflections
in the [01̄1̄] and the [001̄] zone do overlap with the diffuse streaks in the [1̄1̄0] zone,
rotation twins with 4-fold twin axis [323] affect the intensity profile of the diffuse streaks.

Inspection of the reciprocal space sections reconstructed from 3D ED series ac-
quired on 20 different Li1.2Ni0.13Mn0.54Co0.13O2 crystals, shows that all crystals have
rotation twins with 3-fold twin axis [103], while only 7 of the 20 crystals have rotation
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twins with 4-fold twin axis [323] (domains with a different orientation of the lithium
and transition metal layers). Reflection splitting in the [010] reciprocal space section
(Figure 2.9) is due to reflection twins with mirror plane (001) [148, 149]. Reflection
twins were present in 5 of the 20 investigated crystals. Since both rotation twins with
4-fold twin axis [323] and reflection twins with mirror plane (001) affect the intensity
profile of the diffuse streaks, the refinement will be applied on crystal 1, which only has
rotation twins with 3-fold twin axis [103].

Figure 2.9: (a-b) Reconstructed [010] reciprocal space section of a crystal (a) with and (b)
without reflection twins, indexed with the C2/m unit cell of Li1.2Ni0.13Mn0.54Co0.13O2.
(c-d) Calculated electron diffraction patterns for a crystal (c) with and (d) without re-
flection twins. (e) Two reflection twins with mirror plane (001) seen along the [010]
direction. The electron diffraction patterns in (c-d) were calculated in SingleCrystal.
Green, purple and red spheres represent lithium atoms, transition metal atoms, and oxy-
gen atoms, respectively.

2.5 Calculated diffuse scattering

The DISCUS software package was used to build a model of the stacking faults and
rotation twins with 3-fold twin axis [103] and to calculate the diffuse scattering.

To simulate a Li1.2Ni0.13Mn0.54Co0.13O2 crystal with stacking faults, a stack of
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several layers was created [150]. Each layer is a slab of the C2/m crystal structure with
a thickness of one C2/m unit cell along the c direction. As the lithium-rich positions in
subsequent honeycomb layers can shift relative to each other by c, 1/3 b + c, or 1/2 a +
1/6 b + c, the translation vectors Mi j between two adjacent layers i and j were defined
by

MMM =

 (0,0,1) (1/2,1/6,1) (0,1/3,1)
(0,1/3,1) (0,0,1) (1/2,1/6,1)

(1/2,1/6,1) (0,1/3,1) (0,0,1)

 . (2.3)

For instance, the translation vector M23 = (1/2,1/6,1) on the second row and the third
column means that a layer of type 3 is shifted by 1/2 a + 1/6 b + c relative to the previous
layer when that layer is of type 2. In our model, all layer types are identical but undergo
a different translation, so each layer type gets a different numbering. As stacking faults
(single layers with a different translation vector) may occur in each twin domain (a group
of adjacent layers with the same translation vector), the transition probability matrices
for the [100], [1̄10] and [1̄1̄0] twin domain were defined by

AAA[100] =

1− s s/2 s/2
s/2 1− s s/2
s/2 s/2 1− s

 ,

AAA[1̄10] =

 s/2 s/2 1− s
1− s s/2 s/2
s/2 1− s s/2

 ,

AAA[1̄1̄0] =

 s/2 1− s s/2
s/2 s/2 1− s

1− s s/2 s/2

 .

(2.4)

with Ai j the probabilities for one of the translation vectors Mi j to be chosen and s the
stacking fault probability (0 ≤ s ≤ 1), which was considered identical for the [100],
[1̄10] and [1̄1̄0] twin. The layers of the [1̄10] and [1̄1̄0] twin domains were rotated by
respectively 120° and 240° around [103]. In the following, the percentage of the [100],
[1̄10] and [1̄1̄0] twin in the crystal will be denoted by p[100], p[1̄10] and p[1̄1̄0].

Figure 2.10 (b) shows the [100] reciprocal space section calculated for a crystal
with a stacking fault probability of 60% and twin percentages of p[100] = 50% and p[1̄10]
= p[1̄1̄0] = 25%. Diffuse streaks are visible for k , 3n with n ∈N. The width of the Bragg
reflections and the diffuse streaks is inversely proportional to the number of unit cells in
one layer. The [100] section was calculated for a crystal that consists of 4000 layers of
100 unit cells. The intensities were averaged over 400 calculations to create a smooth
intensity distribution.

Figure 2.11 (a) shows the intensity profile of the 04l diffuse streak for increasing
stacking fault probability. When the stacking fault probability increases from 0% to
60%, the discrete intensity maxima at integer l values merge together. From a stacking
fault probability of 80% onward, intensity peaks with maxima at half-integer l values
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Figure 2.10: (a) The [100] reciprocal space section calculated for (a) a crystal without
stacking faults, (b) a crystal with a stacking fault probability of 60% and twin percentages
of p[100] = 50% and p[1̄10] = p[1̄1̄0] = 25%.

appear. The reason is that for a stacking fault probability of 100%, only two possible
shifts can occur, which results again in a more periodic stacking of the layers. The
intensity profiles in Figure 2.11 (a) were calculated for a crystal that consists of only one
twin, whereas the intensity profiles in Figure 2.11 (b) were calculated for a crystal that
consists of all [100], [1̄10] and [1̄1̄0] twin domains. Rotation twinning with 3-fold twin
axis [103] causes additional intensity maxima along the diffuse streaks at l = n+ 1/3
and/or l = n+ 2/3. The intensity profiles in Figure 2.11 (b) were calculated for p[100] =

50% and p[1̄10] = p[1̄1̄0] = 25%.

To illustrate the effect of different percentages of the [100], [1̄10] and [1̄1̄0] twin
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domains on the intensity profile of the 04l diffuse streak, the intensity profiles in
Figure 2.11 (c) were calculated for different values of p[100], p[1̄10] and p[1̄1̄0] (black
curve: p[100] = 50%, p[1̄10] = p[1̄1̄0] = 25%; red curve: p[1̄1̄0] = 50%, p[1̄10] = p[100] =

25%; green curve: p[1̄10] = 50%, p[1̄1̄0] = p[100] = 25%). The intensity profile of the
diffuse streaks in Figure 2.11 were calculated for a crystal that consists of 4000 layers of
64 unit cells. The intensities were averaged over 1000 calculations to create a smooth
intensity distribution.

Figure 2.11: The intensity profile of the 04l diffuse streak (a) for a crystal that consists of
only one twin (p[100] = 100%) and for a stacking fault probability of respectively 20%,
40%, 60%, 80% and 100%; (b) for a crystal that consist of all [100], [1̄10] and [1̄1̄0] twin
domains (p[100] = 50% and p[1̄10] = p[1̄1̄0] = 25%) and for a stacking fault probability of
respectively 20% and 40%; (c) for different percentages of the [100], [1̄10] and [1̄1̄0]
twin domains. With s the stacking fault probability and p[100] and p[1̄10] the percentages
of the [100] and the [1̄10] twin in the crystal.

2.6 Refinement of the short-range order

To refine the stacking fault probability and the percentage of the different twins in the
crystal, the model of the Li1.2Ni0.13Mn0.54Co0.13O2 crystal with stacking faults and twin
domains was implemented in a differential evolutionary algorithm in DISCUS. The num-
ber of parents and the number of children were both chosen to be 28 which is the number
of cores in one node on the Leibniz cluster, and which is approximately ten times the
number of refined parameters. To speed up the calculation, the 28 children were calcu-
lated in parallel. The Monte Carlo refinement (https://doi.org/10.5281/zenodo.8212664)
took three days of wall-clock time for 50 generations, using 28 cores in parallel. The
refinement algorithm was first tested on diffuse scattering data calculated from simulated
structures with known short-range order parameters, to check that the short-range order
parameters converge towards the correct values.

As discussed in the previous section, the intensity distribution of the diffuse streaks
depends on both the stacking fault probability s and the percentage of the [100],
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[1̄10] and [1̄1̄0] twin in the crystal denoted by p[100], p[1̄10] and p[1̄1̄0]. Since
p[1̄1̄0] = 1− p[100]− p[1̄10], it was sufficient to refine s, p[100] and p[1̄10].

Refining the atomic coordinates and occupancies from our 3D ED data in Jana2020
was not successful; probably because of the combination of stacking faults, rota-
tion twins with 3-fold twin axis [103] and multiple scattering. Therefore, we used
the atomic coordinates, atomic displacement parameters, and cell parameters of
Li1.2Ni0.15Mn0.55Co0.1O2 determined by powder neutron diffraction [151] [ICSD
237940]. Since the Ni/Mn/Co ratio in Li1.2Ni0.15Mn0.55Co0.1O2 is only slightly dif-
ferent from the Ni/Mn/Co ratio in Li1.2Ni0.13Mn0.54Co0.13O2, the effect on the atomic
coordinates and atomic displacement parameters will be negligible. To decrease the
refinement time, we used the integer occupancies in Table 2.1 (the position with most
lithium was considered as fully occupied by lithium, the other position was considered
as fully occupied by manganese) instead of the occupancies determined by [151]. This
simplification of the model has a negligible effect on the intensity profile (Figure 2.12).
The refinement algorithm calculates the diffuse scattering from a crystal that consists of
2000 layers of one unit cell1. To create a smooth intensity distribution, the algorithm
averages the intensity profile over 100 calculations.

The refinement was applied on the intensity profile of the diffuse streaks indicated
in the [1̄1̄0] and [2̄10] reciprocal space sections in Figure 2.3 (b-c) [details in Fig-
ure 2.13 (a-b)]. A custom Matlab script was used to extract the intensity profile of the
diffuse streaks and convert it to input for DISCUS. Figure 2.14 and Figure 2.15 show the
evolution of the R value and the short-range order parameters for the first 50 generations.
The refined short-range order parameters and the R value at generation 50 are listed in
Table 2.2.

The electron diffraction patterns in Figure 2.13 (c-d) were calculated for the re-
fined short-range order parameters, for a crystal that consists of 2000 layers of 100
unit cells. The agreement between the experimental and the calculated intensity
profile is better for the diffuse streak indicated in the [2̄10] section than for the diffuse
streak indicated in the [1̄1̄0] section [Figure 2.13 (e-f)]. Since DISCUS calculates
the intensity profiles according to the standard formula for kinematic scattering, the
intensity differences between the experimental and the calculated intensity profile are
probably due to multiple scattering. Multiple scattering increases the intensity of weaker
Bragg reflections, whereas strong Bragg reflections become less intense [50]. The 2̄20
reflection for example, is much stronger in the experimental than in the calculated [1̄1̄0]
section [peak at l = 0 in Figure 2.13 (e)]. Figure 2.13 (g-h) shows two electron diffraction
patterns that were used to reconstruct the [1̄1̄0] and [2̄10] sections in Figure 2.13 (a-b).
In the electron diffraction pattern in Figure 2.13 (g), more reflections are simultaneously
excited than in the electron diffraction pattern in Figure 2.13 (h), which might explain

1When using integer occupancies, the number of unit cells in one layer has no influence on the intensity
profile.
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Table 2.1: Column 2-4: Atomic coordinates, atomic displacement parameters and occu-
pancies of the C2/m unit cell of Li1.2Ni0.15Mn0.55Co0.1O2 determined by powder neutron
diffraction [151] and used for the simulation of the model in DISCUS. Column 5: Oc-
cupancies used for the Monte Carlo refinement. The use of integer occupancies implies
that the transition metal atoms in the Li-rich positions are replaced by Li, and that all Ni
(Z=28) and Co (Z=27) atoms are replaced by Mn (Z=25). With M = Ni, Mn, Co.

Atom type x, y, z Uiso(Å
2
) Occupancies Integer occ.

Li 0, 0, 0.5 0.0117(2) 0.9957(11) 1
M 0, 0, 0.5 0.0117(2) 0.0043(11) 0
Li 0, 0.6551, 0.5 0.0125(4) 0.9900(6) 1
M 0, 0.6551, 0.5 0.0125(4) 0.0100(6) 0
Li 0, 0.5, 0 0.0029(2) 0.364(1) 1
M 0, 0.5, 0 0.0029(2) 0.636(1) 0
Li 0, 0.1660, 0 0.0076(4) 0.128(1) 0
M 0, 0.1660, 0 0.0076(4) 0.872(1) 1
O 0.2226, 0, 0.2232 0.0049(4) 1 1
O 0.2539, 0.3223, 0.2256 0.0056(8) 1 1

Figure 2.12: Intensity profile of the 04l diffuse streak simulated with 1) integer occupan-
cies 2) the occupancies determined by powder neutron diffraction [151]. Both profiles
were calculated for a crystal with a stacking fault probability of 20% and twin percent-
ages of p[100] = 50% and p[1̄10] = p[1̄1̄0] = 25%.

why multiple scattering effects are larger for the 2̄20 reflection than for the 2̄4̄4 reflection.
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Figure 2.13: (a-b) [1̄1̄0] and [2̄10] reciprocal space sections of crystal 1. (c-d) Electron
diffraction patterns calculated for the refined short-range order parameters at generation
50. (e-f) The intensity profile of the diffuse streaks indicated in (a-b) together with the
intensity profiles calculated for the refined short-range order parameters at generation 50.
(g-h) Two electron diffraction patterns that were used to reconstruct the [1̄1̄0] and [2̄10]
sections in (a-b). The blue and red lines indicated in (g-h) correspond to the blue and red
lines indicated in (a-b).
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Figure 2.14: Refinement applied on the intensity profile of the diffuse streak indicated
in the [1̄1̄0] reciprocal space section in Figure 2.13 (a). Evolution of (a) the R value, (b)
the stacking fault probability s, (c) the percentage of the [100] twin p[100] and (d) the
percentage of the [1̄10] twin p[1̄10] as a function of the generation number. The figure
shows the average (blue), smallest and highest (red) value at each generation. The value
with the lowest R value at each generation is shown in black.

As mentioned before, no frame scaling was applied during the reconstruction of
the reciprocal space sections in Figure 2.13 (a-b). Frame scaling corrects for variations
in the crystal thickness and/or variations in the illuminated volume. Even though the
whole crystal was illuminated during the collection of the 3D ED data, variations in
the crystal thickness might affect the intensities and consequently also the experimental
intensity profile of the diffuse streaks.

It should also be noted that resolution effects were not considered in the Monte
Carlo refinement. In Section 3.4, we will show that the spatial resolution of the observed
diffuse scattering depends on various effects including the convergence of the electron
beam, the detector point spread function and the crystal mosaicity. To account for
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Figure 2.15: Refinement applied on the intensity profile of the diffuse streak indicated
in the [2̄10] reciprocal space section in Figure 2.13 (b). Evolution of (a) the R value, (b)
the stacking fault probability s, (c) the percentage of the [100] twin p[100] and (d) the
percentage of the [1̄10] twin p[1̄10] as a function of the generation number. The figure
shows the average (blue), smallest and highest (red) value at each generation. The value
with the lowest R value at each generation is shown in black.

resolution effects, the intensity of each pixel in the calculated intensity profile should
be convoluted with a Gaussian function. The intensity maxima in the experimental
intensity profile in Figure 2.13 are thus less sharp than in the calculated intensity profile.
Figure 2.11 (a) shows that the intensity maxima are sharper at lower stacking fault proba-
bilities. The refined stacking fault probability in Table 2.2 is thus probably overestimated.

Small intensity differences between the experimental and the calculated intensity
profile of the diffuse streaks can also be due to deviations in the atomic coordinates and
occupancies. The atomic coordinates were refined using powder neutron diffraction data
[151]. However, stacking faults (peak broadening) and twinning (peak overlap) were
not taken into account. The actual atomic coordinates and occupancies might thus be
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Table 2.2: Refined short-range order parameters and R value at generation 50 for the
intensity profile of the diffuse streaks indicated in the [1̄1̄0] and [2̄10] reciprocal space
sections of crystal 1. With s the stacking fault probability and p[100] and p[1̄10] the per-
centages of the [100] and the [1̄10] twin in the crystal.

parameter refined value [1̄1̄0] refined value [2̄10]
s 0.24(2) 0.29(2)
p[100] 0.37(5) 0.40(3)
p[1̄10] 0.15(5) 0.34(3)
R value 50.3(7) 27.8(5)

different from the ones in [151] which will affect the calculated intensity profile of the
diffuse streaks.

