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ABSTRACT

When an order arrives at a warehouse it is usually assigned to a batch and a
decision is made on how long to wait before assigning the batch to a picker and
starting the picking tour. If the idle time of the pickers is minimized, the batch
is immediately assigned, and the picking starts. Alternatively, if a time window is
introduced, other orders may arrive, and more efficient batches may be formed. The
method to decide how long to wait (the time-window strategy) is therefore important
but, surprisingly, almost completely overlooked in the literature. In this paper, we
demonstrate that this lack of attention is unwarranted, and that the time-window
method significantly influences the overall warehouse performance. In the context
of the online order batching problem (OOBP), we first demonstrate that the effects
of different time-window strategies are independent of the methods used to solve
the other subproblems of the OOBP (batching and routing). Second, we propose
two new time-window strategies, compare them to existing methods, and prove that
our methods outperform those in the literature under various scenarios. Finally, we
show how time-window methods influence different objective functions of the OOBP
when varying numbers of orders and pickers.

KEYWORDS: Online Order Batching Problem, Time Window, Fixed
Time Window, Variable Time Window, Order Picking, Warehousing.

1. Introduction

Logistics in a warehouse encompasses a large number of activities. Among them, the collection
of orders is one of the most important, due to the high cost associated with this operation
compared to the rest of the processes. The operational costs of order picking has been the
target for many researchers during the years. Back to the eighties / nineties, it was estimated
that the operational costs could represent up to 60% of total costs within a warehouse (Drury
1988; Coyle et al. 1996). Later approaches indicated that labor costs related to the picking
process consume about 50-60% of all labor activities in the warehouse (Gademann and Velde
2005; Tompkins et al. 2010). More recent approaches (Shah et al. 2017; Rushton et al. 2022)
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extended the discussion about the cost of collecting orders in a warehouse. Although the
introduction of technology in the warehouses has partially reduced the costs associated with
picking (Elsayed and Unal 1989; Kong et al. 2023), it is still identified as the most important
operation activity in achieving an efficient warehouse management (Shah et al. 2017; Rushton
et al. 2022).

This paper focuses on warehouse order picking systems, which follow the batch order picking
policy (i.e., orders are grouped in batches before being collected and orders in the same batch
are collected in the same picking tour). In this type of system, there are numerous factors
that significantly influence the performance of the collection process. In Petersen (1997), the
authors identified the following factors: The layout of the warehouse, which consists of the
shape, number of blocks, number of aisles, number of picking positions, etc.; the routing policy,
which consists of determining the route that pickers follow within the warehouse to collect the
orders; the sorting policy, which consists of determining when and how the picked products
are separated in orders; the storage strategy, which determines where to store each type of
product; the batching method, which determines how the products are grouped in batches
prior to being collected.

Among all existing order picking systems that follow a batching policy (Ho and Tseng
2006; Bozer and Kile 2008; Zhang and Gao 2023; Pardo et al. 2023), we are interested in those
which consider a dynamic/online arrival of orders to the warehouse (Li et al. 2016; Yousefi
Nejad Attari et al. 2021). Notice that the dynamic order batching systems represent the most
common scenario nowadays due to the growth of the e-commerce. In this context, the Online
Order Batching Problem (OOBP) represents a family of optimization problems focused on
performing an efficient picking operation, by grouping the orders arrived online to the system
into batches.

This article focuses on another additional factor, named TimeWindow (TW), not considered
by Petersen, which also has a significant influence on the picking time (i.e., the time that
pickers need to perform the picking task) and the completion time (i.e., the picking time
together with the waiting time) (Gil-Borrás et al. 2020a). The TW, also known as waiting
time in this context, is defined as the time that a picker waits before starting a new picking
route. Although at first glance it may seem unnatural (even inefficient) to wait, new orders
may arrive during the time window, which could potentially improve the distribution of orders
in the batches already created. Furthermore, from a managerial perspective, waiting for the
arrival of new orders might result in a more efficient batch configuration. Additionally, the
extra time that the picker is waiting can be used for other necessary tasks such as sorting,
packaging, labeling, cleaning, refilling, performing administrative work, etc. Therefore, this
factor is studied as an additional task to batching, routing, assigning, or sorting, that needs
to be determined in the context of problems using a batch collection policy. However, it has
received far less attention than other decision problems in the order picking context, such as
batching and routing, despite the fact that determining an adequate time window has a large
influence on the final overall performance of the method, as we demonstrate in this paper.
Determining the waiting time is especially relevant when the arrival of orders is dynamic (i.e.,
online), although it could make sense also in multi-picker contexts, when all orders are known
before starting the pickup (i.e., offline) but there are potential deadlock situations, such as
several pickers trying to access simultaneously to a picking position, to a corridor, or just to
the depot.

The aim of this work is to answer three research questions. First, we try to determine if
we should consider a waiting strategy in any online order batching algorithm. Second, we try
to identify which are the best waiting strategies currently existing in the literature. Third, we
try to determine which waiting strategy should be used depending on the particular scenario
considered. This work is also motivated by the lack of previous works related to determining
the time window in the context of the OOBP. Even though there exist works in the literature
where the time window is taken into consideration, these are limited to a specific algorithm /
function to determine it. Moreover, there is no previous paper focusing on the influence of this
task on objective functions related to the OOBP, nor on comparing the most common existent
time-window strategies for different scenarios.

This work can be considered as an extension of a previous work presented in Gil-Borrás et al.
(2020a). In that work, the authors performed a preliminary study which compared the two
main families of time-window strategies: Fixed Time Window and Variable Time Window.
However, the authors only considered some basic heuristic strategies for the task. In this
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article, we focus on studying, in a detailed way, the influence of the time window on the value
of the objective function, in the context of OOBP, depending on different factors such as:
Batching, routing, objective function, or congestion in the arrival of orders. Also, we compile
and compare the most outstanding strategies for determining the time window in each of the
compared scenarios.

The main contribution of this paper is that it demonstrates the positive influence that
time-window strategies have on the performance of order batching and related methods. No
previous research has demonstrated this influence and, furthermore, only a few papers mention
the use of a waiting strategy. We have reviewed the most important time window methods
available in the literature, and we have empirically compared them. We also demonstrate the
independence of the time window with respect to other tasks such as batching or routing,
and we identify the most suitable time-window strategy depending on the objective function
studied. Finally, we propose two new time window strategies which complement previous ones.

The rest of the article is organized as follows. In Section 2, the OOBP is described. In
Section 3, the state of the art related to the time window is presented, and the most relevant
methods are described. Next, in Section 4, two new methods are proposed to determine the
time window. In Section 5, it is presented the comparative study carried out in this paper. In
this section, it is also reviewed the algorithms for the rest of the tasks that need to be handled
in the context of OOBP. In Section 6, the experiments of this paper are presented. Finally, in
Section 7, some conclusions and future research lines are pointed out.

2. Online Order Batching Problem

The Online Order Batching Problem is a dynamic optimization problem in which orders con-
tinually arrive at a warehouse during the processing time. In this way, not all orders to be
processed nor their arrival times are known beforehand. In this context, orders are grouped
into batches prior to be picked. The batch collection process can be carried out by a single
picker or by several pickers. To solve the OOBP, it is necessary to tackle different tasks /
subproblems. First, the orders that reach the system are grouped into batches for later collec-
tion. This process of grouping orders into batches is known as batching. Once the batches have
been generated, a decision must be made on whether it is more convenient to start collecting
any of the batches or to wait for new orders to arrive. This process is known as determining
the time window. The time window can be a fixed amount of time or a variable one (i.e., a
different waiting time for each picker on each new route). Furthermore, it is necessary to decide
which batch, among all generated ones, is going to be collected next. This process is known as
selecting. Notice that the term selecting is used when only the next batch to collect is chosen,
as it is customary in dynamic / online environments, since the conditions might change in
the future. On the other hand, the term sequencing is used for the same task when all the
conformed batches are sorted to determine the order in which they will be picked, as it is cus-
tomary in static / offline environments. Finally, once the batch and the time for starting the
route are decided, it is necessary to determine the route that the picker should follow through
the warehouse to perform the picking. This process is known as routing. Sometimes, there is
an additional process consisting in sorting the products collected on the same picking route.
This is due to the fact that products belonging to different orders are collected together and
they might be placed in the same basket during picking. Therefore, a sorting process must be
performed afterward to separate the products into different orders. However, we do not study
the influence of this task in our work.

Next, we mathematically define the OOBP. To that aim, in Table 1, we present the parame-
ters and variables used in the model. Then, we define the OOBP considering the minimization
of the picking time (i.e., the sum of picking time of all pickers) as an objective function as
follows:

min
m∑

j=1

Tservice(bj), (1)

subject to,
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m∑

j=1

xji = 1, ∀ i ∈ {1, . . . , n}. (2)

l∑

k=1

yjk = 1, ∀ j ∈ {1, . . . ,m}. (3)

n∑

i=1

wi ∗ xji ≤ W, ∀ j ∈ {1, . . . ,m}. (4)

stj ≥ min
k∈{1,...,l}

max
s∈{1,...,j−1}

ysk ∗ (sts + Tservice(bs)), ∀ j ∈ {2, . . . ,m}. (5)

stj ≥ stj−1, ∀ j ∈ {2, . . . ,m}. (6)

stj ≥ ari ∗ xji, ∀ i ∈ {1, . . . , n}, and ∀ j ∈ {1, . . . ,m}. (7)

stj ≥ tw(), ∀ j ∈ {1, . . . ,m}. (8)

stj ≥ 0, ∀j ∈ {1, . . . ,m}. (9)

stj ≤ arn +

m−1∑

i=1

Tservice(bi), ∀j ∈ {1, . . . ,m}. (10)

xji ∈ {0, 1}, ∀ j ∈ {1, . . . ,m} and ∀ i ∈ {1, . . . , n}. (11)

yjk ∈ {0, 1}, ∀ j ∈ {1, . . . ,m} and ∀ k ∈ {1, . . . , l}, (12)

where tw() represents the time-window function that is being evaluated. The constraints in (2)
guarantee that each order is assigned to a single batch. The constraints in (3) ensure that each
batch is assigned to a single picker. The constraints in (4) verify that the maximum capacity
of each batch is not exceeded. The constraints in (5) guarantee that the collection of batch bj
begins once a picker is available. Here, k represents the picker, while s represents the batch

Table 1. Parameters, variables and external auxiliary functions for the OOBP.
Parameters

n → Number of customer orders received in the system
m → Upper bound of the number of batches (a straightforward value is m = n).
l → Number of order pickers.
vrouting → Routing velocity: number of length units that the picker can traverse in the warehouse

per unit of time.
vextraction→ Number of items that the picker can search and pick per time unit.
tsetup → Time that the picker needs to empty the picking device and configure a new route before

collecting a new order list.
wi → Number of items of order oi for 1 ≤ i ≤ n.

