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ABBREVIATIONS 
 

aCGH  array comparative genomic hybridization  
AGA  actionable genetic alterations  
AJCC  American Joint Committee on Cancer  
BL  basal-like 
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PPES  Protein chemistry, Proteomics and Epigenetic Signaling  
PPI  protein-protein interaction 
PR  progesterone receptor 
PTK  thyrosine kinase 
SMAD  mothers against decapentaplegic 
SNP  single nucleotide polymorphism 
SNV  single nucleotide variant 
STK  serine/threonine Kinase  
TAM  tumor-associated macrophages 
TCRU  Translational Cancer Research Unit 
TGFβ  transforming growth factor beta  
TIME  tumor immune microenvironment 
TMB  tumor mutational burden 
TME  tumor microenvironment 
TNBC  triple negative breast cancer 
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WES  whole exome sequencing 
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Breast cancer  

Breast cancer is the most frequently diagnosed cancer in women worldwide, 
accounting for almost a third of all cancer diagnoses in Belgium in 2018. Breast cancer 
has a relatively good prognosis, with 5-year relative survival rates of 91.1% in females. 
However, prognosis depends strongly on the stage of disease and histopathological 
features at time of diagnosis, with survival rates ranging from 28% in patients with 
stage IV disease up to 99% in patients with stage I disease (https://kankerregister.org/).  
 
Breast cancer is a heterogenous disease for which classification systems are used to 
identify high and low risk patients. The most used system is the TNM classification 
system in which a breast tumor is classified according to the size of the primary tumor 
and whether cancer cells invaded nearby tissue (T-stage), the status of lymph node 
involvement (N-stage) and the presence of metastases in distant organs (M-stage). An 
important feature of normal breast tissue is that the growth of breast cells is controlled 
by hormones, mostly estrogen and progesterone, by interaction with their receptors. 
Based on the expression of these receptors, determined by immunohistochemistry 
(IHC), breast tumors are categorized in three major clinical subtypes i.e. estrogen 
receptor (ER)/progesterone receptor (PR)-positive/Human Epidermal growth factor 
Receptor 2 (HER2)-negative tumors, HER2-positive tumors (either ER-positive or ER-
negative) and triple negative breast cancer (TNBC). These markers determine which 
patients are likely to respond to targeted therapies, such as hormone therapy (e.g. 
Tamoxifen) and anti-HER2 therapy (e.g. Trastuzumab).  
 
This model thus works well for prognostic determinations, and even though it lacks any 
molecular value, gene expression studies confirm the prominent role of these three 
proteins in the classification and treatment of breast cancer. Systematic reviews of the 
gene expression pattern in breast cancer have revealed five intrinsic molecular 
subtypes that roughly reflect the histological subtypes described above. Luminal A and 
luminal B breast cancers are both hormone-receptor positive (ER and/or PR positive), 
however differ in HER2 tumors impedes on the use of hormone and HER2-directed and 
Ki67 expression. Luminal A breast cancers are HER2 negative and have low levels of the 
protein Ki67, which reflects their overall good prognosis. Luminal B tumors can be HER2 
positive in combination with high levels of Ki67, resulting in a slightly worse prognosis. 
HER2-enriched tumors are characterized by HER2 expression in combination with the 
absence of hormone receptor (HR) expression (i.e. ER, PR). These tumors tend to grow 
faster than luminal A and luminal B tumors and can have a worse prognosis, but they 
are often treated successfully with targeted therapies against the HER2 protein. 
Normal-like breast cancers have a gene expression profile resembling normal breast 
tissue and have a prognosis that is slightly worse as compared to patients diagnosed 
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with Luminal A-type breast cancer. The final category of breast cancers are the TNBCs 
that have a gene expression profile resembling basal myoepithelial cells and are 
therefore often termed Basal-like breast cancer. This type of cancer is often diagnosed 
in women with BRCA1 gene mutations and is associated with poor disease prognosis, 
amongst others by the fact that the lack of both HR and HER2 expression in these 
therapies [1-3]. In 2011, the group of Lehmann et al. identified six TNBC subtypes 
displaying unique gene expression profiles thereby recognizing that also the TNBC is 
heterogeneous in nature. The subtypes classify TNBC based on 2 basal-like (BL1 and 
BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like 
(MSL), and a luminal androgen receptor (LAR) gene expression patterns [4]. 
 
Table 1: Overview of the ten integrative clusters described by Curtis et al. [5] as a novel 
molecular stratification of breast cancer, taking into account the impact of somatic 
CNAs on the transcriptome. 

Integrative 
cluster 

Features 

IntClust 1 Enriched for luminal B cancers 
17q23/20q cis-acting aberrations 

IntClust 2 
ER-positive subgroup 
High mortality rate  
Cis-acting aberrations in the 11q13/14 region (several driver genes) 

IntClust 3 
Predominantly luminal A tumors 
Low genomic instability 
Marked by a paucity of copy number and cis-acting alterations 

IntClust 4 ER+ and ER- tumors and varied intrinsic subtypes 
Marked by a paucity of copy number and cis-acting alterations 

IntClust 5 HER2-amplified cancers regardless of ER status 

IntClust 6 Enriched for luminal B cancers 
8p12 cis-acting aberrations 

IntClust 7 
Primarily composed of luminal A tumors 
16p gain/16q loss  
High frequency of 8q amplification 

IntClust 8 Primarily composed of luminal A tumors 
1q gain/16q loss 

IntClust 9 Enriched for luminal B cancers 
8q cis-acting aberrations/20q amplifications 

IntClust 10 
Majority of basal tumors  
Most instable at the genomic level 
Characteristic cis-acting alterations (5 loss/8q gain/10p gain/12p gain) 
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Although these classifications are well accepted and commonly adopted in breast 
cancer research, it should be noted that alternative subtyping schemes exist, amongst 
others the ten integrative clusters named IntClust 1 to 10, based on combined copy 
number variation (CNV) and gene expression profiles [5]. Table 1 gives an overview of 
the features for each integrative cluster, particularly in relation to the above-described 
intrinsic subtypes and HR and HER2 expression levels. 

These InClust subtypes were shown to be associated with distinct patterns of survival 
and response to neoadjuvant chemotherapy, where IntClusts 3, 4, 7 and 8 have the 
best prognosis, IntClusts 1, 6 and 9 have an intermediate prognosis, and IntClusts 2, 5 
and 10 a poor prognosis. Although these ten IntClust subtypes of breast cancer show 
characteristic patterns of association with traditional clinicopathological variables such 
as histological type, tumor grade, receptor status, and lymphocytic infiltration, no 
IntClust can be adequately identified by these variables alone. Hence, the addition of 
genomic stratification using the IntClust classification system has the potential to 
enhance the biological relevance of the current clinical evaluation and facilitate 
genome-guided therapeutic strategies [6]. 

In addition, it has been shown that by classifying breast tumors into the IntClust 
subtypes, important differences in recurrence rates have become apparent that could 
again, not be inferred optimally from standard clinical information and were obscured 
in the IHC and PAM50 subtypes alone. Especially the identification of the subset of ER-
positive patients who have a high risk of recurrence up to 20 years after diagnosis may 
help to determine whether women who are relapse free five years after diagnosis 
might benefit from extended endocrine therapy or other interventions to improve late 
outcomes. These ER-positive subgroups could also benefit from new treatment 
strategies since an enrichment targetable CNAs was observed [7]. 

Inflammatory breast cancer  

One of the most aggressive types of locally advanced breast cancer (LABC), 
inflammatory breast cancer (IBC), is rare (less then 5% of new diagnoses) but 
nonetheless responsible for a disproportionally high amount of breast-cancer related 
deaths. At time of diagnosis, virtually all patients have lymph node metastases and 
approximately 30% of patients have metastases in distant organs (vs. 6-10% in non-
IBC). Five metastatic organs, bone, brain, liver, lung and distant lymph nodes account 
for more than 90% of all metastatic IBC patients. Bone is the most common metastatic 
organ accounting for 57-60%, which is comparable with nIBC (65-70%). IBC has 
lung/pleural effusion metastasis around 21–29% and approximately 6-15% of IBC 
develop brain metastasis [8, 9]. Compared to nIBC, brain metastases occur in around 
10–30% [10-13]. Dependencies on molecular subtypes have been reported, with the 
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highest percentage of bone metastasis found in the HR+/HER2− subtype. Lung 
metastases occur significantly more often in HR−/HER2− IBC, and liver and brain 
metastases are significantly more often found in HER2-enriched (HR−/HER2+) tumors 
[8, 9, 14].  

By consequence of the high incidence of distant metastasis, survival rates are poor. 
Studies have shown that among patients with stage III breast cancer, IBC is associated 
with a worse prognosis compared to nIBC [15, 16], with an overall survival of 4.75 years 
versus 13.40 years respectively. This holds true for stage IV disease and is underscored 
by a shorter overall survival time of 2.27 years vs. 3.40 years [17]. This may be 
accounted for by the fact that IBC is enriched for more aggressive breast cancer 
subtypes such as TNBC, HER2+ and Luminal B (Table 2). 

 Table 2: Frequency of molecular subtypes in IBC and nIBC [10, 14, 18-20]. 

 

 

 

The reasons to study IBC are manifold. First, the high fraction of breast cancer-related 
mortality in combination with the fact that IBC is more prevalent amongst younger 
women, results in a significant loss in life-years [21]. Second, due to limited numbers 
of preclinical models and pretreatment patient samples, biological knowledge is 
lagging, and no IBC-specific treatment options exist. Together, these reasons imply that 
IBC has the potential to become a major global health problem within the next few 
years, particularly since it is observed that incidence is rising. Unfortunately, few risk 
factors have been associated with IBC such as African American race, and high body 
mass index [22]. Also, smoking, breast feeding and age at first pregnancy (≥26) may be 
associated with specific IBC subtypes [23]. Finally, IBC is the quintessential model for 
poor prognosis breast cancer, implying that insights in IBC are deemed to also have 
implications for non-IBC (nIBC) biology. Therefore, a more profound understanding of 
IBC biology is warranted.  

 At present, no histological criteria exist to distinguish IBC from nIBC. The current 
definition of IBC stated by the American Joint Committee on Cancer (AJCC) describes 
IBC as “a clinical-pathologic entity characterized by diffuse erythema and edema (peau 
d’orange) involving a third or more of the breast.” (https://cancerstaging.org/).  In 
2011, an international expert panel on inflammatory breast cancer has developed 
guidelines on the management of IBC and reported the following consensus diagnostic 
criteria: (i) rapid onset of breast erythema, edema and/or peau d'orange, and/or warm 

Phenotype HR HER2 TNBC 
IBC 30% 40% 30% 
nIBC 60%-80% 25% 10%-15% 
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breast, with or without an underlying palpable mass, (ii) duration of history of no more 
than 6 months, (iii) erythema occupying at least one-third of the breast, and (iv) 
pathological confirmation of invasive carcinoma [24]. Hence, diagnosis is primarily 
based on clinical criteria of rapidly developing symptoms of ‘inflammation’, combined 
with pathological confirmation via tissue biopsy of invasive disease.  The specific 
symptomatology translates in IBC being assigned to a separate category in the TNM 
classification system (i.e. T4d). The explosive clinical course with an abrupt onset of 
symptoms is relevant as it distinguishes IBC from LABC, which can have the same clinical 
appearance but represents a longstanding and often neglected disease state. In 
addition, instead of a lump, IBC frequently presents with a diffuse growth pattern 
throughout the breast. This in combination with its typical ‘inflamed’ presentation 
often results in IBC being misdiagnosed as a benign mastitis leading to a delay in the 
recognition of IBC and in the onset of appropriate therapy [22]. 

A frequent histopathological feature associated with IBC is the presence of numerous 
cancer cell clusters, hereafter termed tumor emboli, in the dermal and parenchymal 
lymph vessels. These tumor emboli clog the drainage of the breast and are presumably 
responsible for part of the clinical presentation of IBC. Although the presence of tumor 
emboli is not accepted as a true diagnostic criterium for IBC, approximately 75% of 
patients with IBC present with tumor emboli and their presence confirms the diagnosis 
[22]. Tumor emboli thus appear to be integral to IBC biology and are hypothesized to 
contribute to metastatic dissemination and to local disease spreading by intravascular 
growth and self-metastasis. The latter may provide a mechanistical basis for the diffuse 
histological growth pattern associated with IBC. With respect to the genesis of tumor 
emboli, two hypotheses have been put forward: A. Encircling lymphovasculogenesis 
(passive dissemination); or B. lymphovascular infiltration (active dissemination) by 
cancer cells [25, 26]. Van der Auwera and colleagues reported elevated lymphatic 
endothelial cell proliferation in IBC compared to nIBC, consistent with the conclusion 
that lymphangiogenesis is highly active in IBC [27]. This observation lends credit to the 
hypothesis of encircling lymphovasculogenesis, which is corroborated by Mahooti and 
colleagues describing encircling lymphovasculogenesis in IBC to short-circuit some of 
the steps of the metastatic process leading to early dissemination [26] and offering an 
explanation to the high frequency of lymph node metastases present in patients with 
IBC at diagnosis. 
 
Molecular profiling of IBC 

Since the late eighties of previous century, researchers have been trying to unravel the 
biology of IBC using immunohistochemistry (IHC) and mRNA expression-based studies. 
One of the primary observations made by Kleer and colleagues was the unexpected 
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overexpression of E-Cadherin in IBC in the primary tumor, in the tumor emboli and in 
the metastases [28]. In the context of the aggressive nature of IBC, this molecular 
feature seems paradoxical given the established role of E-cadherin as a metastasis 
suppressor in a variety of cancers. For example, E-Cadherin expression is lost in nIBC 
during metastatic dissemination secondary to epithelial-to-mesenchymal transition 
(EMT). However, an unexpected role for E-cadherin in breast cancer progression is now 
becoming evident. Tomlinson and colleagues revealed that E-cadherin expression is 
responsible for the compactness of the tumor emboli in IBC and enables cancer cells 
invading collectively as clusters into the lymphatics [29]. It has been demonstrated that 
cancer cell clusters are more efficient in forming metastases than single cancer cells, 
possibly due to the survival benefit experienced by cancer cells in clusters over single 
cells when entering the circulation and encountering non-adherent conditions. 
Experiments with dominant negative forms E-cadherin revealed that the invasive 
potential of IBC cells was attenuated [30], corroborating the role for E-cadherin in IBC 
progression [31]. 

In addition to E-Cadherin, several additional molecular changes have been associated 
with IBC, including overexpression of EGFR and ErbB2 [32-34], loss of LIBC (WISP3) and 
overexpression of RhoC GTPase [35], strong MUC1 expression [36], increased 
angiogenesis [27, 37], overexpression of eIF4GI [38], and TIG1/Axl expression [39]. 
However, validation in independent data series for many of these molecules often 
failed [40]. In contrast, the frequent upregulation of NF-κB-related genes in IBC [41], 
and the presence of a stem cell phenotype [42-44], have been observed by several 
independent research groups and was linked to XIAP overexpression, stress response 
mechanisms, and MAPK activation downstream of EGFR and HER2 overexpression [45-
48]. 

In order to obtain a more unbiased picture of the biology of IBC, several genome-wide 
gene expression studies have been performed since 2004 (Table 3). Overall, it was 
demonstrated that an IBC specific expression profile can be defined but results differed 
substantially in terms of the individual genes that are differentially expressed, which 
may be caused by confounding variables that differ between the various studies such 
as the predominance of the Basal-like and HER2 enriched subtypes in IBC. Additional 
limitations such as small sample numbers due to limited tissue availability and leading 
to limited statistical power, differences in the treatment status of the investigated 
samples and different study designs have hampered the success rate of these studies. 

Therefore, in 2013, the Inflammatory Breast Cancer International Consortium (IBC-IC) 
launched a project to perform an integrated analysis of various data sets, vouching for 
a total of 137 IBC samples all adhering to a uniform case definition, to redefine the 
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molecular profile of IBC. Importantly, using this data set, it was possible the distinguish 
IBC-specific from molecular subtype confounded differences, which proofed to have a 
major impact on the outcome of the analysis [19]. The existence of a molecular basis 
for IBC was confirmed, however, with the side note that only 3% of the global gene 
expression differences between IBC and nIBC are intrinsic to IBC tumor cells. Referring 
to these genes, a molecular-independent IBC specific 79-gene signature was identified 
that discriminates between IBC and nIBC patient samples. Translation of this gene 
signature into biological concepts showed that the IBC biology is shaped by specific 
immune and TGFβ response programs. It was suggested that TGFβ signaling is 
attenuated in IBC, which is surprising given the importance of TGFβ signaling in 
metastatic progression in several cancer types [49-51]. A better understanding of how 
TGFβ signaling contributes to the biology of IBC is therefore crucial.
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Table 3: Overview of all gene expression studies in IBC. 

Group IBC nIBC Platform Genes Major conclusions REF 
Bertucci et al.* 37 44 cDNA microarray 8000 A signature containing 109 genes was identified [52] 
Bieche et al. 36 22 PCR 538 27 genes were differentially expressed [53] 
Bertucci et al.* 37 44 cDNA microarray 8000 IBC comprises all molecular subtypes [54] 
Van Laere et al.**  16 18 cDNA microarray 9600 756 differentially expressed genes enriched for NFkB targets [41] 
Van Laere et al.** 16 18 cDNA microarray 9600 IBC is predominantly Basal-like/HER2-enriched [55] 
Nguyen et al. 13 12 Affymetrix >20K Hyperproliferative phenotype of IBC [56] 
Dressmann et al.  14 23 Affymetrix >20K Stromal gene signature of 22 genes [57] 
Van Laere et al.  19 40 Affymetrix >20K Platform independent validation of earlier results [48] 
Boersma et al. 15 35 Affymetrix >20K Strong expression differences in stroma [58] 
Iwamoto et al.  25 57 Affymetrix >20K Weak expression differences across subtypes [59] 
Woodward et al. 20 20 Affymetrix >20K 131 differentially expressed genes [60] 
Van Laere et al. 137 252 Affimetrix  >20K Subtype-independent IBC signature of 79 genes related to 

inflammation and TGFβ signaling 
[19] 

Zare et al. 66 83 Mixed/public data >20K Signature of 59 genes on micro-dissected samples [61] 
Rypens et al. 10 22 Affimetrix >20K Validation of IBC signature on preclinical models and 

identification of MYC activation 
[62] 

Richard et al. 110 169 Affimetrix >20K Increased AURKA mRNA expression [63] 
 
* Studies were performed on the same patient series 
** Studies were performed on the same patient series 
 



  

Genomic analysis of IBC 

The clinical utility of previous observations in IBC has been limited. Since the adoption 
of precision oncology strategies based on profiles of genomic aberrations, a more 
recent approach is to explore the hypothesis that the molecular profile of IBC is a 
reflection of underlying genomic alterations. An overview of all studies performed 
today, and their major findings is listed in Table 4. 

Overall, many actionable genetic alterations have been reported, however with a low 
frequency and without identification of IBC-specific driver genes. Regardless, 
mutations in TP53, PIK3CA and ERBB2 genes have been repeatedly observed in IBC, but 
these are most likely reflective of the different molecular breast cancer subtypes that 
are represented in IBC (i.e., Basal-like, Luminal-type and HER2-enriched respectively). 
Notably, an increased tumor mutational burden (TMB) has been repeatedly observed 
in IBC relative to nIBC. More recently, a study investigating germline mutations in a 
series containing more than 500 patient samples showed frequent mutations in DNA 
repair genes [64]. Regardless, the success rate in defining a genomic profile of IBC 
based on these studies is limited, which can be explained by the small patient series, 
the inclusion of both untreated primary tumors and post-treated relapses, and the 
limited number of genes that was tested in all studies. Furthermore, only a few studies 
made a direct comparison of the genomic portraits between IBC and nIBC, without 
stratification upon molecular subtypes. Given these limitations, a more comprehensive 
analysis of the genomic landscape of IBC is warranted and detection of IBC-specific 
actionable genetic alterations could be crucial to improve systemic treatment. 

IBC and the tumor immune microenvironment 

Evidence is emerging that the tumor immune microenvironment (TIME) has a 
significant contribution to the unique biological features associated with IBC. Not only 
the importance of the tumor stroma has been reported in IBC [18, 58, 65], but many 
publications also underline a prominent role of different immune cells in the TME of 
IBC [66-69]. Together, components of the TME dynamically interact to create a unique 
microenvironment that promotes the aggressive intrinsic features of IBC, such as 
stemness and the high metastatic potential [18]. For example, tumor-associated 
macrophages (TAMs) are a well-studied cell type in the TME of IBC. IBC is characterized 
by high infiltration of macrophages that under the influence of IBC tumor cells are 
polarized into tumor-promoting, immune-suppressing M2 macrophages [70]. 
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Table 4: Overview of all genomic studies performed in IBC. TMB – mutational burden, NGS – next generation sequencing, SNV – single 
nucleotide variant, SNP – single nucleotide polymorphism, CNV – copy number variation, CNA - copy number aberration 

Group IBC nIBC Variants Platform #Genes Major conclusions REF 
Ross et al. 53 0 SNV Illumina 195/225 TP53, MYC, PIK3CA, ERBB2, FGFR1, BRCA2, and PTEN mutations [71] 
Hamm et al.  17 0 SNV Illumina 225 TP53, PIK3CA and ERBB2 mutations and increased TMB [68] 

Goh et al. 
26 
13 

0 SNV 
CNA 

Illumina WES HER2-positive IBC: frequent 
TP53 mutations and a high TMB 

[72] 

Matsuda et al.  24 376 SNV Illumina 46/50 TP53, PIK3CA and ERBB2 mutations and increased TMB [73] 
Liang et al. 156 197 SNV Illumina 91 Increased MB and mutations in NOTCH and DNA repair genes [74] 
Rana et al.  501 0 SNP Illumina 242 Frequent germline mutations in DNA repair genes [64] 

Faldoni et al. 
24 0 SNV 

CNA 
Illumina 105 Frequent gains of MYC and MDM4 genes, and loss of TP53 and 

RB1 genes, high homologous recombination deficiency scores 
[75] 

Bertucci et al.  
101 2351 SNV, 

CNV 
Mixed 756 Increased MB and mutations in NOTCH and DNA repair chromatin 

remodeling genes 
[76] 

Winn et al.  
19 0 SNV Illumina 93 Frequent mutations in TP53, PMS2, MRE11, RB1, BRCA1, PTEN, 

AR 
[77] 

Li et al. 
22 23 SNV, 

CNV, CV 
Illumina WG Frequent complex structural germline variants, lower clonality, 

TGFβ alterations 
[78] 

Gong et al.  32 0 SNV Illumina 93 Frequent germline and somatic alterations in DNA repair genes [79] 

Luo et al. 
6 0 SNV Illumina WES Frequent mutations in KMT2C, PTEN and FBXW7 potential IBC 

driver genes 
[80] 

Richard et al. 
34 602 SNV, 

CNA 
Illumina 505 Frequent ERBB2, AURKA, PPM1D, FGFR1 amplifications, TP53 and 

PIK3CA mutations and increased TMB 
[63] 



  

These macrophages secrete chemotactic cytokines (TNFα, IL8 and IL10) that can 
enhance dissemination and metastasis of IBC tumor cells [81] and further contribute 
to the cancer stem-like, mesenchymal, and aggressive nature of IBC by secretion of 
high levels of IL-8 and GRO chemokines [82]. The specific modulation of tumor 
microenvironment in IBC is also exemplified by the fact that higher levels of PD-L1 
expression, both at mRNA [57] and protein [54] level, were noted as compared nIBC 
despite the fact that the number of tumor infiltrating lymphocytes in both types of 
breast cancer are similar. Expression analysis of IBC samples with high PD-L1 mRNA 
levels suggest PD-L1 overexpression is reflective of immune exhaustion following a 
potent anti-tumor immune response. At present, the mechanisms and the chain of 
events that orchestrate the interactions between cancer cells and immune cells in IBC 
remain elusive, but the importance hereof to understand IBC biology and the 
implication for immunotherapy is increasingly being recognized.   

Preclinical models 

Despite the significant role of the tumor microenvironment in IBC biology, a lot of 
research is performed to investigate tumor intrinsic features of IBC. Breast cancer cell 
lines, organoids and xenografts are widely used to dissect breast cancer biology and 
develop new therapeutic approaches. These preclinical models have the advantage of 
the relative ease of pharmacologic and genetic manipulation. In contrast, it remains a 
question how accurate these models recapitulate key features of human tumors, 
particularly due to the lack of the stromal component. This also has consequences in 
translating observations from preclinical models (e.g. the response of cell lines to 
certain therapeutic drugs) into clinical practice.  

Several preclinical models of IBC have been reported in the past: SUM149, SUM190, 
KPL4, MDA-IBC1, MDA-IBC3, FC-IBC-01, FC-IBC-02A, TJ-IBC-04, TJ-IBC-09, UA-IBC-01, 
Mary-X, and WIBC-9. However, not all these models are widely used or have been 
extensively characterized. Table 5 provides an overview of all preclinical models, their 
ER/HER2 expression and extra information if available. The SUM149, FC-IBC-01, FC-IBC-
02, TJ-IBC-04, WIBC-9 and MARY-X are classified as triple negative, based on the absent 
expression of ER, PR and HER2. The remaining models SUM190, KPL4, MDA-IBC3, TJ-
IBC-09, and UA-IBC-01 express the HER2 oncogene, and the MDA-IBC1 cell line 
expresses ER. The lack of luminal IBC models reflects the overrepresentation of the 
more aggressive, ER negative, subtypes in IBC compared to nIBC. Many of the IBC 
preclinical models are commonly used by the IBC research community without 
considering their representativity. Therefore, a comprehensive evaluation of the 
molecular characteristics of all inflammatory breast cancer (IBC) preclinical models and 



 
 - 19 - 

to what extend these models recapitulate the molecular characteristics of IBC observed 
clinically is essential. 

Table 5: Overview all IBC preclinical models available. 

 

Transforming growth factor beta signaling 

Transforming growth factor beta (TGF-β) is a pleiotropic cytokine, consisting of three 
isoforms, TGF-β1, TGF-β2 and TGF-β3, that binds to members of the TGF-β receptor 
family. TGF-β is involved in tissue homeostasis by regulation of many cellular processes, 
such as proliferation, differentiation, migration, survival, and immunity.  

Although TGF-β synthesis and expression of its receptors are widespread, activation is 
localized to sites where TGF-β is released from latency. Inactive TGF-β is stored in the 
extracellular matrix (ECM) as a latent complex with its furin-cleaved prodomain, called 

Model HR  HER2  Other characteristics REF 

SUM149 Negative Negative 
Expression of CK8, CK18 and CK19 
Strong EGFR expression 
Metastasis to multiple sites 

[83-85] 

SUM190 Negative Positive 
Expression of CK8, CK18 and CK20 
CCND1 amplification 
Metastasis primarily to lung 

[83-85] 

KPL4 Negative Positive 
Absence of EGFR expression 
Lack of E-cadherin expression [85, 86] 

MDA-IBC3 Negative Positive Metastasis to the lung [85, 87] 

Mary-X Negative Negative 

E-cadherin-positive lymphovascular emboli  
Metastasis primarily to the lung 
Increased Notch3 signaling 
ALDH1 positivity 
EGFR expression 

[88] 

FC-IBC-01 Negative Negative E-cadherin-positive lymphovascular emboli  
EGFR expression [85] 

FC-IBC-02 Negative Negative 

E-cadherin-positive lymphovascular emboli  
EGFR expression 
Metastasis to multiple sites 
Expression of stem cell markers 

[89, 90] 

WIBC09 Negative Negative Vascular mimicry and vasculogenesis [18, 37, 
91] 

UA-IBC-01 Negative Positive  NA [62] 
TJ-IBC-04 Negative Negative  NA [62] 
TJ-IBC-09 Negative Positive  NA [62] 

MDAIBC1 Positive Negative 
Lack of E-cadherin expression   
WISP3 protein expression [18, 92] 
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the latency-associated peptide (LAP), hindering binding of TGF-β with its receptor. The 
LAP-TGF-β complex binds to latent TGF-β-binding proteins (LTBP1–LTBP4), which can 
then be processed further to release active TGF-β [93, 94]. In its active form, TGF-β 
binds to a TGF-βR receptor complex, consisting of type I (TGFβRI) and type II (TGFβRII) 
serine-threonine kinase receptors, which allows TGF-βRII to phosphorylate TGFβRI, and 
subsequently induce a signaling cascade to the nucleus [95].  

In the canonical pathway, the receptor regulated Smad proteins (R-Smads; Smad2 and 
Smad3) are recruited and phosphorylated. These R-Smads shuttle between the 
cytoplasm and the nucleus in the basal state, but also during TGF-β signaling as a 
mechanism to monitor receptor activity [96]. Upon activation, they form heteromeric 
complexes with Smad4 and translocate to the nucleus. Continuous TGF-β receptor 
activity is a prerequisite for the R-Smads to remain phosphorylated, and for R-
Smad/Smad4 complexes to persist in the nucleus [97]. In the nucleus the complex will 
bind several DNA-binding transcription factors, co-repressors, and co-activators to 
regulate transcription of target genes (Figure 1; [98]). Thus, R-Smads in the nucleus are 
being continuously dephosphorylated and dissociate from complexes with Smad4. The 
inactivated Smads are then exported back to the cytoplasm, whereafter rapid 
rephosphorylation takes place, as long as the receptors remain active. The reactivated 
R-Smads form again a complex with Smad4 and relocalise to the nucleus [97]. 
Important to note is that SMAD4 is not required for the movement of activated R-
Smads into the nucleus itselves, but it is an essential member to trigger most TGF-β 
family gene responses [93]. 