Krysiak and co-workers, who previously reported a quantitative analysis of diffuse
scattering in single-crystal electron diffraction data on two zeolites, assigned the small
intensity differences between their experimental and calculated patterns to inelastic
scattering and an insufficiently sensitive detector [89, 90]. Because zeolites mainly
consist of light elements [O (Z=8) and Si (Z=14)] and because their 3D ED data were
acquired on thinner crystals (100 nm), the intensities in the 3D ED data of Krysiak and
co-workers were probably less influenced by multiple scattering.

2.7 Determination of the spinel/layered phase ratio

The commercialization of lithium-ion batteries with Li-rich Mn-rich layered oxides
(Li1+xM1−xO2, with M = Ni, Mn, Co) as cathode materials is still hampered by a
significant capacity and voltage decay on cycling [126, 127, 128, 129]. The capacity
and voltage decay are mainly due to transition metal ion migration and spinel domain
formation [130, 131, 132, 133, 134]. Li1.2Ni0.13Mn0.54Co0.13O2 has a layered structure
with space group C2/m [138] (Figure 2.16 (a)). During charging and discharging of the
battery, the layered structure transforms to a spinel structure with space group Fd3̄m
[152] (Figure 2.16 (b)).

Figure 2.17 shows a HAADF-STEM image acquired on Li1.2Ni0.13Mn0.54Co0.13O2. The
spinel structure can be observed at the crystal surface. An in situ synchrotron powder
X-ray diffraction study suggested that the transformation from the layered structure to
the spinel structure also occurs in the bulk of the crystals [134].

The advantage of 3D ED is that it allows to determine the crystal structure of
submicron-sized crystals. 3D ED data were acquired on Li1.2Ni0.13Mn0.54Co0.13O2 with
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Figure 2.16: During charging and discharging of the battery, the crystal structure of
Li1.2Ni0.13Mn0.54Co0.13O2 transforms from the layered structure in (a) to the spinel struc-
ture in (b). The monoclinic C2/m unit cell in (a) and the cubic Fd3̄m unit cell in (b) are
indicated in black. Purple octahedra represent MO6 octahedra, with M = Ni, Mn, Co.
Green, purple and red spheres represent lithium atoms, transition metal atoms, and oxy-
gen atoms, respectively.

Figure 2.17: HAADF-STEM image acquired on Li1.2Ni0.13Mn0.54Co0.13O2 along the
[010] direction of the C2/m unit cell.

a low electron dose since irradiating the sample with an intense electron beam might
induce the formation of the spinel structure [153, 154, 155]. Refining the volume ratio
between the layered structure and the spinel structure from our 3D ED data by using

58



2.7. DETERMINATION OF THE SPINEL/LAYERED PHASE RATIO

a least squares refinement in Jana2020 was not successful; probably because of the
combination of stacking faults, rotation twins with 3-fold twin axis [103] and multiple
scattering.

As a solution, we developed an alternative method to determine the volume ratio
between different phases from the intensities of the reflections in 3D ED data. The
method is based on the fact that the intensity ratio between a reflection that is only
caused by the spinel structure and a reflection that is caused by both the spinel structure
and the layered structure corresponds to a unique volume ratio between the layered
structure and the spinel structure.

To validate the method, in-zone electron diffraction patterns of spherical core-
shell particles were calculated in DISCUS. Core-shell particles with a layered core [151]
[ICSD 237940] and a spinel shell [152] [ICSD 40485] were simulated for different
layered/spinel volume ratios. No stacking faults or twins were included in the model. To
build a core-shell particle in DISCUS, the cell parameters of both structures need to be
identical. This was achieved by transforming the C2/m unit cell and the Fd3̄m unit cell
to a common supercell with cell parameters a = b = 9.8707 Å, c = 14.2301 Å, α = β =
90° and γ = 120°. The transformation matrices are:

PPPC2/m→supercell =

 1 1 1
−1 1 0
0 0 3

 , PPPFd3̄m→supercell =

0.5 0.5 −1
0.5 −1 −1
−1 0.5 −1

 . (2.5)

Figure 2.18 shows the cross-section of a spherical core-shell particle with 10 × 10 × 10
supercell unit cells and a spinel/layered volume ratio of 50:50. Figure 2.19 shows the
[100] and [1̄10] electron diffraction patterns calculated in DISCUS for a spinel content
of 5, 20 and 50%. The 033 reflection is only caused by the spinel structure, whereas
the 066 reflection is caused by both the spinel structure and the layered structure. The
intensity ratio of both reflections allows thus to determine volume ratio between the
layered structure and the spinel structure. Figure 2.20 shows the relationship between
the intensity ratio of both reflections and the percentage of spinel in the crystal.

To determine the percentage of spinel in the crystal (x), the 3D ED data acquired
on Li1.2Ni0.13Mn0.54Co0.13O2 were processed using PETS2. The three-dimensional
reciprocal lattice was indexed with a supercell with cell parameters a = b = 9.8707 Å,
c = 14.2301 Å, α = β = 90° and γ = 120°. The intensities of the Bragg reflections
determined by PETS2 (I(Q)) were then used to calculate the percentage of spinel in the
crystal (x):

I(Q) = |xFspinel(Q)+ (1−x)Flayered(Q)|2, (2.6)

with Q a reciprocal lattice vector (Equation 1.5), Fspinel(Q) the structure factor of the
spinel phase and Flayered(Q) the structure factor of the layered phase. The percentage of
spinel in the crystal (x) was calculated from the intensity ratio of all possible reflection
pairs (with one reflection only caused by the spinel structure and one reflection caused
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Figure 2.18: Cross-section of a spherical core-shell Li1.2Ni0.13Mn0.54Co0.13O2 particle
used for calculating electron diffraction patterns in DISCUS. The particle has a size of 10
× 10 × 10 supercell unit cells with a layered core and a spinel shell. The spinel/layered
ratio used for the simulation of this particle is 50:50. Purple octahedra represent MO6
octahedra, with M = Ni, Mn, Co. Green, purple and red spheres represent lithium atoms,
transition metal atoms, and oxygen atoms, respectively.

by both the spinel structure and the layered structure).

The method was applied to determine the spinel/layered phase ratio in a submi-
cron sized Li1.2Ni0.13Mn0.54Co0.13O2 crystal that was cycled 150 times. After 150
charge-discharge cycles, 4% of the Li1.2Ni0.13Mn0.54Co0.13O2 crystal was transformed
from the layered structure to the spinel structure. The spinel/layered phase ratio in a sub-
micron sized Li1.2Ni0.13Mn0.54Co0.13O2 crystal that was 100 times cycled has previously
been determined using in situ synchrotron powder X-ray diffraction [134]. The authors
found that after 100 charge-discharge cycles, 5 % of the Li1.2Ni0.13Mn0.54Co0.13O2
crystal was transformed from the layered structure to the spinel structure, which is close
to the spinel/layered phase ratio of 4% determined using 3D ED.

The proposed method could also be applied to determine the phase ratio in other
multi-phase materials, as long as some reflections belong to only one of the two phases.
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Figure 2.19: [100] and [1̄10] electron diffraction patterns calculated for, respectively, 5%,
20% and 50% of spinel, for a spherical crystal with 10 × 10 × 10 supercell unit cells.

Figure 2.20: The intensity ratio of the 033 reflection and the 066 reflection depends on the
volume ratio between the layered structure and the spinel structure. The 033 reflection
is only caused by the spinel structure, whereas the 066 reflection is caused by both the
spinel structure and the layered structure.
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2.8 Conclusion

In this chapter, we showed that short-range order parameters can be refined from the
one-dimensional diffuse scattering in 3D ED data. As 3D ED requires much smaller
crystal sizes than single-crystal X-ray diffraction, this opens up the possibility to
refine short-range order parameters in materials for which no crystals large enough for
single-crystal X-ray diffraction are available.

Lithium-ion battery cathode materials consist of submicron-sized crystals, which
are too small to be investigated with single-crystal X-ray diffraction. Three types of
twins may occur in Li1.2Ni0.13Mn0.54Co0.13O2: rotation twins with 3-fold twin axis
[103], rotation twins with 4-fold twin axis [323], and reflection twins with mirror
plane (001). Inspection of the three-dimensional reciprocal lattice of 20 different
Li1.2Ni0.13Mn0.54Co0.13O2 crystals, showed that all crystals had rotation twins with
3-fold twin axis [103], 7 of the 20 crystals had rotation twins with 4-fold twin axis [323],
and 5 of the 20 crystals had reflection twins with mirror plane (001).

Short-range order parameters were refined from the one-dimensional diffuse scat-
tering in 3D ED data acquired on a 200 nm sized Li1.2Ni0.13Mn0.54Co0.13O2 crystal
that only had rotation twins with 3-fold twin axis [103]. The number of stacking faults
and the twin percentages were refined from the diffuse scattering using a Monte Carlo
refinement in DISCUS. For the diffuse scattering in the [2̄10] reciprocal space section
of the investigated crystal, the best agreement between the observed and calculated
intensities was achieved for a stacking fault probability of 29(2) % and twin percentages
of p[100]= 40(3) %, p[1̄10]= 34(3) % and p[1̄1̄0]= 26(6) %.

Finally, we described a method to determine the spinel/layered phase ratio from
the Bragg reflections in 3D ED data acquired on Li1.2Ni0.13Mn0.54Co0.13O2. The method
was applied to a crystal that was 150 times cycled. After 150 charge-discharge cycles,
4% of the crystal was transformed from the layered structure to the spinel structure,
which is close to the spinel/layered phase ratio that has previously been determined
using in situ synchrotron powder X-ray diffraction [134].
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Three-dimensional diffuse scattering -

Nb0.84CoSb

The results of this chapter will be published in:

• (in preparation) Poppe, R., & Hadermann, J., Diffuse electron scattering data ac-
quisition for quantitative analysis.

• (submitted for publication) Poppe, R., Roth, N., Neder, R. B., Palatinus, L.,
Iversen, B. B., & Hadermann, J., Refinement of the short-range order parameters
from the diffuse scattering in single-crystal electron diffraction data.

In this chapter, we will refine short-range order parameters from the three-dimensional
diffuse scattering in both three-dimensional electron diffraction (3D ED) and single-
crystal X-ray diffraction data. The defective half-Heusler system Nb0.84CoSb was
chosen as a reference material. The correlations between neighbouring vacancies and
the displacements of Sb and Co atoms will be refined from the diffuse scattering using a
Monte Carlo refinement in DISCUS and a three-dimensional difference pair distribution
function (3D-∆PDF) refinement in Yell. To determine the accuracy of the refined
correlation coefficients, the displacements of Sb and Co atoms refined from the diffuse
scattering will be compared with the displacements refined from the Bragg reflections
in single-crystal X-ray diffraction data. The Nb occupancy and the displacements of
Sb and Co atoms will also be refined from the Bragg reflections in 3D ED data, and
compared with reference values refined from the Bragg reflections in single-crystal
X-ray diffraction data.

The effect of different experimental parameters on the spatial resolution of the ob-
served diffuse scattering will also be investigated. Finally, the model of the short-range
Nb-vacancy order in Nb0.84CoSb will also be applied to LiNi0.5Sn0.3Co0.2O2.
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3.1 Introduction

Defective half-Heusler systems X1−xYZ, such as Nb1−xCoSb, are used as thermoelectric
materials. Their thermoelectric properties depend on the vacancy distribution, which can
be adjusted by varying the synthesis temperature or quench rate [156]. The diffuse scat-
tering in Nb0.84CoSb (Figure 3.1) is due to correlations between neighbouring vacancies
and the relaxation of Sb and Co atoms around these vacancies [157, 156].

Figure 3.1: (a) Unit cell of the average crystal structure of Nb0.84CoSb. Nb and Sb atoms
form a rock salt structure, whereas Nb and Co atoms form a sphalerite structure. (b)
Arrows indicate the local displacements of Sb and Co atoms. Sb atoms move towards
neighbouring vacancies, whereas Co atoms move away from neighbouring vacancies.
Figure adapted from [156].

3.2 Experimental details

3.2.1 Synthesis

The samples that were used in this study were previously used by [156] and are referred to
as the ‘SC-0.81’ and ‘Q-0.84 #2’ samples. Two different synthesis methods were used to
prepare these samples. The ‘SC-0.81’ sample has nominal stoichiometry Nb0.81CoSb and
was slowly cooled (SC) using an induction furnace. The ‘Q-0.84 #2’ sample has nominal
stoichiometry Nb0.84CoSb and was thermally quenched (Q) from the melt. Details of
the synthesis can be found in [156] for the slowly cooled sample and in [158] for the
thermally quenched sample. The thermally quenched sample Nb0.84CoSb (Q-0.84 #2)
only has short-range Nb-vacancy order, whereas the slowly cooled sample Nb0.81CoSb
(SC-0.81) also has long-range Nb-vacancy order.
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3.2.2 Data acquisition

Samples for electron diffraction data collection were prepared by dispersing the powder
in ethanol. A few droplets of the suspension were deposited on a copper grid covered
with an amorphous carbon film. Ultra-thin amorphous carbon grids were used to reduce
the experimental background.

In-zone selected area electron diffraction (SAED) patterns were acquired with an
FEI Tecnai G2 electron microscope operated at 200 kV using an FEI Eagle 2k charge-
coupled device (CCD) (2048 x 2048 pixels with 16-bit dynamic range). In-zone
precession electron diffraction (PED) patterns were acquired with a precession angle of
1° using a DigiSTAR precession device from NanoMEGAS.

3D ED data were acquired with an aberration-corrected cubed FEI Titan 80-300
electron microscope operated at 300 kV using a GATAN US1000XP CCD (4096 x 4096
pixels with 16-bit dynamic range). One 3D ED data set was acquired using a Quantum
Detectors MerlinEM hybrid pixel detector (512 x 512 pixels with 24-bit dynamic range).
The crystal was illuminated in SAED mode with an exposure time of 1 s per frame. Elec-
tron diffraction patterns were acquired with a Fischione tomography holder (tilt range
of ±80°), in a stepwise manner, using an in-house developed script. Energy filtered 3D
ED data were acquired with a Quantum 966 Gatan Image Filter, with a slit width of 10 eV.

The 3D ED data used for the dynamical refinement were collected with a step
size of 0.1° on crystals with a size of 80-200 nm. The crystals were entirely illuminated
during the whole data collection. The 3D ED data used for the diffuse scattering analysis
were collected with a step size of 0.1 or 0.2° on crystals with a size of 200-3000 nm. For
the larger crystals, only a thin part of the crystal was illuminated, which was recentred
inside the aperture every few degrees.

Details on the acquisition of the single-crystal X-ray diffraction data can be found
in [156].

3.2.3 Data processing

PETS2 was used to process the 3D ED data including background subtraction of the
individual frames, integration of the Bragg reflection intensities for the dynamical re-
finement, and applying symmetry with Laue class m3̄m in the reconstruction of the three-
dimensional reciprocal lattice. The three-dimensional reciprocal lattice of all 3D ED data
was indexed with a cubic unit cell with cell parameter a = 5.89864(3) Å and space group
F4̄3m [159].
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3.3 Dynamical refinement of the average crystal structure

Dynamical refinements of the average crystal structure were performed in Jana2020.
Because the space group F4̄3m is non-centrosymmetric, a twinning inversion matrix
was defined. Refined parameters include the Nb occupancy, the twin fraction or Flack
parameter, a thickness parameter, harmonic displacement parameters of Sb, Nb and Co,
and one scale factor per virtual frame. The Nb occupancy was allowed to refine freely,
whereas the occupancies of Sb and Co were fixed to 1. The intensities in the dynamical
refinement were calculated for a wedge-shaped crystal [70]. The dynamical refinement
parameters were set to gmax = 2.4 Å−1, Sgmax(matrix) = 0.025 Å−1, Sgmax(refine) = 0.1,
Rmax

S g
= 0.66, and Nint = 100. The meaning of the dynamical refinement parameters can

be found in [70, 71].

