

This item is the archived peer-reviewed author-version of:

Effectiveness of cefmetazole versus meropenem for invasive urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli

Reference:

Hayakawa Kayoko, Matsumura Yasufumi, Uemura Kohei, Tsuzuki Shinya, Sakurai Aki, Tanizaki Ryutaro, Shinohara Koh, Hashimoto Takehiro, Hase Ryota, Matono Takashi,- Effectiveness of cefmetazole versus meropenem for invasive urinary tract infections caused by extended-spectrum β-lactamase-producing Escherichia coli

Antimicrobial agents and chemotherapy - ISSN 1098-6596 - 67:10(2023), e0051023 Full text (Publisher's DOI): https://doi.org/10.1128/AAC.00510-23

To cite this reference: https://hdl.handle.net/10067/2004050151162165141

uantwerpen.be

Institutional repository IRUA

- Effectiveness of Cefmetazole vs Meropenem for Invasive Urinary Tract Infections 1 2 Caused by Extended-Spectrum B-Lactamase-Producing Escherichia coli 3 Kayoko Hayakawa,¹# Yasufumi Matsumura,² Kohei Uemura,³ Shinya Tsuzuki,^{1,4} Aki 4 Sakurai,⁵ Ryutaro Tanizaki,⁶ Koh Shinohara,² Takehiro Hashimoto,⁷ Ryota Hase,⁸ Takashi 5 Matono,⁹ Hideaki Kato,¹⁰ Momoko Mawatari,¹¹ Hiroshi Hara,¹² Yukihiro Hamada,¹³ Sho 6 Saito,¹ Norio Ohmagari,¹ Yohei Doi^{5,14} 7 8 9 ¹Disease Control and Prevention Center, National Center for Global Health and Medicine.
- 10 Tokyo, Japan
- ¹¹ ²Department of Infection Control and Prevention, Kyoto University Hospital, Kyoto, Japan
- ³Interfaculty Initiative in Information Studies, The University of Tokyo, Tokyo, Japan
- ⁴Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
- ⁵Departments of Microbiology and Infectious Diseases, Fujita Health University School of
- 15 Medicine, Aichi, Japan
- ⁶Department of Internal Medicine and General Medicine, Ise Municipal General Hospital, Mie,
- 17 Japan
- ⁷Infection Control Center, Oita University Hospital, Oita, Japan
- 19 ⁸Department of Infectious Diseases, Japanese Red Cross Narita Hospital, Chiba, Japan
- ⁹Department of Infectious Diseases, Aso Iizuka Hospital, Fukuoka, Japan
- 21 ¹⁰Department of Stem Cell and Immune Regulation, Yokohama City University Graduate
- 22 School of Medicine, Kanagawa, Japan
- 23 ¹¹Department of Infectious Disease, Japanese Red Cross Medical Center, Tokyo, Japan
- 24 ¹²Department of pharmacy, Yokohama Brain and Spine Center, Kanagawa, Japan
- ¹³Department of pharmacy, Tokyo Women's Medical University Hospital

- 26 ¹⁴Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh,
- 27 USA.
- 28
- 29 Running head: Cefmetazole for UTI due to ESBL E. coli
- 30
- 31 #Address correspondence to Kayoko Hayakawa, khayakawa@hosp.ncgm.go.jp
- 32 Department of Infectious Diseases, Disease Control and Prevention Center, National Center for
- 33 Global Health and Medicine, Tokyo, Japan
- 34
- 35