Smad6 and mainly Smad7 act as inhibitory Smads that mediate a negative feedback 
loop in the TGF-β pathway. Smad7 recruits Smad ubiquitin regulatory factor (Smurf) 
proteins to mediate ubiquitination-mediated proteasomal degradation of TGFβRI [99], 
while Smad6 can interfere with the phosphorylation of Smad2 and the subsequent 
heteromerization with Smad4, but does not inhibit the activity of Smad3 [100].  

Besides the canonical pathway, non-canonical signaling cascades induced by TGF-β 
exist that can activate several signaling molecules, such as various mitogen-activated 
protein kinases (MAPKs; ERK, JNK and p38 MAPK), PI3K/AKT, Rho-like GTPases and 
TRAF 4/6 (Figure 1; [98]). Both TGF-β canonical and non-canonical signaling cascades 
can occur simultaneously through the crosstalk of core pathway components and 
combined utilization of SMAD/non-SMAD transcription factors [98]. 
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Figure 1: Schematic overview of canonical and non-canonical TGF-β signaling pathways. 
(A) In the canonical signaling pathway, TGF-β ligands bind to TGFβRII, which in turn 
activates TGFβRI. TGFβRI-regulated SMAD2/3 proteins are phosphorylated and form 
complexes with SMAD4, initiating a number of biological processes through 
transcriptional regulation of target genes. (B) In the non-canonical signaling pathways, 
the TGF-β receptor complex transmits its signal through other factors, such as the 
mitogen-activated protein kinases (MAPKs), phosphatidylinositide 3-kinase (PI3K), TNF 
receptor-associated factor 4/6 (TRAF4/6) and Rho family of small GTPases. Figure 
reprinted from [98]. 

The TGF-β paradox 

TGF-β has long captured the interest of the biomedical field because of its pleiotropic 
roles in development an adult physiology, and its involvement in many malfunctions 
such as cancer when dysregulated. TGF-β has a dual nature in the context of cancer, 
functioning both as a tumor suppressor in pre-malignant cells and as a tumor promoter 
in malignant cells by supporting cell proliferation, differentiation, angiogenesis, 
epithelial-to-mesenchymal transition (EMT), metastasis, immune infiltration, evasion 
of immune surveillance, regulation of apoptosis, and drug resistance [93].  

The mechanism underlying this dual role involves TGF-β effects in both the tumor cells 
and the supporting TME. First, suppression of genomic instability [101] and induction 
of cytostasis [95] are protective responses induced by TGF-β in tumor cells. In addition, 
a tumor-suppressive cytokine and chemokine profile in the tumor microenvironment 
is also maintained by TGF-β [102, 103]. However, during disease progression, activation 
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of oncogenic pathways in the tumor can dominate the tumor-suppressive responses to 
TGF-β and can also initiate pro tumorigenic responses such as induction of the EMT 
[104]. In addition, excessive tumor-derived TGF-β in the TME of advanced tumors can 
affect several cell types, such as stromal fibroblasts, endothelial cells and immune cells, 
to produce a favorable environment for tumor growth, invasion and metastasis, can 
disrupt antitumor immune surveillance, and promote angiogenesis [95, 104]. 

TGF-β and breast cancer 

Already in 1987, TGF-β was found to be implicated in mammary epithelial 
development. Silberstein et al. demonstrated rapid regression of advancing endbuds in 
the mammary gland after implanting TGF-β-containing pellets [105]. Later, it was 
shown that TGF-β1 acts as a tumor suppressor in breast cancer by inducing growth 
inhibition [106] and the first data demonstrating tumor-promoting functions were 
reported by Gorska et al. who showed that tumor cell-specific TGF-β signaling 
promotes tumor cell invasion [107]. Many other studies have provided considerable 
support for a dual role for TGF-β in breast cancer [108, 109]. Overall, in early-stage 
breast cancer, TGF-β inhibits tumor cell cycle progression, and consequently 
suppresses tumor progression. During the course of mammary tumorigenesis, breast 
cancer cells uncouple TGF-β signaling from regulation of cell cycle progression and 
actively use TGF-β for the acquisition and development of metastatic phenotypes, in 
part through its ability to stimulate EMT in tumor cells [110, 111]. TGF-β has also been 
shown to acts as an important mediator of metastasis in breast cancer to specific organ 
sites, amongst others by enhancing the extravasation of breast cancer cells into the 
lung parenchyma [95] and supporting the development of breast cancer metastasis to 
bone [112]. On the other hand, some studies demonstrate persistent tumor-
suppressive effects of TGF-β even in late-stage metastatic breast disease [113, 114]. 
Together, these data demonstrate that TGF-β signaling in breast cancer development 
and progression is elusive with evidence pointing at tumor-promoting and suppressive 
effects both in early and late stages of the disease.    

The role of TGF-β in cancer cell migration 

Metastasis is the primary cause of cancer morbidity and mortality and is estimated to 
be responsible for about 90% of cancer deaths. It is a complex process that involves a 
series of sequential and interrelated steps [115], which is associated with cancer cells 
that alter their shape as well as their attachment to other cells and to the extracellular 
matrix (ECM) [116]. The interaction with the TME is crucial to allow cells to disseminate 
and eventually colonize other tissues. A myriad of signaling molecules contribute to 
metastatic behavior, including mediators of the TGF-β signaling pathway.  
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TGF-β signaling is a potent inducer of EMT by increasing the expression of 
mesenchymal markers, such as N-cadherin and vimentin, and in parallel, reducing 
expression of epithelial markers, such as E-cadherin. The acquired mesenchymal 
phenotype results in enhanced migratory activity, extracellular matrix (ECM) 
production, invasiveness, and elevated resistance to apoptosis [117]. During EMT, cells 
lose their specialized cell-cell contacts and polarity, after which a migratory behavior is 
acquired allowing invasion in the surrounding tissue. Metastatic colonization of 
secondary sites by cancer cells then involves a reverse process, called mesenchymal to 
epithelial transition (MET) [118].  
 
Although several signaling pathways have been implicated in TGFβ-induced EMT (such 
as PI3K/AKT [119], RhoA [120, 121] and p38 MAPK [122, 123]), SMAD signaling seems 
to be indispensable [123, 124]. Various studies have explored the roles of different 
Smad proteins in EMT. Overexpression of ectopic SMAD2/4 or SMAD3/4 was shown to 
induce or enhance EMT in NMuMG cells [125, 126] and the prominent role for SMAD3 
in EMT was further corroborated in renal tubular cells [127]. Also, it was shown that 
the small GTPase RAC1B inhibits TGF-β1-induced cell motility in human PANC1 and 
MDA-MB-231 cells by blocking the function of SMAD3 [128]. In contrast, several studies 
have demonstrated an EMT suppressive function for SMAD2. SMAD2 ablation in 
keratinocytes leads to increased EMT and accelerates skin tumor formation, as a result 
of increased SMAD3/4 binding to the Snail promotor [129]. In a study by the group of 
Ju et al., SMAD2 ablation in hepatocytes leads to the spontaneous induction of 
mesenchymal features characteristic of EMT, and an increased migration rate [130]. 
These results all point towards SMAD3 as a main factor for EMT, while SMAD2 is not. 
In 2010, the group of Kohn et al. indeed reports that murine Smad3, but not Smad2, is 
necessary for TGFβ-induced EMT responses, whereas both murine Smad2 and Smad3 
can support TGFβ-induced invasion [131]. Interestingly, it was described earlier that 
expression of activated murine Smad2 alone stimulates spindle tumor cell invasion, but 
that for an overt change from epithelial to mesenchymal cell type, additional factors 
were required, i.e. elevated murine H-ras levels [132].  
 
Similarly to Smad3, murine Smad4 was also shown to be necessary for EMT. 
Knockdown of SMAD4 potently inhibits TGFβ-induced EMT and subsequent bone 
metastasis of NMuMG cells [133] and resulted in inhibition of EMT in hepatocytes 
[134]. In line with this, a study in a pancreatic cell line has shown that Smad4 is essential 
for TGFβ-induced down-regulation of E-cadherin, an essential step in EMT [135] and 
intact SMAD4 facilitates EMT and TGFβ-dependent growth in pancreatic ductal 
adenocarcinomas [136]. 
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Collective migration 

The migration of single cells is the best-studied mechanism of cell motility and is known 
to contribute to migration of tumor cells facilitating metastasis, amongst other through 
EMT. A second migratory strategy is collective migration during which intercellular 
cohesion is preserved. Collective migration is characterized by the capacity of cancer 
cells to remain interconnected by stable cell-cell junctions, and to move collectively, as 
sheets, through the extracellular matrix (ECM). This process requires a high level of 
intercellular coordination, whereby the migrating cells display polarity and the leading 
cells form an invasive front [117].  

Recently, it was shown that partial EMT enables collective migration of cells as clusters 
of circulating tumor cells (CTCs) or tumor emboli and these clusters exhibit increased 
metastatic potential as compared to single CTCs [137, 138]. During partial EMT, cells 
that are transitioning between epithelial and mesenchymal phenotypes can retain 
some features of both phenotypes and hence, reach a hybrid epithelial/mesenchymal 
(E/M) phenotype. Thanks to the unique combination of these properties, cancer cells 
gain the capacity to move collectively as clusters or sheets [139]. One of the adhesion 
molecules that is lost during EMT, but preserved in a hybrid phenotype, is E-cadherin. 
As indicated before, E-cadherin is long assumed to be a metastasis suppressor because 
loss of the protein’s expression enables cancer cells to migrate individually leading to 
subsequent dissemination [140]. However, several studies now report that E-cadherin 
plays a more complex role in certain types of cancers and actually promotes cell 
migration. For example, in ovarian cancer cells, E cadherin was shown to be 
indispensable for Rho GTPase-regulated cell migration [141]. In addition, E-Cadherin 
positive mammary 4T1 cancer cells that are highly invasive, move while remaining 
loosely inter-connected by E-cadherin-mediated membrane tethers [117]. More 
recently, Padmanaban and colleagues reported on a positive role for E-cadherin in 
metastasis resulting from the enhancement of cell survival. The same authors 
demonstrated that genes involved in TGF-β signaling, including SMAD2/3, are 
upregulated after E-cadherin loss [142]. These results are interesting in context of two 
papers, in which it was shown that carcinoma cells use TGF-β signaling to drive single 
cell migration but migrate collectively in the absence of TGF-β signaling [143, 144], 
therefore linking TGF-β and collective migration through E-cadherin expression. In 
addition, as collectively invading cancer cells also appear to favor lymphatic over 
hematogenous dissemination [144], this mechanism provides a functional explanation 
for the formation of E-cadherin positive tumor emboli, which are characteristic of IBC. 
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Abstract 

Purpose: Inflammatory breast cancer (IBC) is an aggressive form of breast cancer with 
elevated metastatic potential, characterized by tumor emboli in dermal and 
parenchymal lymph vessels. This study has investigated the hypothesis that TGFβ 
signaling is implicated in the molecular biology of IBC. 
Methods: TGFβ1-induced cell motility and gene expression patterns were investigated 
in three IBC and three non-IBC (nIBC) cell lines. Tissue samples from IBC and nIBC 
patients were investigated for the expression of nuclear SMAD2, SMAD3 and SMAD4. 
SMAD protein levels were related to gene expression data. 
Results: TGFβ1-induced cell motility was strongly abrogated in IBC cells (P = 0.003). 
Genes differentially expressed between IBC and nIBC cells post TGFβ1 exposure 
revealed attenuated expression of SMAD3 transcriptional regulators, but 
overexpression of MYC target genes in IBC. IBC patient samples demonstrated a near 
absence of SMAD3 and -4 expression in the primary tumor compared to nIBC patient 
samples (P < 0.001) and a further reduction of staining intensity in tumor emboli. 
Integration of gene and protein expression data revealed that a substantial fraction of 
the IBC signature genes correlated with SMAD3 and these genes are indicative of 
attenuated SMAD3 signaling in IBC. 
Conclusions: We demonstrate attenuated SMAD3 transcriptional activity and SMAD 
protein expression in IBC, together with obliterated TGFβ1-induced IBC cell motility. 
The further reduction of nuclear SMAD expression levels in tumor emboli suggests that 
the activity of these transcription factors is involved in the metastatic dissemination of 
IBC cells, possibly by enabling collective invasion after partial EMT.   
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Background 

Inflammatory breast cancer (IBC) is a rare and aggressive form of locally advanced 
breast cancer characterized by fast local spread and dissemination of cancer cells. 
Almost all patients have lymph node metastases and one third of patients have 
metastases in distant organs at the time of diagnosis. IBC accounts for a 
disproportionally high fraction of breast cancer-related mortality [1]. Combined with a 
high prevalence in younger women, this results in a significant loss in life-years far 
greater than expected based solely upon the IBC incidence of 2-5% of all breast cancers. 
Furthermore, the number of new diagnoses is increasing without clear cause and 
specific treatments are lacking due to a limited understanding of IBC biology.  It is 
increasingly evident that IBC is a distinct and significant subtype of breast cancer which 
warrants specific, dedicated research. 
An important indication of IBC is the presence of numerous tumor emboli in dermal 
and parenchymal lymph vessels. These E-Cadherin positive cancer cell clusters appear 
to be integral to IBC pathology [2,3]. The physical obstruction of draining lymph vessels 
by tumor emboli induces clinical symptoms often associated with IBC such as swelling 
of the breast. Intravascular growth of tumor emboli may account for the fast, local 
spread, and typical diffuse growth pattern, or self-metastasis, associated with IBC. 
Tumor emboli thus seem to be key for disease progression.   
The existence of a molecular basis for IBC was confirmed in 2013 when the World IBC 
consortium (WIBCC) reported a 79-gene signature that discriminates between IBC and 
non-IBC (nIBC) patient samples [4]. Translating this gene signature into molecular 
concepts suggested that the biology of IBC is shaped by specific TGFβ and immune 
response programs. The aim of the present study was to gain a better understanding 
of how TGFβ signaling contributes to the biology of IBC.  
 
Methods 

A detailed description of all methods is provided in supplementary data (Additional 
file 1).  

Cell culture, cell motility assay and wound healing assays 

Three IBC cell lines: KPL4, SUM190 and SUM149 and 3 nIBC cell lines: MDA-MB-231, 
MDA-MB-436 and MCF7 were used. The cell motility inducing effect of 11 chemokines 
and growth factors as well as fetal bovine serum (FBS) as positive control was evaluated 
using the xCELLigence RTCA DP instrument (ACEA Biosciences) according to 
manufacturer’s instructions. A Chemoattractant dilution series: 10 μg/mL - 1 μg/mL - 
100 ng/mL - 10 ng/mL was used to calculate a concentration for 50% of maximal effect 
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(EC50) for each chemoattractant. Classical would healing assays were performed to 
validate the TGFβ1-induced cell motility responses of all six cell lines. 

RNA-sequencing and data analysis 

All IBC and nIBC cell lines were treated with 5ng/ml TGFβ1 for 1hr, 4hrs and 14hrs. RNA-
sequencing was performed using stranded cDNA libraries on a HiSeq2000 system. 
Reads were mapped to the reference genome (hg19) using TopHat 2.0 [5] and 
Bowtie2.0 [6]. Genes with count per million (CPM) values greater than 1 in at least 3 
samples were included for further analysis. CPM values for each of the untreated 
controls were used to classify the cell lines according to the luminal-, basal-, 
mesenchymal-classification system. Global expression themes in the data set were 
evaluated using principal component analysis (PCA). Differential gene expression 
analysis was performed on the 2log-transformed CPM values using the BioConductor 
package limma, accounting for the molecular subtypes and other confounding sources 
of gene expression variation. Finally, to translate lists of differentially expressed genes 
into biological concepts related to pathway and transcriptional activities, the online 
tool EnrichR was used (http://amp.pharm.mssm.edu/Enrichr). Since this is an 
exploratory analysis and to increase statistical power, GSEA was performed using lists 
of genes significant at a nominal, uncorrected level of 5%. 
 
Immunohistochemistry (IHC) 

IHC was performed on 5µm formalin-fixed, paraffin-embedded (FFPE) tissue sections 
from 76 IBC patients and 152 nIBC patients collected at the GZA Hospitals Sint-
Augustinus (Wilrijk, Belgium). Qualitative evaluation was performed by two 
independent pathologists. A total score was calculated by multiplying proportion with 
intensity. Nuclear staining in the cancer cells, both in the primary tumor and tumor 
emboli was scored according to proportion of tumor cells (%) and intensity of staining, 
being either negative (0), weak (1), medium (2) or strongly (3) positive. A total score 
was calculated by multiplying proportion with intensity.  
 
Affymetrix data analysis 

Gene expression data from two publicly available series of patients with and without 
IBC obtained from Antwerp (E-MTAB-1006) and Marseille (E-MTAB-1547) were 
analyzed as described before [4]. To integrate gene and SMAD protein expression data, 
pairwise Pearson correlation coefficients were calculated between the gene expression 
and SMAD protein expression data and correlation patterns were investigated for 
genes belonging to the IBC signature [4] as well as for genes exhibiting a differential 
response to 4 hours of TGFβ1 treatment in IBC and nIBC cells. Lists of differentially 
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expressed genes between samples from patients with and without IBC were 
investigated for enrichment of SMAD3 and MYC target genes identified from the cell 
line experiment using gene set enrichment analysis (GSEA).  
 
Statistics 

Relationships between two categorical variables were analyzed using classical Chi-
Square or Fisher’s Exact tests where appropriate. Relationships between two 
continuous variables were analyzed using Spearman correlation analysis. Relationships 
between a continuous variable and a categorical variable were investigated using non-
parametrical Mann-Whitney U-tests (unpaired) or using the Wilcoxon signed-rank test 
(paired). All analyses were performed in R (v3.4.0) and P-values < 0.05 were considered 
significant. 

 
Results 

Cell motility following TGFβ1 treatment is disabled in IBC cells  

TGFβ signaling is associated with metastatic progression in breast cancer which is a key 
feature of IBC biology. Given the fact that cell motility is crucial for metastatic 
dissemination, the effect of TGFβ1 on cell motility was investigated in 3 IBC cell lines, 
SUM149, SUM190, and KPL4 and in 3 nIBC cell lines, MM231, MM436, and MCF7. Using 
the xCELLigence system, we noted a 39-fold reduction in the cell motility inducing 
capacity of TGFβ1 in IBC cells relative to nIBC cells (P = 0.003). For comparison, a panel 
of 10 additional growth factors and cytokines was also screened: none of these ligands 
induced significant differences in cell motility between IBC and nIBC cells (Fig. 1a). The 
observations obtained for TGFβ1 were confirmed using classical wound healing assays 
(Fig. 1b; Additional file 2: Fig. S1). Importantly, the cell motility responses of IBC and 
nIBC cells in the presence or absence of FBS were similar, indicating that our 
observations cannot be attributed to differences in the basal migration rates of the 6 
evaluated cell lines (Additional file 2: Fig. S1). 
 
Assessment of mRNA expression levels in the same cell lines revealed 1,078 
differentially expressed genes between IBC and nIBC at a nominal P-value of 5%, of 
which 272 remained significant after correction for false discovery (Additional file 2: 
Table S1-S2). With respect to most canonical TGFβ signaling genes (i.e. TGFBR1, 
TGFBR2, TGFBR3, SMAD2, SMAD3, SMAD4, SMAD6, SMAD7, TGFB2, and TGFB3), no 
expression differences were noted. For TGFβ1 and TGFBI, a 10-fold (P = 0.039; 
Q=0.356) and 44-fold (P = 0.013; Q=0.242) increased expression level was observed in 
nIBC and IBC cells respectively. GSEA revealed frequent overexpression of CEBP/ATF 
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and C/EBPb transcriptional targets, protein interaction partners and co-expressed 
genes in IBC (Fig. 2a). But again, no differences with respect to molecular concepts 
associated with TGFβ signaling were retained. Together, these data demonstrate that 
cell motility of IBC cells following TGFβ1 treatment is attenuated and that this 
observation is not related to differences in basal migration rates nor to differences in 
basal expression levels of key TGFβ signaling mediators amongst all evaluated cell lines.  
 

 
Fig1 a Cell motility-inducing effect of 11 chemokines in three IBC cell lines and three subtype-
matched nIBC cell lines. TGFβ1 induces a 38.728-fold reduction in cell motility of IBC cells 
relative to nIBC cells (P = 0.003). b Wound healing assays after 12 hours and 24 hours of TGFβ1 
treatment in all cell lines. nIBC cells show a near complete closure of the scratch (range scratch 
surface area reduction: 81-98%) after 24 hours. In IBC cells, the surface area of the scratch 
remains virtually unchanged (i.e. range: 0-11%). 
 
IBC cells exhibit a SMAD3 deficient response to TGFβ1 treatment 

To investigate mechanisms of TGFβ signaling in IBC and nIBC cells, a time course 
experiment was performed in which IBC and nIBC cells were treated with TGFβ1 for 
1hr, 4hrs or 14hrs. To explore global expression differences in the data set, PCA was 
performed for 15,193 genes. The resulting 2D scatter plot in Fig. 2b shows that only 
subtle changes to gene expression could be attributed to TGFβ1 treatment and tumor 
phenotypes, IBC and nIBC. Firstly, the global scattering pattern is cell line specific, 
indicating that the expression variation within cell lines across different TGFβ1 
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treatment conditions is smaller than the expression variation between different cell 
lines. Secondly, the leading principal component is associated with expression 
differences between luminal KPL4, SUM190 and MCF7 cell lines and mesenchymal 
SUM149, MM231, MM436 cell lines. This indicates that cell line subtypes are a major 
source of expression variation. Finally, the second principal component is associated 
with expression differences between IBC and nIBC cell lines. These results were 
confirmed using unsupervised hierarchical cluster analysis of the 500 most variable 
genes measured by standard deviation (Additional file 2: Fig. S2). Together, these data 
indicate that expression patterns are related most significantly to the intrinsic 
properties of cell type and subtype.   
 

 
Fig2 a Volcano plot displaying differentially expressed genes between untreated IBC and nIBC 
cells. The x-axis displays the log2 fold change value, the y-axis corresponds to the mean 
expression value. Values are considered significant if P>0.5. Negative fold changes represent 
genes higher expressed in nIBC cells; positive fold changes show upregulated transcripts in IBC 
cells. A frequent enrichment of CEBP/ATF and C/EBPβ transcriptional targets, protein 
interaction partners and co-expressed genes amongst the upregulated genes in IBC can be 
observed (blue dots). No significant expression differences exist for genes involved in TGFβ 
signaling (red dots), except for a significant 10-fold (P = 0.039; Q = 0.356) and 44-fold (P = 
0.013; Q = 0.242) higher expression of TGFB1 in nIBC cells and TGFBI in IBC cells 
respectively. b Expression variation between the cell lines is evident as shown by the global 
scattering pattern. The leading principal component (PC) classifies cell lines as luminal (i.e. 
KPL4, SUM190 and MCF7) or mesenchymal (i.e. SUM149, MM231, MM436). The second PC 
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is associated with expression differences between IBC and nIBC cell lines. c Time course-
dependent TGFβ1-induced expression changes. The most elaborate gene expression differences 
are visible after 4 hours of TGFβ1 treatment. d Volcano plot displaying 1,820 genes that respond 
differently in IBC (i.e. 924 genes) and nIBC (i.e. 896 genes) cells after 4 hours of TGFβ1 
treatment. These genes are enriched for SMAD3 transcriptional targets, protein interaction 
partners and co-expressed genes in nIBC cells (red dots), while IBC cells are characterized by a 
MYC-driven transcriptional response (blue dots). 
 
To investigate specific expression differences between IBC and nIBC cells post TGFβ1 
treatment, the following gene sets were identified: TGFβ1-responsive genes in IBC 
cells; TGFβ1-responsive genes in nIBC cells; and genes that respond differently to 
TGFβ1 in IBC and nIBC cells. Dominant sources of variation in gene expression, 
identified through unsupervised analysis (vide supra), were accounted for as described 
in the supplementary methods section.  
 
A clear difference in the dynamics of TGFβ-induced gene expression changes between 
IBC and nIBC cells was observed (Fig. 2c). Four hours of TGFβ1 treatment induced a 
spike in the number of differentially expressed genes in IBC cells whereas in nIBC cells 
a gradual, steady increase in differential gene expression was observed throughout the 
entire time course. Gene lists are provided in the supplementary data (Additional file 
2: Table S1). Since expression differences were most distinct after 4 hours of TGFβ1 
treatment, genes that responded differently in IBC and nIBC cells at this time point 
(N=1,820) were subjected to GSEA. Results are provided in Fig. 2d. TGFβ1-responsive 
genes in nIBC were enriched for SMAD3 transcriptional targets, protein interaction 
partners and co-expressed genes, whereas IBC cells were characterized by a MYC-
driven transcriptional response. Gene lists are provided in the supplementary data 
(Additional file 2: Table S3). Given these results, changes in SMAD3 and MYC mRNA 
levels over time were analyzed in IBC and nIBC cells separately and only MYC expression 
was found to be upregulated in IBC cells after 1 hour of TGFβ1 treatment (fold-change 
= 1.659; 95%C.I. = 1.133-2.438; P = 0.012).  
 
SMAD3 nuclear expression is weak in cancer cells from patients with IBC 
To study TGFβ signaling patterns in IBC and nIBC in a translational setting, nuclear 
protein expression of SMAD2, SMAD3 and SMAD4 was investigated using IHC on a 
series of FFPE tissue sections from 76 IBC and 152 nIBC patients. An overview of the 
clinicopathological variables related to the patient series is provided in Additional file 
2: Table S4. Expression levels for SMAD2, SMAD3 and SMAD4 were significantly 
attenuated in IBC compared to nIBC (all Ps < 0.001), with almost no SMAD3 expression 
in IBC tissue (median score: 0; range: 0 - 270). Data are shown in Fig. 3a. Multivariate 
analysis demonstrated that these results are not confounded by differences between 



 
 - 49 - 

IBC and nIBC with respect to classical clinicopathological variables. Additional 
multivariate analyses revealed that the expression levels of both SMAD3 and SMAD4, 
but not SMAD2, are independently associated with the IBC phenotype (Additional file 
2: Fig. S3). Interestingly, in the few IBC samples with elevated SMAD3 nuclear 
expression, defined relative to the median nuclear SMAD3 expression level in nIBC 
samples (N = 9/76; P = 0.021), the nuclear expression of SMAD4 was particularly low. 
This association was less pronounced in nIBC samples (P = 0.118), suggesting co-
operation between SMAD3 and SMAD4 in defining IBC biology. 
SMAD3 and SMAD4 staining patterns were evaluated in tumor emboli in a subseries of 
19 samples from patients with IBC (Fig. 3b, Additional file 2: Fig. S4). Neither the 
proportion of stained cancer cells nor the total expression score in tumor emboli was 
different when compared to cancer cells in the primary tumor. However, we did 
observe a significant decrease in staining intensity between both compartments 
(SMAD3: P = 0.019 and SMAD4: P = 0.006). When considering all samples with SMAD3 
and/or SMAD4 expression data, decreased SMAD staining intensity was observed in 
11/19 (58%) of tumor emboli. In addition, none of the 19 samples demonstrated 
increased staining intensity in the tumor emboli relative to the primary tumor, 
suggesting that attenuation of nuclear SMAD3 and SMAD4 expression is integral to the 
biology of IBC tumor emboli.  
 

 
Fig3 a Nuclear protein expression levels for total SMAD2, SMAD3 and SMAD4 in a series of 
76 IBC and 152 nIBC patient samples. b In 11/19 IBC samples, SMAD3 and/or SMAD4 
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staining intensity is decreased (resp. P = 0.019 and P = 0.006) in cells of the tumor emboli 
relative to cells of the matching primary tumor. c Correlation analysis between SMAD protein 
expression and gene expression of 62/79 genes belonging to a reported IBC signature [4] in 31 
IBC and 23 nIBC patient samples. Significant correlations are found for SMAD2, SMAD3, and 
SMAD4 with respectively 24% (i.e. 15/62), 39% (i.e. 24/62) and 15% (i.e. 9/62) of the IBC 
signature genes (red dots).  
 
A similar correlation analysis was carried out for 1,107/1,820 genes that responded 
differently to 4 hours of TGFβ1 treatment in IBC and nIBC cells and that were 
adequately expressed in the Affymetrix data set (Fig. 4a). In this analysis, 36% 
(402/1,107) of the correlations with SMAD3 nuclear expression were significant. When 
analyzing the SMAD3 and MYC related genes identified after GSEA in the time course 
experiment (vide supra), we observed a 1.789-fold enrichment for the SMAD3 related 
genes (blue dots) amongst the positively correlated genes (yellow) and a 3.588-fold 
enrichment for the MYC related genes (yellow dots) amongst the negatively correlated 
genes (light blue). These data show that, also in clinical samples, the expressions of the 
TGFβ1-responsive genes are primarily associated with SMAD3 and that increased MYC 
target gene expression coincides with attenuated SMAD3 nuclear expression. In 
contrast, the percentage of significant correlations with SMAD2 or SMAD4 was 
respectively 24% (265/1,107) and 12% (129/1,107).  
 