W → Maximum number of items that can be included in a batch
(device capacity).

ari → Arrival time of order i for 1 ≤ i ≤ n.

Variables
stj → Start time of batch j for 1 ≤ j ≤ m.

xji →











1, if order oi is assigned to batch bj ,

for 1 ≤ i ≤ n, and 1 ≤ j ≤ m.

0, otherwise.

yjk →











1, if picker pk is assigned to batch bj ,

for 1 ≤ k ≤ l, and 1 ≤ j ≤ m.

0, otherwise.

External auxiliary functions
tw() → Time-window function.
dis() → Distance function (i.e., routing algorithm).
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being collected. The constraints in (6) ensure that the collection of batch bj starts once the
collection of batch bj−1 has already started. The constraints in (7) verify that the route to
collect a batch bj cannot start before the timestamps (moments in time) when the orders oi
assigned to that batch have reached the system. The constraints in (8) guarantee that the
collection of batch j does not start before the time indicated by the time-window function.
The constraints in (9) ensure that stj is positive. The constraints in (10) ensure that stj has an
upper bound and it is minimum. The constraints in (11) and (12) guarantee that the variables
xji and yjk, respectively, are binary.

Tservice(bj) =
dis(bj)

vrouting
+

n∑

i=1

wixji

vextraction
+ tsetup, ∀j ∈ {1, . . . ,m}, (13)

where dis() represents the distance function (i.e., the routing algorithm). Similarly, the same
problem can be studied by minimizing the completion time of the received orders or the
maximum turnover time. In both cases, the only difference with respect to the previous model
would be the replacement of the objective function (Eq. 1) with Eq. 14 (in the case of the
completion time) or Eq. 15 (in the case of the maximum turnover time).

min max
j∈{1,...,m}

(stj + Tservice(bj)). (14)

min max
i∈{1,...,n}

m∑

j=1

(stj + Tservice(bj)− ari) ∗ xji. (15)

Notice that the completion time is determined by the moment in which the picker delivers
the last batch, while the maximum turnover time objective function is determined by the
turnover time of the order that remains longer in the system.

It is worth mentioning that in this model we summarize all constraints necessary to formu-
late the order batching problem when considering three different objective functions together,
without needing to separate the constraints in three different models to group strictly those
necessary to optimize each objective function.

3. State of the art

In this section, we review the chronological evolution of the concept of time window in the
literature, which has changed during the years. In addition, we highlight the contribution of
each reviewed paper to this concept. Next, we classify and detail the most relevant time-window
methods proposed in the state of the art.

The time-window concept emerges in the context of the development of batching algorithms
as an additional batching strategy, and it has evolved until being studied as an independent
part of the picking process. The first study dates from 1983 (Quinn 1983) where the term
time-window batching is used as a strategy to reduce picking time. Il-Choe and Sharp (1991)
presented several results for its general application in improving the efficiency of a picking
system. Tang and Chew (1997) and Chew and Tang (1999) performed various mathematical
analyses related to the use of time-window batching as a batch generation method. Specifi-
cally, the upper and lower limits are calculated for the problem, as well as the estimation of
the variance and the mean of several objective functions such as travel time, service time, and
turnover time. Yu and De Koster (2009) expanded previous works by presenting a model based
on queueing theory and introducing the calculation of the concept of “Expected waiting time
to form a new batch” (E[Wj]) applied to this type of problem. The same year, Van Nieuwen-
huyse and De Koster (2009) published an article that estimates the average processing time of
an order, using Variable Time-Window Batching (VTWB) or Fixed Time-Window Batching
(FTWB) as a batching algorithm. In the same study, the impact of two picking policies (pick-
and-sort and sort-while-pick) is also compared for the same Time-Window Batching scenario.
This article also develops the concept of E[Wj]. Later, in 2012, a new method was introduced
in Bukchin et al. (2012) for the first time to accurately calculate the departure time of each
picker, assuming that all the arrival times of the orders are known. Based on this informa-
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tion, an approximate model is proposed to determine the waiting strategy for future arrivals
of orders. The previous article uses Markov Decision Processes and they are compared with
a couple of naive heuristics. This work studies the minimization of delays in the delivery of
orders, as well as the costs associated with the overtime of the pickers. The same year, Henn
(2012) presented a metaheuristic algorithm (Iterated Local Search) for batching, together with
a heuristic to calculate the time window.

Xu et al. (2014) presented new results using E[Wj] for the VTWB calculation, together
with the First Come First Served (FCFS) algorithm for the batching process. In this paper,
the authors calculate the optimal size of batches in this context, for the minimization of the
average throughput time. Subsequently, Zhang et al. (2016) first and Zhang et al. (2017) later
introduced a rule-based hybrid heuristic, which linked the computation of the time window to-
gether with seed-type algorithms for batching. The same year, Giannikas et al. (2017) proposed
three variants of a so-called interventionist strategy, consisting in new Variable Time-Window
policies based on the number of orders that arrive at the system. Duda and Stawowy (2019),
used a Variable Neighborhood Search (VNS) to study the Joint Batch Sequencing and Picker
Routing Problem with time windows. In this work, batches are formed beforehand and known
in advance. Specifically, they divide the time window into fixed periods of 30 minutes and pro-
pose four new neighborhoods to solve the problem in a comprehensive way. Later, Gil-Borrás
et al. (2020a) performed a simple comparison between Fixed Time-Window and Variable Time-
Window methods. Finally, in the same year, Leung et al. (2020) presented the Intelligent B2B
order handling system, solving the Integrated Online Pick-to-sort Order Batching using the
Fixed and Variable Time-Window Batching strategies.

Next, we describe the most relevant time-window methods present in the state of the art
classified as Fixed Time Window or Variable Time Window methods. Furthermore, some of
these methods will be selected to be empirically compared in Section 6.

3.1. Fixed Time-Window methods in the literature

Fixed Time-Window (FTW) methods are characterized by determining a fixed waiting time
that can depend on different factors of the system / instance, such as the available space in the
batch, the distribution of the arrival of orders, or the average number of items of the received
orders. Specifically, the strategy that determines the time window could set a single fixed time
for all instances of the problem. Alternatively, a FTW strategy could also set a different fixed
time for each instance, but depending on a parameter of the instance. The most representative
FTW methods in the literature are described below:

• No-wait method (FTW NW): This is the simplest FTW method. It consists of
starting the picking of the next batch as soon as there is a picker available and a batch
waiting to be picked. This strategy is one of the most used in the literature. In fact, if
not stated otherwise, it is taken as the default strategy. Some examples of works that
use this strategy are Gil-Borrás et al. (2020a,b, 2021).

• Methods with the same fixed time for all instances (FTW CT): It consists
of establishing, following any criteria (e.g., a specific time after each picking route, a
fixed schedule for departures, etc.), a fixed time that a picker must wait, each time the
picker is available, regardless of the specific instance in which the picker is working. This
strategy was explored in Gil-Borrás et al. (2020a), where different time-window methods
are compared. Specifically, the authors in this paper demonstrate how, in general, this
type of method returns worse solutions than methods which use a Variable Time-Window
strategy.

• Methods with a calculated fixed time for each instance
(FTW ZH): These methods can be considered as a particularization of the FTW CT.
They consist of setting a fixed time based on a calculation per instance. Specifically, the
time window t to start collecting the batch b is calculated as follows: t = (Q/q) · λ · β,
where Q is the maximum batch capacity, q is a uniform distribution indicating the
number of items of an order, and λ defines the distribution that indicates the arrival
rate. Therefore, (Q/q) · λ estimates the average time to fulfill a batch. Finally, β is
a coefficient of the desired average of fulfillment of a batch before starting the picking
process. Notice that β is a search parameter that is studied in Section 6.2.1. An example
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of the use of this type of methods was described in Zhang et al. (2017) although it is
based on the studies of Xu et al. (2014) and Van Nieuwenhuyse and De Koster (2009).
In this work, the authors determined the expected arrival time of the next k orders,
required to complete a batch, on the basis of the arrival information of previous orders.

We have selected FTW NW and FTW ZH methods to be experimentally evaluated in Sec-
tion 6 since according to the previous comparison (Gil-Borrás et al. 2020a) FTW CT methods
performed worse.

3.2. Variable Time-Window methods in the literature

Variable Time-Window (VTW) methods are characterized by having a variable waiting time,
which can be different at each picking moment for the same instance depending on different
factors. The most representative methods in the literature are described below:

• Methods based on a minimum number of orders in queue (VTW QO): This
strategy consists of starting the collection of orders in a batch when there is a minimum
number of pending orders to be collected in the system. This method was recently used
in Gil-Borrás et al. (2020a), where the authors explored the performance of this strategy
for different number of queued orders (4, 8, and 16).