36 Abstract

37 Cefmetazole is active against extended-spectrum β -lactamase-producing *Escherichia coli* 38 (ESBLEC) and is a potential candidate for carbapenem-sparing therapy. This multicenter, 39 observational study included patients hospitalized for invasive urinary tract infection due to 40 ESBLEC between March 2020 and November 2021 at 10 facilities in Japan, for whom either 41 cefmetazole or meropenem was initiated as a definitive therapy within 96 hours of culture 42 collection and continued for at least 3 days. Outcomes included clinical and microbiological 43 effectiveness, recurrence within 28 days, and all-cause mortality (14-day, 30-day, in-hospital). 44 Outcomes were adjusted for the inverse probability of propensity scores for receiving 45 cefmetazole or meropenem. Eighty-one and forty-six patients were included in the cefmetazole 46 and meropenem groups, respectively. Bacteremia accounted for 43% of the cefmetazole group, 47 and 59% of the meropenem group. The crude clinical effectiveness, 14-day, 30-day, and 48 in-hospital mortality for patients in the cefmetazole and meropenem groups were 96.1% vs 49 90.9%, 0% vs 2.3%, 0% vs 12.5%, and 2.6% vs 13.3%, respectively. After propensity score 50 adjustment, clinical effectiveness, the risk of in-hospital mortality, and the risk of recurrence 51 were similar between the two groups (p=0.54, p=0.10, and p=0.79, respectively). In all cases 52 with available data (cefmetazole : n=61, meropenem : n=22), both drugs were 53 microbiologically effective. In all isolates, bla_{CTX-M} was detected as the extended-spectrum 54 β-lactamase gene. The predominant CTX-M subtype was CTX-M-27 (47.6%). Cefmetazole 55 showed clinical and bacteriological effectiveness comparable to meropenem against invasive 56 urinary tract infection due to ESBLECs.

57

58 Keywords: Antimicrobial resistance; carbapenem; E. coli; urinary tract infection; cephamycin

- 59
- 60

61 Introduction

62 Third-generation cephalosporin-resistant (3GCR) *Escherichia coli* has been increasing

63 worldwide. The reported median 3GCR rate of bacteremia due to E. coli, which is one of the

- 64 two sustainable development goals for antimicrobial resistance indicators, was 36.6%
- 65 (interquartile range [IQR], 17.5–58.3) according to the recent global surveillance report (1).
- 66 Based on data from 2167 medical institutions in Japan, 3GCR E. coli was isolated from 3.7%

of hospitalized patients (i.e., approximately 100,000 patients per year). The 3GCR rate of *E*.

coli has continually been increasing (26.8% in 2017 and 28.3% in 2020) (2).

69 Extended-spectrum β -lactamase (ESBL) production is the main mechanism by which *E. coli*

70 acquires resistance to third-generation cephalosporins (1). Carbapenems are the first-line

71 treatment option for infections due to ESBL-producing E. coli (ESBLEC). However, increased

72 carbapenem usage may exert selective pressure on the indigenous flora, leading to

73 disadvantages including an increase in carbapenem-resistant bacteria (3). Therefore, there is a

read for effective and targeted carbapenem-sparing therapy for ESBLEC infection. The most

75 promising carbapenem-sparing therapy was piperacillin-tazobactam; however, a recent

76 international randomized clinical trial was not able to demonstrate its non-inferiority to

77 meropenem (MEM) (4).

78 Cefmetazole (CMZ), a semisynthetic cephamycin antibiotic, is stable against 79 hydrolysis by ESBLs and exhibits antibacterial activity against ESBL-producing bacteria (5), 80 making it a promising candidate for carbapenem-sparing therapy. Although it is no longer 81 available in many countries, CMZ is available in Japan and is commonly used to treat 82 infections due to ESBLEC, including invasive urinary tract infections (iUTI). Data on the 83 effectiveness of CMZ for this indication are only available from retrospective single-center or 84 oligo-center studies (6-9). Additionally, despite its wide range of approved doses (1–4 g/day in 85 patients with normal renal function, no dosage recommendation in the package insert for renal

