
This item is the archived peer-reviewed author-version of:

MUT4SLX : fast mutant generation for Simulink

Reference:
Ceylan Halil Ibrahim, Kilincceker Onur, Beyazit Mutlu, Demeyer Serge.- MUT4SLX : fast mutant generation for Simulink

2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE), 11-15 September 2023, Luxembourg, Luxembourg - ISSN 1527-

1366 - (2023), p. 2086-2089 

Full text (Publisher's DOI): https://doi.org/10.1109/ASE56229.2023.00093 

To cite this reference: https://hdl.handle.net/10067/2008100151162165141

Institutional repository IRUA



1

MUT4SLX: Fast Mutant Generation for Simulink
Halil Ibrahim Ceylan∗, Onur Kilincceker†, Mutlu Beyazıt†, Serge Demeyer†

∗Universiteit Antwerpen †Universiteit Antwerpen and Flanders Make

Abstract—Several experience reports illustrate that mutation
testing is capable of supporting a “shift-left” testing strategy
for software systems coded in textual programming languages
like C++. For graphical modelling languages like Simulink, such
experience reports are missing, primarily because of a lack of ad-
equate tool support. In this paper, we present a proof-of-concept
(named MUT4SLX) for automatic mutant generation and test
execution of Simulink models. MUT4SLX features 15 mutation
operators which are modelled after realistic faults (mined from
an industrial bug database) and are fast to inject (because we
only replace parameter values within blocks). An experimental
evaluation on a sample project (a Helicopter Control System)
demonstrates that MUT4SLX is capable of injecting 70 mutants
in less than a second, resulting in a total analysis time of 8.14
hours.

Index Terms—software testing; mutation testing; mutation
analysis; Simulink models; cyber-physical systems

I. INTRODUCTION

“Shift-left” is a commonly adopted paradigm in the au-

tomated software testing community, emphasising that tests

should be executed against the system under test as early as

possible [1]. In this paradigm, test suites are expected to be

strong, catching defects before they are deployed into produc-

tion. To measure the strength of a test suite, code coverage (i.e.

statement, branch, . . . ) is commonly used, although it is known

to be a poor indicator of the actual strength of a test suite.

In the academic literature mutation testing is acknowledged

as the state-of-the-art technique to assess the fault detection

capacity of a test suite [2]. The technique injects artificial

faults in the system under test (based on a list of mutation

operators), subsequently executing the test suite to see whether

it is strong enough to catch the injected fault [3]. Several

experience reports illustrate that mutation testing is capable of

supporting a “shift-left” testing strategy for software systems

coded in textual programming languages like C++ [4], [5]

Today, MathWorks Simulink ® is the go-to platform for

model-based development of cyber-physical systems [6].

Simulink models the system under test at another level of

abstraction using blocks that transform input signals into

output signals, as such modelling the behaviour of the cyber-

physical system under implementation. Engineers simulate the

behaviour in the Simulink environment manually verifying

whether the final output signal matches the expected outcome.

Once the model satisfies the requirements, code is generated

to be deployed on a real-time embedded platform.

Today, Simulink is equipped with two different test ex-

ecution environments – Signal Builder and Simulink Test.

In both these environments, facilities are available to assert

whether the output signal is the same as the expected baseline

signal, as such imitating the fully automated xUnit behaviour

of passing (green) or failing (red) tests. This permits to adopt a

“model-based shift left" testing strategy for engineers that wish

to do so [7]. Tools that measure the coverage of a given test

suite are provided as well, counting how many of the blocks

and signals have been exercised by the test suite. However,

just like code coverage, block coverage is a poor indicator

of the strength of a test suite. Mutation testing for Simulink

models would offer a better way to measure the fault detection

capacity of a test suite.

Consequently, we set out to explore mutation testing in the

context of Simulink. We had access to a quality assurance

team within a company that embraced modelling as the central

activity in their development process. The company combines

model driven development with a continuous integration build

pipeline, using an extensive suite of regression tests executed

via Signal Builder with output assertion blocks. As part of

a “model based shift-left” strategy the company asked us

to provide tool support for monitoring the strength of their

regression test suite. If possible this support should come in

the form of a fully automated tool to be integrated into the

continuous integration build pipeline.