Since the intensities of the Bragg reflections in 3D ED data depend on the crystal
thickness, the dynamical refinement requires the refinement of a thickness parameter.
The number of refined parameters in the dynamical refinement from 3D ED is much
larger than for the kinematical refinement from single-crystal X-ray diffraction. For the
kinematical refinement applied to single-crystal X-ray diffraction data, one scale factor
was refined for the whole dataset. For the dynamical refinement applied to 3D ED data,
one scale factor was refined for each virtual frame, which is necessary because several
factors (changes in the illuminated area of the crystal, slowly growing contamination of
the crystal, and varying crystal thickness and thus absorption) influence the overall scale
of each frame [71].

The percentage of vacancies on the Nb sites and the average displacements of Sb
and Co atoms in the thermally quenched sample (Q-0.84 #2) were refined from the
Bragg reflections in 3D ED data using a dynamical refinement, and were compared with
reference values refined from the Bragg reflections in single-crystal X-ray diffraction
data [156].

3D ED data were acquired on three different crystals, and each data set was pro-
cessed separately using PETS2. Analogous to the refinement of the average structure
from the Bragg reflections in single-crystal X-ray diffraction data [156], the dynamical
refinement of the average structure was done in two stages. In the first stage (center
model), the displacements of Sb and Co atoms were fixed to zero. In the second
stage (split model), Sb atoms were off-centered at (1/2+∆, 1/2, 1/2), Co atoms were
off-centered at (1/4-δ, 1/4-δ, 3/4-δ), and the displacements of Sb and Co atoms (∆ and δ)
were allowed to refine freely.

Results of the dynamical refinement for the center model and for the split model
are shown in Table 3.1. The standard uncertainties on the Nb occupancy and the average
displacements of Sb and Co atoms only consider random errors in the intensities of
the Bragg reflections and are thus underestimated. Differences between the refined Nb
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Table 3.1: Average structure refinement for the thermally quenched sample (Q-0.84 #2).
The dynamical refinement from the Bragg reflections in 3D ED data acquired on three
different crystals is compared with the reference refinement from the Bragg reflections
in single-crystal X-ray diffraction data [156]. dmin is the resolution, Ntot is the total
number of reflections used in the refinement, Nall is the total number of unique reflec-
tions used in the refinement, Nobs the number of observed unique reflections for which
Iobs > 3σ(Iobs), Noutl the number of reflections excluded from the refinement, and Npar
the number of refined parameters. R1(obs) is the conventional R-value of the observed
reflections, wR2(all) the weighted R-value of all reflections, GOF(obs) the goodness of
fit of the observed reflections, and occNb the refined Nb occupancy.

X-rays electrons
(crystal 1)

electrons
(crystal 2)

electrons
(crystal 3)

dmin (Å) 0.4 0.5 0.5 0.45
Ntot 10474 1258 2323 2308
completeness 100% 98.31% 98.59% 98.89%

Center model

Nobs/Nall 202/202 457/457 684/721 717/853
Noutl 0 5 7 5
Npar 7 59 52 56
R1(obs) (%) 2.76 7.84 11.01 6.62
wR2(all) (%) 6.00 21.04 27.91 17.81
GOF(obs) 1.318 9.14 9.64 4.92
occNb 0.831(1) 0.855(24) 0.822(20) 0.798(12)

Split model

Nobs/Nall 292/292 459/459 683/720 718/855
Noutl 0 3 8 3
Npar 11 64 57 61
R1(obs) (%) 0.49 7.85 10.82 6.93
wR2(all) (%) 0.78 20.92 27.59 18.59
GOF(obs) 0.58 9.12 9.56 5.15
occNb 0.827(2) 0.863(25) 0.811(20) 0.796(15)
Sb shift (Å) 0.141(1) 0.133(15) 0.183(8) 0.181(11)
Co shift (Å) 0.130(1) 0.184(8) 0.088(165) 0.148(24)
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occupancy and the refined Sb and Co displacements for the three crystals can be due
to real differences in the Nb occupancy and the Sb and Co displacements between the
three crystals or can be due to systematic errors in the calculation of the intensities
in the dynamical refinement. Systematic errors are caused by: (i) strong multiple
scattering caused by the high atomic numbers of Nb, Sb and Co; (ii) the relatively low
data-to-parameter ratio (i.e., the number of observed reflections per refined parameter);
(iii) no optimization of the frame orientation angles. The orientations of the frames
could not be optimized due to the limited number of reflections on each frame. The
limited accuracy of the goniometer of the transmission electron microscopy (TEM) stage
or small unpredictable movements of the crystal during the acquisition of the data may
cause the orientation of a frame as calculated from the orientation matrix to be inaccurate
[70]. It should also be noted that the R-values and the refined parameters slightly depend
on the dynamical refinement parameters. For example, changing the value for Rmax

S g
=

0.66 from 0.66 to 0.8 changed the refined Nb occupancy by 1.9% for crystal 1, by 0.3%
for crystal 2, and by 0.1% for crystal 3.

The average Nb occupancy of the three crystals x̄ was calculated using Equation
3.1:

x̄ =

∑3
i=1

xi
s2

i∑3
i=1

1
s2

i

,
1
s2

x̄

=

3∑
i=1

1
s2

i

, (3.1)

with xi the Nb occupancy of each crystal and si the standard uncertainty on the Nb occu-
pancy. For the split model, the average Nb occupancy refined from the Bragg reflections
in 3D ED data (0.813(11)) differs by only 0.014(11) from the Nb occupancy refined
from the Bragg reflections in single-crystal X-ray diffraction data (0.827(2)). Refined
occupancies are more accurate for highly symmetric unit cells, such as for Nb0.84CoSb,
than for low symmetric unit cells. Palatinus and co-workers previously compared the
Fe/Mg occupancy in (MgxFe1−x)2Si2O6 refined from the Bragg reflections in 3D ED
data with the Fe/Mg occupancy refined from the Bragg reflections in single-crystal X-ray
diffraction data, and found a difference in Fe/Mg occupancy of 0.028(8) [70, 160].

For the single-crystal X-ray diffraction data, the R-value improved significantly
after refinement of the displacements of Sb and Co atoms [156], while for the 3D ED
data, the R-value stayed approximately the same (Table 3.1). The average displacements
refined from the Bragg reflections in 3D ED data (0.175(6) Å for Sb, and 0.180(8) Å
for Co) were calculated using Equation 3.1 and differ by 0.040(5) Å from the average
displacements refined from the Bragg reflections in single-crystal X-ray diffraction
data (0.141(1) Å for Sb and 0.130(1) Å for Co). Palatinus and co-workers previously
compared the displacements refined from the Bragg reflections in 3D ED data with the
displacements refined from the Bragg reflections in single-crystal X-ray diffraction data
for three different samples and found a difference in bond length between 0.01 Å and
0.02 Å [70]. The difference in bond length is thus larger for Nb0.84CoSb than for the
samples reported in [70], which could be due to differences in the amount of multiple
scattering. The atomic numbers of the elements of the samples in [70] are lower than the
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atomic numbers of Nb, Sb and Co. Because the average mean free path between two
scattering events is smaller in samples with elements with higher atomic numbers, the
intensities in the 3D ED data acquired on Nb0.84CoSb are more influenced by multiple
scattering than the intensities in the 3D ED data acquired on the samples in [70].

Figure 3.2 shows the difference Fourier maps (F(obs)-F(calc)) in the x0.5z plane
after refinement of the average structure of the thermally quenched sample (Q-0.84 #2)
with the center model, both for the single-crystal X-ray diffraction data and the 3D ED
data acquired on the three different crystals. The average positions of Sb and Nb atoms

Figure 3.2: Left: The average positions of Sb (orange) and Nb (green) atoms in the x0.5z
plane. Right: Difference Fourier maps in the x0.5z plane after refinement of the average
structure of the thermally quenched sample (Q-0.84 #2) with the center model, both for
single-crystal X-ray diffraction data and 3D ED data acquired on three different crystals.

in the x0.5z plane are shown on the left. The red/blue features in the difference Fourier
map represent the residual electron density for X-ray diffraction and the residual atomic
charge density for electron diffraction. In the difference Fourier map of the single-crystal
X-ray diffraction data, four maxima in the residual electron density can be observed
around the average position of the Sb atom, which indicate splitting of the Sb position.
Splitting of the Sb position is unclear from the difference Fourier maps of the 3D ED
data acquired on crystal 1 and crystal 2 but is clear from the difference Fourier map of
the 3D ED data acquired on crystal 3, even though the maxima in the residual atomic
charge density are broader than for X-ray diffraction. Differences between the difference
Fourier maps of the three crystals are likely due to systematic errors in the calculation of
the intensities in the dynamical refinement. This also explains the difference between the
average Sb displacement refined from the Bragg reflections in 3D ED and single-crystal
X-ray diffraction data.

69



CHAPTER 3. THREE-DIMENSIONAL DIFFUSE SCATTERING -
NB0.84COSB

3.4 Effect of different parameters on the observed diffuse scat-
tering

3.4.1 In-zone electron diffraction

Figure 3.3 shows the h0l and hhl planes reconstructed from 3D ED data, in-zone SAED
patterns, and in-zone PED patterns acquired on the same crystal. The diffuse circles in
the h0l plane reconstructed from 3D ED show clear intensity modulations. By contrast,
the diffuse circles in the in-zone SAED pattern have almost the same intensity every-
where due to multiple scattering. The intensity distribution of the diffuse scattering in
the in-zone PED patterns is very similar to the one in the in-zone SAED patterns. As
discussed in Subsection 2.4.2, the higher-order Bragg reflections have higher intensities
in in-zone PED patterns than in in-zone SAED patterns. The spatial resolution of the
diffuse scattering is also lower in in-zone PED patterns than in in-zone SAED patterns.
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Figure 3.3: Comparison of the h0l and hhl planes reconstructed from 3D ED data, in-zone
SAED patterns, and in-zone PED patterns acquired on the same crystal. Data acquired
on the thermally quenched sample (Q-0.84 #2).
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3.4.2 Background subtraction

The background of the in-zone SAED patterns and in-zone PED patterns in Figure 3.3
has not been subtracted. For the 3D ED data, the background of the individual frames has
been subtracted in PETS2 before the reconstruction of the h0l and hhl planes. Figure 3.4
shows the hhl plane reconstructed from 3D ED data acquired with and without energy
filter on the same crystal. Except for using an energy filter, the experimental settings
were identical for both 3D ED data sets. The hhl planes after background subtraction in
PETS2 are also shown in Figure 3.4. As discussed in Subsection 2.4.3, an energy filter

Figure 3.4: Comparison of the hhl plane reconstructed from 3D ED data acquired with
and without energy filter, before and after background subtraction in PETS2. The circle
passing through the (220) Bragg reflection is due to neighbouring crystals. Due to sym-
metry averaging with Laue class m3̄m, each additional reflection in the hhl plane will
appear four times. Data acquired on the thermally quenched sample (Q-0.84 #2).

with a slit width of 10 eV reduces the thermal diffuse scattering but does not entirely
remove it. Subtracting the background of the individual frames in PETS2 before the
reconstruction of the three-dimensional reciprocal lattice is thus the best method to obtain
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diffuse scattering data that can be used for quantitative analysis.

3.4.3 Symmetry averaging

Figure 3.5 shows the h0l and hhl planes reconstructed from 3D ED data before and
after applying symmetry averaging with Laue class m3̄m. The h0l and hhl planes
before applying symmetry averaging have a missing wedge due to the limited tilt range
(90° for the thermally quenched sample (Q-0.84 #2) and 100° for the slowly cooled
sample (SC-0.81)). Applying symmetry averaging with Laue class m3̄m allows to fill
the missing wedge in the three-dimensional reciprocal lattice, which is required for the
calculation of the 3D-∆PDF in Section 3.6.

Figure 3.5: Comparison of the h0l and hhl planes reconstructed from 3D ED data be-
fore and after applying symmetry averaging with Laue class m3̄m, both for the thermally
quenched sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81). The additional
reflections between the Bragg reflections are due to neighbouring crystals. Due to sym-
metry averaging with Laue class m3̄m, each additional reflection in the h0l plane will
appear eight times, while each additional reflection in the hhl plane will appear four
times.

The 3D ED data for the slowly cooled sample (SC-0.81) were acquired on a 150
nm sized crystal. Crystals with long-range Nb-vacancy order consist of twins with
different orientations [161]. Each twin orientation gives rise to one pair of satellite
reflections. Because some twin orientations are missing, not all satellite reflections are
visible in the h0l and hhl planes before symmetry averaging. Symmetry averaging with
Laue class m3̄m will thus introduce additional satellite reflections corresponding to the
other twin orientations.
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3.4.4 Convergence of the electron beam

In 3D ED, the crystal can be illuminated either in SAED mode or in nano electron diffrac-
tion (NED) mode [42]. In SAED mode, the incident electron beam is parallel, and the
sample area used for collecting diffraction data is determined by the selected area aper-
ture. In NED mode, a small C2 condenser aperture is inserted, and the sample area used
for collecting diffraction data is determined by the beam size. The incident electron beam
in NED mode is usually slightly convergent. Acquiring 3D ED data in SAED mode will
thus improve the spatial resolution of the observed diffuse scattering. Figure 3.6 shows
the h0l and hhl planes reconstructed from 3D ED data acquired on the same crystal in
SAED mode and in NED mode. Due to the slightly convergent electron beam in NED

Figure 3.6: Comparison of the h0l and hhl planes reconstructed from 3D ED data ac-
quired in SAED and NED mode. Data acquired on the slowly cooled sample (SC-0.81).

mode, the higher-order Bragg reflections have higher intensities for the 3D ED data ac-
quired in NED mode than for the 3D ED data acquired in SAED mode.

74



3.4. EFFECT OF DIFFERENT PARAMETERS ON THE OBSERVED
DIFFUSE SCATTERING

3.4.5 Detector point spread function

Important detector performance characteristics for diffuse scattering measurements
include a narrow detector point spread function, low sensor intrinsic background noise,
and a high dynamic range [4]. Hybrid pixel detectors such as Pilatus [162], XPAD [163]
or Medipix [164] are used for the acquisition of high-quality single-crystal X-ray diffuse
scattering data at synchrotron sources. The point spread function is essentially one pixel
broad, they can be operated under zero intrinsic noise conditions, and the dynamic range
is higher than for CCDs [4].

Figure 3.7 shows the hhl plane reconstructed from 3D ED data acquired with a
GATAN US1000XP CCD and a Quantum Detectors MerlinEM hybrid pixel detector
on the same crystal. In contrast to X-ray diffraction, the detector point spread function

Figure 3.7: Comparison of the hhl plane reconstructed from 3D ED data acquired with a
GATAN US1000XP CCD and a Quantum Detectors MerlinEM hybrid pixel detector on
the same crystal. Data acquired on the thermally quenched sample (Q-0.84 #2).

for electron diffraction is much broader for the hybrid pixel detector than for the CCD,
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which can be explained by charge sharing [165]. Electrons that fall in on the hybrid
pixel detector create a charge cloud in the silicon sensor. Electrostatic repulsion and
charge diffusion cause the charge cloud to expand, which explains why electrons are also
detected by neighbouring pixels. The spatial resolution of the observed diffuse scattering
is thus higher for 3D ED data acquired with a CCD than for 3D ED data acquired with a
hybrid pixel detector.