86	impairment), there are limited data on appropriate, evidence-based dosing (8, 10). CMZ
87	contains an N-methyl-tetrazole-thiol side chain, which inhibits vitamin K epoxide reductase
88	and may inhibit synthesis of vitamin K-dependent coagulation factors (11). Real world data on
89	adverse events of CMZ, including coagulopathy, are also scarce (11, 12).
90	This study aimed to determine the clinical effectiveness of CMZ against iUTI due to
91	ESBLEC compared to MEM. Microbiological characteristics of ESBLEC, optimal dosing of
92	CMZ, and adverse events were also evaluated.
93	
94	Materials and Methods
95	Study design and patients
96	This prospective, observational study was conducted at 10 hospitals in Japan between March
97	2020 and November 2021. Adult patients (age \geq 20 years) were eligible for enrollment if they
98	met all three of the following criteria (a, b, c).
99	
100	a) Clinical diagnosis of iUTI (a-1 and a-2)
101	a-1) Clinical symptoms of any of the following
102	• Fever of \geq 37.5 °C, or symptom of pyelonephritis such as low back pain, lateral
103	abdominal pain, and renal pain including costovertebral angle tenderness (13)
104	• Sepsis due to UTI with Quick Sepsis-related Organ Failure Assessment (qSOFA)
105	score ≥ 1 (14)
106	a-2) Presence of pyuria
107	
108	b) Microbiological diagnosis
109	• ESBLEC detected in urine culture ($\geq 10^4$ CFU/mL)
110	• If ESBLEC was detected in blood culture only, no other source of infection other than

111	the uniner treat
	the unitary tract
	2

112

113 c) Antibiotic treatment

Either CMZ or MEM initiated within 96 hours of culture collection as definitive
 therapy and continued for at least 3 calendar days.

116 Detailed exclusion criteria are available in the supplementary document. The doses of CMZ

117 and MEM were determined at the discretion of each facility.

118

119 Clinical data collection and definition

120 The clinical data were collected from electronic medical records and predefined definitions

121 were used for each condition (supplementary document).

122

123 Outcomes

- 124 Outcomes, which are detailed in the supplementary material, included clinical and
- 125 microbiological effectiveness, recurrence within 28 days from the start of either antibiotic, and
- 126 all-cause mortality (14-day, 30-day, in-hospital). The primary outcome was clinical
- 127 effectiveness between day 4 and 6 of treatment (early treatment period). Clinical effectiveness
- 128 was defined as resolution or improvement of clinical symptoms (e.g. fever, low back pain,
- 129 lateral abdominal pain, renal pain including costovertebral angle tenderness, tachypnea, low
- 130 blood pressure, altered mental status) to pre-infection baseline, as determined by an infectious
- 131 disease specialist (15).

132

133 Microbiology

134 Bacterial identification and susceptibility testing were conducted using MicroScan WalkAway

135 (Beckmann-Coulter, Germany) (six facilities), VITEK2 (bioMérieux, France) (one facility),

136	and BD phoenix (Beckton Dickinson, USA) (one facility). MALDI Biotyper (Bruker, Bremen,
137	Germany) was also used for bacterial identification in one facility. Bacteria isolated from
138	enrolled patients were sent to the central laboratory based at Kyoto University Graduate School
139	of Medicine for further analysis. At the central laboratory, antibiotic susceptibility was
140	evaluated by broth microdilution (BMD) using a Dry Plate Eiken (Eiken, Tokyo, Japan)
141	according to CLSI guidelines (16). The results were interpreted using the 2021 CLSI
142	breakpoints (15). Detailed microbiological analyses are described in the supplementary
143	material.
144	

145 Pharmacokinetic/pharmacodynamic analysis

146 The pharmacokinetic and pharmacodynamic parameters of CMZ and MEM were calculated

147 using the model reported by Tomizawa et al. (17). Creatinine Clearance (CrCl) was calculated

148 based on the Cockcroft-Gault equation (18). The time above MIC (TAM) was calculated using

149 the MIC value obtained from each patient and its simulated CMZ and MEM concentration.

150 MIC values determined by BMD at the central laboratory were used for the analysis. Phoenix

151 NLME version 8.1 (Certara, Princeton, NJ, USA) was used for the pharmacokinetic simulation

152 to calculate the TAM.