To validate these findings in function of the IBC phenotype, associations between 
expressions of SMAD3 and MYC related genes and the IBC phenotype were investigated 
in patient samples. Therefore, GSEA was performed on the Affymetrix data set 
expanded with an additional 19 IBC and 32 nIBC patient samples for which no SMAD 
protein expression analysis was performed as well as on a second independent series 
of samples from patients with and without IBC. In both cohorts, SMAD3 and MYC 
related genes were significantly overexpressed in nIBC and IBC samples respectively. 
Results are shown in Fig. 4b and 4c. 
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Fig4 a Correlation analysis between SMAD protein expression and gene expression of 
1,107/1,820 genes that respond differently after 4 hours of TGFβ1 treatment in IBC and nIBC 
cells. b Enrichment plot comparing gene expression data from 50 IBC and 55 nIBC patient 
samples (19 IBC and 32 nIBC without SMAD protein expression analysis). The x-axis displays 
all genes in E-MTAB-1006 ranked according to their log2 fold change value. High fold changes 
(left) represent genes upregulated in IBC cells, low fold changes (right) shows highly expressed 
transcripts in nIBC cells. SMAD3 related genes that are positively correlated with SMAD3 
protein expression (left graph) demonstrate significant, molecular subtype independent 
depletion amongst genes overexpressed in IBC (NES = -2.317, P < 0.001). MYC related genes 
that show an anticorrelation with SMAD3 protein expression (right graph) reveal a significant, 
molecular subtype independent enrichment amongst genes overexpressed in IBC (NES = 1.765, 
P < 0.001).  c Enrichment plot comparing SMAD3 protein expression data with gene expression 
data from an independent dataset (E-MTAB-1547) consisting of 74 IBC and 143 nIBC patient 
samples (SMAD3: NES = -1.335, P = 0.048; MYC: NES = 1.479, P = 0.007).  
 
Discussion 

In 2013, the World IBC Consortium reported a gene signature that differentiated 
between tissue samples from patients with and without IBC. This gene signature 
suggested that TGFβ signaling is attenuated in IBC, which was surprising given the 
importance of TGFβ signaling in metastatic progression across various cancer types [7-
9]. In the present study, we further investigate the role of TGFβ1 mediated migration 
and signaling in IBC cells and extend these observations to patient samples.  
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First, a chemotactic cell motility experiment showed that the response to TGFβ1 by IBC 
and nIBC was the only significant difference with cell motility almost completely 
impaired in all 3 IBC cell lines, extending across luminal and mesenchymal molecular 
subtypes. TGFβ receptor genes and their downstream transcription factors, SMAD2, 
SMAD3 and SMAD4 were expressed in all cell lines evaluated and no expression 
differences for any of these genes were observed between IBC and nIBC cells.  
Therefore, the inhibited motility of IBC cells cannot be attributed to differential 
expression of TGFβ signaling genes and thus requires further investigation. 
 
A time course experiment then revealed that in nIBC cells, TGFβ1 induced 
overexpression of genes related to the transcriptional activity of SMAD3, a 
transcription factor that features in the TGFβ signal transduction pathways [10]. By 
contrast, TGFβ1-responsive genes overexpressed in IBC cells were enriched for genes 
related to the transcriptional activity of MYC, indicating that IBC cells respond to TGFβ1 
by activating a MYC response program. This observation is unexpected given that SMAD 
proteins are natural antagonists of MYC activity [11]. Notably, a SNP in a cis-regulatory 
enhancer element of MYC was already shown to be associated with major metastatic 
risk in IBC [12]. This suggests that the mechanisms of TGFβ1-induced SMAD3 
transcriptional activity are specifically altered in IBC cells. 
 
In order to link the absence of SMAD3 transcription activity to IBC biology, protein 
levels were examined in patient samples. Nuclear protein expression levels for all SMAD 
proteins were reduced in IBC relative to nIBC samples in a molecular subtype 
independent manner, with a near complete absence of SMAD3 expression in most IBC 
cases. Comparative analysis of SMAD nuclear protein and gene expression data 
demonstrated that the expression levels of a substantial number of the 79 IBC signature 
genes [4] correlated with SMAD3 protein expression levels. Genes overexpressed in IBC 
were predominantly negatively correlated to nuclear SMAD3 protein expression and 
vice versa.  
 
Expression levels of many IBC and nIBC specific TGFβ1-responsive genes identified in 
the time course experiment were also primarily correlated to nuclear SMAD3 protein 
expression in patient samples, further strengthening the association between a TGFβ 
response program in IBC cells and SMAD3. Amongst the positively correlated TGFβ1-
responsive genes, there was significant enrichment for genes related to the 
transcriptional activity of SMAD3 and these genes were also highly expressed in nIBC 
cases in two independent patient series. In contrast, TGFβ1-responsive genes 
negatively correlated to nuclear SMAD3 protein expression were enriched for genes 
related to the transcriptional activity of MYC and these genes were highly expressed in 
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IBC cases from the same independent patient series. Together, these results suggest 
that the molecular response of IBC cells to TGFβ1 is orchestrated in a SMAD3 
independent manner with concomitant MYC transcriptional activity.  
 
The emerging role of abrogated SMAD3 transcriptional activity in IBC biology provides 
a potential model for the disseminative and metastatic characteristics of IBC cells. In 
2009, Giampieri and colleagues reported that TGFβ signaling switches the mode of 
cancer cell migration from collective to single cell phenotype and that transient TGFβ 
signaling is essential for blood-borne metastasis [13]. Furthermore, Matise and 
colleagues corroborated these results and additionally demonstrated that TGFβ-
induced single cell motility involves the regulation of epithelial to mesenchymal 
transition (EMT) [14]. Using genetically modified mammary epithelial cell cultures, 
Kohn and colleagues revealed that the regulation of EMT through TGFβ signaling 
depends on expression of SMAD3 but not SMAD2 [15], confirming earlier observations 
in keratinocyte cultures [16]. In a separate analysis, Kohn and colleagues investigated 
SMAD3 gene dosage effects on cell biology using mammary epithelial cells and revealed 
that a 50% reduction of SMAD3 expression (i.e. SMAD3+/- genotype) abrogated the cell 
motility response but enhanced the invasion response [17]. These observations were 
attested to the induction of partial EMT in which some molecular changes associated 
with EMT are observed without the classical morphological changes.  
 
Therefore, the data presented in this study suggest that IBC cells are characterized by 
partial EMT and collective invasion by means of their reduced SMAD3 expression. The 
partial EMT in part could explain the ubiquitous but counterintuitive presence of E-
cadherin in IBC [4, 18]. In addition, the attenuated cell motility response observed in 
conjunction with partial EMT is consistent with the reduced cell motility inducing 
capacity of TGFβ1 observed in IBC cells. Studies suggest that collectively invading 
cancer cells possess a higher metastatic potential due to an enhanced capacity for 
extravasation [13, 14, 17, 19], and favor lymphatic over hematogenous dissemination 
[13]. Collectively migrating cancer cells that disseminate as E-cadherin positive cancer 
cell clusters through the lymphatic systems is reminiscent of tumor emboli, which are 
characteristic of IBC. Interestingly, the nuclear protein staining intensity of SMAD3 was 
never higher in cancer cells residing in tumor emboli as compared to those in the 
primary tumor, suggesting that the mechanism leading to abrogated SMAD3 
transcriptional activity in the primary tumor is even more pronounced in tumor emboli 
and thus plays a vital role in the dissemination of IBC cells and their metastatic 
potential.  
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The majority of the data in this study indicate that SMAD3 is the main determinant of 
the specific TGFβ response in IBC cells. However, multivariate analysis revealed that 
attenuated nuclear expression of SMAD4 is also associated with the IBC phenotype but 
that this expression is independent of SMAD3. In-depth analysis demonstrated that 
SMAD4 nuclear expression was particularly low in a small fraction of IBC cases with 
elevated nuclear SMAD3 expression. In addition, SMAD4 staining intensity was further 
diminished in cancer cells residing in tumor emboli and particularly in some patients 
where differences in staining intensity for SMAD3 between cancer cells in the primary 
tumor and tumor emboli were not observed. These observations suggest that SMAD3 
and SMAD4 expression is mutually exclusive and reduction of nuclear SMAD4 is an 
alternative pathway to establish the TGFβ response in IBC cells which is associated with 
metastatic progression.  
 
Few studies have examined the role of SMAD4 in partial EMT and collective invasion, 
but it has been reported that increased expression of SMAD4 mediates the TGFβ-
dependent switch from cohesive to single cell motility [13]. Furthermore, these data 
imply that for a thorough understanding of IBC biology in relation to TGFβ signaling, 
common targets of both SMAD3 and SMAD4 should be considered. Possible targets 
identified in this study are APRC2, MARCKS, and PNP that are IBC-specific genes [4, 20] 
of which at least ARPC2 and MARCKS are involved in the regulation of the actin 
cytoskeleton, which in turn is linked to the formation of metastases through its effect 
on cell motility and invasion, possibly in an EMT-independent way [21-25].  
In this study, IBC and nIBC cell lines of different molecular subtypes and a large series 
of patient samples were analyzed in order to identify mechanisms of TGFβ signaling 
that are intrinsic and specific to IBC cells. In order to fully comprehend the role of TGFβ 
signaling in IBC, concepts not addressed by this study require further investigation.  
Firstly, the effect of TGFβ signaling in the tumor stroma may be relevant to IBC biology 
given that fibroblasts are the primary reservoir of TGFβ ligands present in the 
inflammatory tumor microenvironment. Secondly, the effects of the other TGFβ 
isoforms, TGFβ2 and TGFβ3, were not considered although literature suggests that 
distinct TGFβ ligands play unique roles in the biology of breast cancer [26]. Finally, total 
SMAD nuclear expression was regarded as a read-out of SMAD transcriptional activity, 
which is corroborated by the fact that SMAD3 transcriptional targets are enriched 
amongst the genes positively correlated with total nuclear SMAD3 expression. 
Different phosphorylated SMAD isoforms exist, each with different implication for cell 
biology [27] and a detailed analysis may provide novel insights into how TGFβ signaling 
contributes the biology of IBC.  
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Conclusions 

This study has demonstrated that IBC cells are characterized by attenuated SMAD3 or 
SMAD4 protein expression and transcriptional activity that obliterates the cell motility 
inducing capacity of TGFβ1. Recent studies revealed an essential role for SMAD3 in 
TGFβ1-induced cell motility through induction of EMT. In the absence of SMAD3 
expression, TGFβ1 induces a partial EMT leading to collectively invading cancer cells 
which possess a high metastatic potential and the tendency for lymphatic 
dissemination. The data described in this paper combined with a substantial body of 
literature on the subject provides an intriguing explanatory model for the biology of 
IBC, particularly the formation of tumor emboli and the associated metastatic 
potential, which merits further investment. 
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Introduction 

Inflammatory breast cancer (IBC) is an uncommon type of breast cancer that develops 
rapidly and progresses to metastatic disease in 30% of new diagnoses [1]. The 
aggressive behavior of IBC is translated into poor survival rates, which are significantly 
lower compared to non-inflammatory breast cancer patients [2, 3]. Despite therapeutic 
progresses, IBC is still responsible for a disproportionally high amount of breast-cancer 
related deaths. Therefore, there is an urgent need to identify biomarkers involved in 
therapeutic purposes of IBC and to improve patients’ outcomes.  

The past decades, several efforts have been undertaken to better elucidate the 
mechanisms of IBC aggressiveness and to identify pathways distinct to IBC [4-12], 
however many have failed validation in distinct data series. In 2013, a robust signature 
of 79 probes reporting an IBC-specific and molecular subtype-independent expression 
profile was published, indicating that TGF-β signaling might be an important driver of 
IBC biology [13]. Recently, Rypens and colleagues have investigated how TGF-β1 
signaling is implicated in IBC biology and demonstrated that IBC cells exhibit a marked 
inability to engage cell motility following TGF-β1 treatment. This behavior was 
accompanied by a specific gene expression program following 4 hours of TGF-β1 
treatment and characterized by repression and activation of respectively SMAD3 and 
MYC target genes [14].  

The goal of the present study is to combine gene expression and peptide 
phosphorylation profiles of preclinical models to further unravel the signal transduction 
mechanisms that orchestrate the differential TGF-β response program in IBC and nIBC 
cells. Our results show nIBC cells, but not IBC cells, exhibit changes in protein kinase 
activity following TGF-β1 treatment. In addition, integrative analysis of mRNA and 
phosphopeptide profiles through protein-protein interaction networks demonstrate 
that TGF-β signaling in nIBC cells via TGFBR2 leads to activation of SMAD3 and 
modulators of epithelial-to-mesenchymal transition (i.e. ZEB1, ZEB2, SNAI1, SNAI2) via 
the non-canonical pathway involving several MAPK proteins (i.e. JNK, p38, TAK1). 
Moreover, several proteins possibly explaining the blunted TGF-β response in IBC cells 
were identified including TGIF2, PPP5C, AMPK, epigenetic modifiers, and Hippo 
signaling molecules. 

Materials and Methods 

Cell culture  

Four nIBC cell lines, i.e. MCF7, SKBR3, MDA-MB-231, and MDA-MB-436 were 
purchased from ATCC (Manassas, USA) and cultured in respectively DMEM and RPMI 
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1640 medium supplemented with 10% FBS and antibiotics. Four IBC cell lines, i.e. KPL4, 
IBC3, SUM149 and SUM190 were a kindly gift from a kindly gift from MD Anderson 
Cancer Center, TX, USA.  The KPL4 cell line is cultured in RPMI 1640 medium 
supplemented with 10% FBS and antibiotics. The SUM149, the SUM190 and IBC3 cell 
lines are cultured in Ham's F-12 Nutrient Mix, supplemented with 5% FBS, insulin, 
hydrocortisone and antibiotics. All cell lines are maintained in a 5% CO2-humidified 
atmosphere at 37°C. Mycoplasma testing was performed monthly using the LookOut® 
Mycoplasma PCR Detection Kit (Sigma Aldrich, Missouri, USA). 

Gene expression analysis 

Gene expression data were measured using RNA-sequencing as described before [14]. 
Briefly, three IBC (i.e. SUM149, SUM190, KPL4) and three nIBC (i.e. MCF7, MDA-MB-
231, MDA-MB-436) cell lines were treated with 5 ng/ml TGF-β1 for 1h, and 4hs and 
RNA was extracted using in-house protocols. RNA-sequencing was performed using 
stranded cDNA libraries on a HiSeq2000 system. Reads were mapped to the reference 
genome (hg19) using TopHat 2.0 and Bowtie 2.0. Genes with at least 10 reads in at least 
10% of the samples were retained for further analysis (N=15.897). To inspect global 
expression themes, unsupervised hierarchical cluster analysis (UHCA) was performed 
for 1,000 genes with the strongest variation in gene expression measured by standard 
deviation. The dissimilarity matrix was calculated using Manhattan distance and 
clustering was performed using Ward linkage. Results were visualized in heatmap 
format using the R-package pheatmap.   

Differences in gene expression were analyzed using generalized linear models (BioC-
package limma). The design matrix was set up using a nested interaction formula with 
the cell type (i.e. IBC vs. nIBC) as main effect, a second term representing the 
interaction between cell type and TGF-β1 treatment, and a third term representing 
dominant clustering pattern as blocking variable. Genes differentially expressed 
between IBC and nIBC cells, between TGF-β1-treated and untreated IBC or nIBC cells, 
as well as genes that respond differently to TGF-β1 treatment in IBC and nIBC cell were 
identified. Genes with a raw P-value inferior to 5% were considered significant. Results 
are represented in volcano plot format. 

To identify master regulators of differential gene expression following TGF-β1 
treatment in IBC and nIBC cells, the BioC-package VIPER was used. The VIPER algorithm 
virtually infers protein activity levels of both transcription factors and signal 
transduction proteins based on target gene mRNA expression. It considers the mode 
of action (i.e. activation or suppression), the regulator-target gene interaction 
confidence and the pleiotropic nature of each target gene regulation. The VIPER 
algorithm was run without a null model and with lists of breast cancer specific target 
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genes for 6.053 regulators available through the BioC-package aracne.networks. Prior 
to analysis, nominal P-values resulting from differential gene expression analysis (vide 
supra) were Z-transformed. Secondary to the core VIPER analysis, leading edge genes 
were identified, and a shadow analysis was performed to identify pleiotropic 
interactions amongst significant regulators. Pleiotropic interactions were visualized as 
interaction maps using the R-packages igraph, ggraph and tidygraph. Proteins with an 
in-degree of at least 1, indicative of a shadow effect and identified through topological 
analysis of the interaction maps, were filtered out. Proteins with a false discovery rate 
(FDR) corrected P-value inferior to 10% were considered significant. 

Kinase activity profiling 

Four IBC (i.e. SUM149, SUM190, KPL4 and IBC3) and four nIBC cell lines (i.e. MCF7, 
SKBR3, MM231, MM436) were serum deprived for 24 hours. At time point 0, cells were 
harvested (i.e. baseline samples) or treated with 5ng/ml TGF-β1. Harvesting was 
performed by adding M-PER lysis buffer (Thermo Fisher Scientific), followed by 
incubation on ice for 15 minutes and finally collecting the cells using a cell scraper. The 
lysate was then centrifuged for 15 minutes at 16.000 x g at 4°C after which aliquots 
were snap frozen in liquid nitrogen and stored at -80°C until further use. The treated 
cells were harvested after 1 and 4 hour(s) of incubation. In parallel, untreated cells 
were harvested at the same time points to control for time dependent effects (i.e. 
untreated control samples). For all samples, protein quantification and the PamGene 
assay were performed in collaboration with the Protein chemistry, Proteomics and 
Epigenetic Signaling (PPES) lab from the Antwerp University. Using PamChip Tyrosine 
(PTK) and Serine/Threonine Kinase (STK) Array Chips and a PamStation 12 system 
according to manufacturer’s instructions [15], phosphorylation profiles for respectively 
197 and 144 peptides were evaluated.  

Data preprocessing was done separately for STK and PTK chips as well as for the 
different TGF-β1 incubation times as these experiments were done on different time 
points. Raw S100 values were read into R and log2 transformed. Negative values were 
considered as missing values and peptides with missing data in more than 50% of the 
samples were filtered out. In total, 156 (PTK; 1h), 116 (STK; 1h), 152 (PTK; 4h) and 89 
(STK; 4h) were retained for further analysis. Finally, data were quantile normalized to 
account for technical differences between arrays. Differences in peptide 
phosphorylation between conditions of interest were analyzed using generalized linear 
models with the same design matrix that was used for analyzing gene expression data 
(vide supra). Due to the lower number of features, raw p-values were not corrected for 
multiple testing and were considered significant if inferior to 5%.  
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Processed peptide phosphorylation data were translated into kinase activity scores, 
using single sample gene set enrichment analysis (ssGSEA; BioC-package gsva) with a 
Gaussian kernel to estimate the cumulative distribution function and a list of kinase 
substrate sets that is recorded in a proprietary database shared by PamGene. In this 
database, 99 (Y), 238 (T) and 204 (S) unique kinases that can phosphorylate at least one 
of the peptides retained in the final data set are identified, and most peptides can be 
phosphorylated by multiple kinases albeit with variable confidence. The confidence of 
a peptide/kinase interaction is expressed as a kinase rank score, which is a numerical 
value between 1 and 50 with low values indicating high confidence and vice versa. To 
define signature substrate sets for each kinase, the kinase rank score can be 
thresholded resulting in the definition of variably composed substrate sets that are 
either more or less specific depending on the selected cut-off value. To mitigate the 
effect of thresholding, kinase activity scores are calculated using substrate sets 
generated by applying different cut-off levels (i.e. 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 
40, 45, and 50) and resulting scores were compared between conditions of interest 
using generalized linear models with the same design matrix as described before (vide 
supra). Kinases for which minimally 5 significant observations are reported of which at 
least 3 for the lower kinase rank scores (i.e. <20) were retained. Results are visualized 
in heatmap format. 

Pathway and network analysis 

Master regulators identified using VIPER and differentially activated protein kinases 
identified using PamGene technology were integrated through protein-protein 
interaction (PPI) networks to identify signal transduction mechanisms that govern TGF-
β in IBC and nIBC cells. Therefore, 3 sets of proteins that respond differently to TGF-β1 
treatment in IBC and nIBC cells were identified: 1. Modulators of the TGF-β signaling 
pathway obtained from WikiPathways and Reactome; 2. Master modulators with an 
absolute normalized enrichment score of at least 5; and 3. Differentially activated 
protein kinases. All proteins were mapped onto the PPI network STRING that was 
downloaded from the website (https://www.string-db.org) and converted into an 
igraph object for manipulation in R (R-package igraph), and shortest paths between 
each pair or proteins was calculated. To evaluate the significance, the shortest path 
analysis was repeated for the same set of input proteins on 10 randomized networks 
with identical node degree distribution. The subgraph connecting all pairs of proteins 
was used to calculate node degree and centrality statistics and was subjected to louvain 
clustering to detect communities. For each community as well as for the full subgraph, 
overrepresentation analysis (ORA – BioC-package fgsea) was performed for 
WikiPathways and Reactome gene sets and results were collapsed to identify parental 
gene sets. For each of the communities, the 3 lists of TGF-β1 regulated proteins 
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described above were additionally tested. Enrichment in the full subgraph was tested 
against all proteins in the STRING network, whereas enrichment in the communities 
was tested against all proteins in the subgraph. Networks are visualized R-packages 
tidygraph, ggraph, and ggpubr.  

Results 

Gene expression analysis  

UHCA (Figure 1A) identifies two sample clusters (i.e. downstream of the first 
bifurcation), aligning with clear differences in gene expression patterns. However, no 
clear relationship between samples clusters and target variables (i.e. tumor phenotype 
and TGF-β1 treatment duration) is observed. IBC and nIBC cell lines are represented in 
both clusters and presumably cluster based on their molecular subtype, as described 
earlier [14]. Replicate samples of cell lines cluster on terminal branches and the 
expression profile obtained after 4 hours of TGF-β1 treatment is most dissimilar in all 
cell lines. These data suggest that an effect of TGF-β1 treatment on gene expression in 
IBC and nIBC cells will be subtle and can be obscured by confounding variables in the 
data set.  

 

Figure 1. A: Heatmap showing global themes in the mRNA data set in matrix format. Genes 
and samples are organized in row and columns respectively and are ordered according to the 
dendrograms shown on top and to the left. Sample annotations are indicated underneath the top 
dendrogram following the legend shown to the right. Gene expression data are coded according 
to a blue-red coloring scheme representing under- and overexpression respectively. B: Volcano 
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plot showing genes that respond differently in IBC and nIBC cells following 1h of TGF-β1 
treatment. Each gene is represented by a dot. The X-axis denotes to log2-tranformed fold change 
and 2-fold expression differences are indicated using a vertical dashed line. The –log10 
transformed P-value is plotted along the Y-axis with a threshold of 5% indicated using a 
horizontal dashed line. Genes that have a higher expression change in the treated relative to the 
control IBC cells as compared to the treated relative to the control nIBC cells have a positive 
expression fold change and vice versa. C: Volcano plots showing genes that respond differently 
in IBC and nIBC cells follwing 4h of TGF-β1 treatment. Each gene is represented by a dot. The 
X-axis denotes to log2-tranformed fold change and 2-fold expression differences are indicated 
using a vertical dashed line. The –log10 tranformed P-value is plotted along the Y-axis with a 
threshold of 5% indicated using a horizontal dashed line. Genes that have a higher expression 
change in the treateds relative to the control IBC cells as compared to the treated relative to the 
control nIBC cells have a positive expression fold change and vice versa.  

Differences in gene expression for individual genes between various conditions are 
shown in volcano plot format in supplementary Figure 1. In line with the results 
obtained with UHCA (Figure 1A), limited numbers of differentially expressed genes 
between samples grouped by the target variables were identified: 2,448 genes 
between IBC and nIBC cells, 5 and 13 genes between TGF-β1-treated and control nIBC 
cells at 1 and 4 hours respectively, 37 and 275 genes between TGF-β1-treated and 
control IBC cells at 1 and 4 hours respectively, and 6 and 54 genes that respond 
differently in IBC and nIBC cells to respectively 1 and 4 hours of TGF-β1 treatment. The 
latter results are also shown in a rescaled volcano plot format in Figures 1B and 1C. 
These data reveal that the effect of TGF-β1 on gene expression is most pronounced in 
IBC cells following 4 hours of treatment.  

VIPER analysis was then performed to infer virtual protein activity differences between 
the conditions of interest. Although differences in gene expression were limited, a 
more elaborate set of differentially activated proteins was identified with respect to 
the various contrasts: 1,113 proteins between IBC and nIBC cells, 114 and 540 proteins 
between TGF-β1-treated and control nIBC cells at 1 and 4 hours respectively, 701 and 
654 proteins between TGF-β1-treated and control IBC cells at 1 and 4 hours 
respectively, and 779 and 663 proteins that respond differently in IBC and nIBC cells to 
respectively 1 and 4 hours of TGF-β1 treatment. As the aim of the present analysis is to 
gain insight into the TGF-β signal transduction differences between IBC and nIBC cells, 
the remainder of the analysis focused on the latter two protein sets. Amongst these, 
sets of 50 and 53 proteins with a differential TGF-β1 response profile at respectively 1 
and 4 hours were identified based on topological analysis of the pleiotropic interaction 
maps (supplementary Figures 2, 3, 4, and 5) and enrichment statistics (i.e. absolute 
normalized enrichment score of at least 5). Results are shown in Figure 2 (upper 
panels). Second, sets of TGF-β signal transduction molecules, obtained from Reactome 
and WikiPathways, with a differential response profile were identified and include 
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SMAD3, TGFBR2 and various molecules involved in epithelial-to-mesenchymal 
transition (i.e. SNAI1, SNAI2, ZEB1, ZEB2). All these proteins are activated at a higher 
level in nIBC relative to IBC cells following TGF-β1 treatment. Results are shown in 
Figure 2 (lower panels).  

 

Figure 2. Results of the VIPER analysis are shown in bar plot format. The four panels represent 
TGF-β signaling proteins (top row) or TGF-β responsive proteins (bottom row) that respond 
differently in IBC and nIBC cells to 1h (first column) or 4hs (last column) of TGF-β treatment. 
Genes are plotted along the X-axis, the normalized enrichment score resulting from the VIPER 
analysis is shown along the Y-axis. Each bar is color-coded according to the significance of the 
enrichment analysis, following the legend shown underneath the panel. 

Kinase activity profiling 

Numbers of differentially phosphorylated peptides per condition are visualized in bar 
plot format in Figure 3A and B. First, the number of differentially phosphorylated 
peptides is greater after 4hs of TGF-β1 treatment as compared to 1h of TGF-β1 
treatment. Second, TGF-β1 treatment of nIBC cells results in larger numbers of 
differentially phosphorylated peptides as compared to TGF-β1 treatment of IBC cells. 
Third, differential phosphorylation events between TGF-β1 treated and untreated cells 
predominantly involve serine or threonine residues. When translating peptide 
phosphorylation profiles into kinase activity values, these observations are largely 
recapitulated (Figure 3C), except for a marked increase in tyrosine kinase activity in 
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nIBC cells following 4hs of TGF-β1 treatment. Interestingly, virtual all these kinases (i.e. 
CDK2, CDKL1, CDKL2, ERK5, JNK1, JNK2, JNK3, MAP3K5, MAP3K7 and NEK1) also 
respond differently in IBC and nIBC cells following 4hs of TGF-β1 treatment, suggesting 
these are involved in the modulation of the TGF-β signaling pathway in IBC cells. In 
addition, also the serine/threonine kinases CDK9 and CHK2 exhibit a similar profile.  

 

Figure 3. A: Number of differentially phosphorylated peptides (Y-axis) following 1h of TGF-
β treatment are shown in bar plot format. Contrasts are listed along the X-axis (T vs U in IBC = 
TGFB treated vs. untreated in IBC, T vs U in nIBC = treated vs. untreated in nIBC, IBC vs nIBC 
in T = differentially phosphorylated in IBC and nIBC cells following TGFB treatment). Bars 
are color-coded according to the used assay following the legend indicated underneath the plot. 
The exact numbers of differentially phosphorylated peptides are indicated on top of each bar. 
B: Number of differentially phosphorylated peptides (Y-axis) following 4h of TGF-β treatment 
are shown in bar plot format. Contrasts are listed along the X-axis (T vs U in IBC = TGFB 
treated vs. untreated in IBC, T vs U in nIBC = treated vs. untreated in nIBC, IBC vs nIBC in T 
= differentially phosphorylated in IBC and nIBC cells following TGFB treatment). Bars are 
color-coded according to the used assay following the legend indicated underneath the plot. The 
exact numbers of differentially phosphorylated peptides are indicated on top of each bar. C: 
Significance values of differentially activated protein kinases according to different kinase rank 
values are shown in heatmap format. The kinase rank describes how much a peptide-kinase link 
can be trusted, i.e. a low kinase rank demonstrates a high probability that a peptide is 
phosphorylated by that kinase, whereas a high kinase rank demonstrates a low probability. In 
subsequent iterations, a higher kinase rank (5, 6, 7, 8, 9, 10, 15, 20, 25…) was accepted to 
identify differentially activated protein kinases. The accepted kinase rank is plotted along the 
Y-axis. This exercise was done for each assay (i.e. PTK and STK), condition (nIBC.T= TGFB 
treated vs. untreated in nIBC, IBC.T = TGFB treated vs untreated in IBC, INT = differentially 
phosphorylated in IBC and nIBC cells following TGFB treatment), and time point (4H vs 1H) 
and is shown in a distinct panel. Within each panel, relevant kinases are listed along the X-axis. 
Cells are color-coded according to the –log10 transformed P-value following the legend 
underneath. The kinase rank of 20, which was used in the analysis as cut-off to differentiate 
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between low and high kinase ranks, is indicated using a vertical dotted line. For each of the 
identified kinases, at least 3 significant results (i.e. red cells) for lower kinase rank values were 
observed. On top of the heatmap, the log2-transformed fold change is indicated using a dot plot 
format with a horizontal dashed lined denoting the threshold of 0. Positive fold changes indicate 
that the kinase is more active in the TGF-β treated relative to the untreated condition or is 
stronger activated in IBC treated vs control cells than in nIBC treated vs. control cells. Negative 
fold changes denote the opposite pattern.   