• Methods based on a minimum number of batches (VTW BA): This method sets
a different time window depending on the completion of a minimum number of batches
previously defined, prior to starting picking. The simplest version of this strategy consists
of waiting until the first batch is full. Particularly, when a new batch is configured, it
is assumed that the previous batch does not have the capacity to accommodate new
orders, so at that time the picker can start collecting the first batch, and so on.

• Reactive methods according to the collection conditions
(VTW HE): This method determines the time window on the basis of the specific
system conditions such as the arrival times of the orders and the service times to col-
lect them (Henn 2012). Specifically, if there is more than one batch available for be-
ing collected a new route is started as soon as a picker becomes available. Otherwise,
the method calculates the moment to start a new route using the following formula:
max(t, (1 + α) · ri + α · sti − stj), where t is the current instant time, stj is the service
time of the batch j, sti is the longest service time of any order i in batch j when it is
collected in isolation, and ri is the arrival time of order i. Finally, α is a coefficient that
weighs the arrival time of the order i and the service time of the current batch under
construction. Notice that α can be considered as a search parameter and its influence is
studied in Section 6.2.2.

• Methods based on data-built models (VTW MM): In addition to the previously
introduced heuristic methods, there is a family of methods based on machine learning
models. Specifically, in Bukchin et al. (2012) the authors propose a method that uses
Markov decision processes to calculate a subsequent model that determines the optimal
moment in which a picker should have started the picking of each batch. Based on
the model built with previous data, it establishes a decision-making system for future
orders. However, the construction of the exact model presents the difficulty of being a
computationally costly task.

According to a previous comparison (Gil-Borrás et al. 2020a), VTW BA and VTW HE
methods perform better than VTW QO. Therefore, we have selected the former methods to
be experimentally evaluated in Section 6. Additionally, VTW MM is impractical for real-size
instances as the ones used in this paper.

4. New time-window methods

In addition to the previous methods identified in the state of the art, in this work, we propose
two new VTWmethods to determine the time window, with the aim of finding balance between
the effect of waiting in two different objective functions: picking time and completion time.
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Particularly, waiting might improve the picking time for a particular batch, but could also
deteriorate the completion time of the whole system. The proposed strategies try to determine
the expectancy of the next order that will arrive at the system to fit the current batch. These
methods have been tested in different empirical scenarios and improve the methods in the
state of the art in several of them. The experiments are reported in Section 6.

• Method based on the available capacity (VTW M1): This method considers that
an available picker should wait while there is a batch under construction still incomplete,
together with a high estimated probability that the next order will fit in the available
capacity. Since the method is based on estimations, in the event that the next order that
arrives in the system exceeds the available capacity (i.e., generating a new batch), the
picker will start collecting the previous batch. On the other hand, while the capacity is
not exceeded after a new arrival, the method constructs a probability distribution based
on the size of the orders previously arrived at the system. Based on this distribution, it
calculates the probability that the next order will have a smaller size than or equal to the
available capacity in the current batch. Then, based on a threshold, the method decides
whether to start picking or to wait. The probability threshold is a search parameter and
should be adjusted experimentally.

• Method based on the available capacity with rules (VTW M2): This method
could be considered an extension of VTW M1, but adding two new criteria to start pick-
ing: 1) the time calculated for the picking task of the orders currently in the batch under
construction is shorter than the time needed until the estimated instant of arrival of the
next order; 2) the average time required to pick the items assigned to the batch under
construction is at least 10% shorter than the average picking time of items previously
collected. Notice that the value of 10% has been empirically tested for this rule.

The VTW M1 and VTW M2 methods have been included in the experimental evaluation
in Section 6.

5. Description of the comparative study

Evaluating time-window algorithms in the context of the OOBP implies to define the strategies
that will be used for the rest of the activities of the problem and the objective function to
optimize. For OOBP variants with a single picker, it is necessary to define the batching,
selecting, and routing strategies. Moreover, if there are multiple pickers, it is necessary to
handle an additional task known as assigning.

The batching task consists of grouping a set of orders in a batch, which will be collected
together in a single picking route. We consider that orders cannot be split into different batches.
There is a great variety of algorithms published in the literature for this task. In this work, we
compare three different batching strategies previously proposed in the literature. Particularly,
we compare a basic heuristic First Come First Served (FCFS) strategy, widely used as a
baseline, an Iterated Local Search (ILS) proposed in Henn et al. (2010), and a General Variable
Neighborhood Search (GVNS) presented in Gil-Borrás et al. (2020b). The purpose of exploring
different batching strategies is to determine if the time-window method selected depends on
the batching algorithm used.

The routing task consists of generating a route that enables the collection of the selected
set of orders in a batch within the warehouse. This strategy is also used to determine aspects
such as picking time or distance traveled. In this work, four routing algorithms have been
compared, the three most popular heuristic algorithms: S-shape (Hall 1993; Petersen 1995),
Largest-gap (Hall 1993; Petersen 1995), and Combined (De Koster and Van Der Poort 1998;
Menéndez et al. 2017b); and the exact method known as Ratliff and Rosenthal (Ratliff and
Rosenthal 1983). The purpose of exploring different routing algorithms is to demonstrate that
the time-window strategy is independent of the routing algorithm used.

The selecting method used consists of selecting the batch that contains the largest number
of items. In the event that there is more than one batch with the maximum number of items,
we select the batch with the shortest picking route. Additionally, the assigning method, which
decides which batch is collected by which picker, assigns the next batch to be collected to the
first available picker.
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In this work, three widely used objective functions for different variants of the OBP are
compared: The minimization of the picking time; the minimization of the completion time;
and the minimization of the maximum turnover time. The picking time is the time that pickers
need to perform the picking task of all orders once the batches are conformed. The completion
time is similar to the picking time, but also includes the waiting time for the arrival of new
orders. Reducing the picking and completion times, frees some time for the pickers to perform
other activities. Also, it helps to reduce energy consumption (in the case that the picking uses
machinery) or to reduce the tiredness of the workers (in the case that they walk through the
warehouse). Finally, the maximum turnover time is the maximum time that an order remains
in the system since it arrives until it is served. Reducing the turnover time results in a direct
benefit for the customer since it helps to deliver the products faster.

6. Experiments

This section presents different experiments to evaluate the time-window methods previously
detailed in the context of the OOBP. Also, we study the relationship between time-window
strategies and other strategies, such as routing or batching algorithms, as well as the influence
of either the set instances or the optimized objective function on the performance of the
methods.

All methods used in the experimentation, including those of the state of the art, were coded
in Java 8 and run on an Intel (R) Core (TM) 2 Quad CPU Q6600 2.4 Ghz computer, with 4
GB DDR2 RAM memory and Ubuntu 18.04.1 64 bit LTS operating system.

In Section 6.1, we present the sets of instances used in the comparison. In Section 6.2,
we perform a set of preliminary experiments to adjust the values of the different compared
time-window algorithms. Finally, in Section 6.3, we present the final experiments. In those
experiments, we compare the behavior of routing and batching algorithms when combined
with different time-window strategies.

6.1. Instances

Two sets of instances widely used in the state of the art of different variants of order batch-
ing problems have been selected for this article. These data sets can be downloaded at
https://grafo.etsii.urjc.es/optsicom/oobp/. It is important to note that, to the best of our
knowledge, there are no previous specific datasets for “time-window algorithms” in the con-
text of OOBP, since there are no previous studies just devoted to this concept in isolation.
However, most of the methods included in our comparison, which deal with the concept of
time window, are presented in articles using these data sets. The objective of using two sets
of instances is to evaluate whether there is any dependence of the time-window strategies on
the set of instances used.

Instances in both data sets correspond to rectangular single-block warehouses with two
cross aisles and a single depot. The first data set (Dataset #1) is composed of 80 instances
corresponding to 4 different warehouses (denoted as W1, W2, W3, and W4). It was originally
proposed in Albareda-Sambola et al. (2009), and it has been used in many related works (Gil-
Borrás et al. 2018, 2019, 2020b; Menéndez et al. 2015, 2017c,b). The second data set (Dataset
#2) is composed of 64 instances corresponding to a single warehouse (denoted as W5). It was
originally proposed in Henn (2012), and it has also been used in many related papers (Aerts
et al. 2021; Alipour et al. 2020; Gil-Borrás et al. 2020b; Koch and Wäscher 2016; Menéndez
et al. 2017a,b; Pérez-Rodŕıguez et al. 2015). The detailed characteristics of the instances can
be found in Appendix E.

6.2. Preliminary experiments

This section is devoted to tuning the parameters of the compared time-window algorithms:
FTW ZH (Zhang et al. 2017), VTW HE (Henn 2012), VTW M1, and VTW M2 (proposed
in this paper). To make these adjustments, a diverse subset of 24 instances has been selected
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from the original sets of instances previously described. It is worth mentioning that, in the
case of VTW BA, three different configurations (2, 3, and 4 generated batches) are used in
the final experiments, denoted as: VTW B1, VTW B2, and VTW B3, respectively.

6.2.1. Selection of parameter β in FTW ZH

The time-window method proposed in Zhang et al. (2017) uses a β parameter in the formula
that determines the fixed time interval of the time window. We refer the reader to Section
3.1 for a detailed description of this parameter. In this experiment, different values of β (0.5,
1, and 1.5) and their influence have been compared. Observing the results, the configuration
that obtained the highest number of best solutions in either picking time, completion time, or
turnover time was β = 1.5, with a good performance in the other two indicators. Therefore,
we used this configuration for the final experiments. Detailed results for this experiments can
be found in Table A1 in the Appendix A.