153

154 Statistical analyses

155 The inverse probability of treatment weight (IPTW) method was used to adjust for baseline

156 confounders of CMZ and MEM treatment (Supplementary Table 1). Detailed information on

157 statistical analyses is available in the supplementary document.

158

159 **Ethics**

160 The study was approved by the institutional review board at the National Center for Global

161	Health and Medicine (No. NCGM-G-003389-00). The opt-out recruitment method was used,
162	and the requirement for informed consent was waived.
163	
164	Data availability
165	Data are available upon reasonable request with the permission of participating facilities. The
166	sequences determined in this study have been deposited in the GenBank/ENA/DDBJ Sequence
167	Read Archive database (PRJNA976817).
168	
169	Results
170	Comparison of clinical characteristics
171	Eighty-one and forty-six patients were included in the CMZ and MEM groups, respectively. In
172	univariable analysis, the CMZ group was older, had dependent functional status more often
173	than the MEM group, and had more frequently resided in nursing home or long-term care
174	facilities (LTCF) prior to admission (Table 1). Diabetes was more common in the MEM group
175	
175	than the CMZ group. Use of indwelling device (central venous catheter/central venous
176	than the CMZ group. Use of indwelling device (central venous catheter/central venous port/hemodialysis [CV/HD] catheter, and device other than CV/HD catheter and urinary
176 177	than the CMZ group. Use of indwelling device (central venous catheter/central venous port/hemodialysis [CV/HD] catheter, and device other than CV/HD catheter and urinary device) was more prevalent in the MEM group than the CMZ group. The number of days from
176 177 178	than the CMZ group. Use of indwelling device (central venous catheter/central venous port/hemodialysis [CV/HD] catheter, and device other than CV/HD catheter and urinary device) was more prevalent in the MEM group than the CMZ group. The number of days from onset to CMZ or MEM initiation was lower in the MEM group than CMZ group. The MEM

179 group was more likely to be in an intensive care unit (ICU) than the CMZ group on the day of

180 MEM or CMZ initiation. The MEM group had higher qSOFA score, Pitt score, white blood cell

181 count, and C-reactive protein (CRP) level than the CMZ group on the day of MEM or CMZ

182 initiation. The number of days from CMZ or MEM initiation to fever resolution was similar

183 between the two groups (CMZ vs MEM group: 2 days [IQR: 1-6] vs 3 days [1-9]), whereas

184 leukocytosis (CMZ vs MEM group: 3 [4.5%] vs 11 [25.6%]), and high CRP (≥10 mg/dL) (5

185 [7.6%] vs 16 [37.2%]) were more commonly observed in the early treatment period in the

186 MEM group than the CMZ group (Supplementary Table 2).

187

188 Antibiotic treatment

189	The antibiotic treatment given is summarized in Table 2. Total duration of study drug as well as
190	total duration of all antibiotics were similar between the two groups. Empirical antibiotic
191	treatment was used more frequently in the CMZ group than the MEM group, with ceftriaxone
192	use significantly more common in the CMZ group than the MEM group. No statistical
193	difference was noted in the empiric use of potentially effective antibiotics against ESBLEC,
194	such as piperacillin-tazobactam (TZP). MEM was used in 3 cases (3.7%) of the CMZ group as
195	empiric therapy.
196	Switch from definitive therapy with CMZ or MEM to another antibiotic therapy was
197	more frequent in the MEM group than the CMZ group ($p<0.001$). No significant differences
198	were found between the two groups regarding the individual antimicrobial agents switched.
199	CMZ replaced MEM in 34.5% (n=16) of the MEM group. For two patients who received MEM
200	after CMZ, one patient clinically improved but was changed to MEM due to liver dysfunction,
201	and in the other, CMZ was clinically and microbiologically effective prior to the switch to
202	MEM.
203	
204	MIC and susceptibility of isolated ESBLEC
205	All tested isolates (n=124) were susceptible to MEM with low MIC ($\leq 0.12 \text{ mg/L}$). The MICs to
206	CMZ ranged from ≤ 1 (n=86) to 8 mg/L (n=5) (Table 3). Susceptibility rates to