3.4.6 Crystal mosaicity

Figure 3.8 shows the h0l and hhl planes reconstructed from 3D ED data acquired on
five different crystals of the thermally quenched sample (Q-0.84 #2). The angular
broadening of the Bragg reflections is larger for crystal 4 than for crystal 5, which is due
to differences in the crystal mosaicity. Crystals consist of domains in which the lattice
planes are slightly misaligned. The larger the spread of lattice plane orientations, the
larger the mosaicity. The spatial resolution of the observed diffuse scattering will be
higher for crystals with a lower mosaicity.

Not all crystals of the thermally quenched sample (Q-0.84 #2) have identical dif-
fuse scattering. All crystals have satellite reflections on top of the diffuse scattering, but
their sharpness is different. The sharpness of the satellite reflections is related to the
correlation length of the local Nb-vacancy order.

It should also be noted that the Bragg reflections close to the central beam were
overexposed due to the limited dynamical range of the CCD. When the integral dose
loaded on a single pixel exceeds the saturation limit, electrons will spill to neighbouring
pixels giving rise to blooming or streaking effects [4].
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Figure 3.8: Comparison of the h0l and hhl planes reconstructed from 3D ED data ac-
quired on five different crystals of the thermally quenched sample (Q-0.84 #2). The
additional reflections between the Bragg reflections for crystals 2 and 3 are due to neigh-
bouring crystals. Due to symmetry averaging with Laue class m3̄m, each additional re-
flection in the h0l plane will appear eight times, while each additional reflection in the
hhl plane will appear four times.
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3.4.7 X-ray and electron diffraction

Figure 3.9 shows the hhl plane and the planes 1, 2, 3 and 4 voxels above the hhl plane,
reconstructed from single-crystal X-ray and 3D ED data acquired on the slowly cooled
sample (SC-0.81). Each plane has a thickness of one voxel. The hhl plane reconstructed
from 3D ED data shows additional satellite reflections compared with the hhl plane
reconstructed from single-crystal X-ray diffraction data (reflections indicated by the
white circles). These additional satellite reflections have their maximum intensity in the
plane four voxels above the hhl plane. The Bragg reflections are broader in the 3D ED
data than in the single-crystal X-ray diffraction data, which was also observed in [13].
The spatial resolution of the observed diffuse scattering is thus lower for 3D ED than
for single-crystal X-ray diffraction. Consequently, the reflections indicated by the white
circles in the hhl plane reconstructed from 3D ED are from slightly above and below the
hhl plane.

To account for resolution effects, the intensity of each pixel in the calculated dif-
fuse scattering data will be convoluted with a Gaussian function. The standard deviation
of the Gaussian function will be estimated from the intensity profile of unsaturated
Bragg reflections.
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Figure 3.9: Comparison of the hhl plane and the planes 1, 2, 3 and 4 voxels above the hhl
plane, reconstructed from single-crystal X-ray diffraction and 3D ED data. The hhl plane
reconstructed from 3D ED data shows additional satellite reflections compared with the
hhl plane reconstructed from single-crystal X-ray diffraction data (reflections indicated
by the white circles). These additional satellite reflections have their maximum intensity
four voxels above the hhl plane. Data acquired on the slowly cooled sample (SC-0.81).
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3.5 Calculated diffuse scattering

DISCUS was used to build a model of the short-range Nb-vacancy order in the thermally
quenched sample Nb0.84CoSb (Q-0.84 #2) and of the long-range Nb-vacancy order in the
slowly cooled sample Nb0.81CoSb (SC-0.81).

3.5.1 Long-range order model

For the long-range order model, a cell with a size of 6× 6× 6 NbCoSb unit cells (cell
parameter a = 5.89864(3) Å, space group F4̄3m [159]) was created, and 1/6 of the Nb
atoms were replaced by vacancies to form the B1 structure1 as defined in [157]. Each
Sb atom was moved by 0.148 Å towards its neighbouring vacancy, and each Co atom
was moved by 0.128 Å away from its neighbouring vacancy (displacements refined from
the Bragg reflections in the single-crystal X-ray diffraction data of the slowly cooled
sample Nb0.81CoSb (SC-0.81)) [156]. The Sb atoms were moved along the cubic <
100 > directions, while the Co atoms were moved along the cubic < 111 > directions
(Figure 3.1 (b)). The resulting B1 cell (Figure 3.10) has cell parameter a = 35.3918(2) Å
and space group P1. A structure with a size of 6×6×6 B1 cells was created in DISCUS.

Figure 3.10: B1 structure, as defined in [157], showing the Nb-vacancy ordering in the
long-range order model. Sb and Co atoms are omitted for clarity.

1In [156], the BD structure was used instead of the B1 structure. The BD structure is a combination of the
B1 structure and the A2 structure. The BD, B1 and A2 structures are defined in [157]. Because we noticed
that the diffraction patterns calculated from the B1 structure agree better with the experimental diffraction
patterns than the ones calculated from the BD structure, we used the B1 structure instead of the BD structure.
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3.5.2 Short-range order model

Correlation coefficients cuvw
mn between neighbouring vacancies in DISCUS are defined as

[166, 37]:

cuvw
mn =

Puvw
mn − (occNb)2

occNb(1−occNb)
, (3.2)

with Puvw
mn the probability that sites m and n are occupied by the same atom type, uvw the

interatomic vector and occNb the Nb occupancy. Negative values of cuvw
mn indicate that

sites m and n tend to be occupied by different atom types while positive values of cuvw
mn

indicate that sites m and n tend to be occupied by the same atom type. A correlation
value of zero describes a random distribution of the two atom types. The maximum
negative value of cuvw

mn for a given occupancy occNb is −occNb/(1−occNb) (Puvw
mn = 0), the

maximum positive value is +1 (Puvw
mn = occNb).

According to Equation 3.2, the maximum negative value of c(1/2,1/2,0) is ≈ −4.78
(P(1/2,1/2,0)

mn = 0), with P(1/2,1/2,0)
mn the probability that two nearest neighbouring Nb sites

m and n are occupied by Nb atoms. However, for Nb0.84CoSb a value of P(1/2,1/2,0)
mn = 0

cannot be achieved and the maximum achievable negative value of c(1/2,1/2,0) is ≈ −0.20.

For the short-range order model, a starting structure with a size of 25 × 25 × 25
NbCoSb unit cells (cell parameter a = 5.89864(3) Å, space group F4̄3m [159]) was
created. 1/6 of the Nb atoms were randomly selected and replaced by vacancies. Periodic
boundary conditions were imposed to avoid edge effects.

A Monte Carlo simulation in DISCUS is used to minimize the energy E of the
crystal until the target correlations between nearest neighbour vacancy pairs (c(1/2,1/2,0))
and next-nearest neighbour vacancy pairs (c(1,0,0)) are achieved. The energy E of the
crystal is defined as [157]:

E =
1
2

Nvac∑
i=1

(
J1

12NN∑
j

S i j+ J2

6NNN∑
j′

S i j′

)
, (3.3)

with Nvac the number of vacancies in the crystal. The summation in the first term is over
all 12 nearest neighbour (NN) vacancy sites j of vacancy i, whereas the summation in
the second term is over all six next-nearest neighbour (NNN) vacancy sites j’ of vacancy
i. S i j = 1 if site j is occupied by a vacancy and S i j = 0 if site j is occupied by a Nb atom.
Similarly, S i j′ = 1 if site j’ is occupied by a vacancy and S i j′ = 0 if site j’ is occupied
by a Nb atom. J1 is the energy assigned to a nearest neighbour vacancy pair, and J2 is
the energy assigned to a next-nearest neighbour vacancy pair. Nearest and next-nearest
neighbour vacancies will avoid each other when J1 > 0 and J2 > 0. During the Monte
Carlo simulation, the values of the energies J1 and J2 in Equation 3.3 are adjusted and
the target correlations c(1/2,1/2,0) and c(1,0,0) are calculated. When the target correlations
c(1/2,1/2,0) and c(1,0,0) are achieved, the energy E of the crystal will be equal to zero [37].
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Each Monte Carlo step, two randomly selected Nb atoms/vacancies are switched
positions. When the new configuration has a lower energy E, then it is always accepted.
When the new configuration has a higher energy E, then it is only accepted when the
transition probability P, given by

P =
exp(−∆E/kT )

1+ exp(−∆E/kT )
, (3.4)

is less than a random number η, chosen uniformly in the range [0,1]. ∆E is the
energy difference between the new and the old configuration, T is the temperature,
and k is Boltzmann’s constant. The temperature T controls the proportion of accepted
modifications that lead to a higher energy E. If T = 0, only changes that decrease the
energy E will be accepted. The higher the temperature T, the more moves will be
accepted that lead to a higher energy E [92, 4, 37]. In all Monte Carlo simulations,
kT was chosen equal to 0.001. One Monte Carlo cycle is defined as the number of
Monte Carlo steps necessary to visit every crystal site once on average. The number of
Monte Carlo cycles was chosen equal to 500 times the number of atoms within the crystal.

A second Monte Carlo simulation in DISCUS is used to minimize the energy E of
the crystal until the target distances between a vacancy i and a neighbouring Sb atom k
(τik) and between a vacancy i and a neighbouring Co atom k’ (τik′) are achieved. The
energy E of the crystal is defined by a Lennard-Jones potential energy:

E =
1
2

Nvac∑
i=1

(6Sb∑
k

D
[(
τik
dik

)12
−

(
τik
dik

)6]
+

4Co∑
k′

D
[(
τik′

dik′

)12
−

(
τik′

dik′

)6])
, (3.5)

with Nvac the number of vacancies in the crystal and the potential depth D = −100. The
summation in the first term is over all six neighbouring Sb atoms k of vacancy i, whereas
the summation in the second term is over all four neighbouring Co atoms k’ of vacancy i.
dik is the distance between a vacancy i and a neighbouring Sb atom k. dik′ is the distance
between a vacancy i and a neighbouring Co atom k’. During the Monte Carlo simulation,
the values of the distances dik and dik′ in Equation 3.5 are adjusted. When the target
distances τik and τik′ are achieved, the Lennard-Jones potential energy will achieve its
minimum.

Each Monte Carlo step, one Sb atom is moved towards its neighbouring vacancy
and one Co atom is moved away from its neighbouring vacancy. When the new config-
uration has a lower energy E, then it is always accepted. When the new configuration
has a higher energy E, then it is only accepted when the transition probability P in
Equation 3.4 is less than a random number η, chosen uniformly in the range [0,1] [37].
The number of Monte Carlo cycles was chosen equal to 1000 times the number of atoms
within the crystal.
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3.5.3 Calculation of the diffuse scattering

The intensities in reciprocal space were calculated according to the standard formula for
kinematic scattering (Equation 1.10). The structure factor F(Q) was calculated using the
discrete Fourier transform (DFT) (Equation 1.11).

Three-dimensional electron diffraction (3D ED) data were acquired on the thermally
quenched sample Nb0.84CoSb (Q-0.84 #2) and the slowly cooled sample Nb0.81CoSb
(SC-0.81). Figure 3.11 shows the h0l plane reconstructed from single-crystal X-ray
and single-crystal electron diffraction data acquired on both samples. The h0l plane

Figure 3.11: Comparison of the h0l plane from single-crystal X-ray and single-crystal
electron diffraction, both for the thermally quenched sample (Q-0.84 #2) and the slowly
cooled sample (SC-0.81). The top row shows the experimental diffuse scattering; the
bottom row shows the diffuse scattering calculated in Scatty from the structure models
calculated in DISCUS. The experimental single-crystal X-ray diffraction data were pre-
viously reported by [156].

for −20 ≤ h, l ≤ 20 is shown in Figure 3.12. The h0.5l and hhl planes are shown in
Figure 3.13 and Figure 3.14.

The diffuse scattering intensity at lower scattering angles is higher for electron
diffraction than for X-ray diffraction, which can be explained by differences in the
atomic form factors for electrons and X-rays. Figure 3.15 shows the X-ray and electron
atomic form factors of Co, Nb and Sb as a function of the scattering angle. The X-ray
atomic form factor is the Fourier transform of the electron density, whereas the electron
atomic form factor is the Fourier transform of the atomic charge density. Because the
electrostatic potential is broader than the electron density, the electron atomic form
factors decrease faster to zero than the X-ray atomic form factors, which explains the
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Figure 3.12: Comparison of the h0l plane from single-crystal X-ray and single-crystal
electron diffraction, both for the thermally quenched sample (Q-0.84 #2) and the slowly
cooled sample (SC-0.81). The top row shows the experimental diffuse scattering; the
bottom row shows the diffuse scattering calculated in Scatty from the structure models
calculated in DISCUS. The experimental single-crystal X-ray diffraction data were pre-
viously reported by [156].

Figure 3.13: Comparison of the h0.5l plane from single-crystal X-ray and single-crystal
electron diffraction, both for the thermally quenched sample (Q-0.84 #2) and the slowly
cooled sample (SC-0.81). The top row shows the experimental diffuse scattering; the
bottom row shows the diffuse scattering calculated in Scatty from the structure models
calculated in DISCUS.
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Figure 3.14: Comparison of the hhl plane from single-crystal X-ray and single-crystal
electron diffraction, both for the thermally quenched sample (Q-0.84 #2) and the slowly
cooled sample (SC-0.81). The top row shows the experimental diffuse scattering; the
bottom row shows the diffuse scattering calculated in Scatty from the structure models
calculated in DISCUS. The experimental single-crystal X-ray diffraction data were pre-
viously reported by [156].

Figure 3.15: (a) X-ray and (b) electron atomic form factors of Co, Nb and Sb as a function
of d∗ = 2sin(θ)/λ. With d the distance between the lattice planes, θ the scattering angle
and λ the wavelength.

difference in the intensity distribution of the diffuse scattering.
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The bottom row in Figure 3.11 shows the h0l plane of the three-dimensional dif-
fuse scattering calculated in Scatty from the structure models calculated in DISCUS.
For the thermally quenched sample (Q-0.84 #2), the diffuse scattering was calculated
from the short-range order model with a correlation coefficient for nearest neighbour
vacancies of c(1/2,1/2,0) = −0.19 and a correlation coefficient for next-nearest neighbour
vacancies of c(1,0,0) = −0.012. The values for c(1/2,1/2,0) and c(1,0,0) were determined
based on a series of Monte Carlo simulations and gave the best visual agreement between
the observed and calculated diffuse scattering. It should be noted that the values for
c(1/2,1/2,0) and c(1,0,0) are different from the ones used for the calculation of the diffuse
scattering in [156]. The diffuse scattering was calculated for an Sb displacement of
0.141 Å and a Co displacement of 0.130 Å (displacements refined from the Bragg
reflections in single-crystal X-ray diffraction data in Table 3.1). For the slowly cooled
sample (SC-0.81), the diffuse scattering was calculated from the long-range order model.
Symmetry with Laue class m3̄m was applied to the three-dimensional diffuse scattering
calculated in Scatty (Figure 3.16).

The short-range order model in DISCUS was calculated for kT = 0.001 (Equation
3.4). If T = 0, only changes that decrease the energy E of the crystal will be accepted.
The higher the temperature T, the more moves will be accepted that lead to a higher
energy E [92, 4, 37]. Figure 3.17 shows the diffuse scattering in the h0l plane calculated
for different values of kT . Differences in the sharpness of the diffuse scattering can
be explained by differences between the target and the achieved correlation coeffi-
cients. The diffuse scattering was calculated for a target correlation between nearest
neighbour vacancies of c(1/2,1/2,0) = −0.20 and a target correlation between next-nearest
neighbour vacancies of c(1,0,0) = −0.10. For kT = 0.001, the achieved correlations are
c(1/2,1/2,0) = −0.18 and c(1,0,0) = −0.09, while for kT = 1, the achieved correlations are
c(1/2,1/2,0) = −0.16 and c(1,0,0) = −0.07. The achieved correlations are thus lower for
higher values of kT , which explains the differences in the calculated diffuse scattering.