6.2.2. Selection of parameter α in method VTW HE

The time-window method proposed in Henn (2012) uses a parameter α to determine the time
window before starting the picking of the next batch under construction. We refer the reader to
Section 3.2 for a detailed description of this parameter. In this experiment, different values of
α (25%, 50%, 75%, and 100%) have been compared. The value 0% for α is not evaluated as it
would be equivalent to the FTW NW method that is already included in the final experiments.
The best value found for the parameter α is 50% for two out of the three objective functions
studied. For this reason, α = 50% is selected for the configuration of the method VTW HE in
the final experiments. Detailed results for this experiments can be found in Table A2 in the
Appendix A.

6.2.3. Study of the capacity threshold in VTW M1

The VTW M1 method determines the probability that the next order arriving in the system
will fit into the available capacity in the batch under construction. In this experiment, we study
different thresholds to start picking if the probability is below that threshold. Specifically, we
have evaluated threshold values between 20% and 70% (in steps of 10%). Extreme values
have not been evaluated, as a threshold of 0% indicates that the next order would not fit
in the batch, therefore there is no point in waiting for it. Similarly, a value of 100% would
equate to the batch being empty. In this case, the best value for this parameter in the three
proposed indicators, for the considered objective functions, is 60%. Therefore, this value has
been selected for the configuration of VTW M1 in the final experiments. Detailed results for
this experiments can be found in Table A3 in the Appendix A.

6.2.4. Study of the capacity threshold in VTW M2

The VTW M2 method determines the probability that the next order arriving to the system
will fit into the available capacity (as VTW M1) but including several additional rules. Specif-
ically, we have evaluated the threshold values between 20% and 70% (in steps of 10%). Again,
the extreme values have not been evaluated. In this case, the best value for this parameter, for
two out of the three objective functions tested, is 40% for all the proposed indicators, except
for the number of best solutions in the case of completion time. Therefore, this value has been
selected for the configuration of VTW M2 for the final experiments. Detailed results for this
experiments can be found in Table A4 in the Appendix A.

6.3. Final experiments

The aim of this work is to evaluate the behavior of the strategies selected previously to de-
termine the time window in different scenarios. To that aim, we have divided our final exper-
imentation in four sections where we vary: The routing strategy, the batching strategy, or the
characteristics of the instance (number of pickers and congestion in the arrival of orders). Our
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objectives are: 1) study the influence of the time-window algorithm on the performance of the
methods depending on the objective function; 2) identify the best strategy for determining the
time window in each scenario; and 3) determine if there exists a dependency of the waiting
strategy with respect to either the batching or routing strategies, or other factors such as the
number of pickers or the congestion in the arrival of orders.

Notice that all experiments use the same selection and assignment strategies (see Section
5). Additionally, in those experiments where the number of pickers in the warehouse is not
explicitly indicated, it is considered that there is only one picker. All experiments in this section
have been performed on the whole data set of instances introduced in 6.1. Finally, in Section
6.3.5, we have performed a statistical analysis of the results.

6.3.1. Impact of time-window algorithms on the performance of the studied methods

for different objective functions, when combined with several routing strategies

In this experiment, we study the picking time and the completion time objective functions
when varying the routing and waiting strategies. Particularly, we combined a GVNS batching
method, with four different routing algorithms (S-Shape, Largest-Gap, Combined, and the
exact method Ratliff and Rosenthal) introduced in Section 5, and with eight time-window
algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and
FTW ZH) introduced in Section 3 and Section 4.

In Figure 1, we represent the different algorithmic variants compared in terms of completion
time and picking time. Particularly, we report the average among all instances of the minimum
completion time or the minimum picking time. It can be observed that the time-window method
substantially influences the results obtained (either in terms of picking time or in terms of
completion time) regardless of the routing method. Also, it is observed that the influence of
each time-window strategy on the final result (both in picking time and in completion time)
remains constant for each routing method. That is, the best time-window method when using S-
Shape, Largest-Gap, Combined, and Ratliff and Rosenthal routing method is always VTW B3
in terms of picking time. It is also observed that the best time-window method to minimize
the picking time (VTW B3) is not the best time-window method to minimize the completion
time. In this case, VTW M1, VTW M2, FTW NW, and FTW ZH, behave similarly one to
each other, and they can be considered the best methods among the compared ones for the
completion time.

Similarly, in Figure 2, we compare the performance of the previous methods in terms of
maximum turnover time, compared to the completion time. In this case, it is confirmed that,
whatever the routing method is, the use of one or another time-window method substantially
influences the result obtained in terms of maximum turnover time. Again, we report the av-
erage values obtained among all instances. In this case, similarly to what happens with the
completion time, the methods VTW M1, VTW M2, FTW NW, and FTW ZH perform alike
and they can be considered as the best ones among the compared methods, for minimizing the
maximum turnover time.

It is worth mentioning that, in this case, using an exact method (i.e., Ratliff and Rosenthal)
for the routing task does not improve the overall performance of the method. This is due to
the fact that calculating an exact route for a particular set of batches provided by the batching
algorithm takes longer than calculating an approximate route. Therefore, methods with faster
routing procedures are able to explore more solutions than methods which use exact routing
procedures, in the same amount of time. Regarding the rest of the methods, the Combined
method was the one which performed better. However, since we observed that the influence
of the time-window strategy did not depend on the routing method, we selected S-Shape to
be used in the following experiments, since it is the most widely used routing method in the
literature, and the routes generated are the easiest to follow for pickers (Pardo et al. 2023).

The detailed results to elaborate Figure 1 and Figure 2 can be found in Appendix B.
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Figure 1. Caption: Behavior of the picking time and completion time when combining the GVNS batching

algorithm, with different routing strategies (S-Shape, Largest-Gap, Combined, and Exact) and different time-
window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).
Alt Text: Figure containing an x-y plot comparing the behavior of the picking time and completion time
when combining the GVNS batching algorithm, with different routing strategies (S-Shape, Largest-Gap, Com-
bined, and Exact) and different time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH).
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Figure 2. Caption:Behavior of the maximum turnover time and completion time when combining the GVNS
batching algorithm, with different routing strategies (S-Shape, Largest-Gap, Combined, and Exact) and differ-
ent time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and
FTW ZH).
Alt Text: Figure containing an x-y plot comparing the behavior of the maximum turnover time and comple-
tion time when combining the GVNS batching algorithm, with different routing strategies (S-Shape, Largest-

Gap, Combined, and Exact) and different time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH).

12



VTW_B3
VTW_B2

VTW_B1
VTW_HE

VTW_M1

VTW_M2

FTW_ZH

FTW_NW

VTW_B3

VTW_B2

VTW_B1

VTW_HE

VTW_M1 VTW_M2
FTW_ZH

FTW_NW

VTW_B3

VTW_B2

VTW_HE

VTW_B1

VTW_M1

VTW_M2

FTW_NW

FTW_ZH

45000

46000

47000

48000

49000

50000

51000

52000

53000

43000

44000

45000

46000

47000

48000

49000

50000

51000
Co

m
pl

et
io

n 
Ti

m
e 

(s
)

Picking Time (s)

GVNS ILS FCFSBatching algorithms:

Figure 3. Caption: Behavior of the picking time and completion time when combining different batching

algorithms (GVNS, ILS, and FCFS), with several time-window algorithms (VTW B1, VTW B2, VTW B3,
VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) using the same routing algorithm (S-Shape).

Alt Text: Figure containing an x-y plot comparing the behavior of the picking time and completion time
when combining different batching algorithms (GVNS, ILS, and FCFS), with several time-window algorithms
(VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) using the same
routing algorithm (S-Shape).

6.3.2. Impact of time-window algorithms on the performance of the studied methods

for different objective functions, when combined with several batching

strategies

In this experiment, we study the picking time and the completion time objective functions
when varying the batching and waiting strategies. Particularly, we combined three different
batching methods (GVNS, ILS, and FCFS), with the S-Shape routing strategy (Notice that,
as it was previously mentioned, the S-Shape method introduced in Section 5, is the most used
routing strategy in the literature related to OBP), and with eight time-window algorithms
(VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH)
introduced in Section 3 and Section 4.

In Figure 3, we represent the different algorithmic variants compared in terms of completion
time and picking time. As it can be observed, whatever the batching method is, the use of one
or another time-window method substantially influences the results obtained (either in terms
of picking time or in terms of completion time). Also, it is observed that regardless of the
chosen batching method, the influence of each time-window strategy on the final result (both
in the picking time and in the completion time) remains constant. That is, the best time-
window method for picking time when using GVNS or FCFS is VTW B3, while VTW B2 is
slightly better than VTW B3 when combined with ILS. It is also observed that the best time-
window method to minimize the picking time (VTW B3) is not the best time-window method
to minimize the completion time. In this case, again, VTW M1, VTW M2, FTW NW, and
FTW ZH are the best methods and behave similarly one to each other for any of the batching
methods compared. The detailed results to elaborate Figure 3 and Figure 4 can be found in
Appendix C.

Similarly, in Figure 4, we compare the performance of the previous methods in terms of
maximum turnover time when compared with the completion time. In this case, it is confirmed
that, whatever the batching method is, the use of one or another time-window method substan-
tially influences the result obtained in terms of maximum turnover time. In this case, similar
to what happens with the completion time, the methods VTW M1, VTW M2, FTW NW,
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Figure 4. Caption: Behavior of the maximum turnover time and completion time when combining differ-

ent batching algorithms (GVNS, ILS, and FCFS), with several time-window algorithms (VTW B1, VTW B2,
VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) using the same routing algorithm (S-

Shape).
Alt Text: Figure containing an x-y plot comparing the behavior of the maximum turnover time and comple-
tion time when combining different batching algorithms (GVNS, ILS, and FCFS), with several time-window
algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) using
the same routing algorithm (S-Shape).

and FTW ZH perform alike and they can be considered as the best ones among the com-
pared methods, for minimizing the maximum turnover time, for any of the batching strategies
compared.