207 β -lactam/ β -lactamase inhibitors, such as amoxicillin-clavulanate and TZP were 77.4% (n=96)

- and 96% (n=119), respectively. The highest MIC of TZP was 16 mg/L (n=5 [4%]).
- 209 Susceptibility to ciprofloxacin was as low as 15.3% (n=19), and approximately half (n=66,
- 210 53.2%) of the isolates were resistant to trimethoprim-sulfamethoxazole. Among

aminoglycosides, amikacin was the most active agent with all 124 isolates testing susceptible.

212

213 Molecular characteristics of isolated ESBLEC 214 In all isolates, *bla*_{CTX-M} was detected as the ESBL gene (Table 4). The predominant CTX-M 215 subtype was CTX-M-27 (n=59, 47.6%), followed by CTX-M-15 (n=30, 24.2%) and 216 CTX-M-14 (n=25, 20.2%). ST131 accounted for 73.4% (n=91) of the clones, followed by 217 ST1193 (n=6, 4.8%), and the rest comprised 18 different sequence type (STs). ST131 clades 218 included C1-M27 (n=43, 47.3%), C1-non-M27 (n=20, 22%), C2 (n=17, 18.7%), and A (n=8, 219 8.8%). 220 Genes for the following other β -lactamases were detected: TEM-1, 26 (21%); OXA-1, 221 14 (11.3%); TEM-190, 1 (0.8%); TEM-135, 1 (0.8%). Genes for pAmpC was detected in only 222 one isolate (DHA-1), and the CMZ MIC of the isolate was $\leq 1 \text{ mg/L}$. 223 224 Outcome 225 The all-cause 30-day and in-hospital mortality rates were higher in the MEM group than the 226 CMZ group (n=5 [12.5%] vs 0, n=6 [13.3%] vs n=2 [2.6%], respectively). The median days 227 from the completion of the treatment to the recurrence was 11 days (range, 6-27) in the CMZ 228 group and 11 days (range, 8–14) in the MEM group. In all cases with follow-up urine cultures, 229 both drugs were microbiologically effective. Clostridioides difficile infection (CDI) within 4 230 weeks after the end of treatment was observed in 2 (2.5%) patients in the CMZ group and 1 231 (2.2%) patient in the MEM group. Days from CMZ treatment to CDI onset were 4 days and 26 232 days in the two CMZ patients, respectively, and the onset of CDI could not be determined in the 233 patient in the MEM group. Carbapenem-resistant Enterobacterales was not detected in any 234 clinical specimens within 4 weeks of the end of treatment in either group. 235 Mortality rates for bacteremic patients due to ESBLEC were similar between the two

236 groups: 14-day mortality, 0 vs 0; 30-day mortality, 0 vs 2 (9.1%); in-hospital mortality, 0 vs 2

237 (7.4%) for the CMZ and MEM groups, respectively.

After PS adjustment, clinical effectiveness did not differ between the two groups both in the early (adjusted odds ratio [aOR]: 0.63 [95% confidence interval: 0.15–2.75], p=0.54) and

- 240 late treatment periods (aOR: 1.83 [0.26–12.75], p=0.54) (Table 5). Adjusted odds ratio for
- 241 14-day mortality was not available due to the small number of events. The risk of 30-day
- 242 mortality was lower in CMZ group (aOR: <0.01 [95% confidence interval: NA], p<0.01),
- 243 whereas and the risk of in-hospital mortality, recurrence, and LOS after isolation of ESBLEC
- among survivor were similar in both groups (aOR: 0.20 [0.03-1.36], p=0.10; aOR: 1.36 [0.14-
- 245 12.93], p=0.79; p=0.23, respectively).
- 246

247 Pharmacokinetic/pharmacodynamic analysis

248 Dosing of CMZ and MEM with TAM is summarized in Table 6. Except for one patient in the

- 249 CMZ group with CrCl of 32 mL/min for whom CMZ (2g q 24 h) was infused over 120 minutes,
- 250 CMZ and MEM was infused over 30 minutes (CMZ: 19 [23.5%], MEM: 7 [15.2%]) or 60

251 minutes (CMZ: 61 [75.3%], MEM: 39 [84.8%]). In the MEM group, TAM was 100% in all

252 cases. In all 6 cases where CMZ was clinically ineffective in the early treatment period, TAM

253 of CMZ was 100%.