Pathway and network analysis 

To identify signal transduction mechanisms that govern TGF-β signaling, 92 proteins 
(i.e. master modulators identified using VIPER or kinases identified using PamGene) 
that exbibit a different response profile in IBC and nIBC cells following 4hs of TGF-β1 
treatment were mapped onto the PPI-network STRING. In total, 30,452 shortest paths 
between all pairs of proteins (N=4,186 unique combinations) were identified with a 
median path length of 4 (range: 2-6) and vouching for 1,384 intermediate proteins. On 
average, each intermediate protein is part of 0.052% (range: 0.013% - 6.200%) of the 
identified shortest paths. Repeating the same analysis on 10 randomized PPI networks 
with identical node degree distribution returned on average 5,909 intermediate 
proteins, which is significantly higher than the number observed using the original 
STRING network (P<0.001) and indicates that the set 92 seed proteins and 1,384 
intermediate proteins constitutes a local community. Furthermore, 97/1,384 
intermediate proteins from the original analysis are significantly (P<0.050) more 
frequently involved any shortest path of the randomized networks, and thus were 
filtered out due lack of specificity. Furthermore, the set of 1,287 intermediate proteins 
was significantly enriched for master modulators identified using VIPER that were not 
part of the original seed list, resulting in a set of 74 additional TGF-β1 responsive 
proteins that are part of the identified network (OR=2.502; P<0.001). Finally, ORA for 
gene sets belonging to WikiPathways and Reactome revealed respectively 51 and 83 
enriched pathways, including several gene sets associated with TGF-β signaling. Results 
are shown in supplementary Figure 6 and 7. 

The identified subgraph was subjected to clustering, and 6 communities with an 
average modularity of 0.41 were identified. The largest community, consisting of 528 
proteins was subjected to a second clustering step revealing 9 additional communities 
with an average modularity of 0.42. For each community, ORA was performed for the 
3 lists of seed proteins as well as for the list of 74 additional TGF-β1 responsive proteins. 
Results are shown in Figure 4A. In the full network, 3 communities (i.e. M1, M5 and 
M6) are enriched for at least one of the target gene sets and contain at least one kinase. 
Within the first community, based on similar rules, two additional interesting protein 
clusters were identified (i.e. M1C2 and M1C9). The relative activity changes of the 
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communities in IBC vs. nIBC cells following TGF-β1 treatment, evaluated by the 
averaged normalized enrichment scores of the member proteins, are shown in Figure 
4B and reveal that M5 and M1C9 are activated in IBC cells whereas the TGF-β-related 
communities M6 and M1C2 are activated in nIBC cells. Node degree statistics, revealing 
the importance of the seed and intermediate proteins in their module, are shown in 
Figure 4C. Network representation of M5, M6, M1C2 and M1C9 are shown in Figure 5.  

 

Figure 4. A: Enrichment results of network communities for four lists of TGF-β responsive 
proteins are shown in heatmap format. The communities are listed along the X-axis, the gene 
lists of interest are indicated along the Y-axis. Two panels are provided showing the results for 
the full network (left) and for the first community within that network (right). Cells are color-
coded according to the –log10 transformed P-value as indicated in the legend. Red colors denote 
significant results. B: The global activities of each community in IBC relative to nIBC cells 
following 4hs of TGF-β treatment are shown in boxplot format. The communities are indicated 
along the X-axis, the averaged normalized enrichment score of the community specific TGF-β-
responsive proteins is shown along the Y-axis. Positive normalized enrichment scored indicate 
communities that are more strongly activated in IBC as compared to nIBC following TGF-β 
treatment. Negative normalized enrichment scores indicate the opposite pattern. Two panels 
showing the results of the full network (left) and the first community within that network (right) 
are provided. P-values resulting from comparing the distributions of the normalized enrichment 
scores between the different clusters and calculated using Kruskal-Wallis test are shown on top. 
C: Four communities with interesting enrichment patterns were identified. For each of these, 
the node degree distribution is shown in barplot format with the degree plotted along the X-axis 
and TGF-β-responsive proteins are plotted along the Y-axis. Bars are color-coded according to 
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the legend underneath indicating the specific list of TGF-β-responsive proteins the 
corresponding protein belongs to. In addition, for each community the degree of the top 5 
proteins is also provided as a reference. For each community, a different panel is provided: M5, 
M6, M1C2 and M1C9 from top to bottom and from left to right. 

To test for functional enrichment patterns, ORA for gene sets belonging to 
WikiPathways and Reactome was performed, and results are shown in supplementary 
Figure 5A and B. Both M6 and M1C2 are enriched for core TGF-β signaling molecules 
(i.e. SMAD3, TGFBR2) in addition to proteins involved in the modulation of gene 
expression and epigenetic reprogramming in M6 (i.e. SMARCA2, SMARCA4, SIN3A, 
KAT2B) and kinases associated with stress and non-canonical TGF-β signaling in M1C2 
(i.e. CDK9, MAPK7, MAPK8, MAPK9, MAPK10, MAPK14, MAP3K7). In addition, M6 also 
contains many proteins involved in epithelial-to-mesenchymal transition (i.e. ZEB1, 
ZEB2, SNAI1, SNAI2). In addition, M6 and M1C2 are linked through MAPK7 suggesting 
both networks are jointly involved in TGF-β signaling in nIBC cells, primarily via the non-
canonical pathway. Importantly, although the M6 and M1C2 communities are globally 
activated in nIBC relative to IBC cells following TGF-β1 treatment (Figure 4B), not all 
network members adhere to that pattern (Figure 5). These proteins could explain why 
the TGF-β pathway in IBC cells operates differently. Finally, the M5 and M1C9 modules 
that are globally activated in IBC relative to nIBC cells following TGF-β1 treatment are 
involved in DNA metabolism and cell proliferation (M5) and apoptosis, Hippo and AMPK 
signaling (M1C9).  
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Figure 5. Network representations for each of the identified communities enriched for any of 
the TGF-β-responsive protein lists: M5 (A), M6 (B), M1C2 (C) and M1C9 (D). Proteins (nodes) 
are represented as dots and interactions (edges) as grey lines. Each protein for which normalized 
enrichment scores resulting from the VIPER analysis are available are color-coded according to 
the legend shown underneath, with red indicating a protein that becomes more active in IBC 
cells relative to nIBC cells following TGF-β treatments and blue indicating the opposite pattern. 

Discussion 

In this paper, mRNA and peptide phosphorylation data were integrated using network-
based approaches to unravel the molecular mechanisms that are responsible for the 
apparent differences in TGF-β signaling between IBC and nIBC cells. By combining 
different layers into a PPI network, 4 modules or clusters of strongly interacting genes 
were identified containing proteins or kinases that respond differently to TGF-β1 
treatment in IBC and nIBC cells. By inspecting the relative activity changes of the 
proteins of these gene clusters, 2 modules were identified that are globally more active 
in nIBC relative to IBC following TGF-β1 treatment. Both modules contain many 
proteins involved in TGF-β/SMAD3 signal transduction pathway, thereby corroborating 
earlier hypotheses that stimulation of nIBC cells with TGF-β1 augments SMAD3 
transcriptional activity via non-canonical TGF-β signaling [14, 16, 17]. In addition, 
several proteins responsible for epithelial-to-mesenchymal transition (i.e. ZEB1, ZEB2, 
SNAI1, SNAI2) are also part of these modules, which aligns with the observations that 
breast cancer cells of the non-inflammatory phenotype activate cell motility by 
switching to a mesenchymal state upon stimulation with TGF-β1 [18-20].       

The same analysis identified 2 modules with globally increased protein activities in IBC 
relative to nIBC following TGF-β1 treatment. One of these modules is part of a larger 
gene cluster that also contains one of the modules involved in non-canonical TGF-
β/SMAD3 signaling, suggesting strong cross-regulation between both networks. 
Proteins contained in the module that is activated in IBC are involved in oxidative stress 
induced apoptosis (i.e. MAP3K5, and PPP5C), AMPK signaling (i.e. PRKAG1, PRKACA, 
and PRKAA2), and Hippo signaling (i.e WWTR1). Previous studies already revealed that 
these pathways can modulate the TGF-β signaling, and the present network analysis 
suggest that these interactions are also relevant in the context of IBC biology. Each of 
above identified pathways will be further discussed in the following paragraphs.  

In the past, reports have shown that AMPK can inhibit TGF-β signaling, SMAD2/3 
activation and EMT in breast cancer as well as in other diseases [21-26]. The AMPK 
pathway is an energy sensing pathway that alters cell metabolism and biology when 
the ATP:AMP ratio is low. In cancer biology, AMPK signaling has been associated both 
with tumor suppressive and promoting effects. In general, activation of AMPK inhibits 
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signaling pathways that promote cell growth and proliferation and activates autophagy 
when cellular energy levels are low. Oncogenic signaling is an important stimulator of 
AMPK activity by straining cells from nutrients and energy by vigorously engaging cell 
proliferation as well as by inducing DNA damage which is sensed by the AMPK upstream 
activator STK11. In this context, AMPK signaling protects cancer cells under conditions 
of oncogenic stress, a process that has been documented particularly for the MYC 
oncogene [27]. In IBC, activation of oncogenes including MYC as well as genomic scars 
associated with DNA damage have been frequently reported [14, 28-31]. Therefore, 
alterations in AMPK signaling secondary to MYC-induced DNA damage may contribute 
to the observed inhibition of TGF-β/SMAD3 signaling in IBC.    

In addition to AMPK, also the Hippo pathway is a known modulator of TGF-β signaling. 
The Hippo pathway operates by inhibiting the YAP and WWTR1/TAZ transcription 
factors and controls organ size by regulating cell proliferation and apoptosis. Ample 
evidence exits that both YAP and WWTR1/TAZ are involved in altering the activity of 
SMAD transcription factors amongst others by regulating their nucleocytoplasmic 
localization [32-38]. More precisely, Hippo signaling stimulates LATS-dependent 
phosphorylation and proteasomal degradation of YAP and WWTR1/TAZ thereby 
inhibiting nuclear localization and transcriptional activation of SMAD proteins. 
Interestingly, several lines of evidence exist showing that activated AMPK facilitates the 
phosphorylation and proteasomal degradation of YAP and WWTR1/TAZ [39, 40] also in 
a MYC-dependent manner [41], suggesting that the inhibition of TGF-β by AMPK 
mentioned above is mediated by crosstalk with the Hippo signal transduction 
machinery.  

Two proteins involved in oxidative stress mediated apoptosis (i.e. MAP3K5, and PPP5C) 
were also identified as part of the IBC activated network module. MAP3K5, also known 
as ASK1, is an important signal transduction protein in the TGF-β pathway that 
orchestrates TGF-β-dependent cell death responses to oxidative stress [42-44] in 
conjunction with PPP5C [45, 46]. PPP5C is a protein serine/threonine phosphatase that 
inactivates a wide range of signal transduction proteins including SMAD3 [47]. PPP5C 
is also known to alter AMPK signaling, although most of the reports indicate that this 
interaction is antagonistic [48-50]. In addition, literature has shown that PPP5C is 
involved in sensing DNA damage by regulation by ATM and ATR mechanisms [51, 52], 
again suggesting that DNA damage in IBC may be an important driver of intrinsic cancer 
cell signaling mechanisms. In this context, it is worth mentioning that the second 
network module enriched with protein activated in IBC is entirely devoted to DNA 
metabolism and damage repair.  
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Finally, the present data also support a role for epigenetic chromatin remodeling in 
suppressing TGF-β signaling in IBC. Several studies have shown that ARID1A, a member 
of the SWI/SNF chromatin remodeling complex is able to inhibit the TGF-β pathway 
[53-55], most likely by interfering with chromosome accessibility and denying SMAD 
transcription factors from binding to the promotors of their target genes. In IBC, 
ARID1A is often mutated [28, 56] and this study demonstrated that several SMARCA 
proteins are part of the PPI module that involves SMAD3. In addition, all of them exhibit 
increased activity levels in IBC cells relative to nIBC cells following TGF-β1 treatment. 
The role of chromatin remodeling in repression of the TGF-β pathway is also 
corroborated by the upregulation of TGIF2 in IBC cells after 4h of TGF-β1 treatment. 
TGIF2 is a TGF-β-inducible gene that is overexpressed in IBC patient samples in a 
molecular subtype independent manner and is part of the 79 gene model that 
accurately discriminates between IBC and nIBC tissue samples and preclinical models. 
Literature has shown that TGIF2 can repress SMAD transcription through interaction 
with histone deacetylases [57] and polycomb repressor 2 complexes [58]. Expression 
of EZH2, which is the catalytic subunit of the polycomb repressor complexes, has been 
documented in more than 75% of IBC patient samples [59]. Lastly, also the Hippo 
pathway is known to be involved in chromatin remodeling [60] and YAP1 has been 
shown to regulate SMAD3 activity by altering chromatin accessibility [61].  

In conclusion, the present study was undertaken to gain more insight into the biology 
responsible for the observed difference in TGF-β/SMAD3 responses between IBC and 
nIBC cells. By integrating gene expression and peptide phosphorylation profiles of 
preclinical IBC and nIBC models treated with TGF-β1, 4 candidate mechanisms were 
discovered including AMPK-, Hippo-, PP5/MAP3K5-signaling as well as chromatin 
remodeling. The exact contribution of these pathways to the establishment of TGF-β 
resistance in IBC cells remains a matter of debate and requires further investigation, 
but DNA damage and/or oncogenic stress is a potential driver. 
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Supplementary figures 

  

Supplementary Figure 1. Volcano plots showing genes differentially expressed between IBC 
and nIBC cells (A), between treated and control IBC cells at 1hr of TGFb treatment (B), between 
treated and control IBC cells at 4h of TGFb treatment (C), between treated and control nIBC 
cells at 1hr of TGFb treatment (D), between treated and control nIBC cells at 4h of TGFb 
treatment (E), genes that respond differently in IBC and nIBC cells following 1h of TGFB1 
treatment (F) and genes that respond differently in IBC and nIBC cells following 4hs of TGFB1 
treatment (G). Each gene is represented by a dot. The X-axis denotes to log2-tranformed fold 
change, and 2-fold expression differences are indicated using a vertical dashed line. The –log10 
transformed P-value is plotted along the Y-axis with a threshold of 5% indicated using a 
horizontal dashed line.  
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Supplementary Figure 2. Network representing pleiotropic interactions between master 
modulators identified based on genes that respond differently in IBC and nIBC cells following 
1h of TGFB1 treatment. Pleiotropic interactions were identified using shadow analysis 
(VIPER). Every master modulator for which pleiotropic interactions have been identified is 
represented by a dot, color-coded according to the normalized enrichment score of the VIPER 
analysis with red and blue denoting stronger induction of protein activity by TGFB in IBC and 
nIBC cells respectively. Pleiotropic interactions are indicated using blue edges with arrow heads 
indicating the direction of the pleiotropic interaction. Master modulators at the left-hand side of 
the arrow (i.e. arrow pointing away) have inferred protein activity values that are partly 
attributable to co-regulation of target genes by the master modulators at the right hand side. 
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Supplementary Figure 3. Topological analysis of the interaction graph shown in 
supplementary Figure 2. For each node in the interaction graph, the in- and out-degree was 
recorded, which is shown in the left and right panel respectively. Each node is represented by a 
bar, the height of which corresponds to the in- or out-degree and is color-coded according to the 
normalized enrichment score resulting from the VIPER analysis. Nodes with an in-degree of at 
least 1, have at least one incoming arrow indicating that their inferred protein activity is at least 
partly due to co-regulation with other master modulators. These proteins were filtered out for 
further analysis. Nodes are listed along the Y-axis in order of decreasing in-degree. 
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Supplementary Figure 4. Network representing pleiotropic interactions between master 
modulators identified based on genes that respond differently in IBC and nIBC cells following 
4hs of TGFB1 treatment. Pleiotropic interactions were identified using shadow analysis 
(VIPER). Every master modulator for which pleiotropic interactions have been identified is 
represented by a dot, color-coded according to the normalized enrichment score of the VIPER 
analysis with red and blue denoting stronger induction of protein activity by TGFB in IBC and 
nIBC cells respectively. Pleiotropic interactions are indicated using blue edges with arrow heads 
indicating the direction of the pleiotropic interaction. Master modulators at the left-hand side of 
the arrow (i.e. arrow pointing away) have inferred protein activity values that are partly 
attributable to co-regulation of target genes by the master modulators at the right hand side. 
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Supplementary Figure 5. Topological analysis of the interaction graph shown in 
supplementary Figure 4. For each node in the interaction graph, the in- and out-degree was 
recorded, which is shown in the left and right panel respectively. Each node is represented by a 
bar, the height of which corresponds to the in- or out-degree and is color-coded according to the 
normalized enrichment score resulting from the VIPER analysis. Nodes with an in-degree of at 
least 1, have at least one incoming arrow indicating that their inferred protein activity is at least 
partly due to co-regulation with other master modulators. These proteins were filtered out for 
further analysis. Nodes are listed along the Y-axis in order of decreasing in-degree. 
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Supplementary Figure 6. Overrepresentation analysis for gene sets belonging to the Reactome 
knowledge base in each of the four modules identified in protein-protein interaction network. 
Each module is represented by a distinct panel and labelled accordingly. In each panel, collapsed 
gene sets that are significantly enriched are plotted along the Y-axis. Significance values per 
gene can be derived from the position of color-coded dots along the X-axis that represents the –
log10 transformed P-value. The P-value threshold of 5% is indicated using a blue dashed line. 
The coloring scheme reflect the odds ratio of the overrepresentation test as shown in the legend 
to the right. Grey dots represent gene sets with an infinite odds ratio. In addition, for each gene 
set, a black diamond indicates the enrichment P-value of the same gene set in the full network 
to which the communities belong. Only gene sets that are more significant in the community as 
compared to the full network can be considered specific. 
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Supplementary Figure 7. Overrepresentation analysis for gene sets belonging to the 
WikiPathways knowledge base in each of the four modules identified in protein-protein 
interaction network. Each module is represented by a distinct panel, and labelled accordingly, 
except for M1C9 for which no significant enrichment was retained. In each panel, collapsed 
gene sets that are significantly enriched are plotted along the Y-axis. Significance values per 
gene can be derived from the position of color-coded dots along the X-axis that represents the –
log10 transformed P-value. The P-value threshold of 5% is indicated using a blue dashed line. 
The coloring scheme reflect the odds ratio of the overrepresentation test as shown in the legend 
to the right. Grey dots represent gene sets with an infinite odds ratio. In addition, for each gene 
set, a black diamond indicates the enrichment P-value of the same gene set in the full network 
to which the communities belong. Only gene sets that are more significant in the community as 
compared to the full network can be considered specific.  
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Abstract 

Inflammatory breast cancer (IBC) is the most pro-metastatic form of breast cancer. 
Better understanding of its pathophysiology and identification of actionable genetic 
alterations (AGAs) are crucial to improve systemic treatment. We aimed to define the 
DNA profiles of IBC versus non-IBC clinical samples in terms of copy-number-alterations 
(CNAs), mutations, and AGAs. We applied targeted next-generation sequencing (tNGS) 
and array comparative genomic hybridization (aCGH) to 57 IBC and 50 non-IBC samples 
and pooled these data with four public datasets profiled using NGS and aCGH, leading 
to a total of 101 IBC and 2,351 non-IBC untreated primary tumors. The respective 
percentages of each molecular subtype (HR+/HER2-, HER2+, and TN) were 68%, 15% 
and 17% in non-IBC versus 25%, 35% and 40% in IBC. The comparisons were adjusted 
for both the molecular subtypes and the AJCC stage. The 10 most frequently altered 
genes in IBCs were TP53 (63%), HER2/ERBB2 (30%), MYC (27%), PIK3CA (21%), BRCA2 
(14%), CCND1 (13%), GATA3 (13%), NOTCH1 (12%), FGFR1 (11%), and ARID1A (10%). 
The tumor mutational burden was higher in IBC than in non-IBC. We identified 96 genes 
with an alteration frequency (p<5% and q<20%) different between IBC and non-IBC, 
independently from the molecular subtypes and AJCC stage; 95 were more frequently 
altered in IBC, including TP53, genes involved in the DNA repair (BRCA2) and NOTCH 
pathways, and one (PIK3CA) was more frequently altered in non-IBC. Ninety-seven 
percent of IBCs displayed at least one AGA. This percentage was higher than in non-IBC 
(87%), notably for drugs targeting DNA repair, NOTCH signaling, and CDK4/6, whose 
pathways were more frequently altered (DNA repair) or activated (NOTCH and CDK4/6) 
in IBC than in non-IBC. The genomic landscape of IBC is different from that of non-IBC. 
Enriched AGAs in IBC may explain its aggressiveness and provide clinically relevant 
targets. 
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Introduction 

Inflammatory breast cancer (IBC) is the most aggressive clinical form of breast cancer 
(Dawood et al., 2011). Despite therapeutic progresses, ~50% of patients die from 
metastatic relapse. The distinct clinical presentation and aggressive behavior have not 
translated in design of differential treatment that remains similar to that of stage 3 
non-IBC. Identification of new therapeutic targets and better understanding of the 
pathophysiology are crucial (Charafe-Jauffret et al., 2008). Because of the scarcity of 
disease, “omics” studies remain rare in IBC (Bertucci et al., 2014a). The largest series 
reported to date is the one that we had collected within the International IBC 
Consortium (Bertucci et al., 2014b; Masuda et al., 2013; Van Laere et al., 2013), in 
which we notably showed the overrepresentation of aggressive molecular subtypes 
(basal, HER2-enriched, luminal B) when compared with non-IBC, justifying the need to 
stratify the IBC/non-IBC comparison upon the molecular subtypes (Van Laere et al., 
2013).  
 
During the last decade, next-generation sequencing (NGS) led to identification of driver 
alterations in non-IBC (Banerji et al., 2012; The Cancer Genome Atlas, 2012; Ellis et al., 
2012; Ferrari et al., 2016; Nik-Zainal et al., 2012a; Nik-Zainal et al., 2016; Nik-Zainal et 
al., 2012b; Shah et al., 2012; Stephens et al., 2012). Precision medicine trials have 
shown the potential of DNA-based genomics screening to identify clinically actionable 
genetic alterations (AGAs) for guiding treatment (Andre et al., 2014; Le Tourneau et al., 
2015). Regarding IBC, five NGS-based studies have been published since 2015 (Goh et 
al., 2016; Hamm et al., 2016; Liang et al., 2018; Matsuda et al., 2017; Ross et al., 2015). 
Except the most recent contribution (Liang et al., 2018), they concerned small series 
ranging from 19 to 53 IBCs, including both untreated primary tumors (between 16 and 
25 cases only) and pre-treated relapses. The number of tested genes varied between 
50 to 255 for the studies using targeted NGS (Hamm et al., 2016; Liang et al., 2018; 
Matsuda et al., 2017; Ross et al., 2015), and whole-exome sequencing (WES) (Goh et 
al., 2016). Few studies directly compared the genomic portraits of primary IBC and non-
IBC, and comparison was never stratified upon the molecular subtypes. However, three 
of the most recurrently mutated genes (TP53, PIK3CA, and HER2) have clear ties with 
molecular subtypes (i.e. triple-negative (TN), luminal, and HER2-enriched respectively). 
The main finding of these studies was an increased tumor mutational burden (TMB) in 
IBC that translated in the presence of many AGAs with low frequency, but without 
identification of IBC-specific driver genes.  
Here, we present a large comparative study of untreated primary tumors of IBC and 
non-IBC based on NGS data from Institut Paoli-Calmettes (Marseille, France) and TCRU 
(Antwerp, Belgium), pooled with publicly available data (The Cancer Genome Atlas, 
2012; Hamm et al., 2016; Pereira et al., 2016; Ross et al., 2015). After adjustment upon 
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both the molecular subtypes and AJCC stage, we compared the genomic profiles of IBC 
and non-IBC by in terms of DNA mutations and copy number alterations (CNA), TMB, 
and presence of AGAs. 
 
Material and methods 

Patients and samples selection 

All clinical samples were pre-treatment diagnostic samples of primary breast 
cancers. IBC was clinically defined as T4d according to the international consensus 
criteria (Dawood et al., 2011), and the samples were diagnostic biopsies (American 
Joint Committee on Cancer AJCC stages 3-4). Non-IBC samples were surgical specimens 
in case of early-stage disease (stages 1-2) and diagnostic biopsies in case of advanced 
stage disease (locally advanced: stage 3, and metastatic: stage 4). The whole series 
included 101 IBCs and 2,351 non-IBCs, collected from six different sources 
(Supplementary Table 1). 
Forty-four IBC and 50 non-IBC samples were from patients consecutively treated at 
Institut Paoli-Calmettes (IPC), and 13 IBC samples were from patients consecutively 
treated at the General Hospital Sint-Augustinus (TCRU). Extraction of tumor DNA, 
quality control and concentration assessment were done as described (Bertucci et al., 
2016). Each patient gave written informed consent and the study was approved by the 
respective institutional review boards. The study methodology conformed to the 
standards set by the Declaration of Helsinki. The selection criteria included available 
frozen sample, tumor cellularity assessment to guide DNA extraction (>50%), 
goodquality extracted tumor DNA, and available clinicopathological data. These 
samples were pooled with four public series of similarly defined IBC and non-IBC 
samples profiled by NGS (and array-comparative genomic hybridization (aCGH) for two 
series). The Ross’ (Ross et al., 2015) and Hamm’s (Hamm et al., 2016) series included 
25 and 17 IBC samples respectively; the TCGA series (Cancer Genome Atlas, 2012) 
included two IBC and 988 non-IBC samples; the Metabric (Molecular Taxonomy of 
Breast Cancer International Consortium) series included 1,313 non-IBC samples 
(Pereira et al., 2016). The molecular subtype of tumors based upon 
immunohistochemistry was defined as HR+/HER2- when ER and/or PR were positive 
and HER2 negative, HER2+ when HER2 was positive, and TN when the three receptors 
were negative.  
We also included NGS and aCGH data of metastatic samples from 468 non-IBC patients 
pooled from our PERMED-01 prospective clinical trial (NCT02342158) (N=174) and 
from two public sets: Lefebvre et al. (2016) (N=216), and the Metastatic Breast Cancer 
Project (MBC Project, 2018) (N=78). Moreover, we used the gene expression data from 
the International IBC Consortium (137 IBC and 252 non-IBC samples) (Van Laere et al., 
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2013) to apply gene expression signatures of NOTCH (Villanueva et al., 2012) and E2F4 
(Guerrero-Zotano et al., 2018) activation. 
 
DNA copy number profiling 

In three series (IPC, TCGA, Metabric), the DNA copy number profiles were established 
by using whole-genome aCGH: high-resolution 4Å~180K CGH microarrays (SurePrint 
G3-Human CGH-Microarray, Agilent Technologies, Massy, France) for IPC (Bertucci et 
al., 2016), and Affymetrix SNP 6.0 arrays (Santa Clara, CA) for TCGA and Metabric. All 
aCGH probes were mapped according to UCSC Build 37 (hg19). In the other series 
(TCRU, Ross, Hamm), the DNA copy number of tumors was derived from targeted NGS 
data generated by Foundation Medicine. The copy number alterations (CNA) results of 
those public sets were collected as processed data from the GDC Data Portal for the 
TCGA series, cBioPortal for Metabric, and the journal websites for Ross and Hamm 
series. Across all series, we used one threshold value (log2 ratio >|1|) to define 
amplifications and deletions. The HRD score (homologous recombination deficiency) 
(Marquard et al., 2015) was defined on segmented data processed with circular binary 
segmentation and considered positive above 10 (Olshen et al., 2004). We searched for 
chromothripsis in IBC by applying the CTLPScanner (Yang et al., 2016). 
 
Mutational profiling 

All series were sequenced using Illumina platforms. Except the TCGA series, which used 
WES, the other ones used targeted NGS (tNGS). IPC samples were sequenced with a 
home-made panel of 493 “cancer-associated” genes (CCP-V8 panel, Supplementary 
Table 2). The DNA-libraries of all coding exons and intron-exon boundaries of all genes 
were prepared using the HaloPlex Target-Enrichment-System (Agilent, Santa Clara, CA, 
USA) as described (Bertucci et al., 2016), and sequencing was done using the 2Å~150-
bp paired-end technology on the NextSeq500 Illumina platform (Illumina, San Diego, 
CA, USA). All sequence data were aligned to UCSC hg19 and analyzed as described 
(Bertucci et al., 2016). Pathogenicity scores for the SNVs were obtained with Annovar. 
Mutations were classified as “neutral” or “damaging” using the majority rule of 
predictor softwares (provided by dbnsfp: Sift, Polyphen2, LRT, MutationTaster, 
MutationAssesor, FATHMM, RadialSVM, LR). The TCRU, Ross’s and Hamm’s series were 
sequenced by Foundation Medicine (Cambridge, MA) for respectively 324, 195/255, 
and 225 genes. The Metabric series (Pereira et al., 2016) was analyzed on a 173-gene 
panel. Sequencing data of the public sets and TCRU were collected and processed as 
indicated above. The TMB was defined as the number of non-silent mutations per 
megabase of genome sequenced (Bertucci et al., 2016). 
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Definition of actionable gene alterations 

We defined the actionable genetic alterations (AGAs) by using the Perera-Bel’s 
algorithm (Perera-Bel et al., 2018), which matches patient-specific genomic alterations 
to treatment options. The molecular alterations of 312 actionable genes are classified 
into a six-level system to rank the associations according to their evidence. The system 
uses two axes representing the cancer-type (axis A/B) and the strength of clinical 
evidence (axis 1/2/3). Levels A and B mean evidence in the same cancer-type (here 
breast cancer) and in any other cancer-type, respectively. Level-1 means supported by 
drug approval organizations/clinical guidelines, level-2 contains clinical evidence, in 
which late clinical trials are ranked higher followed by early clinical trials and case 
reports, and level-3 consists of preclinical evidence. The highest level is A1, followed by 
B1, then A2, B2, A3, and B3. Our analysis was limited to alterations noted as associated 
with “sensitivity” to drugs or “response”. 
 