6.3.3. Impact of time-window algorithms on the performance of the studied methods

for different objective functions, when varying the number of pickers

In this experiment, we study the picking time and the completion time objective functions,
when varying the number of pickers and the waiting strategies. Particularly, we combined
the GVNS batching strategy, with the S-Shape routing strategy (all of them introduced in
Section 5), and with eight time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH) introduced in Section 3 and Section 4 for
scenarios with a different number of pickers (1, 2, 3, 4, and 5). The results of this experiment
are presented in Figure 5.

As expected, there is an increase in the picking time when increasing the number of pickers,
but also a decrease in the completion time. Notice that, more pickers in the system implies that
it is more likely that a picker becomes available sooner. Therefore, the queue of orders awaiting
to be collected is usually shorter, and orders included in the same batch might generate less
efficient routes to collect them. On the other hand, it is observed that the method configured
with VTW B3 is the best in terms of picking time for any scenario (1, 2, 3, 4, and 5 pickers).

As far as the completion time is concerned, the methods FTW NW, FTW ZH, VTW M1,
and VTW M2 present a similar behavior, and can be considered as the best methods for
the minimization of this objective function, in any of the scenarios studied (1, 2, 3, 4, and 5
pickers). Notice that the completion time is deeply influenced by the arrival of the last order
to be collected. In this scenario, the best strategy to optimize the completion time is to start
the last picking tour as soon as possible after the arrival of the last order to the system.
This strategy is very similar to a FTW NW strategy, considering that there is at least one
picker available when the last order arrives. Therefore, methods that behaves similarly to the
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Figure 5. Caption: Behavior of the picking time and completion time when increasing the number of pickers
(1, 2, 3, 4, and 5 pickers) for different time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH), using a GVNS batching algorithm and a S-Shape routing
strategy.
Alt Text: Figure containing an x-y plot comparing the behavior of the picking time and completion time when
increasing the number of pickers (1, 2, 3, 4, and 5 pickers) for different time-window algorithms (VTW B1,
VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH), using a GVNS batching

algorithm and a S-Shape routing strategy.

FTW NW strategy when the last order arrives are the ones which perform the better.
Finally, it is observed that the differences between the best and the worst methods for

the same number of pickers are very small when considering the completion time, regardless
of the time-window method. However, in the case of picking time, the differences increase
substantially as the number of pickers increases.

Similarly, in Figure 6, the same methods are compared in terms of the maximum turnover
time and the completion time. In the case of the maximum turnover time, it is generally
observed that it decreases as the number of pickers increases. More specifically, observing
the algorithm configured with the same time-window strategy but for a different number
of pickers, both the maximum turnover time and completion time decrease as the number
of pickers increases. Furthermore, when the number of pickers increases, the influence of the
time-window strategy is more relevant in terms of maximum turnover time, since the difference
between the worst and the best methods also increases. Derived from the experiments carried
out, the methods FTW NW, FTW ZH, VTW M1, and VTW M2 (which behavior is similar
in terms of maximum turnover time) can be considered the best methods for the minimization
of the maximum turnover time objective function, in any of the scenarios studied (1, 2, 3, 4,
and 5 pickers).

The detailed results to elaborate Figure 5 and Figure 6 can be found in Appendix D.

6.3.4. Impact of time-window algorithms on the performance of the studied methods

for different objective functions, when varying the congestion in the arrival of

orders

In this last experiment, we compare the picking time, the completion time, and the maxi-
mum turnover time for different variants of an algorithm configured with the GVNS batching
strategy, the S-Shape routing strategy (both introduced in Section 5), and each of the eight
compared time-window strategies (see Section 3 and Section 4), for instances with different
number of orders received within the same time horizon (i.e., varying the congestion in the
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Figure 6. Caption: Behavior of the maximum turnover time with respect to the completion time when
the number of pickers is increased (1, 2, 3, 4, and 5 pickers), for several time-window algorithms (VTW B1,
VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH), using a GVNS batching
algorithm and a S-Shape routing strategy.
Alt Text: Figure containing an x-y plot comparing the behavior of the maximum turnover time (x) with
respect to the completion time (y) when the number of pickers is increased (1, 2, 3, 4, and 5 pickers), for
several time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW,

and FTW ZH), using a GVNS batching algorithm and a S-Shape routing strategy.

system). Specifically, the set of instances extracted from Dataset #2 in Henn (2012) has a
size which varies from 40 to 100 orders, while the set of instances extracted from Dataset #1
in Albareda-Sambola et al. (2009) has a size which varies from 50 to 250 orders. The results
are presented in Tables 2-7 ordered by the objective function (picking time, completion time,
and maximum turnover time) and set of instances. Additionally, for each table, the results are
organized according to the number of orders.

Table 2. Behavior of the picking time when varying the number of orders (congestion), for several time-window

strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) using
the GVNS batching algorithm and the S-Shape routing strategy on the instances extracted from Dataset #2

(Henn 2012).

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

4
0

Avg (s) 15966 16071 16544 16501 16919 16990 17647 17639

Dev (%) 0.22% 0.94% 4.22% 3.90% 6.67% 7.25% 12.20% 12.16%

#Best 10 5 1 0 0 0 0 0

6
0

Avg (s) 23066 23176 23352 23368 23574 23618 24123 24087

Dev (%) 0.13% 0.72% 1.45% 1.63% 2.59% 2.77% 5.57% 5.40%

#Best 12 3 0 0 1 0 0 0

8
0

Avg (s) 30783 30843 30956 30931 31134 31061 31372 31423

Dev (%) 0.14% 0.35% 0.72% 0.65% 1.36% 1.19% 2.37% 2.56%

#Best 8 6 0 1 0 0 1 1

1
0
0

Avg (s) 36680 36694 36817 36875 37066 37115 37225 37347

Dev (%) 0.28% 0.31% 0.64% 0.78% 1.32% 1.44% 1.91% 2.18%

#Best 7 7 2 0 0 0 0 0
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Table 3. Behavior of the picking time when varying the number of orders (congestion), for several time-window

strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH) using
the GVNS batching algorithm and the S-Shape routing strategy on the instances extracted from Dataset #1

(Albareda-Sambola et al. 2009).

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

5
0

Avg (s) 20042 20215 20744 20774 21506 21912 23604 23378

Dev (%) 0.13% 1.89% 6.60% 7.34% 14.27% 20.11% 36.03% 35.56%

#Best 11 4 0 0 1 1 0 1

1
0
0

Avg (s) 39603 39757 39917 39919 40172 40256 40655 40633

Dev (%) 0.13% 0.72% 2.13% 2.16% 3.37% 3.80% 6.00% 5.80%

#Best 11 2 0 1 0 1 2 0

1
5
0

Avg (s) 58155 58115 58261 58155 58332 58344 58795 58673

Dev (%) 0.27% 0.44% 0.77% 0.65% 1.13% 1.07% 2.19% 1.98%

#Best 7 4 2 0 2 1 0 0

2
0
0

Avg (s) 76521 76615 76588 76693 76823 76747 77155 76872

Dev (%) 0.26% 0.27% 0.49% 0.56% 0.85% 0.76% 1.41% 1.25%

#Best 3 6 2 2 1 0 0 2

2
5
0

Avg (s) 95337 95154 95317 95438 95547 95454 95796 95980

Dev (%) 0.22% 0.18% 0.49% 0.57% 0.61% 0.61% 1.21% 1.21%

#Best 7 4 2 1 0 2 0 0

Table 4. Behavior of the completion time when varying the number of orders (congestion), for several time-
window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH)
using the GVNS batching algorithm and the S-Shape routing strategy on the instances extracted from Dataset
#2 (Henn 2012).

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

4
0

Avg (s) 20527 19578 18511 18527 18336 18328 18281 18273

Dev (%) 14.08% 8.47% 2.12% 2.23% 1.17% 1.14% 0.75% 0.72%

#Best 0 0 0 4 3 2 4 3

6
0

Avg (s) 25978 25287 24704 24728 24519 24557 24546 24508

Dev (%) 7.60% 4.42% 1.54% 1.72% 0.83% 0.97% 0.91% 0.75%

#Best 0 1 1 1 6 3 1 3

8
0

Avg (s) 32982 32390 31832 31811 31742 31669 31734 31792

Dev (%) 5.07% 2.97% 0.90% 0.84% 0.64% 0.47% 0.67% 0.87%

#Best 0 0 1 2 2 4 5 2

1
0
0

Avg (s) 38715 38108 37628 37684 37673 37721 37624 37747

Dev (%) 3.73% 1.88% 0.43% 0.57% 0.53% 0.64% 0.41% 0.68%

#Best 1 0 3 1 2 4 2 3
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Table 5. Behavior of the completion time when varying the number of orders (congestion), for several time-

window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH)
using the GVNS batching algorithm and the S-Shape routing strategy on the instances extracted from Dataset

#1 (Albareda-Sambola et al. 2009).