Based on a literature survey, we identified two proof-of-

concept mutation testing tools: SIMULTATE [8] and FIM [6].

These tools defined a comprehensive set of mutation operators

based on the grammar of Simulink and demonstrated that one

can alter a given model via the API of the Simulink environ-

ment. Nevertheless, test execution was lacking in both tools

and was a necessary prerequisite for our project. Therefore

we created MUT4SLX (Mutation Testing For Simulink) a

proof-of-concept tool which builds upon the experience from

previous research.

MUT4SLX is published under an open-source licence1 and

provides the following features.

• 15 mutation operators which are modelled after realistic

faults mined from an industrial bug database.

• Fast mutant generation by manipulating parameters of

Simulink blocks rather than replacing the entire block.

• Automatic test execution via Signal Builder and

Simulink Test.

• Extensive test report with pie charts illustrating the killed

and survived mutants.

The remainder of this paper is organised as follows. Section II

gives an overview of the state of the art, in particular two ear-

lier proof-of-concepts which inspired our work (SIMULTATE

and FIM). Section III describes the design of MUT4SLX,

which is validated in Section IV among other comparing

against FIM. We summarize our conclusions in Section V.

1The tool is available at: https://github.com/haliliceylan/MUT4SLX/



II. RELATED WORK

Today, there is little research on mutation testing for

Simulink models as witnessed by a recent systematic literature

survey conducted by Papadakis et al [2]. This can be expected

because Simulink is very specific to particular application

domains, such as automotive and avionics. However, those

areas require a high degree of reliability and trust and their

development is based on stringent safety standards. So one

may expect that mutation testing will eventually be adopted in

this context as well. Based on a literature survey, we identified

three relevant papers, all of which on technology readiness

levels 1 (technology concept formulated) or 2 (experimental

proof of concept).

The first report we found is a paper by Hanh and Bihn which

specified six categories of mutation operators varying from

type to expression operators [9]. These mutation operators are

defined based on the grammar of Simulink (mutating signals

and blocks) and is such are quite comprehensive. No analysis

is made based on a fault model of frequently occurring faults

in realistic applications. The paper reports on applying these

models to a quadratic model and reports mutant execution

results.

A second report concerns the SIMULTATE tool which

was introduced to automate mutant generation for Simulink

models [8]. The tool employs a Python API for injecting

the faults into model blocks by means of an interactive user

interface. For the mutant generation SIMULTATE injects all

mutants in a single pass; but each mutant should then be

enabled or disabled individually. Compared to the earlier work

of Hanh and Bihn, SIMULTATE supports mutating signals

only. There is no automated test execution; engineers are

expected to manually verify whether the mutated output signal

is different from the original one.

FIM is the third proof-of-concept tool we have identified [6].

FIM inherits mutation operators of SIMULATE tool and

supports ten operators for signals and five operators for blocks.

The tool mainly focuses on safety analysis via extensive fault

injection capabilities. The tool provides single and multi-mode

options for generating a single model with multiple faults

or multiple models with a single fault. It uses the MATLAB

command line interface to trigger the tool and a custom library

from which block can be changed easily. As such, the mutant

generation is faster than SIMULTATE as it does not trigger

the MATLAB user interface. FIM is evaluated with an Aircraft

Elevator Control System (AECS) from the avionics-aerospace

domain. The paper only reports the generation of mutants, not

their execution.
☛

✡

✟

✠

The state-of the art has specified a comprehensive suite

of mutation operators based on the Simulink grammar,

mutating signals and blocks. These mutation operators

are not yet refined based on a fault model of frequently

occurring faults in realistic applications. Proof-of-concept

tools adopted different techniques to generate mutations,

either via the MATLAB API (accessible via Python) or via

the command line.

Automated test execution is lacking in all tools, mainly

because the diversity in test execution engines for Simulink.