Figure 3.18 (a) shows the diffuse scattering calculated for a Nb0.84CoSb crystal
with only occupational disorder (correlations between nearest and next-nearest
neighbour vacancies). The intensity of the diffuse scattering for a crystal with only
occupational disorder decreases with increasing scattering angle. Figure 3.18 (b) shows
the diffuse scattering calculated for a Nb0.84CoSb crystal with only displacive disorder2

(displacements of Sb and Co atoms around the vacancies). The diffuse scattering for
a crystal with only displacive disorder shows asymmetries with respect to the Bragg
reflections. The observed diffuse scattering in the h0l plane in Figure 3.11 is thus due to
both occupational and displacive disorder (Figure 3.18 (c)).

2It should be noted that the diffuse scattering calculated for the crystal with only displacive disorder looks
different from the one reported in the Supporting Information of [156], which was calculated using a custom
Python script.

86



3.5. CALCULATED DIFFUSE SCATTERING

Figure 3.16: Symmetry with Laue class m3̄m was applied to the three-dimensional diffuse
scattering calculated in Scatty.
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Figure 3.17: Diffuse scattering in the h0l plane calculated for a) kT = 0.001, b) kT = 0.5,
c) kT = 1 and d) kT = 5. The diffuse scattering was averaged over ten crystals with a size
of 25×25×25 unit cells. For each crystal, the diffuse scattering was also averaged over
50 lots with a size of 12× 12× 12 unit cells. The diffuse scattering was calculated for a
target correlation between nearest neighbour vacancies of c(1/2,1/2,0) = −0.20 and a target
correlation between next-nearest neighbour vacancies of c(1,0,0) = −0.10.
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Figure 3.18: Structure models and their corresponding calculated single crystal X-ray
diffraction patterns. (a) The calculated h0l plane for a Nb0.84CoSb crystal with only oc-
cupational disorder. Correlations between nearest and next-nearest neighbour vacancies
give rise to the observed diffuse scattering. (b) The calculated h0l plane for a Nb0.84CoSb
crystal with only displacive disorder. Displacements of Sb and Co atoms give rise to the
observed diffuse scattering. (c) The highly structured diffuse scattering in the h0l plane
is due to both occupational and displacive disorder.
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3.6 Three-dimensional difference pair distribution function

The 3D-∆PDF was calculated in MANTID [167]. MANTID was installed on a high
performance computing (HPC) cluster, and the 3D-∆PDF was calculated in parallel on a
node with 128 GB RAM. The 3D-∆PDF was obtained by removing the Bragg reflections
and Fourier transforming the three-dimensional diffuse scattering/satellite reflections
(see Figure 3.19).

Figure 3.19: (a) h0l plane reconstructed from 3D ED data acquired on the slowly cooled
sample (SC-0.81). (b) h0l plane after removing the Bragg reflections. (c) x0z plane of the
3D-∆PDF. Positive 3D-∆PDF features are red and negative features are blue.

For the simulated 3D-∆PDF maps, Scatty was used to calculate the three-dimensional
diffuse scattering from the DISCUS models. Scatty uses a fast Fourier transform (FFT)
algorithm to calculate the structure factor in Equation 1.11, which accelerates the
calculation of the diffuse scattering by a factor 102−103 compared to the DFT. Lanczos
resampling was used to reduce the high-frequency noise. For the short-range Nb-vacancy
order model, the calculation of the three-dimensional diffuse scattering took about eight
days. The diffuse scattering was calculated for expansion order 10, expansion maximum
error 0.05 and window 2. The meaning of these parameters can be found in [168]. To
have an error smaller than 5%, the outer part of the three-dimensional reciprocal lattice
(about 18%) was calculated using the DFT. For the long-range Nb-vacancy order model,
the calculation of the three-dimensional diffuse scattering took only 35 minutes. The
diffuse scattering was calculated for expansion order 1 and window 2.

For the experimental three-dimensional diffuse scattering data, the three-dimensional
reciprocal lattice was reconstructed on a grid with 901x901x901 voxels for
−25.2 ≤ h,k, l ≤ 25.2. For the three-dimensional diffuse scattering data calculated
in Scatty, the three-dimensional reciprocal lattice was reconstructed on a grid with
401x401x401 voxels for −20 ≤ h,k, l ≤ 20.

Figure 3.20 shows the x0z plane of the X-ray and electron 3D-∆PDF, both for the
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thermally quenched sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81). The

Figure 3.20: Comparison of the x0z plane of the X-ray and electron 3D-∆PDF, both for
the thermally quenched sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81).
The 3D-∆PDF was reconstructed from the three-dimensional diffuse scattering data of
which the h0l plane is shown in Figure 3.11. The top row shows the 3D-∆PDF of the
experimental diffuse scattering; the bottom row shows the corresponding 3D-∆PDF of
the calculated diffuse scattering. Positive 3D-∆PDF features are red and negative features
are blue.

3D-∆PDF was reconstructed from the three-dimensional diffuse scattering data of which
the h0l plane is shown in Figure 3.11. The calculated 3D-∆PDF maps are in good
agreement with the experimental ones. A similar comparison for the x0.27z plane of the
3D-∆PDF is shown in Figure 3.21. Because the Bragg reflections close to the central
beam were overexposed due to the limited dynamical range of the CCD, the Bragg
reflections in the electron diffraction data could not entirely be subtracted (Figure 3.22).
The experimental electron 3D-∆PDF is thus affected by blooming artefacts due to
saturated Bragg reflections (deformation of the features in the 3D-∆PDF and weak
additional features).

The 3D-∆PDF maps show features that are positive on one side and negative on
the other side, which is due to the relaxation of Sb and Co atoms around vacancies.
From Figure 3.1 (a), it can be seen that the (0.5,0,0) interatomic vector corresponds
to the distance between a Nb atom/vacancy and an Sb atom. The corresponding
feature in the x0z plane of the 3D-∆PDF is negative towards the origin and positive
away from the origin, which means that when a Nb atom is present at (0,0,0), the Sb
atom with coordinates (0.5,0,0) will move away from the Nb atom. The (0.25, 0.25,
0.25) interatomic vector corresponds to the distance between a Nb atom/vacancy and
a Co atom or the distance between an Sb atom and a Co atom (Figure 3.1 (a)). The
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Figure 3.21: Comparison of the x0.27z plane of the X-ray and electron 3D-∆PDF, both
for the thermally quenched sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81).
The 3D-∆PDF was reconstructed from the three-dimensional diffuse scattering data of
which the h0l plane is shown in Figure 3.11. The top row shows the 3D-∆PDF of the
experimental diffuse scattering; the bottom row shows the corresponding 3D-∆PDF of
the calculated diffuse scattering. Positive 3D-∆PDF features are red and negative features
are blue.

corresponding feature in the x0.27z plane of the 3D-∆PDF is positive towards the
origin and negative away from the origin, which means that when a Nb atom is present
at (0,0,0), the Co atom with coordinates (0.25, 0.25, 0.25) will move towards the Nb atom.

The x0z plane of the experimental 3D-∆PDF in Figure 3.20 is almost identical for
the thermally quenched sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81).
A positive peak is found at the origin since the distance of an atom to itself is always
zero. Strong negative features are visible at interatomic vectors (0.5,0,0.5) and (1,0,0),
which correspond to respectively nearest and next-nearest neighbour Nb atoms. The
probability of finding two nearest or two next-nearest neighbour Nb atoms is thus lower
in the real structure than in the average structure. Consequently, the probability of
finding two nearest or two next-nearest neighbour vacancies is also lower in the real
structure than in the average structure. Figure 3.23 shows the x0z plane of the 3D-∆PDF
for longer interatomic distances. Strong positive features are visible at interatomic
vectors (1.5,0,1.5), (2,0,0) and (3,0,0), showing the preferred distances between Nb
atoms. Besides, the magnitudes of the 3D-∆PDF features decrease more quickly for the
thermally quenched sample than for the slowly cooled sample, which means that the
correlation length of the local Nb-vacancy order is longer for the slowly cooled sample
than for the thermally quenched sample.
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Figure 3.22: Comparison of the h0l plane reconstructed from single-crystal X-ray diffrac-
tion and 3D ED after removing the Bragg reflections, both for the thermally quenched
sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81).

The electron 3D-∆PDF and the X-ray 3D-∆PDF of Nb0.84CoSb contain the same
information about correlations between neighbouring atoms, and they can thus both
be used to determine the origin of the diffuse scattering. The maximum observable
correlation length in the 3D-∆PDF (8.93 r.l.u.) is determined by the voxel size in
reciprocal space (∆h, ∆k, ∆l ≈ 0.056). The intensity of the diffuse scattering goes faster
to zero for electrons than for X-rays (Figure 3.11), which results in broader features
in the electron 3D-∆PDF maps than in the X-ray 3D-∆PDF maps (Figure 3.20) but
which does not hinder the qualitative interpretation of the 3D-∆PDF. Besides, the diffuse
scattering is broader for electron diffraction than for X-ray diffraction, which results in a
faster decay of the features in the electron 3D-∆PDF maps than in the X-ray 3D-∆PDF
maps, as can be seen in Figure 3.23.

The 3D-∆PDF of Nb0.84CoSb is similar to the 3D-∆PDF of Zr0.82Y0.18O1.91 [13, 40]
and the origin of the diffuse scattering (correlations between neighbouring vacancies
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Figure 3.23: Comparison of the x0z plane of the X-ray and electron 3D-∆PDF, both for
the thermally quenched sample (Q-0.84 #2) and the slowly cooled sample (SC-0.81).
The 3D-∆PDF was reconstructed from the three-dimensional diffuse scattering data of
which the h0l plane is shown in Figure 3.11. The top row shows the 3D-∆PDF of the
experimental diffuse scattering; the bottom row shows the corresponding 3D-∆PDF of
the calculated diffuse scattering. Positive 3D-∆PDF features are red and negative features
are blue.

and the relaxation of the Zr-, Y- and O-atoms around these vacancies) is also similar.
However, the 3D-∆PDF of Zr0.82Y0.18O1.91 was only interpreted in a qualitative way and
no refinement of the short-range order parameters was applied to the diffuse scattering.
The features in the 3D-∆PDF maps of Nb0.84CoSb in Figure 3.20 are much sharper than
the ones in the 3D-∆PDF maps of Zr0.82Y0.18O1.91 [13, 40], which can be explained by
the different Q-range. The three-dimensional diffuse scattering data of Zr0.82Y0.18O1.91
were acquired for −10 ≤ h,k, l ≤ 10, whereas the three-dimensional diffuse scattering
data of Nb0.84CoSb were acquired for −20 ≤ h,k, l ≤ 20. Figure 3.24 illustrates that the
width of the features in the 3D-∆PDF is inversely proportional to the Q-range.
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Figure 3.24: Comparison of the x0z plane of the simulated electron 3D-∆PDF for two
different Q-ranges (−8 ≤ h,k, l ≤ 8 and −20 ≤ h,k, l ≤ 20). The 3D-∆PDF maps were
calculated from the simulated three-dimensional reciprocal lattice of the slowly cooled
sample (SC-0.81). Positive 3D-∆PDF features are red and negative features are blue.

3.7 Refinement of the short-range order

3.7.1 Monte Carlo refinement

The model of the short-range Nb-vacancy order (Subsection 3.5.2) was implemented in
a differential evolutionary algorithm in DISCUS. The Monte Carlo refinement was per-
formed on a model crystal with 25×25×25 unit cells. The limited crystal size introduces
high-frequency noise in the calculated diffuse scattering. The diffuse scattering was av-
eraged over ten crystals to reduce the high-frequency noise. For each crystal, the diffuse
scattering was also averaged over 50 lots with a size of 12×12×12 unit cells, randomly
distributed within the model crystal. The lot size should be larger than the correlation
length of the longest correlations but smaller than or equal to the crystal size divided by
two [53]. Increasing the crystal size, the number of crystals, and the number of lots re-
duces the noise but increases the refinement time. Figure 3.25 and Figure 3.26 show that
increasing the crystal size from 25×25×25 unit cells to 30×30×30 unit cells, increasing
the number of crystals from 10 to 20, and increasing the number of lots from 50 to 500
improves the quality of the calculated diffuse scattering only marginally.
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Figure 3.25: Left: Diffuse scattering in the h0l plane averaged over (a) 1 crystal, (b) 5
crystals, (c) 10 crystals, and (d) 20 crystals. For each crystal, the diffuse scattering was
averaged over 50 lots with a size of 12× 12× 12 unit cells. Right: Diffuse scattering in
the h0l plane averaged over ten crystals with (e) a size of 10× 10× 10 unit cells and 50
lots with a size of 5×5×5 unit cells, (f) a size of 20×20×20 unit cells and 50 lots with
a size of 10×10×10 unit cells, (g) a size of 25×25×25 unit cells and 50 lots with a size
of 12× 12× 12 unit cells and (h) a size of 30× 30× 30 unit cells and 50 lots with a size
of 15×15×15 unit cells. The lot size should be smaller than or equal to the crystal size
divided by two to avoid contributions from periodic images of the crystal. The diffuse
scattering was calculated for c(1/2,1/2,0)/c(1,0,0) = 1.

The Monte Carlo refinement was used to refine the correlations between nearest neigh-
bour vacancies c(1/2,1/2,0) and next-nearest neighbour vacancies c(1,0,0). Because near-
est and next-nearest neighbour vacancies avoid each other, both c(1/2,1/2,0) and c(1,0,0)
should be negative. The effect of the ratio c(1/2,1/2,0)/c(1,0,0) and the displacements of
Sb and Co atoms on the intensity distribution of the diffuse scattering is shown in Fig-
ure 3.27. Because the intensity distribution of the diffuse scattering depends on the ratio
c(1/2,1/2,0)/c(1,0,0), c(1/2,1/2,0) was fixed to -0.20 (a value close to the actual correlation
coefficient, determined based on a series of Monte Carlo simulations) and c(1,0,0) was
refined. In total, three parameters were refined: the correlation between next-nearest
neighbour vacancies (c(1,0,0)), the distance between a vacancy i and a neighbouring Sb
atom k (τik), and the distance between a vacancy i and a neighbouring Co atom k’ (τik′)
(see Equation 3.5). Because next-nearest neighbour vacancies avoid each other, starting
values for c(1,0,0) were chosen in the range [-0.60, -0.01]. The average distance between a
vacancy i and a neighbouring Sb atom k is τik = 2.801. Because Sb atoms move towards
neighbouring vacancies, starting values for τik were chosen in the range [2.545, 2.945].
The average distance between a vacancy i and a neighbouring Co atom k’ is τik′ = 2.680.
Because Co atoms move away from neighbouring vacancies, starting values for τik′ were

96



3.7. REFINEMENT OF THE SHORT-RANGE ORDER

Figure 3.26: Left: Diffuse scattering in the h0l plane averaged over (a) 1 lot, (b) 10 lots,
(c) 50 lots, and (d) 500 lots with a size of 12×12×12 unit cells. Right: Diffuse scattering
in the h0l plane averaged over 50 lots with a size of (e) 5×5×5 unit cells, (f) 10×10×10
unit cells, (g) 15×15×15 unit cells, and (h) 20×20×20 unit cells. The diffuse scattering
was calculated for c(1/2,1/2,0)/c(1,0,0) = 1 and was averaged over ten crystals with a size of
25×25×25 unit cells.

chosen in the range [2.550, 2.950].
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Figure 3.27: Left: Diffuse scattering in the h0l plane calculated for (a) c(1/2,1/2,0)/c(1,0,0) =

0.75, (b) c(1/2,1/2,0)/c(1,0,0) = 1, (c) c(1/2,1/2,0)/c(1,0,0) = 2, and (d) c(1/2,1/2,0)/c(1,0,0) = 10.
With c(1/2,1/2,0) the correlation between nearest neighbour vacancies and c(1,0,0) the cor-
relation between next-nearest neighbour vacancies. Right: Diffuse scattering in the h0l
plane calculated for different displacements of the Sb and Co atoms. The diffuse scatter-
ing was calculated for c(1/2,1/2,0)/c(1,0,0) = 1. The diffuse scattering was averaged over ten
crystals with a size of 25×25×25 unit cells. For each crystal, the diffuse scattering was
also averaged over 50 lots with a size of 12×12×12 unit cells.