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

5
0

Avg (s) 26635 25521 24648 24633 24541 24381 24521 24288

Dev (%) 13.24% 7.63% 2.73% 2.77% 2.06% 1.13% 1.19% 0.70%

#Best 0 0 0 0 2 7 3 5

1
0
0

Avg (s) 42452 41848 41147 41146 41064 41089 40999 40986

Dev (%) 5.93% 3.50% 1.16% 1.21% 0.77% 0.75% 0.65% 0.51%

#Best 0 0 0 1 3 4 4 4

1
5
0

Avg (s) 59892 59407 59183 59081 59094 59113 59230 59114

Dev (%) 2.67% 1.49% 0.84% 0.72% 0.66% 0.63% 0.86% 0.67%

#Best 0 1 2 2 5 2 1 3

2
0
0

Avg (s) 78173 77922 77474 77581 77590 77490 77670 77385

Dev (%) 1.80% 1.12% 0.45% 0.54% 0.56% 0.45% 0.56% 0.40%

#Best 0 0 2 1 3 2 2 6

2
5
0

Avg (s) 96846 96351 96224 96362 96396 96297 96421 96647

Dev (%) 1.17% 0.55% 0.41% 0.51% 0.41% 0.40% 0.66% 0.71%

#Best 0 4 3 3 2 4 0 0

Table 6. Behavior of the maximum turnover time when varying the number of orders (congestion), for

several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW,
and FTW ZH) using the GVNS batching algorithm and the S-Shape routing strategy on the instances extracted
from Dataset #2 (Henn 2012).

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

4
0

Avg (s) 17100 13604 11433 11847 10025 9628 10458 9297

Dev (%) 154.41% 100.03% 54.76% 60.19% 22.83% 18.30% 23.75% 7.97%

#Best 0 1 2 0 3 3 1 6

6
0

Avg (s) 22006 20437 19820 19586 18945 19005 19022 18690

Dev (%) 38.42% 24.04% 19.27% 18.84% 15.23% 13.76% 16.55% 9.76%

#Best 1 0 2 1 2 5 2 3

8
0

Avg (s) 27653 27940 26877 27079 27286 27065 26781 26917

Dev (%) 15.17% 15.15% 11.55% 11.85% 12.51% 11.45% 10.00% 11.67%

#Best 3 0 1 3 1 3 3 2

1
0
0

Avg (s) 34425 34161 33085 33300 33989 32864 32452 33536

Dev (%) 15.08% 13.09% 9.29% 10.21% 12.46% 8.17% 6.46% 10.48%

#Best 1 0 1 3 0 4 2 5

Table 7. Behavior of the maximum turnover time when varying the number of orders (congestion), for
several time-window strategies (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW,
and FTW ZH) using the GVNS batching algorithm and the S-Shape routing strategy on the instances extracted
from Dataset #1 (Albareda-Sambola et al. 2009).

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

5
0

Avg (s) 23219 21542 17319 16898 15952 15490 14223 15420

Dev (%) 361.54% 311.83% 144.50% 128.32% 33.13% 23.38% 4.51% 9.54%

#Best 0 0 1 2 0 4 7 4

1
0
0

Avg (s) 37576 36891 34410 35450 34145 34973 34912 34827

Dev (%) 48.68% 42.05% 18.58% 23.60% 9.18% 10.92% 15.57% 14.37%

#Best 0 0 3 2 4 2 4 1

1
5
0

Avg (s) 56722 55610 55806 54965 55661 55196 55506 55520

Dev (%) 8.80% 5.59% 4.83% 5.17% 4.28% 3.42% 4.62% 4.59%

#Best 0 1 1 2 3 6 0 3

2
0
0

Avg (s) 75048 74190 73723 74862 74633 74113 74592 74075

Dev (%) 6.22% 5.10% 3.11% 5.29% 4.78% 4.88% 4.65% 3.98%

#Best 0 2 4 1 2 3 1 3

2
5
0

Avg (s) 93737 92925 93034 93645 93731 92555 92986 93099

Dev (%) 4.08% 2.52% 2.19% 2.97% 2.65% 2.08% 3.03% 2.17%

#Best 1 1 1 1 3 4 3 2
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Notice that the congestion in the system increases when, on the same time horizon, the num-
ber of orders received is increased. Thus, it is observed that the picking time, the completion
time, and the maximum turnover time also increase with the increase of congestion.

For the same number of orders, in all evaluated scenarios, we observe significant differences
between the worst and best time-window methods. On the other hand, the differences between
the methods are greater with fewer orders in the same time horizon. As far as objective
functions are concerned, it can be stated that the differences between the best and worst
methods are more accentuated in the case of minimizing the maximum turnover time. This
situation can be partially explained by the fact that it looks for the minimization of a maximum
value.

Finally, in the case of minimizing the picking time, regardless of the size of the instance, the
best time-window method was VTW B3. Similarly, for completion time, the most competitive
methods were: VTW M2, FTW ZH, and FTW NW. Finally, in the case of maximum turnover
time, the best methods were: VTW M1, VTW M2, FTW ZH, and FTW NW.

6.3.5. Statistical analysis

To end this empirical comparison, we performed several statistical tests to corroborate if the
differences found among the methods are statistically significant. In this case, we have se-
lected the use of non-parametrical tests, since the samples do not follow a normal distribution.
Particularly, we have used Friedman’s rank test for comparing the differences among all al-
gorithms together, and the Wilcoxon’s test for comparing pairs of algorithms. Therefore, we
have compiled all the different executions performed in this final experimentation, and we have
performed a Friedman Rank Test. The obtained p value of 0.000, reported by the statistical
software, indicates that there are differences among the methods. In Table 8 we report the
rank reported by the test, either separated by objective function, or considering all of them
together.

Further than the overall differences, we would like to observe if there are differences between
the methods that are closely ranked. To that aim we have performed a pairwise comparison
of the methods using the Wilcoxon’s Signed Test. The two variants of the proposed methods
in this paper VTW M2 and VTW M1 do not show statistically significant differences (with
a p value higher than 0.05) between them, however, there are differences between the two
proposed methods and any other of the compared ones, including the third one in the ranking
VTW HE. Also, we observed that there are almost no differences between: VTW HE and
VTW B1, VTW B1 and VTW NW, and VTW NW and VTW ZH.

Table 8. Friendman’s Rank Test.
Picking Time Completion Time Turnover Time Aggregated

Method Rank Method Rank Method Rank Method Rank

VTW B3 2,54 VTW M1 3,35 VTW M2 3,72 VTW M2 4,09

VTW B2 2,79 VTW M2 3,36 FTW NW 3,73 VTW M1 4,12

VTW HE 3,66 FTW NW 3,49 VTW M1 3,74 VTW HE 4,26

VTW B1 3,73 FTW ZH 3,53 FTW ZH 3,80 VTW B1 4,29

VTW M2 5,08 VTW HE 4,16 VTW B1 4,39 FTW ZH 4,38

VTW M1 5,24 VTW B1 4,3 VTW HE 4,51 FTW NW 4,46

FTW NW 6,43 VTW B2 6,31 VTW B2 5,68 VTW B2 4,96

FTW ZH 6,53 VTW B3 7,51 VTW B3 6,43 VTW B3 5,44

7. Conclusions and future work

In this work, we have studied the influence of the time-window strategy on the performance
of the algorithms for the OOBP. Specifically, we have reviewed the evolution of the concept
of time window in the context of the OOBP during the years. Additionally, we have reviewed
the most relevant previous strategies for determining the time window in the literature and
selected the most prominent ones to be empirically evaluated. Also, we have proposed two new
variable time-window strategies.

Our main conclusion is that it can be stated that there is a relevant influence of the time-
window algorithm on the performance of the methods for the OOBP when any of the following
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objective functions are studied: Picking time, completion time, or maximum turnover time.
Also, we have identified that the time-window algorithm should be determined depending on
the objective function tackled, since there is no efficient time-window algorithm for all objective
functions.

We have also demonstrated that the influence of the strategy to determine the time window
on the objective function does not depend on the batching or routing methods used. It has
also been shown that the selection of the best time window for each scenario does not depend
on the number of orders processed. However, when considering multiple pickers, the larger the
number of pickers, the greater the differences among the compared methods, when minimizing
the picking time or the turnover time. On the other hand, increasing the number of pickers
results in a slight decrease of the differences among the compared methods, when studying the
completion time.

The results obtained in the experimentation carried out during this study indicate that, in
online contexts, the minimization of the picking time can be in conflict with the minimization
of the completion time. This is supported by the fact that, when minimizing the picking time,
we look for batches that can be efficiently collected. To this end, it might be necessary to
wait longer for the arrival of new orders, so batches can be better composed. On the contrary,
waiting longer for the arrival of new orders implies that the completion time is increased. This
circumstance does not occur in offline contexts where the picking time and the completion
time are aligned. Therefore, in future works related to the OOBP, the completion time and
the picking time could be studied using a multiobjective approach.

The results obtained in this work indicate the importance of properly defining the time-
window strategy within the OOBP context. On average, we observed that for a single picker
and an arrival time horizon of 4 hours, it is possible to save up to 17 minutes in the picking
time, 21 minutes in the completion time, and 49 minutes in the maximum turnover time, simply
by choosing an appropriate time-window algorithm. Furthermore, some of the above savings
increase as the number of pickers also increases. For example, with 5 pickers, the differences
in the picking time, choosing one or the other time-window method, can be up to 311 minutes
(> 5 hours).

Among the methods evaluated for determining the time window, when minimizing the pick-
ing time, it is recommended to use the VTW B3 method, while in the case of minimizing the
completion time or the maximum turnover time, it is recommended to use one of the following
methods: VTW M1, VTW M2, FTW ZH, or FTW NW. Despite the fact that some methods
in the literature perform very well for specific objective functions, the methods proposed in this
paper (VTW M1 and VTW M2) have a very good behavior for any of the objective functions
studied in this paper.

Finally, we would like to highlight the importance of choosing adequately the time-window
method depending on the studied objective function, but also on the context conditions (such
as the number of pickers or the congestion of the system). On the contrary, the selection of a
time-window method does not depend on the batching or routing method chosen.