III. MUT4SLX TOOL ARCHITECTURE

The design and implementation MUT4SLX is the result of a

joint research project with an industrial partner. The industrial

partner is a medium-sized enterprise which is experienced

in model-based design and development. The company was

in search of an effective approach for model-based shift left

testing on cyber-physical systems. Through this collaboration,

we were able to gain access to their expertise in Simulink

development and learn about the real-world challenges they

face in model-based testing. This allowed us to design and

develop MUT4SLX with a better understanding of the needs

and requirements of practitioners in the field. The collaboration

also provided us with access to a large and complex Simulink

model, which we used to test and validate the performance

and effectiveness of the tool. Furthermore, working with an

industrial partner made it possible to obtain feedback and

suggestions for improvement from industrial experts who use

model-based testing tools on a daily basis. This helped us

to identify and address potential issues and limitations of the

tool, as well as to add new features and functionalities that

are most relevant and useful to their practice. Overall, the

collaboration with the company was essential to the successful

implementation of MUT4SLX.

Most importantly, we defined the mutation operators in close

collaboration with our industrial partner. We first formulated

mutation operators associated with the bugs in their database.

Later, we also added other mutation operators which were

deemed relevant to the ones we formulated by the indus-

trial experts. To prioritize these operators, we considered the

frequency of the occurrences of the bugs associated with

them. We then conducted several manual trials to arrive at

a set of mutation operators (see Table I) that were suitable

for our needs. A detailed description of the semantics for

the mutation operators can be found on the tool web-site

[https://github.com/haliliceylan/MUT4SLX/].

Name Description

ROR Relational Operator Replacement
LOR Logical Operator Replacement
ASR Arithmetic Sign Replacement
MMR Min-Max Replacement
ICR If Condition Replacement
TOR Trigonometric Operator Replacement
MOR Math Operator Replacement
PMR Product Multiplication Replacement
POR Product Operator Replacement
FIR For Index Replacement
FLR For Limit Replacement
UDO Unit Delay Operation
STR Switch Threshold Replacement
SCR Switch Criteria Replacement
CR Constant Replacement

Note that MUT4SLX was designed to easily provide additional mutation operators; the

open source license is an extra incentive for users who wish to provide extensions.

TABLE I
MUTATION OPERATORS INCLUDED IN MUT4SLX

Figure 1 depicts the architecture of MUT4SLX, which com-

prises two main components: mutant generation and mutant

execution. The following subsections elaborate more on these

main components.



Model
Working Directory
Target System
Mutation Operators

Set
Configuration

Start Matlab Open Working
Directory

Open Model

Select
Mutation

Operators

Find Specific
Block Type for

Mutation

Generate
Mutants

Load JSO
N

 File Save Mutants
on CSV File

Pre-run Test Apply Mutation
on Model Run-Test

Check Test
Results

Prepare
Report

D
etect Test Engine

MUT4SLX

Yes

No
Untested
Mutant in

CSV?

Save Report
in HTML format

MUT4SLXMutant Generation

Mutant Execution

Fig. 1. Overview of MUT4SLX

A. Mutant Generation

The mutant generation component is responsible for reading

relevant parameters from the configuration and loading the

model, as well as identifying the possible mutants. Users

can use the CSV output generated by this component to

preview the number of mutants, ignore certain mutants, or

prioritize specific mutants before mutant execution takes place.

Additionally, users can observe how newly added mutation op-

erators create mutations in specific blocks. The configuration

file can also be modified to target only specific subsystems,

and multiple Simulink models containing multiple models can

be mutated. Since only possible mutations are listed without

altering the blocks during mutant generation, the component

can operate efficiently without reloading the model repeatedly

or waiting for any write operations.

B. Mutant Execution

The mutant execution component executes the given test

cases on each of the mutants to count the number of killed

and surviving mutants. First, it loads the model into memory

by opening the associated file. Subsequently, it attempts to

detect the test system used by the model. Currently, two test

engines are supported: Signal Builder and Simulink Test.
After detecting the test engine, a pre-run of the tests is

performed on the original model to ensure that all tests pass.

Then, for each row in the CSV file created in the previous

step, the corresponding mutant is injected and the test suite is

executed. In this process, the original model remains loaded

into memory and the relevant block and parameter are mutated.

Only one mutation is applied at a time, and only one parameter

is changed in each block. After running the test on the

generated mutant, the relevant parameter in the relevant block

is reverted to its original state; that is, the original model

is recovered. We chose this approach because modifying a

block’s parameter is faster than replacing the whole block,

and reverting back the mutation to recover the original model

is faster then reopening the original model. Thus, mutants can

be generated and tested very quickly without waiting for the

model to close and reload into memory for each mutation.