254

255 Adverse events

- 256 Regarding adverse events considered related to CMZ or MEM, 3 patients in the CMZ group
- had liver dysfunction (Grade 1: n=2, Grade 2: n=1) and 1 patient had skin rash (Grade 1); 1
- 258 patient in the MEM group had non-CDI diarrhea (Grade 4).

259 Data were available for 35 patients (CMZ: 18, MEM: 17) for prothrombin time (PT)

and 33 patients (CMZ: 17, MEM: 16) for activated partial thromboplastin time (APTT) in the

261 early treatment period. Compared to the pre-treatment period, no significant increase was 262 observed for PT (median increase presented as fold-change [IQR]; CMZ: 1 [0.8–1.1], MEM 263 0.9 [0.8–1], p=0.291) or APTT (CMZ: 0.9 [0.8–1.1], MEM 0.9 [0.8–1.2], p= 0.801) in either 264 group in the early treatment period. Data were available for 19 patients (CMZ: 14, MEM: 5) for 265 PT and 19 APTT (CMZ: 14, MEM: 5) in the late treatment period. Compared to pre-treatment, 266 there was no significant increase for PT (CMZ: 1 [0.9–1], MEM 0.9 [0.7–1.1], p value 0.781) 267 or APTT (CMZ: 1 [0.9–1.1], MEM 1.2 [1–1.6], p=0.064) in either group in the late treatment 268 period.

269

270 Discussion

271 This observational study showed that CMZ was as effective as MEM in a cohort of patients 272 with iUTIs caused by ESBLEC. This study includes the largest number of patients and was 273 conducted at the largest number of facilities among studies that examined the effectiveness of 274 CMZ for ESBLEC to date (6-9). Among previous reports, three studies compared the 275 effectiveness of CMZ with that of carbapenems, and in all three studies CMZ was as effective 276 as carbapenems. However, only one study adjusted for background factors using propensity 277 scores (9). In that study focusing on ESBLEC bloodstream infection (BSI) (hereafter referred 278 to as CF-CARBA study) (9), patients treated with CMZ were included as part of the combined 279 CMZ and flomoxef group (CF), where flomoxef is an oxacephem agent with activity against 280 ESBLEC that is approved for clinical use in Japan. The unadjusted 30-day mortality rates in the 281 definitive treatment cohort were 9.3% in the carbapenem group and 5.1% in the CF group, and 282 7.0% and 7.4%, respectively, after PS adjustment. The median age of patients was 283 approximately 10 years higher in the present study than the CF-CARBA study. The 284 CF-CARBA study included more immunocompromised patients. The present study also 285 included patients other than those with bacteremia, and the 30-day unadjusted mortality rate

286 was lower in the CMZ group than in the CF-CARBA study, but higher in the MEM group than 287 the CF-CARBA study. Intriguingly, the 30-day mortality rate in the MEM group was lower 288 when only the patients with BSI due to ESBLEC were included, to almost the same level as in 289 the CF-CARBA study. Although identifying the cause of death was outside this study's scope, 290 it is possible that causes of death not directly related to infection were also involved, which 291 may have contributed to the lower mortality associated with the CMZ group than the MEM 292 group, even after PS adjustment. Despite the use of slightly different criteria, the two studies 293 were consistent in demonstrating high clinical effectiveness of CMZ against ESBLEC 294

infection.