The Monte Carlo refinement was applied to the diffuse scattering in the h0l plane from the
single-crystal X-ray diffraction data and the 3D ED data of the thermally quenched sam-
ple (Q-0.84 #2) in Figure 3.11. The Bragg reflections were subtracted using MANTID,
and the three-dimensional diffuse scattering data were cropped on a grid with 215×215
pixels for −6 ≤ h, l ≤ 6. The intensities in the h0l plane were converted to input for DIS-
CUS using a custom Python script (https://doi.org/10.5281/zenodo.8212162).
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In Section 3.4, we showed that the spatial resolution of the observed diffuse scattering
depends on various effects including the convergence of the beam, the detector point
spread function and the crystal mosaicity. To account for resolution effects, the intensity
of each pixel in the calculated h0l plane was convoluted with a Gaussian function
(Figure 3.28). The standard deviation of the Gaussian function (σ = 0.006 Å−1 for X-ray

Figure 3.28: Every pixel in the h0l plane was convoluted with a Gaussian with a standard
deviation of (a) 0 Å−1, (b) 0.004 Å−1, (c) 0.008 Å−1, and (d) 0.012 Å−1. The diffuse
scattering was calculated for c(1/2,1/2,0)/c(1,0,0) = 1 and was averaged over ten crystals
with a size of 25× 25× 25 unit cells. For each crystal, the diffuse scattering was also
averaged over 50 lots with a size of 12×12×12 unit cells.

diffraction and σ = 0.008 Å−1 for electron diffraction) was estimated from the intensity
profile of unsaturated Bragg reflections.

The Monte Carlo refinement (https://doi.org/10.5281/zenodo.8212024) took about
seven days for 19 refinement cycles on a desktop computer using eight cores in parallel.
The 24 children were calculated in parallel, whereas the individual crystals and the
individual lots were calculated in series. The refined short-range order parameters are
listed in Table 3.2. The standard uncertainties of the short-range order parameters are
underestimated. Systematic errors could be due to: (i) the limited number of correlations
that were included in the model; (ii) non-perfect background subtraction; (iii) inaccurate
resolution function correction; (iv) distortions in the reconstructed three-dimensional
diffuse scattering (e.g., due to small crystal movements during the acquisition of the data
or the instability of the goniometer of the TEM sample stage); and (v) no correction for
multiple scattering.
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In DISCUS, there is a difference between target correlations and displacements
(the refined correlations and displacements) and achieved correlations and displace-
ments (the actual correlations and displacements) [37]. The achieved correlations and
displacements were calculated from the target correlations and displacements after the
refinement. The achieved Co displacements are identical to the target Co displacements,
while the achieved Sb displacements are lower than the target Sb displacements. The
reason is that an Sb atom with two neighbouring vacancies on opposite sides of the
Sb atom will not move away from its average position. A Co atom may also have two
neighbouring vacancies, but these two neighbouring vacancies cannot be on opposite
sides of the Co atom (Figure 3.1 (b)). Each Co atom with at least one neighbouring
vacancy will thus move away from its average position.

Table 3.2: Monte Carlo refinement in DISCUS applied to the diffuse scattering in the
h0l plane from the single-crystal X-ray diffraction data and the 3D ED data acquired on
the thermally quenched sample (Q-0.84 #2). Refined short-range order parameters and
R-value after 19 refinement cycles. After the refinement, the achieved correlations and
displacements were calculated from the target correlations and displacements. c(1/2,1/2,0)
is the correlation between nearest neighbour vacancies and c(1,0,0) is the correlation be-
tween next-nearest neighbour vacancies.

X-rays electrons

target achieved target achieved

c(1/2,1/2,0) -0.200 -0.188 -0.200 -0.185
c(1,0,0) -0.053(17) -0.047(17) -0.082(22) -0.067(22)
Sb shift (Å) 0.160(11) 0.142(11) 0.158(23) 0.142(23)
Co shift (Å) 0.112(8) 0.112(8) 0.071(21) 0.071(21)

R-value (%) 37.2 63.5

The R-value in Table 3.2 is much higher for the short-range order parameters re-
fined from the diffuse scattering in the 3D ED data than for the short-range order
parameters refined from the diffuse scattering in the single-crystal X-ray diffraction data.
The evolution of the R-values and the short-range order parameters during the refinement
applied to the diffuse scattering in single-crystal X-ray diffraction and 3D ED data is
shown in Figure 3.29 and Figure 3.30, respectively. The diffuse scattering calculated
for the refined short-range order parameters is shown in Figure 3.31. At lower scattering
angles, the observed diffuse scattering intensities are higher than the calculated diffuse
scattering intensities. The satellite reflections are also sharper in the observed diffuse
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Figure 3.29: Monte Carlo refinement applied to the diffuse scattering in the h0l plane
from single-crystal X-ray diffraction data of the thermally quenched sample (Q-0.84 #2).
Evolution of (a) the R-value, (b) the target correlation between next-nearest neighbour
vacancies (c(1,0,0)), (c) the target distance between a vacancy i and a neighbouring Sb
atom k (τik), and (d) the target distance between a vacancy i and a neighbouring Co atom
k’ (τik′). The figure shows the average value (blue) and the smallest and highest value
(red) at each refinement cycle. The value with the lowest R-value at each refinement
cycle is shown in black.

scattering than in the calculated diffuse scattering, especially for the diffuse scattering in
the 3D ED data.

The Monte Carlo refinement in DISCUS was done against the diffuse scattering in
the h0l plane (−6 ≤ h, l ≤ 6), whereas the 3D-∆PDF refinement in Yell in the next
section will be done against the three-dimensional diffuse scattering (−6 ≤ h,k, l ≤ 6).
To be able to compare the R-value of the Monte Carlo refinement with the R-value
of the 3D-∆PDF refinement, the R-value of the Monte Carlo refinement was also
calculated for the three-dimensional diffuse scattering using a custom Python script
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Figure 3.30: Monte Carlo refinement applied to the diffuse scattering in the h0l plane
from 3D ED data of the thermally quenched sample (Q-0.84 #2). Evolution of (a) the
R-value, (b) the target correlation between next-nearest neighbour vacancies (c(1,0,0)),
(c) the target distance between a vacancy i and a neighbouring Sb atom k (τik), and (d)
the target distance between a vacancy i and a neighbouring Co atom k’ (τik′). The figure
shows the average value (blue) and the smallest and highest value (red) at each refinement
cycle. The value with the lowest R-value at each refinement cycle is shown in black.

(https://zenodo.org/records/10043149). The script was first tested on the diffuse
scattering in the h0l plane calculated in DISCUS and on the three-dimensional diffuse
scattering calculated in Yell. Then, a supercell was calculated in DISCUS for the
short-range order parameters refined from the diffuse scattering in single-crystal X-ray
diffraction data (Table 3.2). The R-value was first calculated for the diffuse scattering in
the h0l plane calculated in Scatty (38.42%), which is ∼ 1.38% higher than the R-value
for the diffuse scattering in the h0l plane calculated in DISCUS (37.04% for the member
with the lowest R-value). The increase in R-value is probably due to small differences
between the achieved correlation coefficients and a different method used to reduce the
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Figure 3.31: Monte Carlo refinement in DISCUS applied to the diffuse scattering in the
h0l plane from the single-crystal X-ray diffraction data and the 3D ED data acquired on
the thermally quenched sample (Q-0.84 #2). Comparison of (a) the experimental diffuse
scattering, (b) the diffuse scattering calculated for the refined short-range order param-
eters in Table 3.2, and (c) the differences between observed and calculated intensities
(Iobs− Icalc).

high-frequency noise (lots vs. Lanczos resampling). Next, the R-value was calculated
for the three-dimensional diffuse scattering calculated in Scatty (38.38%), which is quasi
identical to the R-value for the diffuse scattering in the h0l plane calculated in Scatty
(38.42%).

The displacements refined from the diffuse scattering in single-crystal X-ray diffraction
data are 0.142(11) Å for Sb and 0.112(8) Å for Co. The displacements refined from
the diffuse scattering in 3D ED data are 0.142(23) Å for Sb and 0.071(21) Å for Co.
The difference between the Sb and Co displacements refined from the diffuse scattering
and the Sb and Co displacements refined from the Bragg reflections in single-crystal
X-ray diffraction data (0.141(1) Å for Sb, and 0.130(1) Å for Co) is 0.012(7) Å for the
refinement on the diffuse scattering in single-crystal X-ray diffraction data, and 0.03(2)
Å for the refinement on the diffuse scattering in 3D ED data. The standard uncertainties
only considers random errors in the intensities of the Bragg reflections and are thus
underestimated. The accuracy of the short-range order parameters refined from 3D ED
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is less than the accuracy of the short-range order parameters refined from single-crystal
X-ray diffraction. However, the main advantage of 3D ED is that it requires much
smaller crystal sizes than X-ray diffraction, which allows to refine short-range order
parameters in materials for which no crystals large enough for single-crystal X-ray
diffraction are available.

It should be noted that the displacements refined from the diffuse scattering are
local displacements, while the displacements refined from the Bragg reflections are
average displacements. Sb atoms with two neighbouring vacancies on opposite sides
of the Sb atom will not move away from their average positions, and the average Sb
displacement is thus slightly smaller than the local Sb displacement.

The Monte Carlo refinement of the short-range order parameters took about seven
days for 19 refinement cycles. The refinement time is proportional to the number of
pixels/voxels in reciprocal space and the number of refined short-range order parameters.
Therefore, the refinement was done against the diffuse scattering in one two-dimensional
plane, and only three parameters were refined. Refining short-range order parameters
against the three-dimensional diffuse scattering and refining the correlations between
further nearest neighbour vacancies could further improve the match between observed
and calculated intensities.

3.7.2 Three-dimensional difference pair distribution function refinement

The 3D-∆PDF refinement in Yell was applied to the three-dimensional diffuse scattering
in single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The Bragg reflections
were subtracted using MANTID, and the three-dimensional diffuse scattering data were
cropped on a grid with 214×214×214 voxels for −6 ≤ h,k, l ≤ 6. A constant background
was subtracted. In total, 19 parameters were refined: the correlations between neighbour-
ing vacancies up to the 16th nearest neighbour, the displacements of Sb and Co atoms and
one scale factor. The 3D-∆PDF refinement (https://doi.org/10.5281/zenodo.8212680)
took about 20 minutes on a desktop computer.

A cubic unit cell with cell parameter a = 5.89864(3) Å was chosen as a structural
building block. The origin of the unit cell was occupied by a Nb atom with a probability
of 5/6 and by a vacancy with a probability of 1/6. The Nb atom/vacancy was surrounded
by 6 Sb atoms and 4 Co atoms, forming a cluster (Figure 3.32).

The relaxations of Sb and Co atoms around the vacancies were not defined in
terms of size-effect parameters (see Equation 1.22) but were included in the fractional
coordinates of the Sb and Co atoms in the unit cell. Because the diffuse scattering
from atomic displacement correlations is much weaker than the diffuse scattering
from substitutional correlations [121], correlations between the atomic displacement
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Figure 3.32: (a) A cluster with a Nb atom in the centre surrounded by 6 Sb atoms and
4 Co atoms. (b) A cluster with a vacancy in the centre surrounded by 6 Sb atoms and
4 Co atoms. Displacements of Sb and Co atoms are indicated by arrows. Sb atoms
move towards neighbouring vacancies, whereas Co atoms move away from neighbouring
vacancies.

parameters of Nb, Sb and Co were ignored. Equation 1.22 could thus be simplified to:

I(Q)diff =
∑
uvw

∑
mn

(
puvw

mn − cmcn exp[−QT(βββm+βββn)Q]
)

exp[2πiQ · ruvw
mn ] f ∗m(Q) fn(Q), (3.6)

with ruvw
mn the vector between the average positions of atoms m and n that are (u,v,w)

unit cells apart, puvw
mn the probability of finding the atoms m and n separated by the vector

ruvw
mn , cm and cn the average occupancies, βββm and βββn the matrices of the average atomic

displacement parameters, and fm(Q) and fn(Q) the atomic form factors. The intensity of
the diffuse scattering was calculated from the 3D-∆PDF via an FFT algorithm.

Currently, the 3D-∆PDF refinement in Yell can only be applied to the diffuse scat-
tering in single-crystal X-ray diffraction data. A 3D-∆PDF refinement in Yell was
applied to the three-dimensional diffuse scattering in the single-crystal X-ray diffraction
data of the thermally quenched sample (Q-0.84 #2). The 3D-∆PDF refinement was
used to refine the correlations between neighbouring vacancies up to the 16th nearest
neighbour. In total, 19 parameters were refined: the correlations between neighbouring
vacancies up to the 16th nearest neighbour, the displacements of Sb and Co atoms and
one scale factor. Memory limitations did not allow to refine all 19 short-range order
parameters simultaneously. The short-range order parameters were therefore refined in
groups of 5 parameters.
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The refined short-range order parameters and R-value are listed in Table 3.3. c(1,1/2,1/2)

Table 3.3: Short-range order parameters refined in Yell. With cuvw
mn the correlations be-

tween vacancies separated by (u,v,w) unit cells. The correlations refined in Yell were
divided by occNb/(1− occNb) to compare them to the correlations refined/calculated in
DISCUS. With occNb the Nb occupancy.

parameter Yell DISCUS

c(1/2,1/2,0) -0.22021(12) -0.188
c(1,0,0) -0.08006(13) -0.047
c(1,1/2,1/2) 0.17861(9) 0.134
c(1,1,0) -0.07452(9) -0.041
c(3/2,1/2,0) -0.07965(7) -0.013
c(1,1,1) -0.14213(11) -0.121
c(3/2,1,1/2) -0.04754(5) -0.023
c(2,0,0) 0.03525(12) 0.050
c(2,1/2,1/2) -0.01273(8)
c(3/2,3/2,0) 0.04064(8)
c(2,1,0) 0.033630(6) 0.026
c(2,1,1) 0.02773(6) 0.026
c(5/2,1/2,0) -0.01405(6) -0.015
c(2,2,0) -0.01288(8) -0.006
c(5/2,3/2,0) -0.00934(8) -0.021
c(3,0,0) 0.017038(12) -0.002
Sb shift (Å) 0.1442(6)
Co shift (Å) 0.1299(9)

R-value (%) 46.76

is the highest positive correlation coefficient, which indicates the preferred distance be-
tween neighbouring vacancies. The R-value in Table 3.3 (46.76%) is higher than the
R-value of the three-dimensional diffuse scattering calculated for the refined short-range
order parameters in Table 3.2 using a Monte Carlo refinement in DISCUS (38.42%). Cor-
relation coefficients cuvw

mn between neighbouring vacancies in Yell are defined as [118]:

cuvw
mn = Puvw

mn − (occNb)2, (3.7)

with Puvw
mn the probability that sites m and n are occupied by the same atom type, uvw the

interatomic vector and occNb the Nb occupancy. The correlations refined in Yell were
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divided by occNb/(1 − occNb) to compare them to the correlations refined/calculated
in DISCUS. For the Monte Carlo refinement in DISCUS, only two correlations were
refined (c(1/2,1/2,0) and c(1,0,0)). To compare the other correlations as well, I wrote a script
that calculates the correlations between neighbouring vacancies up to the 16th nearest
neighbour (https://zenodo.org/records/10051581). The correlations were calculated from
a supercell calculated for the refined short-range order parameters in Table 3.2. The
c(2,1/2,1/2) and c(3/2,3/2,0) correlations could not be calculated since they both correspond
to a distance of 12.495 Å between neighbouring vacancies. For most correlations, the
absolute values refined in Yell are higher than the absolute values refined in DISCUS
(Table 3.3). A possible explanation could be that the correlations refined in Yell are not
achievable in practice since the refinement in Yell does not require the construction of a
model crystal.