When all the mutants in the CSV file are exhausted, a report is

generated and written into an HTML file. The report (see Fig.

2) contains different visualizations (pie charts etc) to reflect

the collected data and the results.

Fig. 2. A Screenshot of Test Report of MUT4SLX

IV. EVALUATION

We evaluate MUT4SLX tool by comparing our results with

FIM on three simulink models available on the internet, where

only one contains an automated test suite. Table II provides

descriptive statistics for each model.

System Number of Subsystem Total Block Count

Helicopter 11 301
Aircraft Elevator 37 825

Automatic Transmission 17 65
TABLE II

DESCRIPTIVE STATISTICS FOR THE PROJECTS UNDER INVESTIGATION

(LAST ACCESSED ON 19.05.2023)

Helicopter Control System. This is a demonstration control

system for applying model-based design to specific certifica-

tions using the MathWorks toolbox. It provides a workflow that

is in line with the guidelines set out in ARP4754A, DO-178C,

and DO-331 certifications [10]. Its purpose is to demonstrate

how these guidelines can be implemented in a practical

context to ensure safety and compliance in aviation software

development. It is a large system consisting of 11 different

subsystems, each of which is used multiple times within the

overall structure, and a total of 301 Simulink blocks. The

model contains 6 tests to verify different requirements using

the Simulink Test framework. These tests are divided into

three sections, focusing on testing the three axes of flight for

the helicopter system: yaw, pitch, and roll. The maximum

execution time for all 6 tests on the system is 6.5 minutes.

During these tests, simulations are performed for each of the

three axes. For more details on Helicopter Control System, we

refer the interested reader to [10].

Aircraft Elevator Control System. This is one of the projects

used in the validation of FIM tool [11]. An aircraft elevator

serves as a key flight control surface responsible for maneu-

vering the aircraft along the lateral axis. This model does not

contain any tests.

Automatic Transmission Controller System is a system that

electronically controls the shifting of gears in an automatic



Tool Model Number of Mutants Killed Mutants Mutation Score Mutant Generation Time Mutant Execution Time

MUT4SLX Helicopter 70 28 40% < 1 sec 8.14 hours
MUT4SLX Aircraft 205 - - 12.2 secs -
MUT4SLX Autotransmission 17 - - 4.8 secs -

FIM Helicopter - - - - -
FIM Aircraft 41 - - 74.3 secs -
FIM Autotransmission 13 - - 20.5 secs -

TABLE III
COMPARISON RESULTS FOR MUT4SLX AND FIM

transmission, optimizing performance without requiring man-

ual input from the driver. This model is also used in [11] and

does not contain any tests.

We use the Helicopter model to assess the full functionality

of our tool. The Aircraft and Autotransmission models are

used to compare our tool with FIM tool. Results are given in

Table III. Note that the Aircraft and Autotransmission models

have no test cases and FIM has no test execution capability;

therefore, there is no data related to mutant execution for them.

Also, there is no data on Helicopter using FIM tool because

we were not able to run the tool on Helicopter model.

The validation starts with mutant generation to discover

the mutants that can be automatically generated from the

original model. As shown in Table III, MUT4SLX generates

70 mutants in less than a second.

After mutant generation, the tool triggers the mutant exe-

cution. For each mutant, the actual mutant is generated and

tests are executed on the mutant until one fails or all passes.

After test execution, the tool generates a test report in HTML

format. Our observations show that mutant execution takes

about 8 hours in total. Interested readers may refer to our tool

repository for the test report of the Helicopter model.

Our findings suggest that MUT4SLX successfully identifies

mutants very fast for the mutation operators presented in Sec-

tion 2. However, mutant execution takes considerably longer

due to the nature of Matlab simulations. As future work, we

plan to reduce mutant execution time by running the tests on

multiple mutants in parallel within our tool.

To compare our tool with FIM [6], we tried both tools on

the Aircraft and AutoTransmission models. The results of the

comparison are presented in Table III.

FIM generates 41 and 13 mutants for the Aircraft and

Autotransmission models respectively, whereas MUT4SLX

generates 205 mutants for Aircraft and 17 mutants for Auto-

transmission due to support for increased number of mutation

operators. When the block count increases, the performance

advantage of MUT4SLX for mutant generation becomes more

apparent as presented in Table III such as the Aircraft model.