Given the relevance of the time window in the context of the order batching, presented in
this work, it might be interesting to further explore the most suitable scenarios for each time-
window method. Also, this should be extended to the study of new time-window proposals and
their influence on other objective functions related to the OOBP, not studied in this work, such
as minimizing the blocking time or minimizing the cost. Additionally, it would be interesting
to study the effect of the dynamic update of the batches, even if the tour to collect them has
already started.

Data availability statement

The authors confirm that the data supporting the findings of this study is freely available upon
request and in the Appendix of this paper.
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batching problem in manual order picking systems. Business Research 3, 82–105.

Ho, Y.C., Tseng, Y.Y., 2006. A study on order-batching methods of order-picking in a dis-
tribution centre with two cross-aisles. International Journal of Production Research 44,
3391–3417.

21



Il-Choe, K., Sharp, G.P., 1991. Small parts order picking: design and operation. Technical
Report. School of Industrial and Systems Engineering. Georgia Institute of Technology.
Atlanta, Georgia, EEUU.
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Appendix A. Detailed preliminary experiments

In this appendix we compile the detailed results for the preliminary experiments performed to
adjust the parameters of the compared methods. In all tables, Avg.(s), stands for the average
value of the objective function measured in seconds; Dev.(%), stands for the deviation to the
best solution of the experiment; and #Best, stands for the number of best solutions found.

Table A1. Study of different values for the β parameter in FTW ZH method for picking time, completion
time, and turnover time.

β value

0.5 1.0 1.5

Picking

time

Avg.(s) 41291 41300 41293

Dev.(%) 0.17% 0.31% 0.18%

#Best 10 9 13

Completion

time

Avg.(s) 41955 41967 41950

Dev.(%) 0.20% 0.36% 0.19%

#Best 7 7 10

Maximum
turnover time

Avg.(s) 36385 36157 36180

Dev.(%) 6,55% 7,28% 8,61%

#Best 7 7 10

Table A2. Study of different values for the α parameter in VTW HE method for picking time, completion
time, and turnover time.

α value

25% 50% 75% 100%

Picking

time

Avg.(s) 40515 40430 40483 40518

Dev.(%) 0.61% 0.51% 0.57% 0.73%

#Best 6 12 7 5

Completion

time

Avg.(s) 42121 42022 42085 42111

Dev.(%) 1.06% 0.83% 0.97% 1.02%

#Best 3 7 3 3

Maximum
turnover time

Avg.(s) 36895 37254 38035 36887

Dev.(%) 7,46% 10,06% 14,67% 9,44%

#Best 6 5 2 11
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Table A3. Study of different threshold values in VTW M1 method for the picking time, completion time,

and turnover time.

Threshold (%)

20% 30% 40% 50% 60% 70%

Picking

time

Avg.(s) 40738 40793 40779 40856 40721 40813

Dev.(%) 0,24% 0,38% 0,36% 0,31% 0,21% 0,33%

#Best 7 4 4 6 8 5

Completion

time

Avg.(s) 41725 41776 41760 41839 41701 41799

Dev.(%) 0,23% 0,37% 0,34% 0,30% 0,19% 0,34%

#Best 4 1 5 6 6 2

Maximum
turnover time

Avg.(s) 36792 36541 36314 36851 36469 35910

Dev.(%) 15,51% 14,45% 15,85% 14,61% 13,85% 7,42%

#Best 1 2 4 5 4 8

Table A4. Study of different threshold values in VTW M2 method for the picking time, completion time,
and turnover time.

Threshold (%)

20% 30% 40% 50% 60% 70%

Picking

time

Avg.(s) 40359 40335 40285 40334 40310 40295

Dev.(%) 0,43% 0,47% 0,27% 0,36% 0,34% 0,41%

#Best 6 4 6 6 5 3

Completion

time

Avg.(s) 40858 40838 40784 40837 40815 40790

Dev.(%) 0,41% 0,47% 0,28% 0,35% 0,35% 0,39%

#Best 4 5 3 5 5 2

Maximum
turnover time

Avg.(s) 38408 39093 38720 38589 38641 38316

Dev.(%) 4,20% 9,35% 5,52% 6,73% 7,56% 5,15%

#Best 6 2 7 2 4 3

Appendix B. Detailed results of the influence of time-window algorithms
on the performance of the studied methods for different
objective functions, when combined with different routing
strategies

Table B1. Behavior in terms of picking time of a GVNS batching algorithm combined with different routing
strategies (S-Shape, Largest-Gap, Combined, and Exact) and different time-window algorithms (VTW B1,

VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

S
-S

h
a
p
e Avg (s) 44017 44071 44277 44295 44564 44611 45152 45115

Dev (%) 0,20% 0,64% 1,95% 2,03% 3,57% 4,33% 7,65% 7,57%

#Best 76 41 9 5 5 5 3 4

L
a
r
g
e
s
t

G
a
p Avg (s) 43730 43818 44043 44023 44284 44337 44790 44817

Dev (%) 0,15% 0,76% 2,04% 2,02% 3,54% 4,43% 7,47% 7,46%

#Best 92 26 4 10 3 6 3 2

C
o
m
b
in

e
d Avg (s) 41390 41483 41694 41673 41939 42020 42499 42497

Dev (%) 0,13% 0,62% 1,91% 1,87% 3,46% 4,35% 7,73% 7,74%

#Best 89 28 6 14 3 2 2 2

E
x
a
c
t

Avg (s) 41191 41259 41442 41416 41691 41774 42244 42251

Dev (%) 0,17% 0,70% 1,87% 1,82% 3,48% 4,40% 7,93% 7,92%

#Best 85 28 8 12 3 5 1 2
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Table B2. Behavior in terms of completion time of a GVNS batching algorithm combined with different rout-

ing strategies (S-Shape, Largest-Gap, Combined, and Exact) and different time-window algorithms (VTW B1,
VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

S
-S

h
a
p
e Avg (s) 46911 46268 45706 45728 45662 45627 45670 45638

Dev (%) 6,14% 3,56% 1,18% 1,23% 0,85% 0,73% 0,74% 0,67%

#Best 1 6 12 15 28 32 22 29

L
a
r
g
e
s
t

G
a
p Avg (s) 46724 46090 45568 45436 45469 45425 45406 45436

Dev (%) 6,28% 3,73% 1,46% 1,14% 0,99% 0,87% 0,73% 0,75%

#Best 0 1 8 10 35 32 27 33

C
o
m
b
in

e
d Avg (s) 44450 43856 43324 43296 43213 43210 43163 43181

Dev (%) 6,22% 3,61% 1,28% 1,21% 0,79% 0,70% 0,48% 0,50%

#Best 1 2 13 11 32 28 25 37

E
x
a
c
t

Avg (s) 46759 46058 45653 45521 45308 45296 45481 45352

Dev (%) 6,87% 4,11% 1,75% 1,64% 1,17% 1,05% 1,00% 0,81%

#Best 2 5 9 17 34 26 24 27

Table B3. Behavior in terms of maximum turnover time of a GVNS batching algorithm combined with

different routing strategies (S-Shape, Largest-Gap, Combined, and Exact) and different time-window algorithms
(VTW B1, VTW B2, VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

S
-S

h
a
p
e Avg (s) 43054 41922 40612 40848 40485 40099 40104 40154

Dev (%) 72,49% 57,71% 29,79% 29,60% 13,00% 10,71% 9,90% 8,28%

#Best 6 5 16 15 18 34 23 29

L
a
r
g
e
s
t

G
a
p Avg (s) 42970 41860 40542 40233 39960 39853 39804 39843

Dev (%) 69,43% 48,89% 30,86% 27,69% 11,44% 11,09% 9,43% 9,69%

#Best 6 6 18 20 26 21 24 25

C
o
m
b
in

e
d Avg (s) 40633 39665 38094 38351 37440 37477 37647 37571

Dev (%) 75,02% 55,63% 30,91% 29,59% 10,07% 10,41% 9,12% 8,96%

#Best 8 6 16 14 24 23 25 30

E
x
a
c
t

Avg (s) 42944 41639 40627 40590 39759 39550 39690 39455

Dev (%) 71,02% 51,31% 33,58% 35,01% 11,05% 9,12% 7,39% 6,72%

#Best 3 13 14 17 23 26 27 22
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Appendix C. Detailed results of the influence of time-window algorithms
on the performance of the methods for different objective
functions, when combined with different batching strategies

Table C1. Behavior in terms of picking time of different batching algorithms (GVNS, ILS, and FCFS)
combined with S-Shape routing strategy and different time-window algorithms (VTW B1, VTW B2, VTW B3,
VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

G
V
N
S

Avg (s) 44017 44071 44277 44295 44564 44611 45152 45115

Dev (%) 0.20% 0.64% 1.95% 2.03% 3.57% 4.33% 7.65% 7.57%

#Best 76 41 9 5 5 5 3 4

IL
S

Avg (s) 45820 45752 45849 45818 46123 46218 46715 46693

Dev (%) 1.15% 1.22% 2.05% 1.96% 3.38% 4.38% 7.60% 7.58%

#Best 41 42 27 26 12 13 4 8

F
C
F
S

Avg (s) 49582 49595 49671 49671 49854 49932 50486 50486

Dev (%) 0.18% 0.25% 0.68% 0.68% 1.54% 2.35% 5.49% 5.49%

#Best 97 89 72 72 52 51 18 18

Table C2. Behavior in terms of completion time of different batching algorithms (GVNS, ILS, and FCFS)
combined with S-Shape routing strategy and different time-window algorithms (VTW B1, VTW B2, VTW B3,
VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

G
V
N
S

Avg (s) 46911 46268 45706 45728 45662 45627 45670 45638

Dev (%) 6.14% 3.56% 1.18% 1.23% 0.85% 0.73% 0.74% 0.67%

#Best 1 6 12 15 28 32 22 29

IL
S

Avg (s) 49303 48648 48055 48022 47940 47948 47968 47934

Dev (%) 6.61% 4.08% 1.80% 1.71% 1.11% 1.08% 1.14% 1.12%

#Best 2 5 17 14 35 20 26 30

F
C
F
S

Avg (s) 52006 51401 50818 50818 50683 50669 50734 50734

Dev (%) 6.06% 3.65% 1.24% 1.24% 0.59% 0.48% 0.64% 0.64%

#Best 0 5 16 19 60 61 53 41

Table C3. Behavior in terms of maximum turnover time of different batching algorithms (GVNS, ILS, and
FCFS) combined with S-Shape routing strategy and different time-window algorithms (VTW B1, VTW B2,
VTW B3, VTW HE, VTW M1, VTW M2, FTW NW, and FTW ZH).