Statistical analysis 

Correlations between tumor classes and clinicopathological and molecular variables 
were analyzed using the Student t-test or the Fisher’s exact test when appropriate. Uni- 
and multivariate analyses comparisons of the frequency of molecular alterations 
between the tumor groups adjusted for the molecular subtypes and the AJCC stage 
were done using Logit link function. Genes with p-value inferior to 0.05 and q-value 
inferior to 0.2 in uni- and multivariate analyses were considered as significant. Ontology 
analysis (DAVID database: https://david.ncifcrf.gov/) of the gene list was limited to the 
Reactome pathways. Hypergeometric test assessed the significance of enrichment of 
genes common to the different gene lists. The significance of the p-values threshold 
was set at 5% and analyzes used the R-software (version 2.15.2: 
http://www.cran.rproject.org/). 
 
Results 

Population and genes analyzed 

We analyzed 101 IBCs and 2,351 non-IBCs (Table 1). As expected, IBCs were associated 
with more unfavorable prognostic features than non-IBCs: younger age, prevalent 
ductal type, higher AJCC stage (including stage 4), higher pathological grade, and more 
frequent HER2+ and TN subtypes. Forty percent of samples were TN and 60% were 
non-TN in IBC, versus 17% and 83% respectively in non-IBC. By definition, all IBC were 
stage 3 or 4, but the precise stage (3 or 4) was available for 59/101 cases, including 33 
stage 3 (59%) and 23 stage 4 (41%). Across all six data sets included, there were five 
different targeted gene panels and one whole-exome. The CCP-V8 panel gene list was 
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compared with the four other lists retrieved from the Foundation Medicine website for 
TCRU, Ross and Hamm series, and the journal website for Metabric. Because there 
were only 41 genes common to all panels, we focused our analysis on 756 different 
genes defined as being present in at least one targeted panel (Supplementary Table 2). 
 

 
 
Gene alterations in IBC 

We identified 1,101 gene alterations through the 101 IBCs, including 228 amplifications 
(21% of all alterations), 15 deletions (1%), and 857 mutations (78%), comprising 730 
single-nucleotide-variants (SNVs: non-synonymous, stop-gains, splice-site; 66%), and 
127 indels (12%). They corresponded to 1,013 different alterations involving 331 
different genes (Supplementary Table 3). The distribution of alterations of the top 50 
genes altered in at least two IBCs is shown in Figure 1. The 10 most frequently altered 
genes were TP53 (63%), HER2 (30%), MYC (27%), PIK3CA (21%), BRCA2 (14%), CCND1 
(13%), GATA3 (13%), NOTCH1 (12%), FGFR1 (11%), and ARID1A (10%). For HER2, there 
was 93% concordance between the clinical status and the CNA. Ninety-eight percent 
of IBC samples (99/101) harbored at least one alteration. The mean number of 
alterations per sample was 11 (CI95, 9-13). The mean TMB was 6 mutations per 
megabase (CI95, 4-8) (Supplementary Figure 1). Chromothripsis was present in 20 out 
of 44 tested IBC (45%). The most affected chromosomes were chromosome 17 (8% of 
samples), followed by chromosomes 11 (5%) and 8 (3%). The presence of 
chromothripsis tended to be associated with the molecular subtype: 69% of HER2+ 
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samples displayed chromothripsis, versus 35% of HR+/HER2- and 30% of TN (p=0.092; 
Fisher’s exact test). 

 
 
Comparison of gene alterations between IBC and non-IBC 

Similar analysis was done in the 2,351 non-IBCs. We identified 22,936 gene alterations, 
corresponding to 14,448 different alterations (Supplementary Table 3). The 
distribution of the types of alterations was different from that of IBC (p=1.24E-17, 
Fisher’s exact test) with a lesser percent of mutations (70% vs 78%, corresponding to 
62% vs 66% for SNVs, and 8% vs 12% for indels). The gene alterations identified in non-
IBC confirmed the literature data (Banerji et al., 2012; Cancer Genome Atlas, 2012; Ellis 
et al., 2012; Ferrari et al., 2016; Nik-Zainal et al., 2012a; Nik-Zainal et al., 2016; Nik-
Zainal et al., 2012b; Shah et al., 2012; Stephens et al., 2012), i.e. the most frequently 
altered genes including PIK3CA (39%), TP53 (34%), HER2 (13%), GATA3 (13%), KMT2C 
(11%), CDH1 (10%), and MAP3K1 (10%). The mean TMB for all variants was higher in 
IBC (6 mutations/Mb; CI95, 4-8) than in non-IBC (2; CI95, 2-2; Student t-test, p=6.29E-
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05; Supplementary Figure 1). Sixteen percent of IBC samples presented a TMB >10 
versus only 1% of non-IBC samples (p=3.36E-12, Fisher’s exact test). The same 
difference was observed when SNVs and indels were analyzed separately 
(Supplementary Figure 1), and all those differences persisted in multivariate analysis 
adjusted for the molecular subtypes, the type of NGS (targeted vs WES), and the AJCC 
stage.  
 
We then applied similarly adjusted supervised analysis to search for genes with 
differential frequency of alterations between IBC and non-IBC. Of note, when a sample 
was not informative for the gene tested, it was excluded from analysis. We identified 
96 genes differentially altered (p<0.05 and q<0.20 in both univariate and multivariate 
analyses), including 95 more frequently altered in IBC and only one (PIK3CA) more 
frequently altered in non-IBC (Supplementary Table 4).  
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The most differentially altered gene was CYP2D6. Four genes (CYP2D6, FOXO3, TP53, 
and ZNF217) were altered in more than 20% of IBCs and 57 genes such as BRCA2, ATM, 
ATRX, EMSY, NOTCH2, and NOTCH4 were altered in 5 to 20% of cases. Ontology analysis 
of the 96 differential genes revealed several pathways associated with IBC genes, such 
as NOTCH-related pathways, interleukins and interferon signal, and KIT signaling 
(Figure 2B). Genes involved in chromatin remodeling were also more frequently altered 
in IBC, such as EZH2 and SMARCA4, altered in 5% of IBC, providing a rationale for the 
evaluation of epigenetic modifiers for the treatment of IBC. Of note, the use of the 
PAM50-based genomic definition of molecular subtypes and the use of the IHC 
definition applied to the 1,773 samples (41 IBC and 1,732 non-IBC) informative for both 
definitions and for the multivariate analysis showed similar results with the two 
definitions: 54 and 51 genes were identified as differential with the IHC definition and 
the PAM50 definition respectively, with 49 (91% and 96% respectively) common genes 
(Supplementary Figure 2).  
 
Supposing that these 96 differentially altered genes might be related to IBC 
aggressiveness, we tested whether they were also differentially altered in metastatic 
versus primary non-IBC. We compared the frequency of alterations between 468 
metastatic samples of non-IBC patients and the 2,351 non-IBC primary samples. By 
using the same significance threshold as above, we found 159 differentially altered 
genes, most of them being more frequently altered in metastatic samples 
(Supplementary Table 5). The comparison with the above-quoted 96-gene list 
identified 37 genes more frequently altered in both IBC versus non-IBC samples and in 
metastatic versus primary non-IBC samples (Figure 2C-D). Such overrepresentation was 
significant (p=5.58E-06, hypergeometric test), and indirectly validated the association 
of our 96-gene list with IBC, known for its stronger metastatic potential than non-IBC. 
These 37 common genes included genes involved in DNA repair (ATM, ATRX, BARD1, 
BRCA2, EMSY, PALB2) and in NOTCH pathway (NOTCH4). By contrast, the same analysis 
between the 468 metastatic samples of non-IBC patients and the 101 IBC samples 
identified only one gene differentially altered (HER2), indicating that IBC and metastatic 
non-IBC samples are not so different at a genomic level when compared head-on. 
 
Actionable genetic alterations in IBC versus non-IBC 

We assessed the distribution of AGAs in IBC, comparatively to non-IBC, using the 
Perera-Bel’s algorithm (Perera-Bel et al., 2018). The percentage of IBC patients with 
AGAs was high (97%) with 26% of A1 alterations, which corresponded to HER2 
amplification, 24% of B1, 18% of A2, and 29% of B2 (Supplementary Table 3). Examples 
of B1 alterations included BRCA2, JAK2 and EGFR alterations observed in 13 (13%), 5 
(5%), and 3 (3%) patients respectively. Examples of A2 alterations included PIK3CA, 
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FGFR1, and PTEN alterations observed in 21 (21%), 8 (8%), and 4 (4%) patients 
respectively. Examples of B2 alterations included CCND1 and ATM (9 cases each: 9%), 
NF1 (7 cases: 7%), MTOR and TSC2 (5 cases each: 5%), AKT1, RB1, and TSC1 (4 cases 
each: 4%), and ERBB3 (3 cases: 3%). Figure 3 shows the distribution of 44 genes with 
AGA in at least four IBC samples. The most frequent actionable targets with evidence-
level between A1 and B2 were TP53, HER2, PIK3CA, BRCA2, CCND1, FGFR1, ATM, and 
NF1. Many samples had several AGAs simultaneously. This percentage of patients with 
AGAs was higher than the one observed in non-IBC (87%; p=4.65E-20, Logit link; 
Supplementary Figure 3A), and the difference remained significant in multivariate 
analysis (p=5.65E-14, Logit link). There were significantly more A1 and B1 alterations in 
IBC and more A2 and A3 alterations in non-IBC (Supplementary Figure 3B). 
 

 
 
Enrichment of actionable genetic alterations for different therapeutic classes 

We analyzed whether there was enrichment in patients with AGAs in IBC versus non-
IBC in specific drug classes and functional pathways (Supplementary Figure 4). 
Regarding the class of PI3K/AKT/mTOR inhibitors, the percentage of patients with AGAs 
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was higher in non-IBC patients (52% vs 40%; p=1.97E-02), but this difference 
disappeared in multivariate analysis (p=0.185). The percentage of “actionable patients” 
in the class of HER/EGFR inhibitors was higher in IBC (36% vs. 23% in non-IBC, p=2.68E-
03), and tended to be significant in multivariate analysis (p=0.091). This percentage 
regarding the class of other tyrosine kinase receptors (TKR) inhibitors, higher in IBC 
(27% vs. 18% in non-IBC) in univariate analysis (p=2.01E-02), but did not remain 
significant in multivariate analysis (p=0.565). The same was observed regarding the 
class of CDK inhibitors with higher percentage of patients with AGAs in IBC (29% vs. 
15%, p=4.48E-04), not significant in multivariate analysis (p=0.180). We applied an E2F4 
activation 24-gene signature associated with sensitivity to the palbociclib CDK4/6 
inhibitor and resistance to aromatase inhibitor (Guerrero-Zotano et al., 2018) to the 
389 samples of the International IBC Consortium expression dataset (Supplementary 
Figure 5). The corresponding metagene score was higher in IBC than in non-IBC samples 
(p=3.68E-04, Student t-test; p=5.93E-03, Fisher’s exact test), and this difference 
remained independent from the molecular subtypes and the AJCC stage (p=0.055, glm; 
Supplementary Figure 5A). This enrichment concerned the HR+/HER2- subtype, which 
is currently the subtype candidate for CDK4/6 inhibitors (Supplementary Figure 5B). 
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DNA repair more frequently altered in IBC 

Several genes more frequently altered in IBC such as ATM, ATRX, BARD1, BRCA2, and 
EMSY are involved in DNA repair. Pathway analysis confirmed such enrichment: the 
percentage of patients with alterations of DNA repair genes was 33% in IBC versus 17% 
in non-IBC (p=7.03E-06, Logit link), even after adjustment in multivariate analysis 
(p=2.20E-02, Logit link; Figure 4A). BRCA2 was the most frequently altered DNA repair 
gene in IBC with 13 mutations, including eight truncating mutations (Figure 4B), 
suggesting possible enrichment in Homologous Recombination Deficiency (HRD) in IBC. 
This was confirmed with a higher HRD score in IBCs than in non-IBCs (p=2.36E-02, 
Student t-test). The OR for high HRD score (≥10) was 2.27 (95CI 1.19-4.26) in IBC 
compared with non-IBC (p=9.45E-03, Fisher’s exact test; Figure 4C). 
 
NOTCH pathway more frequently altered in IBC 

NOTCH pathway alterations were also enriched in patients with IBC (30% vs 17% in non-
IBC patients) in univariate (p=1.76E-03, Logit link) and multivariate analyses (p=4.49E-
04, Logit link; Figure 5A). Whereas NOTCH1 was among the most frequently altered 
genes in IBC (12%), it was not differentially altered compared with non-IBC. By contrast, 
NOTCH2, and NOTCH4 were significantly more frequently mutated in IBC with a total 
of 12 mutations, including 9 predicted as damaging in silico. There was a mutual 
exclusivity in IBC samples between alterations in the three genes (NOTCH2, NOTCH4, 
and CREBBP) found differentially altered in IBC vs non-IBC, present in the KEGG NOTCH 
pathway, and tested in at least 30% of samples (Supplementary Figure 6). Other genes 
involved in the NOTCH pathway and frequently altered in IBC included MAML1 (11%), 
MED12 (9%), and FBXW7 (8%).  
 
Such enrichment led to search for signs of NOTCH pathway activation in IBC. We 
applied a 384-gene signature of NOTCH activation (Villanueva et al., 2012) to 
expression data of the International IBC Consortium set. As expected (Shen et al., 
2017), the activation score was higher in the TN samples than in the HR+/HER2- 
samples (p=2.41E-50, one way ANOVA test Figure 5B), validating its robustness. 
Interestingly, this score was higher in IBCs than in non-IBCs (p=3.42E-05, Student t-test; 
Figure 5B), and this difference remained significant in multivariate analysis (Table 2). 
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Comparison with literature 

Finally, we compared our results to those of two tNGS studies for which data, publicly 
unavailable, were not included in our analysis. The Liang et al. study analyzed 91 genes 
in a series of non-pretreated primary tumors including 156 IBC and 197 stage 3-4 TCGA 
non-IBC (Liang et al., 2018): 17 genes were more frequently mutated in IBC than in non-
IBC, including TP53, NOTCH2, MYH9, BRCA2, ERBB4, POLE, FGFR3, ROS1, NOTCH4, 
LAMA2, EGFR, BRCA1, TP53BP1, ESR1, THBS1, CASP8, and NOTCH1, and one gene, 
CDH1, more frequently mutated in non-IBC. The Matsuda et al. series analyzed 50 
genes in non-pretreated primaries and pre-treated relapses of 24 IBC and 376 non-IBC 
(Matsuda et al., 2017): two genes (TP53, HER2) were more frequently mutated in IBC. 
In both studies, the comparison was not stratified upon the molecular subtypes. We 
compared these lists of differential genes with ours (Supplementary Figure 7). Between 
the Liang et al. list and ours, 84 genes were common to both panels tested, with only 
five differential genes in common: BRCA2, NOTCH2, NOTCH4, POLE, and TP53. 
Between the Matsuda et al. list and ours, 50 genes were common to both panels tested, 
with only one differential gene (TP53) in common. Thirty genes were common to the 
Matsuda et al. and Liang et al. panels, with only one differential gene in common: TP53. 
These results revealed low concordance between all three gene lists. 
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Discussion 

We compared the DNA copy number and mutational profiles of untreated primary 
tumors of 101 IBCs and 2,351 non-IBCs. Ninety-seven percent of IBCs displayed at least 
one AGA. This percentage, higher than in non-IBC, suggests that personalized therapy 
is a relevant approach for this aggressive disease, in particular with drugs targeting the 
DNA repair and NOTCH pathways.  
 
We focused our study on untreated primary tumors to avoid biases induced by previous 
systemic treatments that induce changes in mutations and subclonal structure 
between primary tumor and relapses (Bertucci et al., 2019; McGranahan et al., 2015). 
The scarcity of IBC and diagnostic samples, and the need to adjust analyses upon the 
molecular subtypes and AJCC stage because of the unbalance between IBC and non-
IBC led us to pool our own bicentric data with available public data. As expected for 
breast cancers, the genomic profiles were heterogeneous in IBC. We found higher TMB 
in IBC compared to non-IBC, possibly related to the higher genomic instability and 
complexity of the disease (Bekhouche et al., 2011), suggesting that immune checkpoint 
inhibitors warrant further investigation in IBC (Bertucci et al., 2015; Bertucci and 
Goncalves, 2017; Van Berckelaer et al., 2019; Van Laere et al., 2013). Such difference 
was independent from the molecular subtypes and the disease stage. Chromothripsis 
was identified in 45% of 44 tested IBC, a percentage close to that previously reported 
in a series of 28 non-IBC (Przybytkowski et al., 2014).  
 
The 10 most frequently altered genes in IBC are TP53 (63%), HER2 (30%), MYC (27%), 
PIK3CA (21%), BRCA2 (14%), CCND1 (13%), GATA3 (13%), NOTCH1 (12%), FGFR1 (11%), 
and ARID1A (10%), which are also altered in non-IBC. But the comparison with non-IBC 
identified 95 genes more frequently altered in IBC in a molecular subtype and stage-
independent way, including 37 that were also more frequently altered in metastases 
versus primary tumors of non-IBC patients. This suggests a possible link of these genes 
with disease aggressiveness and proclivity to metastasize, although functional studies 
are warranted. Interestingly, the pairwise comparisons of IBC, non-IBC primaries, and 
non-IBC metastatic samples showed that IBC and metastatic non-IBC are much less 
different at a genomic level when compared head-on than are IBC versus non-IBC 
primaries and primary versus metastatic non-IBC. CYP2D6 was the most differentially 
altered gene (58% of IBC vs 0.2% in non-IBC). This gene codes for the cytochrome P-
450 2D6, which oxidizes tamoxifen to its most active metabolite. Many CYP2D6 
polymorphisms, such as the one found in our series (435T>S), have been identified, 
leading to the decrease of CYP2D6 enzymatic activity. Several data suggest that poor 
metabolizers of CYP2D6 do not benefit as much from tamoxifen therapy as other 
patients do; however conflicting results were published (Hoskins et al., 2009). Absence 
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of analysis of constitutional DNA impedes us to conclude on the SNP nature of our 
variant. However, the large difference in frequency with non-IBC potentially reveals an 
important role for this variant in the predisposition to IBC and/or the known resistance 
of the disease to standard hormone therapy. Analysis of a larger series is needed, 
including both tumor and matched normal DNA.  
 
Several therapeutically actionable targets were frequently altered in IBC, including a 
few ones more frequently than in non-IBC and independently from the molecular 
subtypes and AJCC stage. For example, we found frequent alterations in genes involved 
in DNA repair. ATM, ATRX, BARD1, BRCA2, ERCC3, MSH2, MSH6, PMS2, and POLE were 
more frequently altered in IBC, in which we found also frequent alterations of TP53, 
FANCA, and FANCB. This observation confirms recent findings (Liang et al., 2018) of 
frequent alterations in BRCA1/BRCA2/POLE genes in IBC. It is likely that deficient DNA 
repair contributes to disease progression, as well as to the high TMB observed in IBC 
and indirectly to its peculiar immune microenvironment (Bertucci et al., 2015; Van 
Berckelaer et al., 2019; Van Laere et al., 2013). In addition, IBC showed more frequently 
a homologous recombination deficiency and alterations in genes involved in mismatch 
repair, supporting the ongoing development of PARP inhibitors in IBC as 
radiosensitizers in phase I-II trials with veliparib (Jagsi et al., 2018) and olaparib 
(NCT03598257) (Michmerhuizen et al., 2019). This observation warrants a deeper NGS 
study of IBC, using whole-genome sequencing (WGS) to investigate structural 
variations. A recent study assessed the prevalence of germline variants in cancer 
predisposition genes in 368 patients with IBC (Rana et al., 2019). Germline mutations 
were identified in 53 cases (14.4%). BRCA1 or BRCA2 mutations were found in 7.3% of 
the subjects, 6.3% had a mutation in other breast cancer genes (PALB2, CHEK2, ATM, 
and BARD1), and 1.6% had mutations in genes not associated with breast cancer.  
 
Alterations in the NOTCH pathway were almost twice as enriched in IBC (30% vs 17% 
in non-IBC), independently from the molecular subtypes and AJCC stage. NOTCH 
receptors are transmembrane receptors that play an essential role in cell fate decisions 
such as proliferation, differentiation, and apoptosis, and in the maintenance of breast 
cancer stem-like cells (Mollen et al., 2018). NOTCH1 was the most frequently altered 
NOTCH gene in IBC (12%), whereas NOTCH2, and NOTCH4 were more frequently 
altered in IBC compared with non-IBC, with a total of 12 mutations including 9 
predicted as damaging. Functional studies measuring NOTCH pathway activation, 
transformation potential, and sensitivity to pathway inhibition are required to better 
define the relevance of these alterations. Interestingly, we found a mutual exclusivity 
in IBCs for NOTCH2, NOTCH4, and CREBBP alterations, present in a total of 19 out of 76 
(25%) informative samples. Of note, NOTCH2, and NOTCH4 were also reported as more 
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frequently mutated in IBC in the recent Liang’s study (Liang et al., 2018). We also found 
a NOTCH pathway activation score (Villanueva et al., 2012) higher in IBC than in non-
IBC independently from the molecular subtypes and AJCC stage, further supporting a 
role for the NOTCH pathway in IBC. Several data in literature, based on pre-clinical 
models, have also related IBC and NOTCH alterations. In the MARY-X model, the 
lymphovascular emboli of IBC exhibit a NOTCH3 addiction (Xiao et al., 2011). The FC-
IBC02 cell line shows NOTCH3 amplification (Fernandez et al., 2013). Pregnant mice 
expressing higher levels of an activated intracellular form of NOTCH3 develop luminal 
mammary tumors resembling IBC that frequently metastasize (Ling et al., 2013). Thus, 
the NOTCH targeting might be an option for IBC treatment. Accordingly, a preclinical 
study in IBC showed that a gamma-secretase inhibitor, RO4929097, was able to block 
the NOTCH signaling and to attenuate the stem-like phenotype of IBC cells and regulate 
the inflammatory environment (Debeb et al., 2012). All this taken together, the NOTCH 
pathway may constitute the most prominent difference between IBC and non-IBC. 
 
We also analyzed four other classes of targeted therapies approved or tested in breast 
cancer. Regarding the PI3K/AKT/mTOR inhibitors, even if PIK3CA was the only gene 
more frequently altered in non-IBC compared to IBC, its frequency of alteration was 
relatively high in IBC (21%), with many hotspot mutations. Other actionable genes of 
the PI3K/AKT/mTOR pathway were frequently altered in IBC with likely loss-of-function 
mutations in PTEN, TSC1, and TSC2 and gain-of-function mutations in AKT1, AKT3, 
MTOR, RPTOR, and RICTOR. Thus, like non-IBC patients, IBC patients may benefit from 
inhibition of the pathway with the PI3K/AKT/mTOR inhibitors approved and in 
development (Kenna et al., 2018).  
 
Regarding the CDK4/6 inhibitors class, we found twice as higher percentage of patients 
with AGAs in IBC than in non-IBC (29% vs. 15%). The most frequent AGA in this group 
was CCND1 amplification (10% of IBCs), followed by CDKN2A deletion/mutation (5%). 
Mutations in the FAT1 and RB1 tumor suppressors, potentially associated with 
resistance to CDK4/6 inhibitors (Li et al., 2018), were also observed in 10% and 4% of 
IBC respectively. Interestingly, an E2F4 activation expression signature associated with 
sensitivity to palbociclib and resistance to aromatase inhibitors (Guerrero-Zotano et al., 
2018) was higher in IBC than in non-IBC samples, notably in HR+/HER2- patients. 
Clearly, CDK4/6 inhibitors deserve to be tested in IBC. 
 
The percentage of “actionable patients” in the class of HER/EGFR inhibitors was higher 
in IBC (36% vs. 23%), and the difference tended towards significance in multivariate 
analysis including the molecular subtypes and AJCC stage. As expected, ERBB2 
amplification was observed in 26% of IBC, and activating ERBB2 mutations (Petrelli et 
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al., 2017) were much less frequent. Five IBC patients displayed such mutations, 
including two with (HER2+ patient) and three without (HER2- patient) simultaneous 
amplification. Mutations were located in the extracellular domain and the kinase 
domain and have been associated with sensitivity to ERBB2 tyrosine kinase inhibitors 
such as neratinib (Bose et al., 2013) with which clinical trials are ongoing. Three IBC 
patients (3%) displayed an ERBB3 mutation identified as AGA versus 42 non-IBC 
patients (1.8%). In their small series of cases, Hamm et al. (2016) previously reported 
frequent co-occurrence of ERBB3 mutations and ERBB2 amplification in IBC and 
suggested possible contribution to resistance to anti-HER2 therapy. In our larger series, 
such co-occurrence was found in 2% of IBC and only 0.2% of non-IBC, supporting 
investigation of ERBB3-inhibitors in combination with ERBB2 inhibitors in IBC. 
 
Conclusions 

Our study confirms the hypothesis that IBC is distinct from non-IBC at the genomic 
level, independently from the molecular subtypes and disease stage. We found higher 
TMB in IBC than in non-IBC and 95 genes more frequently altered in IBC in a molecular 
subtype- and stage-independent way. Ninety-seven percent of IBC samples displayed 
at least one AGA. This percentage, higher than in non-IBC (87%), suggests that precision 
medicine is a bona fide option in this aggressive disease, notably with drugs targeting 
DNA repair, NOTCH signaling, and CDK4/6. The strengths of our study are: i) the largest 
comparison of IBC versus non-IBC samples (total of 2,452 samples), and the largest 
number of genes tested (756 genes) in such comparison, ii) a consensual uniform case 
definition for IBC, iii) a homogeneous series of non-pretreated primary tumors, iv) an 
adjustment upon both the molecular subtypes and AJCC stage, and v) a statistical 
correction (FDR with q-values) for multiple tests in the gene-by-gene supervised 
analysis. 
 
To our knowledge, these two last points have never been combined in studies 
comparing the molecular alterations of IBC and non-IBC. Other strengths include the 
use of an algorithm to define more objectively the AGAs, the validation of differential 
activation of potentially targetable pathways (NOTCH, HRD) using transcriptomic and 
genomic data, and the demonstration that our supervised analysis gave very similar 
results whatever was the definition of molecular subtypes included in the multivariate 
analysis, either IHC or PAM-based. However, like most of other studies published in the 
field, it also displays a few limitations: i) its retrospective nature and associated biases, 
ii) absence of matched normal DNA sequenced for the targeted NGS-based series and 
absence of information regarding eventual germline mutations and family and personal 
histories of cancer, iii) presence of missing data for several genes because of the 
variation in genes targeted across the cohorts examined, leading to a loss of sensitivity 
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regarding identification of genes differentially altered, iv) the use of different 
sequencing platforms including targeted NGS and WES, even if that did not impact our 
comparative analysis as suggested by the multivariate analysis, and v) no further 
analysis of structural variations, driver mutations, intra-tumor heterogeneity, and 
mutational signatures. Of course, analysis of a larger and homogeneous series of 
untreated primary tumors analyzed with WES, WGS and RNA-Seq is warranted. Such 
analysis could also reveal etiology of IBC by identifying DNA sequences not matching to 
the human genome, such as viral or bacterial infection, as suggested (El-Shinawi et al., 
2016). But yet, our results suggest targeted therapies that have the potential to bring 
benefit to IBC patients and encourage prospective clinical trials. 
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Abstract 

Inflammatory breast cancer (IBC) is an aggressive disease for which the spectrum of 
preclinical models was rather limited in the past. More recently, novel cell lines and 
xenografts have been developed. This study evaluates the transcriptome of an 
extended series of IBC preclinical models and performed a comparative analysis with 
patient samples to determine the extent to which the current models recapitulate the 
molecular characteristics of IBC observed clinically. We demonstrate that the IBC 
preclinical models are exclusively estrogen receptor (ER)-negative and of the basal-like 
subtype, which reflects to some extent the predominance of these subtypes in patient 
samples. The IBC-specific 79-signature we previously reported was retrained and 
discriminated between IBC and non-IBC preclinical models, but with a relatively high 
rate of false positive predictions. Further analyses of gene expression profiles revealed 
important roles for cell proliferation, MYC transcriptional activity and TNFɑ/NFκB in the 
biology of IBC. Patterns of MYC expression and transcriptional activity were further 
explored in patient samples, which revealed interactions with ESR1 expression that are 
contrasting in IBC and nIBC and notable given the comparatively poor outcomes of ER+ 
IBC. Our analyses also suggest important roles for NMYC, MXD3, MAX and MLX in 
shaping MYC signaling in IBC. Overall, we demonstrate that the IBC preclinical models 
can be used to unravel cancer cell intrinsic molecular features, and thus constitute 
valuable research tools. Nevertheless, the current lack of ER-positive IBC models 
remains a major hurdle, particularly since interactions with the ER pathway appear to 
be relevant for IBC. 
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Introduction 

Inflammatory Breast Cancer (IBC) is an aggressive and highly metastatic form of breast 
cancer. At the time of initial diagnosis, virtually all patients have lymph node 
involvement and 30% present with distant metastases 1. As a consequence of the rapid 
onset and early metastasis, patients with IBC display an unfavorable prognosis, with 5-
year overall survival rates of 40% despite multimodality treatment 2-4. IBC is a clinical 
diagnosis based on the rapid onset of inflammatory symptoms: patients present with a 
red, enlarged breast associated with shooting pains and warmth. In addition, skin 
changes (e.g. “peau d’orange”) and nipple retraction are often observed and typically, 
no palpable tumor mass is present 5-7.  
 