Besides increasing the number of mutants, MUT4SLX is

also faster than FIM for mutant generation. For example,

MUT4SLX generates 205 mutants in 12.2 seconds, and FIM

generates 41 mutants in 74.3 seconds. The main reason for

the performance difference is that MUT4SLX modifies the

parameters of Simulink blocks whereas FIM uses a custom

library to replace them with faulty blocks.

V. CONCLUSION

In this paper, we present MUT4SLX, a proof-of-concept

mutation testing tool for Simulink models. MUT4SLX auto-

mates mutant generation and mutant execution, and generates

detailed test reports in HTML format. As such the tool can be

incorporated in a continuous integration build pipeline.

MUT4SLX is validated on three Simulink models available

on the internet. The most comprehensive evaluation on a model

for a Helicopter Control System shows that MUT4SLX is

capable of injecting 70 mutants in less than a second, resulting

in a total analysis time of 8.14 hours.

VI. ACKNOWLEDGMENTS

This work is supported by (a) the Flanders Innovation & En-
trepreneurship (VLAIO) under grant number HBC.2021.0010 entitled
“EFFECTS”; (b) the Research Foundation Flanders (FWO) under
grant number S000323N entitled “Basecamp Zero”; (c) the ITEA4
Project “SmartDelta”; (d) Flanders Make, the strategic research centre
for the manufacturing industry.

REFERENCES

[1] L. Smith, “Shift-left testing,” Dr. Dobb’s Journal, vol. 26, no. 9, pp.
56–ff, 2001.

[2] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman,
“Mutation Testing Advances: An Analysis and Survey,” in Advances in

Computers. Elsevier, 2019, vol. 112, pp. 275–378. [Online]. Available:
https://doi.org/10.1016/bs.adcom.2018.03.015

[3] R. DeMillo, R. Lipton, and F. Sayward, “Hints on Test Data Selection:
Help for the Practicing Programmer,” Computer, vol. 11, no. 4, pp.
34–41, Apr. 1978. [Online]. Available: https://doi.org/10.1109/C-M.
1978.218136

[4] R. Baker and I. Habli, “An Empirical Evaluation of Mutation Testing
for Improving the Test Quality of Safety-Critical Software,” IEEE

Transactions on Software Engineering, vol. 39, no. 6, pp. 787–805,
Jun. 2013. [Online]. Available: https://doi.org/10.1109/TSE.2012.56

[5] S. Vercammen, M. Borg, and S. Demeyer, “Validation of mutation
testing in the safety critical industry through a pilot study,” in Workshop

Proceedings ICST 2023 (IEEE International Conference on Software

Testing, Verification and Validation), 2023.
[6] E. Bartocci, L. Mariani, D. Ničković, and D. Yadav, “Fim: Fault

injection and mutation for simulink,” in Proceedings of the 30th ACM

Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, ser. ESEC/FSE 2022. New York,
NY, USA: Association for Computing Machinery, 2022, p. 1716–1720.
[Online]. Available: https://doi.org/10.1145/3540250.3558932

[7] D. Firesmith, “Four types of shift left testing,” Carnegie Mellon
University, Software Engineering Institute’s Insights (blog), Mar 2015,
accessed: 2023-May-9. [Online]. Available: http://insights.sei.cmu.edu/
blog/four-types-of-shift-left-testing/

[8] I. Pill, I. Rubil, F. Wotawa, and M. Nica, “Simultate: A toolset for
fault injection and mutation testing of simulink models,” in 2016 IEEE

Ninth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW). Chicago, IL, USA: IEEE, 2016, pp.
168–173.

[9] L. T. M. Hanh and N. T. Binh, “Mutation operators for simulink models,”
in 2012 Fourth International Conference on Knowledge and Systems

Engineering. Danang, Vietnam: IEEE, 2012, pp. 54–59.
[10] B. Potter, “Helicopter case study for do-178 using mathworks tools,”

18.05.2020, accessed on 26.04.2023. [Online]. Available: https://nl.
mathworks.com/matlabcentral/fileexchange/56056-do178_case_study

[11] D. Yadav, “Fimtool source,” 18.05.2022, accessed on 26.04.2023.
[Online]. Available: https://gitlab.com/DrishtiYadav/fimtool