The displacements of Sb and Co atoms refined from the diffuse scattering in single-
crystal X-ray diffraction data using a 3D-∆PDF refinement in Yell (Table 3.3) can be
compared with the displacements refined from the Bragg reflections in single-crystal
X-ray diffraction data (Table 3.1). The difference in bond length is 0.0019(9) Å for the
3D-∆PDF refinement on the diffuse scattering in single-crystal X-ray diffraction data,
which is much lower than the difference in bond length for the Monte Carlo refinement.
The refined displacements of Sb and Co atoms are thus in good agreement with the
values refined from the Bragg reflections in single-crystal X-ray diffraction data.

Figure 3.33 (b) and Figure 3.34 (b) show the diffuse scattering calculated for the
refined short-range order parameters in the h0l and h0.5l planes. The main difference
is that the satellite reflections are sharper in the observed diffuse scattering than in the
calculated diffuse scattering. The diffuse scattering contours calculated in Yell are also
broader than the ones calculated in DISCUS (Figure 3.31).

Figure 3.33 (d-f) shows the x0z plane of the calculated and the experimental 3D-
∆PDF, and the 3D-∆2PDF, which is the difference between the calculated and the
experimental 3D-∆PDF. A similar comparison for the x0.27z plane of the 3D-∆PDF is
shown in Figure 3.34 (d-f). The magnitude of the features in the 3D-∆PDF agrees with
the refined correlation coefficients in Table 3.3. The higher the magnitude of a feature in
the 3D-∆PDF, the larger the absolute value of the corresponding correlation coefficient.
The feature at (0.5,0,0.5) in the x0z plane of the calculated 3D-∆PDF in Figure 3.33 (e)
is mostly blue, which means that the corresponding correlation coefficient (c(1/2,1/2,0))
should be negative.

The feature at (0.5,0,0) in the x0z plane of the experimental 3D-∆PDF is not well
reproduced by the simulated 3D-∆PDF (Figure 3.33). The (0.5,0,0) interatomic vector
corresponds to the distance between a Nb atom/vacancy and an Sb atom. The discrep-
ancy between the feature at (0.5,0,0) in the experimental and simulated 3D-∆PDF could
thus suggest a difference between the real and the refined Sb displacement. A similar
explanation can be made for the feature at (0.25, 0.25, 0.25) in the x0.27z plane of the
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Figure 3.33: 3D-∆PDF refinement in Yell applied to the three-dimensional diffuse scatter-
ing in the single-crystal X-ray diffraction data of the thermally quenched sample (Q-0.84
#2). Comparison of the h0l plane of (a) the experimental diffuse scattering, (b) the dif-
fuse scattering calculated for the refined short-range order parameters in Table 3.3, and
(c) the differences between observed and calculated intensities (Iobs− Icalc). Comparison
of the x0z plane of (d) the experimental 3D-∆PDF, (e) the 3D-∆PDF calculated for the
refined short-range order parameters in Table 3.3, and (f) the differences between the
experimental and calculated 3D-∆PDF (3D-∆2PDF). Positive 3D-∆PDF features are red
and negative features are blue.

3D-∆PDF in Figure 3.34. The (0.25, 0.25, 0.25) interatomic vector corresponds to the
distance between a Nb atom/vacancy and a Co atom or the distance between an Sb
atom and a Co atom. The discrepancy between the feature at (0.25, 0.25, 0.25) in the
experimental and simulated 3D-∆PDF could thus suggest a difference between the real
and the refined Co displacement.
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Figure 3.34: 3D-∆PDF refinement in Yell applied to the three-dimensional diffuse scatter-
ing in the single-crystal X-ray diffraction data of the thermally quenched sample (Q-0.84
#2). Comparison of the h0.5l plane of (a) the experimental diffuse scattering, (b) the dif-
fuse scattering calculated for the refined short-range order parameters in Table 3.3, and
(c) the differences between observed and calculated intensities (Iobs− Icalc). Comparison
of the x0.27z plane of (d) the experimental 3D-∆PDF, (e) the 3D-∆PDF calculated for
the refined short-range order parameters in Table 3.3, and (f) the differences between the
experimental and calculated 3D-∆PDF (3D-∆2PDF). Positive 3D-∆PDF features are red
and negative features are blue.

It should be noted that resolution effects were not considered in the 3D-∆PDF re-
finement. In Section 3.4, we showed that the spatial resolution of the observed diffuse
scattering depends on various effects including the convergence of the beam, the detector
point spread function and the crystal mosaicity. To account for resolution effects, the
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intensity of each voxel in the calculated three-dimensional reciprocal lattice should
be convoluted with a Gaussian function. The effect of convoluting each voxel in the
calculated h0l plane with a Gaussian function was previously shown in Figure 3.28.
The satellite reflections in the calculated h0l and h0.5l planes in Figure 3.33 (b) and
Figure 3.34 (b) are thus too sharp, which will affect the refined correlation coefficients.

The standard uncertainties of the short-range order parameters refined in Yell do
not consider systematic errors in the intensity of the observed diffuse scattering, which
could be due to: (i) non-perfect background subtraction; (ii) no resolution function
correction; (iv) distortions in the reconstructed three-dimensional diffuse scattering [119].

The 3D-∆PDF refinement of the short-range order parameters took about 20 min-
utes, while the Monte Carlo refinement took about seven days. 3D-∆PDF refinements
are much faster than Monte Carlo refinements since they do not require the construction
of a model crystal. The 3D-∆PDF refinement in Yell was done against three-dimensional
diffuse scattering data, whereas the Monte Carlo refinement in DISCUS was done against
the diffuse scattering in one two-dimensional plane. In DISCUS, we only refined the
correlation between next-nearest neighbour vacancy pairs c(1,0,0). Because 3D-∆PDF
refinements are much faster than Monte Carlo refinements, the 3D-∆PDF refinement
in Yell allowed us to refine the correlations between neighbouring vacancies up to the
16th nearest neighbour. Defining correlations in Yell is also easier than in DISCUS. The
disadvantage of 3D-∆PDF refinements is that they may result in non-physical structure
models [118]. Also, in cases where the construction of the whole three-dimensional
reciprocal lattice or the subtraction of the Bragg reflections would not be possible, Monte
Carlo refinements are still desirable.

3.8 Application of the model to LiNi0.5Sn0.3Co0.2O2

3.8.1 Introduction

LiNi0.5Sn0.3Co0.2O2 was synthesized as a potential cathode material for lithium-ion
batteries and has similar diffuse scattering as Nb0.84CoSb. The short-range order in
defective half-Heusler systems X1−xYZ, such as Nb1−xCoSb, belongs to a more general
type of short-range order found in many materials with a cubic rock salt structure [169].
Examples of materials with similar diffuse scattering are: transition-metal carbides
and nitrides, e.g. MC1−x and MN1−x with M = Ti, Nb, Ni, V, Zr [170, 171, 172];
lithium transition metal oxides, e.g. LiFeO2 [173, 174, 175], LiFe0.6Ni0.4O2 [176],
Li1.2Mn0.4Fe0.4O2 [177] and Li2SnO3-CoO [178]; oxyfluorides, e.g. K3MoO3F3,
Rb2KMoO3F3 and Tl3MoO3F3 [81, 179]; rare earth sulfides, e.g. Mg1−xYb2x/3□x/3S
with □ a vacancy [180, 181] and La0.7I0.86Al0.14 [182].
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The three-dimensional diffuse scattering in these compounds can be described by
the equation [cos(πh) + cos(πk) + cos(πl)] – C [cos(πh) cos(πk) cos(πl)] = 0 [171],
with C a parameter that depends on the nature and composition of the compound. For
transition-metal carbides and nitrides, C varies from 0 to 3 [169], while for lithium
oxides, C varies from 6 to 10 [174].

The diffuse scattering in these compounds is often explained in terms of the clus-
ter model [171, 183, 184] where the stoichiometry of each cluster is as close as
possible to the average stoichiometry of the sample. In the average structure of
LiNi0.5Sn0.3Co0.2O2, each O atom is surrounded by six Li, Ni, Sn or Co atoms, forming
an octahedron. Avoidance of the nearest and next-nearest Li atoms requires each such
octahedron to have 3 Li atoms and 3 Ni, Sn or Co atoms.

3.8.2 Scanning transmission electron microscopy

Figure 3.35 (a) shows a high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) image acquired on LiNi0.5Sn0.3Co0.2O2. The intensity

Figure 3.35: (a) HAADF-STEM image of LiNi0.5Sn0.3Co0.2O2. (b) FFT of the whole
HAADF-STEM image. (c-e) FFTs of specific regions indicated in the HAADF-STEM
image. The FFTs confirm that the structure consists of both nanodomains with a cubic
rock salt structure (space group Fm3̄m) [region (c)] and nanodomains with a layered
structure (space group R3̄m) [regions (d) and (e)]. (HAADF-STEM image acquired by
Dr. Mylène Hendrickx)

of the atom columns in an HAADF-STEM image is proportional to the atomic number
of the element (I ∼ Z2). The intensity is thus higher for atomic columns that contain
more Ni, Sn and Co atoms. The FFT of the HAADF-STEM image is shown in
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Figure 3.35 (b). The satellite reflections indicated by the blue and the red circles are due
to the presence of nanodomains with a layered structure (cell parameters a=b=2.8 Å,
c=14.1 Å, α=β=90°, γ =120° and space group R3̄m). The diffuse intensity contours in
Figure 3.35 (b) are due to short-range order of Li atoms in the cubic rock salt structure
(lattice constant of 4.23 Å and space group Fm3̄m). The FFTs of specific regions
indicated in the HAADF-STEM image [Figure 3.35 (c-e)] confirm that the structure
of LiNi0.5Sn0.3Co0.2O2 consists of both nanodomains with a cubic rock salt structure
[region (c) indicated in Figure 3.35 (a)] and nanodomains with a layered structure
[regions (d) and (e) indicated in Figure 3.35 (a)].

Figure 3.36 (a) shows a HAADF-STEM image of a nanodomain at the surface of
a LiNi0.5Sn0.3Co0.2O2 crystal. The FFT of region (b) [Figure 3.36 (b)] reveals that the
nanodomain at the crystal surface has a cubic spinel structure (lattice constant of 8.46 Å
and space group Fd3̄m). The FFT of region (c) [Figure 3.36 (c)] is similar to the FFT
shown in Figure 3.35 (c) and confirms that the structure consists of nanodomains with
a cubic rock salt structure. The diffuse intensity contours in Figure 3.36 (c) are due to
short-range order of Li atoms in the cubic rock salt structure.

Figure 3.36: (a) HAADF-STEM image of LiNi0.5Sn0.3Co0.2O2. (b-c) FFTs of the two
regions indicated in (a). (b) The nanodomains at the surface of the particles have a spinel
structure (space group Fd3̄m). The FFT of region (c) confirms that the structure consists
of nanodomains with a cubic rock salt structure (space group Fm3̄m). (HAADF-STEM
image acquired by Dr. Mylène Hendrickx)
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Figure 3.37 shows the difference between the rock salt structure, the layered structure
and the spinel structure. The layered structure consists of alternating layers of Li atoms
and transition metal atoms whereas the rock salt structure has a random distribution of Li
atoms and transition metal atoms. The layered structure and the rock salt structure have
a common oxygen sublattice, but these are not shown for clarity. The transformation
matrix that gives the relationship between the rock salt structure and the layered structure
is given by:

PPPFm3̄m→R3̄m =

−2/3 4/3 −2/3
−4/3 2/3 2/3
1/6 1/6 1/6

 (3.8)

Figure 3.37: Different possible phases in LiNi0.5Sn0.3Co0.2O2. Crystallographic relation
between (a) the rock salt phase, (b) the layered phase and (c) the spinel phase. The cell
parameters of the unit cells of the different phases are indicated. Green spheres represent
Li atoms, purple spheres represent Ni, Sn and Co atoms. O atoms are not shown for
clarity.

3.8.3 Powder X-ray diffraction

The powder X-ray diffraction pattern of LiNi0.5Sn0.3Co0.2O2 is shown in Figure 3.38.
All indexed peaks, except for the one indicated by the red arrow, can be attributed to the
rock salt structure. The peak indicated by the red arrow corresponds to both the (100)
reflection in the layered structure and the (111) reflection in the spinel structure.
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Figure 3.38: Powder X-ray diffraction pattern of LiNi0.5Sn0.3Co0.2O2. (powder X-ray
diffraction data acquired by Dr. Mylène Hendrickx)

3.8.4 Three-dimensional electron diffraction

Figure 3.39 shows a comparison of the h0l, hhl, h2hl and h3hl planes reconstructed from
3D ED data acquired on Nb0.84CoSb and LiNi0.5Sn0.3Co0.2O2. The h0l, hhl, h2hl and
h3hl planes of LiNi0.5Sn0.3Co0.2O2 show additional reflections due to the presence of the
spinel phase and the layered phase.

As a first attempt, we created a model of a random distribution of small layered
nanodomains with different orientations of the Li layers and the transition metal layers
in DISCUS (Figure 3.40). However, this model only gave rise to the observed satellite
reflections but not to the observed diffuse scattering. As a second attempt, the model
of the short-range Nb-vacancy order in Nb0.84CoSb was adjusted to a model of the
short-range Li-transition metal order in LiNi0.5Sn0.3Co0.2O2. The vacancies were
replaced by Li atoms, the Nb atoms were replaced by Ni, Sn and Co atoms, the Sb atoms
were replaced by O atoms and the Co atoms were removed. Only interactions between
nearest neighbour Li atoms and next-nearest neighbour Li atoms were considered.
Because nearest and next-nearest neighbour vacancies avoid each other, the correlations
between nearest neighbour Li atoms c(1/2,1/2,0) and next-nearest neighbour Li atoms
c(1,0,0) should both be negative. Figure 3.41 shows the effect of the ratio c(1/2,1/2,0)/c(1,0,0)
on the intensity distribution of the diffuse scattering in the h0l plane. The diffuse circles
are more diamond-shaped for larger values of c(1/2,1/2,0)/c(1,0,0).

The diffuse scattering in Figure 3.41 was calculated in Scatty and not in DISCUS.
The diffuse scattering in DISCUS should be averaged over multiple lots to reduce
the high-frequency noise. Because we noticed that the shape of the diffuse scattering
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Figure 3.39: Row 1-2: Comparison of the h0l, hhl, h2hl and h3hl planes reconstructed
from 3D ED data acquired on Nb0.84CoSb and LiNi0.5Sn0.3Co0.2O2. Row 3-5: Electron
diffraction patterns of the rock salt structure, the spinel structure and the layered structure
calculated in SingleCrystal.

depends on the lots size (Figure 3.42), we calculated the diffuse scattering in Scatty from
the structure models calculated in DISCUS.
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Figure 3.40: A random distribution of small layered nanodomains with different orienta-
tions of the Li layers and the transition metal layers created in DISCUS. Green spheres
represent Li atoms, purple spheres represent Ni, Sn and Co atoms and red spheres repre-
sent O atoms.