In 2008, the Inflammatory Breast Cancer International Consortium (IBC-IC) was 
established by investigators in this field, with the ultimate aim of accelerating IBC 
research. The compelling need for this alignment of researches was based on the fact 
that despite many efforts over decades of research, IBC remained a poorly 
characterized disease void of specific targets for molecular therapy 8. The need for 
better, more efficient, and IBC-specific treatment options is underscored by the fact 
that there are no significant changes in overall survival of patients up till now. In 
addition, IBC can be regarded as a human model for aggressive (breast) cancer behavior 
in general.  
 
The first project of the IBC-IC involved the identification of a molecular profile of IBC 
using a large multicentric series of clinical samples. A set of 79 probe sets with an IBC-
specific and molecular subtype-independent gene expression profile was identified and 
validated. Translating the IBC signature into pathways and processes indicated that 
alterations in TGFβ signaling may be an important driver 9, which is confirmed in a more 
recent study 10. In addition, a molecular signature predicting pathological complete 
response to neoadjuvant chemotherapy in IBC was identified 11 and catalogues of 
genomic alterations were described 12. In parallel, the role of the tumor 
microenvironment (TME) in IBC development and progression has been also 
increasingly emphasized 13-18. Additionally, efforts were also focused on developing 
greater numbers of preclinical IBC models of different molecular subtypes, allowing 
researchers to perform functional validations in more versatile genetic backgrounds. 
Traditionally, five preclinical models have been used for IBC research: three established 
cell lines (i.e. KPL4, SUM149, and SUM190) and two xenograft models (i.e. Mary-X and 
WIBC9). The pre-clinical models of IBC are either triple negative or HER2-amplified, 
which is reflective of the most prevalent subtypes of this disease 19-30. Within the last 
years, novel IBC models have been generated amongst others by researchers at the Fox 
Chase Cancer Center (i.e. FC-IBC-01 and FC-IBC-02), The University of Texas MD 



 
 - 115 - 

Anderson Cancer Center (i.e. MDA-IBC-03), the Thomas Jefferson University (i.e. TJ-IBC-
04 and TJ-IBC-09), and the GZA Hospital Sint-Augustinus (i.e. UA-IBC-01) 31.  
However, the complete molecular characterization and comparative analyses of these 
cell lines remains to be completed. Therefore, we report here a comprehensive analysis 
of gene expression data from IBC and non-IBC (nIBC) preclinical models and patient 
samples. Our primary goal was to gain insight into the molecular characteristics of the 
above-described IBC preclinical models and to identify features also exhibited by IBC 
cells in human tissue samples. This set of features will be crucial knowledge when 
setting up functional validation experiments for data reported in patient samples. In 
addition, to broaden the clinical perspectives of this panel of IBC preclinical models, 
their sensitivity profile to a wide range of therapeutic agents was estimated using the 
CMap dataset of 1.3 million L1000 signatures that reflect transcriptional responses of 
human cells to chemical and genetic perturbations. It stands to reason that these 
efforts will also contribute to a more detailed comprehension of biological themes 
intrinsic to IBC cells. 
 
Results 

Cluster analysis and molecular subtyping 

To investigate differences between IBC (n = 10) and nIBC (n = 22) preclinical models, 
we merged expression profile analysis performed in our Institution with external gene 
expression data from various public resources (Gene Expression Omnibus: GSE12777, 
GSE16795, and GSE40464; and ArrayExpress: E-MTAB-7). To assess the efficiency of the 
normalization strategy, unsupervised hierarchical clustering analysis (UHCA) was 
performed for all 124 profiles and for the 500 most variable genes selected by standard 
deviation. Results are shown in Fig. 1a. The NbClust algorithm identified four clusters 
in the data set that were significantly associated with the ER status (P<0.001), the PR 
status (P<0.001), the HER2 status (P=0.043), the ER/HER2 combined subtypes 
(P<0.001) and the IBC/nIBC tumor phenotype (P<0.001). Using multinomial regression 
analyses, we demonstrated that the ER/HER2 combined subtypes were the best 
predictor of the clustering pattern (AIC=59.881), followed by the ER status 
(AIC=63.195), the tumor phenotype (AIC=70.293), the PR status (AIC=74.277), and the 
HER2 status (AIC=82.575). A multivariate model containing the tumor phenotype and 
the ER/HER2 combined subtypes (AIC=45.589) was significantly better in predicting the 
clustering pattern as compared to the ER/HER2 combined subtypes alone (Likelihood 
ratio test; P<0.001). Addition of the PR status to the ER/HER2 combined subtypes did 
not improve the accuracy of the model in predicting the clustering outcome (AIC= 
65.881; (Likelihood ratio test; P=1.000). Given these results and since we observed that 
all 32 different preclinical models cluster on terminal branches, we argue that the 
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adopted normalization strategy was effective in removing batch-specific expression 
variation, that relevant gene expression themes are preserved, and that replicate gene 
expression profiles (GEPs) can be reliably averaged.  
 

 
Fig. 1: Molecular characterization and classification of (inflammatory) breast cancer cell 
lines a Dendrogram resulting from an unsupervised hierarchical cluster analysis performed on 
the normalized expression data set of preclinical models prior to averaging. The different cell 
lines are indicated using different colors in the annotation track underneath the dendrogram, in 
addition to the tumor phenotype (blue=nIBC; yellow=IBC), the ER status (grey=ER+; 
black=ER-), the HER2 status (grey=HER2-; black=HER2+), the PR status (grey=PR+; 
black=PR-), and the ER/HER2 combined subtypes (red=ER+/HER2-; green=ER-/HER2+; 
blue=ER+/HER2+; purple=ER-/HER2-). b The classification scores of the preclinical models 
are shown in boxplot format. The different preclinical models are shown along the X-axis and 
the Y-axis represents the posterior probability scores resulting from applying the IBC 
classification models. Boxes are color coded according to the tumor phenotype: blue=nIBC and 
yellow=IBC. 
 
Averaged GEPs were then used to classify the IBC preclinical models according to their 
differentiation status using the differentiation predictor model (DPM), the 
luminal/basal/mesenchymal classification (LBM) system, and PAM50-subtypes. Results 
are shown in Table 1 and demonstrated that these cell lines all adhered to the basal-
like subtype. The majority of the IBC cell lines exhibited a luminal progenitor phenotype 
(i.e. 7/10) and with respect to the PAM50 classifications, the ER-negative subtypes 
predominated (i.e. 9/10 basal-like, HER2-enriched or normal-like). Notably, all 



 
 - 117 - 

classification distributions, except for the DPM classification (P=0.072) and the HER2 
status (P=0.222), are significantly different compared to those obtained in nIBC 
preclinical models (Table 1).  
 

 
 
Then, in order to investigate if the IBC preclinical models recapitulate biological 
features typical of IBC in clinical samples, we applied the transcriptomic classifier 9 
consisting of 79 genes with an IBC-specific expression profile on all 32 preclinical 
models. An elastic net generalized linear model achieved an accuracy of 82% on an 
independent series (Supplementary Figure 1). When applied to the series of averaged 
GEPs of IBC and nIBC preclinical models, an accuracy of 78% was obtained, with a 
sensitivity and specificity of respectively 100% and 68%. The latter indicated a high rate 
of false positive predictions amongst the nIBC models (McNemar test; P=0.023), 
particularly when compared to the patient samples data, where a specificity level of 
86% was observed. By consequence, also the positive predictive value was low (i.e. 
59%). Another notable observation relates to the fact that when the model was applied 
onto the replicate GEPs, low posterior probability scores (i.e. close to 0.5) were 
repeatedly observed for some IBC preclinical models (i.e. SUM149, SUM190 and MDA-
IBC-3). All data are shown in Fig. 1b. 
 
To further assess the representativity of the cell lines as models for IBC, the GEPs of 
UA-IBC-01 and the primary tumor sample it was derived from were directly compared. 
Both the model and the tumor sample were classified as non-luminal, HER2-enriched 
according to the PAM50 molecular subtypes despite the use of estrogen pellets during 
the generation of the UA-IBC-01 PDX-derived cell lines. Gene-wise comparison revealed 
that both GEPs are strongly correlated (Rs=0.740; P<0.001; Supplementary Figure 2). 
Out of 12,384 genes expressed above background in both samples, 295 genes were 
considered overexpressed in the UA-IBC-01 cell line based on expression differences 
superior to the 97.5th percentile of all gene-wise comparisons. These genes were 
enriched for hallmark gene sets related to cell proliferation (i.e. E2F target genes: 
P<0.001; and G2M checkpoint genes: P<0.001). Based on expression differences 
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inferior to the 2.5th percentile of all gene-wise comparisons, 254 genes were 
considered overexpressed in the primary tumor sample, and these were enriched for 
gene sets related to immune response programs (i.e. IFNɣ signaling: P=0.007; and TNFɑ 
signaling: P=0.003) and epithelial-to-mesenchymal transition (P<0.001), which is 
consistent with the expected enrichment of stroma and immune cells in the primary 
tumor sample. Interestingly, hallmarks related to hormone receptor signaling (i.e. early 
estrogen response genes: P=0.012; late estrogen response genes: P=0.002; and 
androgen response genes: P=0.003) are also enriched amongst genes overexpressed in 
the primary tumor sample. 
 
Differential expression and co-expression network analysis 

To identify molecular differences between IBC and nIBC preclinical models, two 
strategies were applied. First, IBC and nIBC cell lines were compared using generalized 
linear models to identify differentially expressed genes (DEGs). Hence, 931 DEGs were 
revealed of which 437 (47%) and 494 (53%) were respectively up- and downregulated 
in IBC at a false discovery rate of 10%. Results are shown in volcano plot format in Fig. 
2a. Differential gene expression statistics are provided in Supplementary Data 1. The 
resulting fold change vector was then used to perform GSEA for the hallmark gene sets. 
Results are shown in Supplementary Table 1 and reveal that DEGs overexpressed in IBC 
cell lines were enriched for gene sets related to IL2/STAT5-, KRAS-, or TP53-signalling 
and MYC target genes, whereas EMT-related genes were enriched amongst 
downregulated DEGs. 
 
In a second strategy to characterize the IBC preclinical models, weighted gene co-
expression network analysis (WGCNA) was applied onto the averaged GEPs. Using data 
for all available genes, 22 distinct gene co-expression modules were identified with 
sizes ranging from 104 to 871 genes. Details regarding the network construction and 
module detection are shown in Supplementary Figure 3 and different co-expression 
module statistics are summarized in Table 2. The correlation structure of the 22 co-
expression modules was investigated and revealed the existence of three co-
expression clusters (Fig. 2b). Gene set enrichment analysis (GSEA) of the gene module 
memberships (GMM) scores (Supplementary Data 2) revealed distinct hallmark 
enrichment patterns for each of these co-expression clusters (Fig. 2c), suggesting they 
reflect different biological themes.  
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Fig. 2: Identification of molecular differences between IBC and nIBC preclinical models  
a Volcano plot representing gene expression differences between IBC and nIBC preclinical 
models. The X-axis indicates the log2-transformed gene expression fold change in IBC relative 
to nIBC. The Y-axis represents the –log10-transformed p-value. The horizontal dashed line 
represents a nominal P-value threshold of 5%. Genes color-coded yellow and blue are 
overexpressed in IBC and nIBC respectively at a false discovery adjusted p-value of 10%. The 
top 10 overexpressed genes in IBC and nIBC cell lines are labeled. b Heatmap representing the 
correlation structure of 22 co-expression modules identified using WGCNA. Pearson correlation 
coefficients resulting from pairwise comparisons of the eigengenes of the different co-
expression modules are coded according to a blue-red color scheme reflecting correlation 
coefficients ranging from -1 to 1. Row and columns are labeled with the names of the co-
expression modules and are ordered according to an unsupervised hierarchical cluster analysis. 
The three co-expression cluster groups are indicated in orange squares. c Dot plot representing 
the result of a gene set enrichment analysis (GSEA) obtained by comparing the gene-module 
membership scores for each co-expression cluster to the hallmark gene sets.  The co-expression 
modules are listed along the X-axis and a different facet is created for each co-expression cluster. 
Enriched hallmarks per modules are indicated using a dot, the color and size of which vary with 
respectively the normalized enrichment score (i.e. blue=low; red=high) and the –log10 
transformed p-value (i.e. small=less significant; large=more significant) that result from the 
GSEA. 
 
The extent to which each of the co-expression modules is preserved in the gene 
expression series of the nIBC preclinical models was investigated (Table 2). The highest 
preservation score was obtained for the module containing ERBB2 (i.e. M12), most 
likely reflecting the presence of ERBB2+ cell lines in both IBC and nIBC series. The 
module containing ESR1 (i.e. M10) was poorly conserved (i.e. preservation score 
inferior to 2), probably due to the fact that all IBC preclinical models are ER-negative 
and thus the ER-related expression patterns in IBC preclinical models are weaker than 
in nIBC.  



  



  

Overall, the IBC co-expression modules contained in the 2nd co-expression cluster, 
which were associated with amongst others MYC, NFκB and Hedgehog signaling (Table 
2), were most weakly conserved in nIBC cell lines (i.e. average preservation score per 
cluster group: C1=6.753; C2=3.270; and C3=4.390), suggesting that these gene clusters 
reflect biological themes that are more intrinsic to IBC. This is corroborated by the 
enrichment of genes overexpressed in IBC cell lines (vide supra) in 4/8 of the co-
expression modules in the 2nd co-expression cluster (Table 2). Finally, based on the 
correlation structure of the 22 co-expression modules (Fig. 2b) and their cell line-
specific expression levels, a network-based prioritization of the co-expression modules 
was performed. A minimal set of five co-expression modules connecting all IBC cell lines 
was identified (i.e. M1, M2, M7, M8 and M9), all but one belonging to the 2nd co-
expression cluster (Fig. 3a).  
 

 
Fig. 3: Identification of co-expression cluster regulators and antagonizing chemical 
compounds a Network diagram showing the minimal set of edges that connect all co-expression 
modules and cell lines and that were identified using a minimal spanning tree analysis performed 
on the binary adjacency matrix representing the full set of interactions between all modules and 
all cell lines. Co-expression modules and cell lines are indicated respectively as diamonds 
labeled by module number (i.e. M1 to M22) and circles labeled by cell line name. The edges 
connecting all cell lines through a minimal set of co-expression modules are indicated in red. b 
Results identifying upstream regulators (Y-axis) for each of the five co-expression modules that 
connect all IBC cell lines (X-axis) are shown in heatmap format. At the intersection between 
rows and columns, cells are color-coded as shown in the legend only when the difference 
between the co-expression module specific connectivity Scores (CSs) for over-expression and 
knock-down of the respective genes exceeds 150 (i.e. at least 75 upon overexpression and at 
most -75 upon knock-down). c Results identifying target/drug combinations (Y-axis) for each 
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of the five co-expression modules that connect all IBC cell lines (X-axis) are shown in heatmap 
format. At the intersection between rows and columns, cells are color-coded as shown in the 
legend only when the difference between the co-expression module specific CSs for over-
expression of the drug target and drug treatment exceeds 150 (i.e. at least 75 upon 
overexpression of the target and at most -75 upon treatment). 
 
Identification of co-expression cluster regulators and antagonizing chemical 
compounds  

Based on the co-expression modules analysis, we then aimed to identify potential 
modulators of IBC biology as well as potential drug/target combinations for therapy 
using the CMAP dataset. Connectivity Scores (CSs) are provided in Supplementary Data 
3 for all comparisons. As a proof-of-concept, we focused on the CSs of RELA and MYC 
and demonstrate that knock-down of these transcription factors induced a gene 
expression profile that was opposite to the characteristic expression profile of the gene 
co-expression modules enriched for genes involved in NFκB and MYC signaling 
respectively (Table 2 and Supplementary Figure 4). In addition, we also evaluated all 
E2F transcription factors (i.e. E2F1 to E2F9) and revealed that particularly the CSs 
associated with E2F3 knock-down were reduced in those expression modules enriched 
for E2F target genes. For other E2F transcription factors, no clear association was 
observed. 
 
We then focused on the set of five co-expression modules (M1, M2, M7, M8, and M9) 
linking all 10 IBC cell lines to reveal potential regulators and drug/target combinations. 
According to published literature, several of the identified regulator genes (Fig. 3b) 
were related to MYC activity (i.e. BAMBI, CD40, CDKN1A, CDKN2C, CDX2, E2F6, HOXA9, 
HOXB13, KLF6, POU5F1, and WWTR1/TAZ), often in conjunction with WNT signaling, 
TGFβ signaling or stem cell biology. In addition, 31 potentially effective drug/target 
combinations were identified involving 13 distinct targets and 26 different drugs (Fig. 
3c). Unfortunately, no single target/drug combination was predicted to be effective in 
all five co-expression modules and no target/drug combination meeting our criteria 
was identified for M7. Remarkably, for M9 that connects to TJ-IBC-09, our data 
suggested sensitivity to anti-hormonal drugs.   
 
MYC expression and transcriptional activity in IBC patient samples 

Our results in the preclinical models described above suggested that MYC could be an 
important driver of IBC biology. To corroborate these data, MYC-related molecular 
changes were evaluated in our series of 146 and 252 expression profiles from IBC and 
nIBC tissue samples 9. As shown in Fig. 4a, MYC expression was dependent on the ER 
status defined by stratifying ESR1 mRNA levels into low, moderate, and high expression 
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categories (P<0.003). When comparing IBC to nIBC, no significant difference in MYC 
expression was observed (P=0.209). However, when stratifying by ER status, MYC 
expression was significantly different between IBC and nIBC (P=0.049). Correlation 
analysis (Fig. 4b) revealed a significant inverse relation between ESR1 and MYC 
expression in nIBC (Rs=-0.331; P<0.001). Similar correlations were also noted in the 
TCGA and METABRIC series that primarily consist of nIBC tissue samples (TCGA: Rs=-
0.250 – P<0.001; METABRIC: R=-0.222 - P<0.001; data not shown). In IBC however, a 
different correlation pattern was observed (Rs=0.115; P=0.166), suggesting different 
interactions between ER and MYC depending on the tumor phenotype. A generalized 
linear model testing for such interactions, demonstrated that MYC expression in nIBC 
indeed decreased with increasing ESR1 levels (i.e. decrease with 0.754 and 0.931 
expression units in respectively the ER moderate and high categories relative to the ER 
low category; all Ps<0.001). Results are shown in Fig. 4c, in which the first two columns 
represent the ER moderate and ER high categories in nIBC. In IBC samples with low 
ESR1 levels, MYC expression was 0.832 units lower as compared to nIBC samples with 
similar ESR1 mRNA levels (P<0.001; third column in Fig. 4c) and MYC expression 
increased by 0.599 and 1.414 expression units in respectively the ER moderate and high 
categories (P=0.035 and P<0.001 respectively; fourth and fifth column in Fig. 4c). To 
evaluate differences in MYC transcriptional activity between IBC and nIBC samples, a 
similar analysis was performed using activation scores calculated using GSVA based on 
three different published MYC activation signatures 32-34. Hence, we noticed that 
differences in MYC transcriptional activity followed the same trends as those described 
for MYC expression, with the exception that MYC transcriptional activity was not 
different between IBC and nIBC samples with low ER expression (Fig. 4c).  
 
To evaluate potential confounding effects in the reported observations, MYC 
expression and transcriptional activation were first compared between samples 
stratified by tumor stage and the PAM50 subtypes. Significant MYC expression and 
activation differences according to the strata of both classification systems were 
observed (Supplementary Figure 5 and Fig.6). Incorporating tumor stage or the PAM50 
subtypes separately as blocking variables into each of the generalized linear models 
described above, revealed that tumor stage did not confound the observed interaction 
differences of ER and MYC between IBC and nIBC. The PAM50 subtypes on the other 
hand did account for the overall effect of ER on MYC expression or activation, but the 
IBC-specific associations between ER and MYC remain significant in 3/4 comparisons. 
Results, comparing the original with the blocked regression models for each MYC-
related feature, are shown in Supplementary Table 2. 
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Fig. 4: MYC expression and transcriptional activity in patient samples in function of ESR1 
a MYC expression levels (Y-axis) in a data set of 146 IBC and 252 nIBC tissue samples 
classified according to the ER status, calculated by stratifying ESR1 mRNA levels into low, 
moderate, and high categories. Data are represented in notched boxplot format and color-coding 
according to the legend shown underneath the plot. P-values resulting from the pairwise 
comparison of the MYC expression distributions between the different tumor sample categories 
are indicated. b Scatter plot comparing ESR1 and MYC expression, represented in the X- and 
Y-axis respectively, in nIBC (left) and IBC (right) patient series.  For each series, a trend line is 
plotted and the resulting Spearman correlation coefficients are shown in the top left corner. c 
Heatmap representing the result of a generalized linear regression analysis evaluating MYC 
expression levels (i.e. top row) and MYC transcriptional activation calculated using the gene 
sets published by Muhar et al., Gatza et al., and Bild et al. (i.e. bottom 3 rows) in function of the 
tumor phenotype (i.e. IBC vs. nIBC) and interactions thereof with different strata of ER 
expression. For each of the resulting categories, shown along the X-axis (i.e. nIBC – ER 
Moderate, nIBC – ER High, IBC – ER Low, IBC – ER Moderate, and IBC – ER High), 
regression coefficients representing the change in MYC expression or MYC transcriptional 
activity in that category relative to nIBC samples with low ER expression, are color-coded as 
shown in the legend. The heatmap for example shows that MYC expression (i.e. top row) in 
nIBC samples with high ER levels (i.e. 2nd column) decreases significantly (i.e. blue color) as 
compared to nIBC samples with low ER expression, whereas relative to the same category the 
MYC expression in IBC samples with high ER levels increases significantly. P-values 
evaluating the significance of the changes are indicated in each cell. 
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Expression analysis of Proximal MYC Network members 

To provide additional context to the role of MYC in IBC biology, expression levels of 
genes belonging to the Proximal MYC Network (PMN) and that modulate MYC target 
gene binding and expression 35, were investigated. With the exception of MYC itself, 
mRNA levels for only seven members were available in the series of 10 IBC cell lines 
and the correlation plot is shown in Fig. 5a. This reveals that expression levels MAX (i.e. 
the primary interaction partner of MYC; P=0.099) and MLX (i.e. MAX-like protein, 
another dimerization partner of MYC; P=0.053) were positively correlated with MYC, 
whereas a negative correlation was reported for MXD3 (i.e. MYC competitive MAX 
dimerization partner; P=0.001). These relationships were recapitulated in a series of 
146 samples from patients with IBC (i.e. correlation P-values for MAX: P=0.005, MLX: 
P<0.001 and MXD3: P=0.027; Fig. 5b). In addition, an inverse relation between MYC 
and MYCN (i.e. another member of the family of MYC transcription factors) was noted 
(P=0.016). In general though, the correlation strengths among the PMN members 
observed in tissue samples were weaker as compared to those obtained in cell lines, 
possibly owing to confounding effects of ER expression and stromal admixture.  
 
Finally, in the series of IBC patient samples, we demonstrated that MYC transcriptional 
activation, calculated based on the target gene set published by Muhar and colleagues, 
was positively associated to MYC (P<0.001), NMYC (P=0.017), MLX (P=0.045) and MXD3 
(P<0.001) and negatively to MAX (P<0.001). Identical results were obtained for the MYC 
transcriptional activation scores calculated using the two remaining gene sets (data not 
shown). Figs. 5C and 5D show the strong linear relationship between MYC expression 
and MYC transcriptional activation but also identify a set of outlier samples in which 
MYC transcriptional activation was associated with elevated mRNA levels of either 
MXD3 of NMYC rather than MYC itself.   
 
Discussion 

The primary goal of the current study was to gain insight into the molecular 
characteristics of 10 IBC cell lines and to determine to what extent these preclinical 
models reflect genuine IBC biology. Therefore, gene expression data of IBC preclinical 
models were integrated with publicly available expression data of nIBC preclinical 
models. Data set-dependent bias was efficiently removed by normalization as shown 
by the clustering of replicate samples on terminal branches and by the fact that 
biologically relevant expression themes, such as those related to the ER and HER2 
status of the cell lines, were not compromised. To further limit the effect of gene 
expression fluctuations associated with passage number, different culture conditions 
or other stochastic variables, the molecular profile of each preclinical model in this 
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study was defined as the average of several replicates, except for the UA-IBC-01 cell 
line for which only one expression profile was available.  
 

 
Fig. 5: Expression analysis of Proximal MYC Network members a Heatmap showing the 
correlation structure of the proximal MYC network members in IBC cell lines. The proximal 
MYC network members are indicated along both X- and Y-axes and ordered similarly based on 
the output of a Ward clustering analysis. Correlations are coded according to a blue-red coloring 
scheme representing negative to positive correlation coefficients respectively. Correlation 
values are provided in the corresponding cells. b MYC correlation analysis for the proximal 
MYC network members in a series of 146 IBC patient samples. The proximal MYC network 
members and strength of the correlation between their expression and MYC mRNA levels are 
shown along the X- and Y-axis respectively. Each correlation coefficient is indicated by a dot, 
coded according to a blue-red coloring scheme representing negative to positive correlation 
coefficients respectively and correlation values are provided inside. Significant values are 
indicated with a blue diamond. c, d Scatter plots comparing MYC expression (X-axis) and MYC 
transcriptional activity (Y-axis) calculated according to the gene set published by Muhar and 
colleagues in a series of 146 IBC samples. Each sample is represented by a point, which is 
colored red if the corresponding sample is characterized by MXD3 (c) or NMYC (d) expression 
values exceeding the 90th percentile. A regression line depicting the linear relationship between 
MYC expression and transcriptional activity is indicated and results of the Spearman correlation 
analysis are provided in the top left corner. 
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Based on the resulting data set, we observed that all IBC cell lines adhere to the basal-
like subtype and 7/10 had a luminal progenitor phenotype. This agrees with the fact 
that all IBC cell lines are ER-negative and demonstrates that the degree of molecular 
heterogeneity in the present series of IBC preclinical models is restricted as compared 
to the nIBC cell lines in which all subtypes and differentiation states are represented. 
Similar conclusions could be drawn when evaluating the distribution of the PAM50 
subtypes, with 8/10 IBC cell lines being either basal-like or HER2-enriched. These 
results can be explained by the dominance of the basal-like and HER2-enriched 
subtypes in IBC tissue samples 9,36. However, they also clearly reveal the paucity in ER+, 
luminal-type preclinical IBC models despite the fact these subtypes account for roughly 
30-40% of the patient samples 14,37. Another intriguing observation is the absence of 
the mesenchymal subtype in the panel of IBC cell lines, which is unexpected due to the 
metastatic potential often associated with this subset of breast cancer cells, but agrees 
with the reported overexpression of E-Cadherin in IBC cells and thus their presumed 
epithelial phenotype 38. 
 
Next, we aimed to evaluate to what extend the current series of IBC preclinical models 
is representative for IBC biology. Therefore, we applied a classification model based on 
79 genes with IBC-specific expression patterns 9 onto our preclinical model series. 
Overall, the prediction accuracy was acceptable (i.e. 78%), but positive predictive value 
was limited (i.e. 59%) indicating that the model was not reliable in correctly predicting 
the IBC status of the models or that the models do not fully represent the clinical 
disease but only limited aspects of it. In an additional analysis, we observed that 
overexpression patterns in nIBC were maintained between cell lines and tissue 
samples, but not those from IBC cell lines (data not shown). This result suggests that 
separation of IBC and nIBC cell lines based on the transcriptomic classifier is mainly 
driven by the nIBC marker genes. A possible explanation for the lack of predictive power 
associated with the IBC marker genes in this analysis relates to differences between IBC 
and nIBC associated with the tumor (immune) microenvironment 13-15,39 that are not 
recapitulated in the data set of the preclinical models. Indeed, 67% of the IBC marker 
genes that are part of the IBC-specific transcriptomic signature demonstrate elevated 
expression in the profiles of immune and endothelial cells of the Human Tissue 
Compendium relative to those of epithelial cells (data not shown). This conclusion is 
further corroborated by a direct comparison of the GEPs of the UA-IBC-01 cell line and 
the primary tumor sample it is obtained from. Although expression differences are 
limited and cancer cell intrinsic expression themes appear to be preserved in the 
preclinical model, enrichment of gene sets associated with immune response programs 
in the primary tumor sample were noted. Together, these data again underscore the 
importance of the tumor microenvironment in IBC biology, but they do not preclude 
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the utility of the preclinical models to uncover IBC cell intrinsic features and numerous 
efforts are underway to incorporate immune features into programs for the 
development of IBC preclinical models. With respect to the latter, the use of estrogen 
supplementation should be carefully considered, as modest differences in gene 
expression of estrogen response genes were noted between UA-IBC-01 and its 
corresponding primary tissue sample. However, since gene expression changes are not 
in line with the expected results, this observation requires further investigation.   
 