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

G
V
N
S

Avg (s) 43054 41922 40612 40848 40485 40099 40104 40154

Dev (%) 72.49% 57.71% 29.79% 29.60% 13.00% 10.71% 9.90% 8.28%

#Best 6 5 16 15 18 34 23 29

IL
S

Avg (s) 45231 44122 43062 42963 42150 42380 42027 42093

Dev (%) 68.20% 45.85% 30.75% 28.84% 9.52% 9.58% 6.92% 8.12%

#Best 14 16 18 15 18 20 24 27

F
C
F
S

Avg (s) 46737 45408 44108 44108 43923 43972 44053 44068

Dev (%) 65.41% 36.62% 10.82% 10.82% 8.05% 7.64% 5.71% 5.76%

#Best 2 9 22 21 53 44 53 48
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Appendix D. Detailed results of the influence of time-window algorithms
on the performance of the studied methods for different
objective functions, when varying the number of pickers

Table D1. Behavior in terms of picking time of a GVNS batching algorithm, combined with S-Shape rout-
ing strategy and different time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH) when varying the number of pickers.

Picking time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

1
P
ic
k
e
r Avg (s) 44017 44071 44277 44295 44564 44611 45152 45115

Dev (%) 0.20% 0.64% 1.95% 2.03% 3.57% 4.33% 7.65% 7.57%

#Best 76 41 9 5 5 5 3 4

2
P
ic
k
e
rs Avg (s) 44498 44726 45272 45240 46096 47154 48824 48904

Dev (%) 0.15% 1.26% 3.95% 3.79% 8.17% 15.47% 26.09% 26.25%

#Best 110 23 5 5 0 0 2 0

3
P
ic
k
e
rs Avg (s) 44924 45275 46169 46121 47946 50646 53877 54237

Dev (%) 0.15% 1.57% 5.36% 5.20% 12.76% 27.38% 45.96% 46.69%

#Best 108 21 3 6 0 2 6 1

4
P
ic
k
e
rs Avg (s) 45174 45604 46822 46797 49531 54327 58518 59401

Dev (%) 0.16% 1.77% 6.30% 6.10% 16.28% 39.18% 62.00% 64.06%

#Best 117 11 5 1 0 1 9 0

5
P
ic
k
e
rs Avg (s) 45220 45773 47074 47043 50588 57319 62291 63918

Dev (%) 0.15% 1.91% 6.56% 6.60% 18.53% 47.80% 74.45% 78.13%

#Best 118 14 1 2 1 0 9 0

Table D2. Behavior in terms of completion time of a GVNS batching algorithm, combined with S-Shape

routing strategy and different time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE, VTW M1,
VTW M2, FTW NW, and FTW ZH) when varying the number of pickers.

Completion time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

1
P
ic
k
e
r Avg (s) 46911 46268 45706 45728 45662 45627 45670 45638

Dev (%) 6.14% 3.56% 1.18% 1.23% 0.85% 0.73% 0.74% 0.67%

#Best 1 6 12 15 28 32 22 29

2
P
ic
k
e
rs Avg (s) 27061 26501 26095 26125 25954 25869 25840 25819

Dev (%) 8.07% 4.98% 2.66% 2.80% 1.75% 1.24% 1.02% 0.83%

#Best 1 1 12 10 32 28 34 34

3
P
ic
k
e
rs Avg (s) 21568 21169 20889 20874 20743 20549 20555 20505

Dev (%) 7.58% 5.22% 3.52% 3.49% 2.56% 1.35% 1.17% 0.89%

#Best 0 1 9 7 18 48 47 40

4
P
ic
k
e
rs Avg (s) 19334 19113 18837 18810 18625 18463 18431 18309

Dev (%) 7.02% 5.79% 4.04% 3.90% 2.61% 1.58% 1.13% 0.54%

#Best 2 0 4 9 23 32 49 58

5
P
ic
k
e
rs Avg (s) 18141 18003 17748 17721 17522 17371 17256 17181

Dev (%) 6.72% 5.87% 4.28% 4.13% 2.76% 1.71% 0.84% 0.45%

#Best 1 0 5 5 21 29 65 59
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Table D3. Behavior in terms of maximum turnover time of a GVNS batching algorithm, combined with

S-Shape routing strategy and different time-window algorithms (VTW B1, VTW B2, VTW B3, VTW HE,
VTW M1, VTW M2, FTW NW, and FTW ZH) when varying the number of pickers.

Maximum turnover time

VTW B3 VTW B2 VTW B1 VTW HE VTW M1 VTW M2 FTW ZH FTW NW

1
P
ic
k
e
r Avg (s) 43054 41922 40612 40848 40485 40099 40104 40154

Dev (%) 72.49% 57.71% 29.79% 29.60% 13.00% 10.71% 9.90% 8.28%

#Best 6 5 16 15 18 34 23 29

2
P
ic
k
e
rs Avg (s) 22547 20602 18766 18843 17451 17388 17310 17208

Dev (%) 226.61% 154.18% 93.41% 95.33% 25.49% 19.86% 11.67% 10.54%

#Best 5 2 10 14 19 20 37 51

3
P
ic
k
e
rs Avg (s) 16200 14191 12055 12199 10259 10175 10254 9910

Dev (%) 354.37% 249.60% 138.32% 145.16% 32.72% 25.01% 15.95% 6.14%

#Best 1 4 7 6 20 23 49 62

4
P
ic
k
e
rs Avg (s) 13649 11733 9390 9543 7594 7248 7415 6857

Dev (%) 421.39% 313.18% 175.75% 177.23% 43.66% 32.19% 31.63% 4.41%

#Best 4 1 4 5 16 16 65 75

5
P
ic
k
e
rs Avg (s) 12333 10667 8155 8115 6017 5798 5818 5358

Dev (%) 479.54% 379.97% 204.43% 199.38% 51.45% 37.71% 35.19% 3.15%

#Best 1 1 3 2 11 21 81 78
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Appendix E. Characteristics of the instances

Dataset #1 Dataset #2
(Albareda-Sambola et al. (2009)) (Henn (2012))

W1 W2 W3 W4 W5

Storage policy Random / ABC Random / ABC

Depot position Center / Left corner Center

Order size U(1,7) U(2,10) U(5,25) U(1,36) U(5,25)

Item weight 1 1 1 U(1,3) 1

Batch capacity (weight) 12 24 150 80 30 / 45 / 60 / 75

# parallel aisles 4 10 25 12 10

# of picking positions per aisle 2x30 2x20 2x25 2x16 2x45

# of total picking positions 240 400 1250 384 900

Parallel aisle length 50 m 10 m 50 m 80 m 45 m

Parallel aisle width 4.3 m 2.4 m 5 m 15 m 5 m

# of instances 20 20 20 20 64

Travel speed (m/min.) 48 48 48 48 48

Extraction speed (items/min) 6 6 6 6 6

Batch setup time 3 min 3 min 3 min 3 min 3 min

Table E1. Characteristics of the warehouses and the work parameters.

#Customer orders

40 50 60 80 100 150 200 250

4 Hours 0.167 0.208 0.250 0.334 0.417 0.625 0.834 1.042

Table E2. λ values for each number of orders.
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Appendix F. Exact results

Picking Time Completion Time Turnover Time

nmax CPU Time (s) nmax CPU Time (s) nmax CPU Time (s)

H abc1 40 29 13 2649 14 1325 13 1068

H abc1 60 38 11 1546 16 2854 17 2840

H abc1 80 63 12 589 16 214 17 3246

H abc2 40 9 13 56 14 2163 13 2006

H abc2 60 18 11 1900 13 2392 16 666

H abc2 80 47 13 768 15 327 16 2849

H ran1 40 31 12 3088 21 423 19 2195

H ran1 60 38 11 581 12 1191 13 1718

H ran1 80 63 12 1216 15 2165 16 1294

H ran2 40 12 14 3222 28 19 19 3051

H ran2 60 18 11 2501 12 559 15 2855

H ran2 80 47 12 1025 15 3294 15 1653

A W1 50 000 13 725 33 1274 25 3555

A W1 100 030 13 1175 13 910 16 3399

A W1 200 090 12 290 13 1901 14 3325

A W2 150 060 12 1250 15 2583 14 1897

A W2 200 090 14 319 21 77 17 1586

A W2 250 000 12 488 12 751 12 530

A W3 50 030 23 733 18 1936 15 2392

A W3 150 060 16 3365 15 956 15 1010

A W3 250 090 21 3600 20 1938 15 2715

A W4 100 030 12 225 12 535 11 1275

A W4 150 030 12 206 12 1242 11 3263

A W4 200 060 11 2353 11 1199 11 1837

Table F1. Largest number of orders (nmax) per instance and objective function, that the exact model is able

to handle within a time limit of one hour.
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