Figure 3.43 shows a comparison of the experimental and calculated diffuse scat-
tering in the h0l, hhl, h2hl and h3hl planes. The diffuse scattering was calculated
for c(1/2,1/2,0) = −0.076 and c(1,0,0) = −0.55 (c(1/2,1/2,0)/c(1,0,0) = 0.14 in Figure 3.41).
The weak reflections in the experimental h0l, hhl, h2hl and h3hl planes that are not
present in the simulated ones are due to the presence of the spinel phase, which was
not considered in our DISCUS model. The diffuse scattering contours are sharper in
the experimental h0l, hhl, h2hl and h3hl planes than in the simulated ones. A possible
explanation is that the diffuse scattering was partially subtracted while removing the
background of the individual frames in PETS2. Figure 3.44 shows the h0l, hhl, h2hl
and h3hl planes reconstructed from 3D ED data acquired on LiNi0.5Sn0.3Co0.2O2,
before and after background subtraction in PETS2. The diffuse scattering contours seem
indeed sharper after background subtraction. Because the diffuse scattering is weaker
for LiNi0.5Sn0.3Co0.2O2 than for Nb0.84CoSb, the effect of non-perfect background
subtraction is more pronounced for LiNi0.5Sn0.3Co0.2O2 (see Figure 3.4 for comparison).
An alternative method to subtract the experimental background is to repeat the 3D ED
data acquisition under the same conditions but without the crystal illuminated by the
electron beam. The thermal diffuse scattering could then be subtracted by acquiring
energy-filtered 3D ED data. Because of the non-perfect background subtraction, no
Monte Carlo refinement was applied to the diffuse scattering in the 3D ED data acquired
on LiNi0.5Sn0.3Co0.2O2.
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Figure 3.41: Diffuse scattering in the h0l plane calculated for (a) c(1/2,1/2,0)/c(1,0,0) = 0.03,
(b) c(1/2,1/2,0)/c(1,0,0) = 0.14, (c) c(1/2,1/2,0)/c(1,0,0) = 0.23 and (d) c(1/2,1/2,0)/c(1,0,0) = 0.86.
With c(1/2,1/2,0) the achieved correlation between nearest neighbour Li atoms and c(1,0,0)
the achieved correlation between next-nearest neighbour Li atoms. The diffuse scattering
was calculated in Scatty from the structure models calculated in DISCUS. The diffuse
scattering was averaged over 10 crystals with a size of 25x25x25 unit cells.

Figure 3.42: Diffuse scattering in the h0l plane averaged over 50 lots with a size of (a)
12x12x12 unit cells, (b) 20x20x20 unit cells and (c) 25x25x25 unit cells. The diffuse
scattering was calculated for c(1/2,1/2,0)/c(1,0,0) = 0.14 and was averaged over 10 crystals
with a size of 25x25x25 unit cells.
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Figure 3.43: Comparison of the experimental and calculated diffuse scattering in the
h0l, hhl, h2hl and h3hl planes. The diffuse scattering was calculated in Scatty from a
structure model with c(1/2,1/2,0) = −0.076 and c(1,0,0) = −0.55 calculated in DISCUS. With
c(1/2,1/2,0) the achieved correlation between nearest neighbour Li atoms and c(1,0,0) the
achieved correlation between next-nearest neighbour Li atoms. The diffuse scattering
was averaged over 10 crystals with a size of 25x25x25 unit cells.
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Figure 3.44: Comparison of the h0l, hhl, h2hl and h3hl planes reconstructed from 3D ED
data, before and after background subtraction in PETS2.
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3.9 Conclusion

We showed that the three-dimensional diffuse scattering in 3D ED data can be obtained
with a quality comparable to that from single-crystal X-ray diffraction. The 3D-∆PDF
obtained from 3D ED data is also in good agreement with the one obtained from
single-crystal X-ray diffraction data. The 3D-∆PDF can thus be used to determine the
origin of the diffuse scattering in 3D ED data. As electron diffraction requires much
smaller crystal sizes than X-ray diffraction, this opens up the possibility to investigate
the local structure of materials for which no crystals large enough for single-crystal
X-ray diffraction are available.

Short-range order parameters were refined from the three-dimensional diffuse scattering
in both 3D ED and single-crystal X-ray diffraction data acquired on Nb0.84CoSb. The
correlations between neighbouring vacancies and the displacements of Sb and Co atoms
were refined from the diffuse scattering using a Monte Carlo refinement in DISCUS
and using a 3D-∆PDF refinement in Yell. Because 3D-∆PDF refinements are much
faster than Monte Carlo refinements, the 3D-∆PDF refinement allowed us to refine
the correlations between neighbouring vacancies up to the 16th nearest neighbour. To
determine the accuracy of the refined correlations, the displacements of Sb and Co
atoms refined from the diffuse scattering were compared with the displacements refined
from the Bragg reflections in single-crystal X-ray diffraction data. The local Sb and Co
displacements refined from the diffuse scattering in single-crystal X-ray diffraction data
using a 3D-∆PDF refinement (0.1442(6) Å and 0.1299(9) Å) are close to the average
Sb and Co displacements refined from the Bragg reflections in single-crystal X-ray
diffraction data (0.141(1) Å and 0.130(1) Å). The local Sb and Co displacements refined
from the diffuse scattering using a Monte Carlo refinement are 0.142(11) Å and 0.112(8)
Å for the refinement on single-crystal X-ray diffraction data, and 0.142(23) Å and
0.071(21) Å for the refinement on 3D ED data. The difference with the average Sb and
Co displacements is much smaller for the 3D-∆PDF refinement than for the Monte Carlo
refinement, which indicates that the correlations refined using the 3D-∆PDF refinement
are also likely to be more accurate.

The spatial resolution of the observed diffuse scattering is lower in 3D ED data
than in single-crystal X-ray diffraction data. The spatial resolution of the observed
diffuse scattering depends on the convergence of the beam, the detector point spread
function and the crystal mosaicity. For high-resolution experiments, 3D ED data should
be acquired in SAED mode using a CCD.

The Nb occupancy and the average displacements of Sb and Co atoms were also
refined from the Bragg reflections in 3D ED data, and compared with reference values
refined from the Bragg reflections in single-crystal X-ray diffraction data. The Nb occu-
pancy refined from the Bragg reflections in 3D ED data differs by only 0.014(11) from
the Nb occupancy refined from the Bragg reflections in single-crystal X-ray diffraction
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data. The displacements of Sb and Co atoms refined from the Bragg reflections in 3D
ED data differ by 0.040(5) Å from the displacements of Sb and Co atoms refined from
the Bragg reflections in single-crystal X-ray diffraction data.

Finally, we showed that the model of the short-range Nb-vacancy order in
Nb0.84CoSb can also be applied to materials with similar diffuse scattering such as
LiNi0.5Sn0.3Co0.2O2.
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Conclusions and outlook

In this thesis, we showed that short-range order parameters can be refined from the
diffuse scattering in three-dimensional electron diffraction (3D ED) data. As 3D ED
requires much smaller crystal sizes than single-crystal X-ray diffraction, this opens up
the possibility to refine short-range order parameters in materials for which no crystals
large enough for single-crystal X-ray diffraction are available.

In Chapter 2, we refined short-range order parameters from the one-dimensional
diffuse scattering in 3D ED data acquired on Li1.2Ni0.13Mn0.54Co0.13O2. The number
of stacking faults and the twin percentages were refined from the diffuse scattering
using a Monte Carlo refinement in DISCUS. For the diffuse scattering in the [2̄10]
reciprocal space section of the investigated crystal, the best agreement between
the observed and calculated intensities was achieved for a stacking fault probability
of 29(2) % and twin percentages of p[100]= 40(3) %, p[1̄10]= 34(3) % and p[1̄1̄0]= 26(6) %.

In Chapter 3, we refined short-range order parameters from the three-dimensional
diffuse scattering in both 3D ED and single-crystal X-ray diffraction data acquired on
Nb0.84CoSb. The correlations between neighbouring vacancies and the displacements
of Sb and Co atoms were refined from the diffuse scattering using a Monte Carlo re-
finement in DISCUS and using a three-dimensional difference pair distribution function
(3D-∆PDF) refinement in Yell. To determine the accuracy of the refined correlations, the
displacements of Sb and Co atoms refined from the diffuse scattering were compared
with the displacements refined from the Bragg reflections in single-crystal X-ray
diffraction data. The difference between the Sb and Co displacements refined from the
diffuse scattering and the Sb and Co displacements refined from the Bragg reflections in
single-crystal X-ray diffraction data is 0.012(7) Å for the Monte Carlo refinement applied
to the diffuse scattering in single-crystal X-ray diffraction data, 0.03(2) Å for the Monte
Carlo refinement applied to the diffuse scattering in 3D ED data, and 0.0019(9) Å for the
3D-∆PDF refinement applied to the diffuse scattering in single-crystal X-ray diffraction
data. The difference is much smaller for the 3D-∆PDF refinement (0.0019(9) Å) than for
the Monte Carlo refinement (0.012(7) Å), which indicates that the correlations refined
using the 3D-∆PDF refinement are also likely to be more accurate.

We showed that the three-dimensional diffuse scattering in 3D ED data can be ob-
tained with a quality comparable to that from single-crystal X-ray diffraction. The
spatial resolution of the observed diffuse scattering depends on the convergence of the
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beam, the detector point spread function and the crystal mosaicity. For high-resolution
experiments, 3D ED data should be acquired in selected area electron diffraction
(SAED) mode using a charge-coupled device (CCD). Differences between the observed
and calculated intensities in 3D ED data are likely due to multiple scattering. As the
probability for multiple scattering to occur increases with increasing sample thickness,
it is important to acquire 3D ED data on small crystals. For Nb0.84CoSb, the effect of
multiple scattering seemed less than for Li1.2Ni0.13Mn0.54Co0.13O2, probably because
the three-dimensional diffuse scattering of Nb0.84CoSb did not overlap with the Bragg
reflections.

The 3D-∆PDF is often used to determine the origin of the diffuse scattering in
single-crystal diffraction data, and can be obtained by Fourier transforming the three-
dimensional diffuse scattering. Full reciprocal space coverage is required for the
calculation of the 3D-∆PDF. Modern diffractometers, synchrotrons and neutron sources
are designed so that full reciprocal space coverage is routinely achieved. Because
transmission electron microscopes are designed for imaging experiments, the angular
range for 3D ED data collection is limited by the presence of the objective lens pole
pieces. For Li1.2Ni0.13Mn0.54Co0.13O2, the one-dimensional diffuse scattering had only
inversion symmetry, and applying symmetry averaging was not sufficient to achieve full
reciprocal space coverage. The electron 3D-∆PDF could thus not be reconstructed. A
solution could be to increase the data completeness by combining data sets from several
crystals, or combining several data sets from the same crystal acquired with a different
orientation of the grid in the sample holder. For Nb0.84CoSb, the three-dimensional
diffuse scattering was highly symmetric, and the missing wedge in the three-dimensional
reciprocal space could be filled by applying symmetry averaging with Laue class m3̄m.
The electron 3D-∆PDF could be reconstructed and could be used to determine the origin
of the observed diffuse scattering.

Monte Carlo refinements are computationally very demanding. The Monte Carlo
refinement for Li1.2Ni0.13Mn0.54Co0.13O2 was done on a high performance computing
(HPC) cluster and took three days of wall-clock time for 50 refinement cycles, using
28 cores in parallel. Further parallelizing the refinement script so that the individual
crystals and lots are also calculated in parallel could further decrease the refinement
time. Due to a problem with the installation of DISCUS on the HPC cluster, the Monte
Carlo refinement for Nb0.84CoSb was done on a desktop computer and took about seven
days for 19 refinement cycles, using eight cores in parallel. In contrast, the 3D-∆PDF
refinement took about 20 minutes. 3D-∆PDF refinements are much faster than Monte
Carlo refinements since they do not require the construction of a model crystal. The
3D-∆PDF refinement in Yell was done against three-dimensional diffuse scattering data,
whereas the Monte Carlo refinement in DISCUS was done against the diffuse scattering
in one two-dimensional plane. In DISCUS, we only refined the correlation between
next-nearest neighbour vacancy pairs c(1,0,0). Because 3D-∆PDF refinements are much
faster than Monte Carlo refinements, the 3D-∆PDF refinement in Yell allowed us to refine
the correlations between neighbouring vacancies up to the 16th nearest neighbour. The
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disadvantage of 3D-∆PDF refinements is that they may result in non-physical structure
models [118]. Also, in cases where the 3D-∆PDF cannot be reconstructed (such as for
Li1.2Ni0.13Mn0.54Co0.13O2), Monte Carlo refinements are still desirable.

Monte Carlo refinements and 3D-∆PDF refinements require the construction of a
model crystal with short-range order. Information on the type of short-range order
can be obtained from the diffuse scattering itself (one-, two- or three-dimensional),
the interpretation of the features in the 3D-∆PDF, the average structure refinement
(refined occupancies, displacements and atomic displacement parameters), high-
resolution scanning transmission electron microscopy (HR-STEM) images and other
prior knowledge. In practice, identification of a proper real structure model requires
significant experience from the user and many cycles of trials-and-errors. The re-
finement of short-range order parameters from the diffuse scattering takes thus much
more time than the refinement of average structure parameters from the Bragg reflections.

In future experiments, we will investigate the effect of temperature and gas envi-
ronment on the three-dimensional diffuse scattering in 3D ED data. 3D ED data can
be acquired in a gas environment using special sample holders [185]. The temperature
or pressure of the gas in the sample holder could be adjusted while acquiring several
3D ED data sets on the same crystal. Such experiments allow to investigate the effect
of temperature or pressure on the crystal structure. For materials with short-range
order, such experiments would allow to follow changes in the intensity distribution of
the diffuse scattering with changing temperature/pressure. Refining short-range order
parameters from the intensity distribution of the diffuse scattering would then allow to
quantify changes in the short-range order parameters.
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die Röntgeninterferenzen. III. Vergleich der Berechnungen mit experimentellen
Ergebnissen. Acta Crystallogr., 2(5):298–304, 1949. 12

[35] John Maxwell Cowley. X-ray measurement of order in single crystals of Cu3Au.
J. Appl. Phys., 21(1):24–30, 1950. 12

[36] John Maxwell Cowley. Diffraction physics. Elsevier Science, Amsterdam, 1995.
12, 21

[37] Reinhard B. Neder and Thomas Proffen. Diffuse Scattering and Defect Structure
Simulations: A cook book using the program DISCUS, volume 11. Oxford Uni-
versity Press, 2008. 12, 25, 28, 29, 31, 32, 81, 82, 86, 100

129



BIBLIOGRAPHY

[38] P. Schaub, T. Weber, and W. Steurer. Exploring local disorder in single crystals
by means of the three-dimensional pair distribution function. Philos. Mag., 87(18-
21):2781–2787, 2007. 12

[39] Thomas Weber and Arkadiy Simonov. The three-dimensional pair distribution
function analysis of disordered single crystals: Basic concepts. Zeitschrift fur
Krist., 227(5):238–247, 2012. 12, 14, 31, 32

[40] Ella Mara Schmidt, Paul Benjamin Klar, Yasar Krysiak, Petr Svora, Andrew L.
Goodwin, and Lukas Palatinus. Quantitative three-dimensional local order analy-
sis of nanomaterials through electron diffraction. (1):1–8, 2023. 14, 93, 94

[41] Th Proffen, S. J.L. Billinge, T. Egami, and D. Louca. Structural analysis of
complex materials using the atomic pair distribution function - A practical guide.
Zeitschrift fur Krist., 218(2):132–143, 2003. 14

[42] Mauro Gemmi, Enrico Mugnaioli, Tatiana E. Gorelik, Ute Kolb, Lukas Palatinus,
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Guranović, Dmytro Guzenko, Brian P. Hudson, Tara Kalro, Yuhe Liang, Robert
Lowe, Harry Namkoong, Ezra Peisach, Irina Periskova, Andreas Prlić, Chris
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new version of the crystallographic computing system J ana. Zeitschrift fur Krist.
- Cryst. Mater., 238:271–282, 2023. 24
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Calcium-induced cation ordering and large resistivity decrease in Pr0.3CoO2. J.
Phys. Chem. Solids, 96:10–16, 2016. 26
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Lukáš Palatinus for answering all my questions regarding the dynamical refinement in
Jana2020, Dr. Joseph Paddison for including the electron atomic form factors in Scatty,
Prof. Dr. Bo Brummerstedt Iversen for sending us the Nb0.84CoSb samples and Dr.
Andreas Paulus for the synthesis of the LiNi0.5Sn0.3Co0.2O2 powder. I would also like
to thank Prof. Dr. Andrew Goodwin for the research stay at the University of Oxford.
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