To further delineate the defining principles of IBC biology, two distinct analysis 
strategies were undertaken. First, DEGs between IBC and nIBC cell lines were identified. 
Second, WGCNA was applied to detect modules of co-expressed genes in the series of 
IBC cell lines only. In both analyses, confounding variables such as ER status and the 
molecular subtypes were not taken into account for two reasons. First, our data set 
was too small to perform multivariate analyses. Second, since all the IBC preclinical 
models are ER-negative and of the basal-like subtype, it is impossible to reliably 
differentiate between gene expression patterns introduced by the tumor phenotype 
on the one hand and other sources of latent variation on the other hand. It should be 
noted that the inability to account for covariates represents a debilitating factor in our 
analysis. Regardless, both strategies pointed at important roles for cell proliferation 
(e.g. hallmarks E2F target genes and G2M checkpoint), MYC transcriptional activity and 
inflammatory response programs (e.g. hallmarks IL2/STAT5 and TNFɑ/NFκB) in the 
biology of IBC. Furthermore, the WGCNA approach revealed that several of these 
processes are jointly regulated. For example, MYC and NFκB target gene expression 
were the dominant themes in the second co-expression cluster, which suggests an 
intricate relationship between both transcription factors in shaping IBC biology. NFκB 
activation in IBC has been reported previously 29,40-42, and MYC and NFκB have been 
shown to cooperate in breast cancer development and progression 43-46, amongst 
others by modulating stem cell behavior. By comparing gene co-expression clusters to 
the L1000 profiles of the CMAP database, we also revealed sets of potential regulators 
and target/drug combinations. Unfortunately, no single drug with predicted efficacy 
across all IBC cell lines was identified. This may reflect inherent heterogeneity in the 
signal transduction networks of the individual IBC cells, limited specificity of the CMAP 
profiles that are generated using a broad collection of cancer cell lines and thus are not 
reflective of breast cancer specific transcriptional responses, or the failure to identify 
robust and highly specific IBC co-expression modules due to the limited size and 
relative homogeneity (i.e. all ER negative and basal-like samples) of the series of IBC 
preclinical models. Nevertheless, our results constitute a good starting point to 
evaluate novel treatment strategies in preclinical IBC research.  
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The fact that MYC target genes were overexpressed in IBC cell lines and were 
associated with specific co-expression modules suggests that MYC transcriptional 
activity is an important characteristic of IBC biology at least in preclinical models. This 
is corroborated by earlier work of Zhang and colleagues who demonstrated that MYC 
is a central hub in the signal transduction networks of SUM149 and SUM190 47. In 
addition, we recently showed that MYC mediates the specific response of IBC cells to 
TGFβ1 treatment 10. To confirm these observations, MYC expression and transcriptional 
activation were explored using GEPs from IBC and nIBC tissue biopsies. Our data 
demonstrate that the levels of MYC expression and transcriptional activation in relation 
to ESR1 expression exhibit opposite patterns in IBC and nIBC with an ER-dependent 
decrease and increase in mRNA levels of both MYC and MYC target genes in nIBC and 
IBC respectively. Particularly the positive association between ER and MYC expression 
or transcriptional activation in IBC is notable, as it remains significant even when 
accounting for tumor stage and the PAM50 subtypes and thus cannot be attributed 
solely by the enrichment of the Luminal B phenotype amongst ER+ IBC tissue biopsies. 
This observation is in line with earlier results showing that MYC is a common 
denominator of biological processes active in ER-positive IBC 48. The induction of MYC 
activity in ER-positive IBC may provide an explanation for the hormone therapy 
resistance phenotype often associated with IBC 49. Miller and colleagues illustrated that 
a gene signature of breast cancer cells with acquired hormone independence and 
predictive of resistance to hormonal therapy reflects MYC pathway activation 50. 
Importantly, these data re-emphasize the need for ER+ luminal-type preclinical models 
of IBC. It stands to reason that inclusion of such models in our present analysis would 
further amplify the here reported MYC-related differences.  
 
Recently, we reported that MYC was frequently affected by genomic alterations in a 
series of 101 IBC tissue biopsies 12 and Faldoni et al. reported frequent gains covering 
the MYC gene in IBC, with a concomitant MYC protein overexpression in IBC patient 
samples 51. We performed a meta-analysis of published data 12,52-56 and demonstrate 
that the frequency of MYC genomic alterations in primary IBC is 23% (95%CI: 13-33%) 
vs. 30% (95%CI: 24-37%) in a subtype matched nIBC series consisting of METABRIC and 
TCGA samples respectively. This reveals that MYC genomic alterations are not 
specifically enriched in IBC. Therefore, we hypothesize that other mechanisms of MYC 
activation in IBC are operational and the present data contribute to earlier observations 
linking MYC in IBC to signaling pathways involved in developmental biology 12,57. Here, 
we show that some co-expression modules associated with MYC target gene 
expression are additionally related to WNT or Hedgehog signaling, and that many of 
the upstream regulators for these co-expression clusters are also involved in these 
pathways (i.e. BAMBI, E2F6, HOXB13, and WWTR1/TAZ) or in plain stem cell biology 
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(i.e. CDX2, HOXA9, KLF6, and POU5F1). Interestingly, a SNP (rs6983267) located at 8q24 
close to the MYC locus, is known to exhibit enhanced binding properties for the WNT 
effector TCF4 and can be directed to the MYC locus through chromatin loops allowing 
for WNT/TCF4-dependent MYC expression. In addition, the rs6983267 genotype is 
associated with metastatic risk in IBC but not in nIBC, suggesting that MYC is also 
involved in cancer cell dissemination in IBC 58. In line with this, MYC expression levels 
are predictive of reduced distant metastasis-free survival in patients with ER-positive 
IBC 48 and have shown to be associated with metastasis in ER-positive metastatic breast 
cancer 59,60. Apart from stem cell signaling pathways, also signals from the tumor 
microenvironment could be involved in modulating MYC signaling. In this context, MYC 
has been shown to be a target gene of the NFκB transcription factor RELA 43,61 that 
orchestrates cellular responses to pro-inflammatory cues. Finally, we want to draw 
attention to the fact that in a small subset of IBC samples, the activation of the MYC 
pathway was apparently associated with NMYC and MXD3, which have been shown to 
jointly regulate cell proliferation in cerebellar granule neuron precursors, downstream 
of Hedgehog signaling 62. This indicates that MYC biology in IBC is complex and involves 
different proximal MYC network members.  
 
In conclusion, in this study we demonstrate that the currently available preclinical 
models of IBC recapitulate to some extent the molecular features of IBC cells in patient 
samples, and thus constitute valuable research tools. However, it should be noted that 
the present panel of IBC models do not fully recapitulate the molecular heterogeneity 
seen in patient samples. Particularly, the lack of hormone sensitive, luminal-type 
preclinical models for IBC is worrisome, since data indicate that ER may contribute to 
IBC biology in a specific manner as shown by the ER-dependency of MYC expression 
and transcriptional activity in patient samples. By consequence, the lack of ER 
expressing IBC cell lines represents one of the major limitations associated with the 
present study, particularly in the comparison of IBC and nIBC cell lines in which the 
influence ER positivity on differences in gene expression could not be assessed. A 
second limitation of this study and of the presented series of preclinical models in 
general relates to the absence of the specific immune contexture, which is now being 
increasingly accepted as a hallmark of IBC biology. However, it should be noted that 
signatures of activated immune response pathways prevail in IBC cells as intrinsic 
properties, possibly reflecting past interactions between IBC cells and an inflamed 
tumor micro-environment. Finally, the rather limited size of the series of IBC cell lines, 
which impacts on statistical power, implies that additional and more subtle molecular 
features of IBC cells may yet be undetermined. We argue that researchers need to be 
aware of these limitations, allowing their appropriate consideration in the design of 
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preclinical experiments to maximize the translatability of research results into daily 
patient care. 
 
Methods 

This study was approved by the local review board of the GZA Hospitals and each 
patient gave written informed consent.  
 
UAIBC01 PDX Model 

The UAIBC01 PDX model was generated in collaboration with Oncotest Gmbh 
(Freiburg, Germany). Briefly, metastatic tumor tissue from a patient with hormone 
receptor-negative and HER2-amplified IBC was subcutaneously implanted in NOD-SCID 
mice with estrogen pellets and serially passaged in nude mice. Tissue samples obtained 
after the fourth passage were processed for molecular analysis. Information on the 
clinical and pathological characteristics of the patient from which this IBC cell line and 
the other nine IBC models were derived, can be found in Supplementary Table 3.  
 
Gene expression data from cell lines 

We profiled a series of nine IBC (i.e. SUM149, SUM190, KPL4, Mary-X, MDAIBC03, 
FCIBC01, FCIBC02, TJIBC04, and TJIBC09) and three nIBC (i.e. MCF7, MDAMB231, and 
SUM159) preclinical models at least in triplicate using Affymetrix HGU133plus2 
GeneChips. Using the same platform, an additional gene expression profile (GEP) of our 
in-house generated PDX model for IBC (i.e UAIBC01) was generated and included in the 
study, yielding a total of 57 gene expression profiles. The SUM149, SUM190, KPL4 and 
MDAIBC03 cells were a kindly gift from MD Anderson Cancer Center, TX, USA. The 
FCIBC01, FCIBC02, TJIBC04, and TJIBC09 cells were a kindly from Dr. Cristofanilli and 
the Mary-X model from Dr. Barsky. The nIBC cell lines were purchased from ATCC 
(Manassas, USA). 
 
To expand the group of nIBC preclinical models, four additional gene expression data 
sets generated using the Affymetrix HGU133 series were retrieved from public 
resources (Gene Expression Omnibus: GSE12777, GSE16795, and GSE40464; and 
ArrayExpress: E-MTAB-7). Expression data for 19 extra nIBC models was avalaible, i.e. 
BT-20, BT-474, BT-483, BT-549, CAMA1, HCC1937, HS578T, MDAMB134VI, 
MDAMB175VII, MDAMB361, MDAMB415, MDAMB436, MDAMB453, MDAMB468, 
SKBR3, T47D, UACC812, ZR751, ZR7530. To reduce technical bias due to interlaboratory 
variability in these data sets, only cell lines that were profiled at least in triplicate were 
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included. In total, 124 expression profiles of 32 different breast cancer models (i.e. 10 
IBC models and 22 nIBC models) from five different data sets were included.  
 
For each individual data set (N=5), expression data were normalized using the Robust 
Multi-array Averaging algorithm with correction for GC probe content (BioConductor 
package gcrma – v.2.60.0) and probe sets with a fluorescence intensity above log2(100) 
in at least two samples were included. The individual data sets were then merged based 
on the common probe sets (N=10,961) and batch effects were removed using empirical 
Bayesian methods (i.e. the combat function implemented in the BioConductor-package 
sva – 3.36.0), with protection of cell line-specific variation in gene expression. The 
resulting data set was then subjected to quantile normalization and probe set 
redundancy was removed by retaining the probe set with the highest standard 
deviation per gene for a total of 7,182 unique genes. As a final step, replicate GEPs 
were averaged. 
 
Gene expression data from patient samples 

Gene expression data from 146 IBC and 252 nIBC tissue samples have been described 
earlier 9. However, in this study, raw GEPs were reprocessed using a similar 
normalization strategy as described for the preclinical models in order to ensure data 
comparability. Batch effects due to the inclusion of samples from three distinct sites 
(i.e. MD Anderson, Institut Paoli-Calmettes and GZA Hospitals Sint-Augustinus) were 
removed using empirical Bayesian methods. The final processed data set contained 
12,769 probes sets for 8,086 unique genes. Finally, breast cancer gene expression data 
from the TCGA (Firehose legacy) and METABRIC series were downloaded from the 
cBioPortal for cancer genomics (https://www.cbioportal.org) using the R package cgdsr 
(v.1.3.0).  
 
Unsupervised analysis 

Unsupervised hierarchical clustering analysis (UHCA) was performed using Manhattan 
distance as dissimilarity metric and Ward clustering as the dendrogram drawing 
method. Prior to cluster analysis, data were centered and scaled to unit variance. The 
optimal number of clusters, ranging from 2 to 10, was determined by evaluating cluster 
separability based on 30 distinct indices (BioConductor package NbClust – v.3.0). The 
clustering scheme that was supported by the majority of these indices was selected.  
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Classification  

Preclinical models and patient samples were classified according to the PAM50 
molecular subtypes 63 using the BioConductor package genefu (v.2.20.0). 
Furthermore, the preclinical models were classified according to the ER status, the PR 
status, the HER2 status 64, the luminal/basal/mesenchymal classification (LBM) system 
for breast cancer cell lines 65, the differentiation predictor model (DPM) 66, and the 
IBC-specific classification model composed of 79 probe sets 9. For the PR status, nIBC 
cell lines reported to be PR negative by Dai and colleagues were considered as PR 
negative whereas nIBC cell lines with weak or strong PR expression were classified as 
PR positive 64. In addition, IBC and nIBC patient samples were stratified into ER low, 
moderate, and high expression groups based on the 33rd and 66th quantiles of the 
ESR1 mRNA levels.  
 
To perform the classification according to the signature of 79 IBC-specific probe sets, a 
model based on elastic net generalized linear regression was optimized on GEPs of the 
tumor samples using the R package caret (v.6.0-86). This data set was split into a 
training and validation set according to a 3/1 split ratio. Prior to model construction, 
the data were centered and scaled to unit variance. Model construction was performed 
using repeated 10-fold cross-validation against a tuning grid of alpha values ranging 
from 0 to 1 with 0.1 increments and lambda values ranging from 0.001 to 0.1 with 0.001 
increments. The optimal model was selected using ROC statistics and was then applied 
onto the validation set of tumor samples to define the model accuracy and onto the 
data set of preclinical models to record posterior probabilities for each breast cancer 
model. For the latter analysis, the non-averaged GEPs (N=124) were used in order to 
be able to evaluate the cell line-specific variation of the classification scores and the 
final call was generated based on the median posterior probability across replicates.  
 
Differential expression analysis 

Identification of differentially expressed genes (DEGs) was performed using the 
BioConductor package limma (v.3.44.3). Resulting p-values were corrected for false 
discovery using the Benjamini and Hochberg procedure and false discovery rate (FDR)-
corrected p-values inferior to 10% were considered significant.  
To identify genes presumably differentially expressed between the UA-IBC-01 
preclinical models and to primary tumor sample it was derived from, gene-wise 
differences in expression between both samples were calculated by subtracting the 
expression levels measured in the cell line from those measure in the tumor sample. 
Genes overexpressed in the tumor sample and the cell line were then defined based 
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on respectively the 97.5th and the 2.5th percentile of the global distribution of the 
gene-wise expression differences. 
 
Weighted gene co-expression network analysis (WGCNA) 

To identify gene co-expression modules in the series of 10 IBC preclinical models, 
WGCNA was performed using the R package WGCNA (v.1.69) and following online 
instructions (https://horvath.genetics.ucla.edu/). To construct a signed co-expression 
matrix, pairwise biweight midcorrelation coefficients were calculated between all 
7,182 genes. The resulting adjacency matrix was transformed into a weighted network 
by raising the biweight midcorrelation coefficients to a power that was chosen for the 
resulting network to adhere to scale-free topology. Detection of co-expression 
modules was performed using UHCA by subjecting the topological overlap dissimilarity 
matrix of the network to Ward clustering. The resulting dendrogram was analyzed using 
an adaptive branch pruning algorithm combined with partitioning around medoids to 
assign genes to co-expression clusters enforcing a minimum size of 100 genes and co-
expression clusters with a similar profile were merged. Then, gene module 
memberships (GMM) scores were calculated for each gene and each co-expression 
cluster and represent the Pearson correlation coefficient between their respective 
expression profiles. The vector of all gene-wise GMM scores per module is considered 
as the characteristic GEP of that module. The preservation of the IBC co-expression 
clusters in the series of nIBC preclinical models was investigated using connectivity and 
density statistics. Finally, network-based prioritization of the co-expression clusters was 
performed using the R package igraph (v.1.2.5). Therefore, based on the expression 
levels of the co-expression modules in the cell lines, the correlation structure amongst 
the co-expression modules was determined and dichotomized relative to 0 (i.e. positive 
and negative correlation coefficients transformed into 1 and 0 respectively). Then, 
individual cell lines were linked to the co-expression modules by dichotomizing the cell 
line specific expression values of the co-expression modules (i.e. positive and negative 
expression values transformed into 1 and 0 respectively). The resulting binary 
adjacency matrix, representing both modules and cell lines, was analyzed using a 
minimal spanning tree algorithm to determine the minimal set of edges that connect 
all components. The result was visualized using the R package ggnetwork (v.0.5.8). 
 
Systems biology 

To translate expression profiles (i.e. vectors of log2-transformed fold changes or GMM 
scores) into biological themes, gene set enrichment analysis (GSEA) was performed for 
the hallmark gene sets of the molecular signatures database (https://www.gsea-
msigdb.org/gsea/msigdb). Overrepresentation analysis (ORA) of DEGs between IBC and 
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nIBC cell lines in each of the co-expression modules was performed using the 
hypergeometric test. Both analyses were performed using the BioConductor package 
fgsea (v.1.14.0). To assess MYC transcriptional activity in IBC and nIBC tissue samples 
based on published MYC activation signatures 32-34, GEPs were subjected to gene set 
variation analysis using the BioConductor package GSVA. Finally, the analysis of the 
Proximal MYC Network (PMN) was performed based on genes reported by Schaub and 
colleagues 35.  
 
To identify regulators of IBC biology and potentially effective target/drug combinations 
for treatment based on the WGCNA results, the GEP of each co-expression module 
based on 300 marker genes with the highest or lowest GMM scores (i.e. 150 each) was 
analyzed against 1.3 million L1000 profiles present in the CMAP dataset 
(https://clue.io/cmap). These L1000 profiles catalogue the transcriptional responses of 
human cells to a variety of chemical or genetic (i.e. both knock-down and 
overexpression) perturbations. The resulting connectivity scores (CSs) reflect the level 
of agreement between the analyzed GEPs and the L1000 profiles and range between -
100 to 100 reflecting incongruent or congruent profiles respectively. Then, for each co-
expression module, regulators are defined as genes with a CS of at least 75 upon 
overexpression and at most -75 upon knock-down and drug/target combinations are 
defined based on a CS smaller than -75 for the drug and greater than 75 upon 
overexpression of the drug target. 
 
Statistics 

To compare the distribution of two categorical variables, Fisher Exact tests, Chi-square 
tests or multinomial regression analyses were performed. To compare the distribution 
of a continuous variable in the context of one or more categorical variables, Wilcoxon 
tests, Kruskal-Wallis tests or generalized linear regression analyses were performed. To 
compare two continuous variables, Spearman correlation or linear regression analyses 
were performed. Regression models were performed in uni- or multivariate setting 
where appropriate. Particularly, to analyze MYC-related parameters in the context of 
ER expression and the tumor phenotype, a nested interaction model was established 
to estimate the main effect of the tumor phenotype and ER expression in addition to 
IBC-specific effects of ER expression on MYC expression levels. Comparison of different 
regression models was performed using the likelihood ratio test. In all cases, 2-sided 
tests were performed and p-values inferior to 5% were considered significant. Data 
analysis was done in R (v.4.0.1) and data visualization was done using the R package 
ggplot2 (v.3.3.1). 
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Data availability 

The data that support the findings of this study are available from the corresponding 
author upon reasonable request. The gene expression profiles of the 10 IBC preclinical 
models and three nIBC preclinical models (i.e. MCF7, MDAMB231, and SUM159) can 
be accessed on ArrayExpress with accession number E-MTAB-11134. 
 
Code availability 

All code generated in part of this publication is available at 
https://github.com/StevenVanLaere/IBCModels. 
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This discussion is partially based on the review ‘Deciphering the molecular biology of 
inflammatory breast cancer through high-throughput profiling technologies.’ by 
Rypens et al. 2023, submitted for publication in International Review of Cell and 
Molecular Biology (IRCMB). 

The IBC signature represents a genuine biomarker and reflects disease biology 

In 2013, a signature consisting of 79 genes with an IBC-specific expression pattern was 
reported [1]. At that time an overall classification accuracy of 71% was observed based 
on a model using nearest shrunken centroids. In this thesis, we undertook an effort to 
enhance the original classifier, applied the most optimal model onto an independent 
validation set, resulting in a test accuracy of 82% with a sensitivity of 75% and a 
specificity of 86% (McNemar test - P=1.000). Overall, these numbers are well within the 
range of accuracy values reported for various alternative IBC signatures (i.e. 75%-88%), 
but all these signatures failed upon external validation [2]. In this thesis, we report to 
our knowledge, the only expression-based IBC classifier, unbiased by the molecular 
subtypes, with accuracy levels above 80% in a large independent patient cohort. The 
fact that the current model with superior accuracy is based on the same gene set as 
the original classifier, reveals the necessity of investing time and effort in model 
selection and optimization, in addition to feature selection, for any classification or 
regression problem at hand.  

When the model was applied onto an expression series of preclinical models, an overall 
acceptable test accuracy of 78% was observed, again indicating that the model is at 
least partially based on gene expression patterns that reflect genuine (intrinsic) 
differences in cancer biology of IBC and nIBC cells. However, in this data set, we also 
observed a marked difference between the sensitivity and the specificity levels (i.e. 
100% and 68% respectively; McNemar test - P=0.023), resulting in a limited percentage 
of accurate IBC calls (i.e. positive predictive value of 59%). More profound analysis of 
this observation revealed that the subset of classifier genes overexpressed in nIBC 
tissue samples is also overexpressed in nIBC relative to IBC cell lines. In contrast, the 
subset of classifier genes overexpressed in IBC tissue samples shows no evidence of 
differential expression between IBC and nIBC cell lines (data not shown). This result 
suggests that discrimination of IBC and nIBC cell lines based on the transcriptomic 
classifier is mainly driven by the nIBC marker genes [3]. Interestingly, in this thesis we 
have shown that particularly this subset of classifier genes exhibits expression levels 
that are positively correlated with nuclear SMAD3 protein expression levels [4], 
suggesting that the cancer cell intrinsic differences of IBC and nIBC cells translate to, 
amongst others, elevated SMAD3 transcriptional activity.  
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A possible explanation for the lack of predictive power associated with the IBC marker 
genes in this analysis relates to differences between IBC and nIBC associated with the 
tumor (immune) microenvironment [5] that are not recapitulated in the data set of the 
preclinical models. Indeed, 67% of the IBC marker genes that are part of the IBC-specific 
transcriptomic signature demonstrate elevated expression in the profiles of immune 
and endothelial cells of the Human Tissue Compendium relative to those of epithelial 
cells (data not shown). This conclusion is further corroborated by a direct comparison 
of the gene expression profiles of the UA-IBC-01 cell line and the primary tumor sample 
it is obtained from. Although expression differences are limited and cancer cell intrinsic 
expression themes appear to be preserved in the preclinical model, enrichment of gene 
sets associated with immune response programs in the primary tumor sample were 
noted [3]. However, it should also be noted that many of the IBC marker genes are 
strongly anti-correlated with nuclear SMAD3 protein expression [4], which we consider 
reflecting cancer cell intrinsic differences between IBC and nIBC cells (vide supra). This 
implies either that the nature of the IBC marker genes may not be completely stromal, 
which was shown using immunohistochemical assessment of MARCKS protein 
expression in IBC [6], or that the IBC marker genes are reflective of crosstalk between 
stroma and IBC cells resulting in or originating from the suppressed SMAD3 
transcriptional activity in the latter. A more profound understanding of these 
mechanisms will require a detailed analysis of the molecular profiles and cell states of 
various cell populations in IBC at individual level using single cell technologies.  

IBC preclinical models are useful to study IBC biology 

Part of this thesis aimed at the molecular characterization of the available IBC cell lines 
and to determine to what extent these preclinical models reflect genuine IBC biology. 
Based on our results, all IBC cell lines adhere to the basal-like subtype and the majority 
adhered to the luminal progenitor phenotype, which agrees with the fact that all IBC 
cell lines are ER- negative and demonstrates that the degree of molecular 
heterogeneity in the present series of IBC preclinical models is restricted as compared 
to the nIBC cell lines in which all subtypes and differentiation states are represented. 
Similar conclusions could be drawn when evaluating the distribution of the PAM50 
subtypes, with 8/10 IBC cell lines being either basal-like or HER2-enriched. These 
results can be explained by the dominance of the basal-like and HER2-enriched 
subtypes in IBC tissue samples. However, they also clearly reveal the paucity in ER+, 
luminal-type preclinical IBC models despite the fact these subtypes account for roughly 
30–40% of the patient samples. Therefore, development of ER+ luminal-type preclinical 
IBC models should be high on the agenda of the IBC research community, particularly 
as we have shown in this thesis that some features, such as MYC transcriptional activity, 
show ER dependency in IBC. In this context, the use of estrogen supplementation 
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should be carefully considered, as we have documented a modest decrease in gene 
expression of estrogen response genes in the UA-IBC-01 cell line relative to its 
corresponding primary tissue sample, suggesting that estrogen supplementation may 
have detrimental or unwanted effects of the ER signaling pathway. Along the same 
lines, also the incorporation of immune features in the development of IBC preclinical 
models should be considered, for example using patient-derived organoids co-cultured 
with autologous immune cells.  

When applying the expression-based IBC classifier onto the IBC preclinical models, we 
noted a limited positive predictive value, indicating that not all cell lines fully represent 
the clinical disease but only limited aspects of it (as discussed above). In addition, we 
observed that for some preclinical models, notably SUM149, SUM190, and MDA-IBC-
3, low posterior probability scores (i.e. close to 0.5) were repeatedly observed across 
five replicates, whereas for the other cell lines posterior probability scores are more 
homogeneously elevated. This may raise some concerns regarding the utility of 
SUM149, SUM190 and MDA-IBC-3 as genuine IBC preclinical models. Nevertheless, in 
this thesis we demonstrate that the currently available preclinical models of IBC 
recapitulate to some extent the molecular intrinsic features of IBC cells in patient 
samples. For example, the absence of the mesenchymal subtype in the panel of IBC cell 
lines despite the metastatic potential associated with the disease, is noteworthy and 
agrees with the reported overexpression of E-Cadherin in IBC cells and thus their 
presumed epithelial phenotype. Therefore, we argue that the present panel of IBC cell 
lines constitute valuable research tools, provided that their limitations (e.g. lack of 
hormone receptor positive models) are adequately addressed in the experimental 
design by using subtype-matched comparisons as exemplified in the experiments 
studying the effect of TGFβ1 treatment on gene expression and kinase activation in IBC 
and nIBC cells reported in this thesis [4, unpublished data – Chapter 2: PamGene].  

The molecular profiles suggest that IBC is a MYC-addicted tumor 

Within the scope of this thesis, a common theme that emerged across all research 
chapters relates to the involvement of the MYC oncogene in IBC biology, both in patient 
samples and in cell lines. In a panel of 10 IBC preclinical models, specific co-expression 
modules associated with MYC transcriptional activity were identified. More 
importantly, particularly these co-expression modules were poorly conserved in nIBC 
preclinical models, suggesting that they represent intrinsic IBC biology. These 
observations corroborate earlier work of Zhang et al. who demonstrated that MYC is a 
central hub in the signal transduction networks of SUM149 and SUM190 [7]. In patient 
samples, Faldoni and colleagues recently revealed MYC nuclear protein expression in 
100% of 18 tissue samples from patients with IBC across all molecular subtypes [8]. This 
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thesis shows that levels of MYC transcriptional activity, measured using three different 
MYC activation gene sets, are invariably elevated in IBC across various strata of ER 
expression. This condition is unique to IBC, as an ER-dependent decrease of MYC 
transcriptional activity was clearly seen in nIBC in various data sets (i.e. METABRIC, 
TCGA, IBC-IC). These observations are in line with earlier results showing that MYC is a 
common denominator of biological processes active in ER-positive IBC and may provide 
an explanation for the hormone therapy resistance phenotype often associated with 
IBC [9]. 

To mechanistically explain the elevated levels of MYC activity in IBC, this thesis offers 
various important insights. First, the analysis of genomic alterations revealed that MYC 
was the third most frequently altered gene with single nucleotide variants, an indel or 
amplifications detected in 27% of 101 IBC samples [10]. Of the single nucleotide 
variants, at least one was predicted to be probably damaging, whereby protein function 
is affected (Ensemble Variant effect predictor, VarSome Clinical). Also the abundance 
of MYC amplifications indicate a selective advantage during cell growth. Similar studies 
looking into the genomic profiles of IBC reported variable alteration rates of MYC 
ranging from 6-100%, with one study revealing that MYC amplifications and protein 
overexpression coincide [8]. To formally test the hypothesis that amplification involving 
the MYC gene are more frequent in IBC as compared to nIBC, a meta-analysis of 
published data was performed, which demonstrates that the frequency of MYC 
genomic alterations in primary IBC is 23% (95% CI: 13–33%) vs. 30% (95% CI: 24–37%) 
in a subtype matched nIBC cohort consisting of METABRIC and TCGA samples. In 
metastatic IBC, MYC genomic alterations were observed in 25% of the cases (95% CI: 
12-38%). These data reveal that MYC genomic alterations are not specifically enriched 
in IBC. 

Given these data, other mechanisms of MYC activation in IBC will be operational. One 
alternative process was identified when the transcriptional responses of IBC and nIBC 
cells to TGFβ1 treatment were compared and overexpression of MYC target genes in 
IBC cells was noted [4]. Since SMAD proteins that operate in the TGFβ signal 
transduction pathway are antagonists of MYC mRNA expression and transcriptional 
activity, these observations indicate that MYC is efficiently suppressed in nIBC cells. On 
the other hand, these results also imply that TGFβ signaling fails to establish similar 
effects in IBC cells, suggesting that IBC cells are inherently TGFβ resistant. This process 
has already been described in several epithelial cancers (e.g. ovarian cancer, 
esophageal cancer) and is associated with the inability to decrease MYC transcription 
[11, 12]. Further investigations demonstrated that TGFβ-dependent repression of MYC 
mRNA expression requires degradation of the SKIL (SnoN) or SKI oncoproteins that can 
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inhibit TGFβ signaling, amongst others by sequestration of SMAD proteins outside the 
nucleus [13].  

A second candidate MYC activation mechanism was identified through weighted gene 
co-expression network analysis of IBC cell lines that revealed that expression of MYC 
and NFκB target genes are jointly regulated, suggesting an intricate relationship 
between both transcription factors in shaping IBC biology. NFκB activation in IBC has 
been reported previously by us and others [1, 14-16], and NFκB has been shown to 
cooperate with MYC in breast cancer development and progression by inducing cancer 
stem cell behavior, amongst others by regulating MYC transcription [17-19]. 
Importantly, the family of NFκB transcription factors orchestrate cellular responses to 
pro-inflammatory cues, which suggests that MYC hyperactivation in IBC could be 
secondary to the inflammatory signals received from the micro-environment. 

Within the scope of this thesis, NOTCH signaling emerged as a third candidate pathway 
that is possibly implicated in the activation of MYC in IBC. Genomic alterations in the 
NOTCH pathway were almost two-fold enriched in IBC, across all subtypes and tumor 
stages. Amongst all NOTCH genes, NOTCH1 was most frequently altered in IBC, and 
both NOTCH2 and NOTCH4 were more frequently altered in IBC compared with nIBC, 
which corroborates earlier results [20]. Amongst the identified single nucleotide 
variants, several gain of function or activating mutations were predicted (Ensemble 
Variant effect predictor, VarSome Clinical). At the pathway level, mutual exclusivity for 
NOTCH2, NOTCH4, and CREBBP alterations was observed in IBC, which supports a role 
for the NOTCH pathway in IBC biology. In line with this, a NOTCH pathway activation 
score [21] is significantly higher in IBC as compared to nIBC, again across all subtypes 
and tumor stages. Notably, this score is also significantly correlated with scores 
representing MYC transcriptional activity (unpublished data), suggesting that MYC and 
NOTCH signaling are entwined. Moreover, the NOTCH transcription factor HEY2 can 
suppress TGFβ signaling by interfering with SMAD3/4 transcriptional activity [22], 
thereby providing a point of interaction between TGFβ, MYC and NOTCH signaling with 
mechanistical implications for IBC cell dissemination as tumor emboli (vide infra). From 
this perspective, the lymphovascular emboli of the transplantable IBC xenograft MARY-
X exhibit an interesting NOTCH3 addiction that is associated with overexpression of 
MYC mRNA [23]. Also, MYC expression levels have been associated with reduced 
distant metastasis-free survival in patients with ER positive IBC [24].  

In addition to NOTCH, this thesis also indicates that additional pathways implicated in 
developmental biology could be involved in MYC activation. Some of the co-expression 
modules associated with MYC target gene expression are additionally related to WNT 
or Hedgehog signaling, and many of the upstream regulators of these co-expression 
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clusters, identified through Connectivity Map analysis, are also involved in these 
pathways (i.e., BAMBI, E2F6, HOXB13, and WWTR1/TAZ) or in plain stem cell biology 
(i.e., CDX2, HOXA9, KLF6, and POU5F1). In the past, a SNP (rs6983267) located at 8q24 
close to the MYC locus, that is known to exhibit enhanced binding properties for the 
WNT effector TCF4 and that can be directed to the MYC locus through chromatin loops 
allowing for WNT/ TCF4-dependent MYC expression was reported by Bertucci and 
colleagues to be associated with metastatic risk in IBC [25]. Also of interest is the 
observation that in a small subset of IBC patient samples, the activation of the MYC 
pathway was apparently associated with NMYC or MXD3, which have been shown to 
jointly regulate cell proliferation in cerebellar granule neuron precursors, downstream 
of Hedgehog signaling.  

Finally, constitutive MYC activation could offer an intriguing explanation for the 
intrinsic instable nature of the IBC genome, which is exemplified in this thesis by the 
increased frequency of genomic alterations in DNA repair genes in IBC relative to nIBC, 
and by the fact that IBC samples are 2.27-fold more likely to exhibit increased 
homologous recombination deficiency scores. These data are corroborated by Faldoni 
and colleagues, who reported features of genomic instability in about half of their 
evaluated IBC patient cohort [8]. In these series, chromothripsis, a single catastrophic 
event that leads to massive rearrangements with a distinctive cycling pattern of copy 
number changes, was identified in a staggering 38%-45% across all subtypes. In 
comparison, in a pan cancer cohort, chromothripsis was only observed in 22.3% of the 
patients [26]. Bekhouche and colleagues reported a more complex pattern of 
chromosomal imbalances in IBC indicative of a higher genomic instability [27]. 
Interestingly, evidence suggests that MYC is an important mediator of genomic 
instability, chromosome instability and aberrant mitosis and that its deregulated 
expression results in a mutator phenotype [28-31]. The MYC driven genomic instability 
may in turn explain the increased hyperinflammatory state in IBC, characterized by 
increased expression of interferon signaling and immune checkpoint genes (e.g. PD-L1) 
and elevated tumor inflammation scores [1, 5, 32]. The observation that many of the 
recurrently mutated genes in IBC reported in this thesis and in other cohorts [8] are 
enriched for mediators of interferon and interleukin signaling pathways, suggests that 
genomic alterations of particularly these genes are responsible for one of the hallmarks 
of IBC biology.    

Altered TGFβ signaling shapes IBC cell dissemination 

This thesis provides compelling evidence that the TGFβ signaling pathway in IBC is 
impaired. Treatment of IBC cells, including both luminal and mesenchymal subtypes, 
with TGFβ1 did not induce a cell motility response in any of the evaluated cell lines, 
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whereas cell motility was clearly engaged in a comparable panel of nIBC models. 
Molecular profiling revealed no differences in gene expression for any of the TGFβ 
receptor genes and their downstream transcription factors (i.e. SMAD2, SMAD3, and 
SMAD4) between IBC and nIBC cells in untreated conditions, indicating that the 
inhibited motility of IBC cells cannot be attributed to differential expression of core 
TGFβ signaling genes. A time-course experiment shows that TGFβ1 induces 
overexpression SMAD3 target genes in nIBC cells but not in IBC cells (vide supra), 
suggesting that the mechanism of TGFβ1-induced SMAD3 transcriptional activity is 
altered in IBC cells. In line with this, nuclear protein expression of SMAD3 is nearly 
absent in tissue sections from patients with IBC, in a molecular subtype independent 
manner, and comparative analysis of protein and gene expression data reveals that a 
substantial number of the 79 IBC signature genes show nuclear SMAD3 dependent 
variation in gene expression. Finally, nuclear protein staining intensity of SMAD3 was 
never higher in cancer cells residing in tumor emboli as compared to those in the 
primary tumor of the same patients, suggesting a mechanistic link with cancer cell 
dissemination in IBC. In line with this, AMPK signaling was brought upfront as a 
potential candidate pathway explaining the blunted TGF-β response in IBC cells by 
inhibition of TGFβ signaling and SMAD2/3 activation secondary to MYC-induced DNA 
damage, supposably by crosstalk with the Hippo signal transduction machinery 
(unpublished data – Chapter 2: PamGene). 

In addition to SMAD3, multivariate analysis showed that attenuated nuclear expression 
of SMAD4 is also associated with the IBC phenotype. In-depth analysis demonstrated 
that SMAD4 nuclear expression was particularly low in a small fraction of IBC cases with 
elevated nuclear SMAD3 expression. In addition, SMAD4 staining intensity was further 
diminished in cancer cells residing in tumor emboli and particularly in some patients 
where differences in staining intensity for SMAD3 between cancer cells in the primary 
tumor and tumor emboli were not observed. These observations suggest that SMAD3 
and SMAD4 expression is mutually exclusive and reduction of nuclear SMAD4 is an 
alternative path to curtail the TGFβ response in IBC cells.  

The emerging role of abrogated SMAD transcriptional activity in IBC biology provides a 
potential model for the disseminative and metastatic characteristics of IBC cells. In 
2009, Giampieri and colleagues reported that TGFβ signaling switches the mode of 
cancer cell migration from collective to single cell phenotype through a transcriptional 
program involving SMAD4 and that transient TGFβ signaling is essential for blood-borne 
metastasis [33]. These results were corroborated by Matise and colleagues, who 
additionally demonstrated that TGFβ-induced single cell motility involves the 
regulation of epithelial to mesenchymal transition (EMT) [34]. Using genetically 
modified mammary epithelial cell cultures, Kohn and colleagues revealed that the 
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regulation of EMT through TGFβ signaling depends on expression of SMAD3 but not 
SMAD2, confirming earlier observations in keratinocyte cultures [35]. In a separate 
analysis, Kohn and colleagues investigated SMAD3 gene dosage effects on cell biology 
using mammary epithelial cells and revealed that a 50% reduction of SMAD3 expression 
(i.e., SMAD3+/- genotype) abrogated the cell motility response but enhanced the 
invasion response [36]. This attenuated cell motility response observed in conjunction 
with loss of SMAD3 expression is consistent with the reduced cell motility-inducing 
capacity of TGFβ1 observed in IBC cells. 

These observations made by Kohn and colleagues on the SMAD3 gene dosage effects 
were attested to a process coined partial EMT in which cells acquire some molecular 
changes associated with EMT but not the classical morphological changes. 
Unfortunately, solid scientific evidence for partial EMT was missing at that time. More 
recently, Pastushenko and colleagues investigated various stages associated with EMT, 
including hybrid ones, confirming the existence of partial EMT as well as the role of 
SMAD proteins particularly in the later, mesenchymal, phase of the process [37]. In 
addition, Luond and colleagues demonstrated that partial EMT indeed promotes 
collective invasion and is required for metastasis formation [38]. Therefore, the data 
presented in this thesis suggest that IBC cells are characterized by partial EMT and 
collective invasion by means of their reduced SMAD3 expression. Furthermore, partial 
EMT also explains the ubiquitous but counterintuitive presence of E-cadherin in IBC. 
Interestingly, Padmanaban and colleagues demonstrated that E-cadherin is required 
for metastasis in multiple models of breast cancer, and that loss of E-cadherin is 
associated with upregulation of nuclear SMAD protein expression, reduced seeding of 
cancer cells in distant organs and metastasis outgrowth as well as reduced number or 
circulating tumor cells [39]. Along the same lines, Hapach and colleagues demonstrated 
that weakly migrating breast cancer cells exhibit an epithelial phenotype with 
overexpression of E-cadherin and enhanced metastatic potential [40]. In addition, the 
weakly migrating breast cancer cells were present in the circulation as circulating tumor 
cell clusters, suggestive of collective invasion. Indeed, further molecular analyses 
indicated that the weakly migrating breast cancer cells exhibited elevated expression 
of cell-cell adhesion molecules. Notably, Giampieri and colleagues also investigated 
intravasation in lymph vessels and showed that collectively invading cancer cells favor 
lymphatic over hematogenous dissemination, which provides a persuasive working 
hypothesis to explain the presence of the characteristic tumor emboli in IBC through 
collectively invading and E-cadherin-positive cancer cells clusters disseminating via the 
lymphatic system [33]. 
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Novel insights into therapeutic options for patient management 

Within the scope of this thesis, novel evidence is provided towards potential targeted 
therapies for IBC patient management. By comparing gene co-expression clusters to 
the L1000 profiles of the CMAP database, sets of potential target/drug combinations 
were identified. Unfortunately, no single drug with predicted efficacy across all IBC cell 
lines was revealed, and therefore this study was not informative. In contrast, the study 
investigating the genomic profiles of IBC demonstrated that actionable genomic 
alterations are present in virtually all patient samples, indicating that personalized 
therapy is indeed a rational approach for this aggressive disease. Amongst all genes 
tested, the CYP2D6 gene encoding the cytochrome P-450 2D6 subunit, exhibits the 
strongest difference in the number of genomic alterations between IBC and nIBC. The 
cytochrome P-450 complex oxidizes tamoxifen to its most active metabolite, and 
mutations in the genes coding for complex members are known to decrease the 
enzymatic activity. Several data suggest that patients carrying such mutations do not 
benefit as much from tamoxifen therapy [41]. The large difference in frequency with 
nIBC may explain the resistance to standard hormone therapy often associated with 
IBC. 

In this thesis, the elevated number of genomic alterations in DNA repair genes (i.e. 
ATM, ATRX, BARD1, BRCA2, ERCC3, FANCA, FANCB, MSH2, MSH6, PMS2, POLE, and 
TP53) was also reported, which is in line with earlier observation [10, 20, 42] and has 
two implications for personalized precision medicine. First, deficiency in homologous 
recombination supports the ongoing investigation of PARP inhibition in IBC in phase I–
II trials with veliparib [43] and olaparib (NCT03598257) [44]. Second, due to the 
increased number of mutations in mismatch repair genes as well as the elevated level 
of genomic instability and complexity, also the tumor mutational burden in IBC is 
increased. This was already reported in earlier studies [10, 20, 45, 46]. In combination 
with other data documenting overexpression of immune checkpoints in IBC [5, 32], the 
elevated number of mutations in IBC underscores that the application of immune 
therapy in IBC should be further investigated [47]. 

Apart from the therapeutic implications of alterations in DNA repair genes, this thesis 
also provides evidence that drugs targeting 4 additional pathways could be effective in 
treatment of IBC patients. First, as discussed above, NOTCH pathway genes are 
frequently altered in IBC. Interestingly, a preclinical study in IBC showed that a gamma-
secretase inhibitor, RO4929097, was able to block the NOTCH signaling and attenuates 
the stem-like phenotype of IBC cells and regulates the tumor immune 
microenvironment [48].  
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Second, actionable genomic alterations in genes associates with response to CDK4/6 
inhibitors were found in a 2-fold higher percentage of patients with IBC with frequent 
copy number changes of CCND1 and CDKN2A. Furthermore, mutations in FAT1 and 
RB1, potentially associated with resistance to CDK4/6 inhibitors [49], were also 
frequently observed. Interestingly, an expression based E2F4 activation score, 
associated with sensitivity to palbociclib [50], was more elevated in samples from 
patients with IBC as compared to nIBC suggesting that CDK4/6 is indeed more active in 
IBC. This observation is in line with the identification of many gene co-expression 
modules that are associated with E2F signaling in the IBC preclinical models [3], 
suggesting that the current panel of IBC cell lines are an ideal matrix to test CDK4/6 
inhibition.  

Third, although PIK3CA was the only gene more frequently altered in nIBC samples, 
many other genes that operate in the PI3K/AKT pathway (AKT1, AKT3, MTOR, PTEN, 
RPTOR, RICTOR TSC1, and TSC2) exhibit elevated levels of genomic alterations in IBC, 
suggesting that also patients with IBC will benefit from PI3K/AKT/mTOR inhibition. In 
addition, also the PIK3CA gene was mutated in substantial fraction of IBC samples, but 
this likely reflects the presence of luminal type breast cancer samples in our series.  

Finally, the percentage HER/EGFR mutations was higher in IBC, particularly due to 
elevated numbers of ERBB2 amplifications and mutations. These mutations affect 
either the extracellular domain or the kinase domain, both of which have been 
associated with sensitivity to ERBB2 tyrosine kinase inhibitors such as neratinib [51]. In 
addition, also ERBB3 mutations were observed that often co-occurred with ERBB2 
amplifications suggesting that alterations of the ERBB3 gene contribute to anti-HER2 
therapy resistance. Unfortunately, our series is too small to draw definitive conclusions 
and this this observation thus requires further investigation. 

Future perspectives 

In this doctoral thesis, we aimed to gain a more profound understanding what exactly 
distinguishes the clinicopathologic manifestations of IBC from non-IBC (nIBC) by 
studying IBC biology at different “omic” levels. Although it is overall clear that the 
differences between IBC and nIBC are rather limited, we identified some interesting 
and valuable insights in the biology of IBC. In particular, the observed difference in TGF-
β/SMAD3 responses between IBC and nIBC cells and the contribution of potentially 
involved pathways to the establishment of TGF-β resistance in IBC cells remains a 
matter of debate and requires further investigation. We also describe some very 
specific molecular features associated with IBC such as MYC addiction and increased 
DNA damage, but all of these remain little unambiguous and thus caution is warranted.  
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What is becoming more evident, is the undisputed role of the tumor immune 
microenvironment (TIME) and its significant contribution to the unique biological 
features associated with IBC. Therefore, it is becoming more and more important to 
understand the interactions between the TIME and IBC tumor cells. To study this, more 
recent techniques such as single cell/spatial transcriptomics can be off great value. As 
such, individual cell types such as immune cells and stromal cells could be identified 
and in addition, where these cells are localized within the TIME. These insights can help 
us to understand the communication between the TIME and IBC tumor cells, and to 
unravel what mechanisms are involved in promoting the aggressive intrinsic features 
of IBC such as the high metastatic potential. One example of an already well-studied 
cell type in the TME of IBC are tumor-associated macrophages (TAMs). TAMs have been 
shown to contribute to the aggressive nature of IBC tumor cells and recently, it was 
reported that macrophages could influence vascular invasion of IBC tumor emboli [52].  

Finally, new information that is obtained from single cell transcriptomics can also be 
used to further optimize preclinical models for IBC. Although we have shown that the 
current available models for IBC recapitulate to some extent the molecular intrinsic 
features of IBC cells in patient samples, they lack a stromal component. By identifying 
the role of specific cell types in the TIME, preclinical models can be significantly 
improved by co-culturing of tumor cells and stromal and/or immune cells.  
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Despite breast cancer being the most frequently diagnosed cancer in women 
worldwide, inflammatory breast cancer (IBC) is rather a rare and less known subtype. 
Nonetheless, its aggressive development is responsible for a disproportionally high 
amount of breast cancer-related deaths. For decades, several efforts have been 
undertaken to better elucidate the mechanisms of IBC aggressiveness and to identify 
pathways distinct to IBC, however many have failed validation in distinct data series.  

To date, it still remains unclear what exactly distinguishes the clinicopathologic 
manifestations of IBC from non-IBC (nIBC). To that end, we aimed to gain a more 
profound understanding of IBC biology at different “omic” levels, i.e. transcriptomic, 
peptidomic and genomic in the three chapters of this doctoral thesis.  

In the first chapter, we investigated the role of the TGF-β pathway in IBC, further 
building on data published by the inflammatory breast cancer international consortium 
(IBC-IC) showing that a molecular basis of IBC exists and possibly is shaped by an altered 
TGF-β signaling in IBC. We have demonstrated that IBC cells are characterized by 
attenuated SMAD3 or SMAD4 protein expression and transcriptional activity impacting 
the cell motility inducing capacity of TGFβ1. The data described in this paper combined 
with a substantial body of literature on the subject provides a potential model for the 
disseminative and metastatic characteristics of IBC cells. To further unravel the signal 
transduction mechanisms that orchestrate the differential TGF-β response program in 
IBC and nIBC cells, we also generated peptide phosphorylation profiles of the same 
preclinical models treated with TGF-β1 and integrated this data with gene expression 
data. Four candidate mechanisms were discovered including AMPK-, Hippo-, 
PP5/MAP3K5-signaling as well as chromatin remodeling. The exact contribution of 
these pathways to the establishment of TGFβ resistance in IBC cells remains a matter 
of debate and merits further investigation. 

The second chapter of this thesis covers a profound investigation of the differences 
between IBC and nIBC at the genomic level and confirms that IBC is distinct from non-
IBC, independently from the molecular subtypes and disease stage. Higher tumor 
mutational burden and a large set of genes more frequently altered in IBC are reported. 
Our data particularly supports a role for the NOTCH and DNA repair pathways in IBC 
biology. Moreover, a high frequency of actionable genomic alterations in IBC samples 
was revealed, suggesting that precision medicine is a relevant approach for this 
aggressive disease, notably with drugs targeting DNA repair, NOTCH signaling, and 
CDK4/6. 

In the third and last chapter of this thesis, we have investigated which tumor-intrinsic 
factors are responsible for the genuine IBC biology by molecularly characterizing all 
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available IBC preclinical models. We demonstrated that these preclinical models 
recapitulate to some extent the molecular features of IBC cells in patient samples, and 
thus constitute valuable research tools despite the lack of ER+ models. Furthermore, 
an important role of MYC transcriptional activity, seemingly intrinsic to IBC biology, was 
further explored and revealed notable interactions with ESR1 expression that are 
contrasting in IBC and nIBC. The data described in this paper, combined with published 
literature and various insights collected in this thesis suggests that IBC is a MYC-
addicted tumor which warrants further investigation.  

Taken together, we have reported valuable new insights in the biology of IBC, which in 
our opinion, offer important new research opportunities in the run towards a more 
personalized treatment approach for this aggressive disease. 
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Studie naar de biologie van het inflammatoire borstcarcinoom door middel van een 
multi-omics benadering. 

Ondanks dat borstkanker wereldwijd de meest gediagnosticeerde kanker is bij 
vrouwen, is het inflammatoir borstcarcinoom (IBC) eerder een zeldzaam en minder 
bekend subtype. Desalniettemin is de agressieve ontwikkeling van IBC verantwoordelijk 
voor een onevenredig hoog aantal aan borstkanker-gerelateerde sterfgevallen. 
Decennia lang hebben onderzoekers getracht om de onderliggende mechanismen die 
deze hoge agressiviteit kunnen verklaren te begrijpen en om pathways te identificeren 
die afwijken in IBC. Vele van deze onderzoeksresultaten konden echter niet gevalideerd 
worden in onafhankelijke datasets.  

Tot op heden is het nog steeds onduidelijk wat de klinisch-pathologische manifestaties 
van IBC precies onderscheidt van niet-IBC (nIBC). Daarom trachtten we in de drie 
hoofdstukken van dit proefschrift een beter begrip te krijgen van de biologie van IBC 
op transcriptomisch, peptidomisch en genomisch niveau. 

In het eerste hoofdstuk hebben we de rol van de TGF-β pathway in IBC onderzocht, 
waarin we verder bouwen op de resultaten van een grootschalige studie gepubliceerd 
door het Inflammatory Breast Cancer International Consortium (IBC-IC). Deze studie 
heeft aangetoond dat er een moleculaire basis voor IBC bestaat die mogelijks gevormd 
wordt door een afwijkende TGF-β pathway in IBC. Wij hebben aangetoond dat IBC 
cellen, na behandeling met TGFβ1, gekenmerkt worden door een verminderde SMAD3 
of SMAD4 eiwitexpressie en transcriptionele activiteit in vergelijking met nIBC cellen. 
Deze lagere activiteit bleek dan vervolgens een invloed te hebben op het vermogen van 
TGFβ1 om celmotiliteit te induceren. De resultaten die in dit artikel worden 
beschreven, gecombineerd met een aanzienlijke hoeveelheid literatuur over dit 
onderwerp, bieden een potentieel model voor het verklaren van de metastatische 
kenmerken die heel eigen zijn aan IBC cellen. Om de signaaltransductiemechanismen 
die onderliggend zijn aan het verschil in reactie op TGFβ1-behandeling in IBC en nIBC 
verder te kunnen verklaren, hebben we met behulp van peptidefosforylering 
(PamGene) profielen gegenereerd van dezelfde preklinische modellen na behandeling 
met TGF-β1 en deze gegevens vervolgens geïntegreerd met de eerder verworven 
genexpressiegegevens. Hierbij werden vier kandidaat mechanismen ontdekt en 
voorgesteld die mogelijks een verklaring kunnen bieden, namelijk de AMPK-, Hippo- en 
PP5/MAP3K5-signaaltransductie pathways en chromatine remodeling. De exacte 
bijdrage van deze pathways aan TGFβ-resistentie in IBC cellen blijft een punt van 
discussie en verdient nader onderzoek. 
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Het tweede hoofdstuk van dit proefschrift behandelt een diepgaand onderzoek naar 
de verschillen tussen IBC en nIBC op genomisch niveau en bevestigt dat IBC verschilt 
van niet-IBC, onafhankelijk van de moleculaire subtypes en het ziektestadium. Wij 
rapporteren hier een hoge tumor mutational burden en een grote genenset die 
frequent gemuteerd zijn in IBC. Onze data ondersteunen in het bijzonder een rol voor 
de NOTCH- en DNA herstel pathways in de biologie van IBC. Bovendien hebben we ook 
aangetoond dat er frequent genomische veranderingen in IBC voorkomen die in 
aanmerking komen voor precisiegeneeskunde, met name voor medicijnen gericht op 
DNA-herstel, NOTCH-signalering en CDK4/6. 

In het derde en laatste hoofdstuk van dit proefschrift zijn we verder gaan onderzoeken 
welke tumor-intrinsieke factoren mede verantwoordelijk zijn voor de biologie van IBC 
door het moleculair karakteriseren van alle beschikbare preklinische IBC modellen. 
Deze studie heeft aangetoond dat de huidige preklinische modellen tot op zekere 
hoogte de moleculaire kenmerken van IBC cellen in patiëntenstalen recapituleren en 
dus waardevolle onderzoeksinstrumenten zijn.  Bovendien werd een belangrijke rol 
voor MYC-transcriptionele activiteit in de biologie van IBC blootgelegd en verder 
onderzocht. Hierbij werden opmerkelijk interacties tussen MYC en ESR1 expressie 
gerapporteerd die verschillend zijn in IBC en nIBC. De resultaten die in dit hoofdstuk 
worden beschreven, in combinatie met gepubliceerde literatuur en verschillende 
inzichten verworven doorheen deze thesis, suggereren dat IBC een tumor is die sterk 
afhankelijk is van MYC. Een belangrijke observatie die verder onderzoek rechtvaardigt.  

Samengevat hebben wij in deze thesis een aantal zeer waardevolle nieuwe inzichten in 
de biologie van IBC verworven die naar onze mening deuren openen naar belangrijke 
nieuwe onderzoeksmogelijkheden die zouden kunnen bijdragen aan de ontwikkeling 
van uiteindelijk een meer gepersonaliseerde behandeling voor deze agressieve ziekte. 
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2017 Poster presentation at the Belgian Association for Cancer Research (BACR) 
conference, Belgium. Charlotte Rypens, Melike Marsan, Patrick Neven, Luc 
Dirix and Steven Van Laere. Inflammatory breast cancer cells have a specific 
SMAD3-independent transcriptional program associated with MYC 
overexpression after TGF-β exposure. 

2018 Poster presentation at the Belgian Association for Cancer Research (BACR) 
conference, Belgium. Rypens C, Van Berckelaer C, Van Goethem A, Mercier C, 
Erven K, De Pooter C, van Dam P, Vermeulen P, Dirix L, Van Laere S. Analysis of 
inflammatory breast cancer gene expression to identify specific tumor- and 
stroma-related expression changes. 
Poster presentation at the San Antonio Breast Cancer Symposium (SABCS), SA, 
Texas, USA. Charlotte Rypens, Christophe Van Berckelaer, Charlotte Biliet, Jan 
Hauspy, François Bertucci, Gayathri Devi, Peter Vermeulen, Luc Dirix, Steven 
Van Laere. Inflammatory breast cancer cells are characterized by attenuated 
SMAD dependent TGFβ signaling leading to impaired cell motility responses. 

2019 Poster presentation at ESMO Breast Cancer Congress, Berlin. Charlotte Rypens, 
Christophe Van Berckelaer, Charlotte Biliet, Jan Hauspy, François Bertucci, 
Peter Vermeulen, Luc Dirix, Steven Van Laere. Inflammatory breast cancer cells 
are characterized by abrogated TGFβ1-dependent cell motility and SMAD3 
activity.  

 Poster presentation at the San Antonio Breast Cancer Symposium (SABCS), SA, 
Texas, USA. C. Rypens, F. Bertucci, P. Viens, J. W. M. Martens, M. Smid, C. 
Schröder, N. T. Ueno, M. Cristofanilli, P. Dirix, P. Vermeulen, L. Dirix, S. Van 
Laere. Inflammatory breast cancer exhibits amplification and transcriptional 
activation of MYC in conjunction with NOTCH and TGFβ signaling 
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SUPERVISION BACHELORTHESIS/MASTER INTERNSHIP 

“Study towards the role of an altered TGF-β signaling pathway in inflammatory breast 
cancer” by Kirsten Melis, 3rd Bachelor of Biomedical Laboratory Technology - Karel de 
Grote-Hogeschool, Hoboken, 2017. 
Promotors: Rypens C., Van Laere SJ.  
 
“Clinical, cellular and molecular characterization of leptomeningeal metastasis 
originating from primary breast cancer. Sensitivity and dynamic range of CellSearchTM 
based DTC enumeration in the CSF in patients with leptomeningeal metastasis” by Alice 
Van Goethem. 
Promotor: Dr. Luc Dirix en Prof. Dr. Pol Specenier.  
Co-promotor: Charlotte Rypens en Prof. Steven Van Laere. 
 

 

 

 

 