295 The dosing of CMZ was also examined in this study. In this cohort, the MIC of CMZ 296 for all ESBLEC strains available for analysis (n=124) was ≤ 8 mg/L. In the majority of cases, a 297 dose of 1 g q 8 h for patients with CrCl >50 mL/min and 1 g q 12 h for CrCl 30–50 mL/min 298 resulted in a TAM >50%, which is the pharmacodynamic target associated with effectiveness 299 in the treatment of ESBLEC infections (19). Clinical failure occurred in patients with high 300 TAM in both the MEM and CMZ groups, which is consistent with our previous report (8) and 301 may be more related to the patients' underlying conditions than the intrinsic efficacy of the 302 antibiotics. Of the six patients in the CMZ group and the eight patients in the MEM group for 303 whom study drugs were clinically ineffective, microbiologically effectiveness was confirmed 304 in all patients for whom microbiological evaluation was possible (4 patients in the CMZ group 305 and 6 patients in the MEM group). There was no clear difference between CMZ and MEM in 306 safety, including coagulation function tests. CMZ is reportedly associated with coagulopathy 307 and increased hemorrhagic events (11, 12), but we did not observe a signal in our relatively 308 small cohort.

309 We also performed a molecular microbiological analysis. In concordance with the 310 global distribution, ST131 was the major ST in this study. However, nearly half of the CTX-M

311 gene subtypes were CTX-M-27. CTX-M-14, which differs from CTX-M-27 by only one 312 nucleotide, accounted for 20%. The global pandemic subtype CTX-M-15 accounted for only 313 24%, and the ST131 clade C1-M27, accounted for approximately 50%, confirming a unique 314 genetic background of ESBLECs in Japan (20). These molecular epidemiological differences 315 may explain the much lower detection rate of bla_{OXA-1} (11.3%) in this cohort compared to the 316 MERINO trial cohort (67.6%) (4). As the presence of bla_{OXA-1} is associated with higher MICs 317 of TZP (21), our study suggests that the results of the MERINO trial may not be directly 318 applicable in Japan.

319 CMZ is hydrolyzed by AmpC and strains producing this group of enzymes are 320 resistant to this agent. In the present study, pAmpC was detected in only 0.8% (n=1). In a 321 previous report from Japan, co-production of ESBL and pAmpC genes was relatively rare (5). 322 3GCR E. coli with a CMZ MIC of 16 mg/L are considered susceptible by CLSI criteria (16), 323 but increasing rates of pAmpC production among E. coli strains with CMZ MICs of 16 mg/L or 324 higher have been reported (5), which should be noted when interpreting MIC data. 325 The antimicrobial agents prescribed prior to study drug administration differed 326 between the two groups, with MEM initiated more often without prior drug administration and 327 CMZ administered more frequently after other drugs, especially ceftriaxone. The propensity to 328 receive TZP, which might still be effective for ESBLEC, did not differ between the two groups. 329 The patients in the MEM group tended to be more ill at the initiation of the study drug 330 administration than the CMZ group (e.g., higher qSOFA score, Pitt bacteremia score, and CRP 331 levels; more patients in ICU). These differences were considered when adjusting for PS. 332 Approximately one-third of patients in the MEM group were later de-escalated to CMZ to 333 complete the treatment. Since the switch occurred when treatment of the acute phase of

infection had already been completed, it is unlikely to have affected the study outcome.

335	This study has certain limitations. Due to the observational nature of the study, there
336	were some missing data regarding some parameters including microbiological effectiveness.
337	The significant difference in 30-day mortality does not reflect superiority of CMZ over MEM,
338	but rather the fact that there were few deaths in the CMZ group. Although PS was used to
339	minimize the baseline differences between the two groups, there may be residual differences
340	that could not be fully adjusted as the mortality risk at baseline seemed to differ substantially
341	between the two groups.
342	This study has shown that the clinical and bacteriological effectiveness of CMZ was

343 comparable to MEM in the treatment of iUTI cases caused by ESBLEC in a cohort that

344 included more than 40% of patients with concomitant bacteremia. In addition, an appropriate

dosing strategy of CMZ was developed. Based on these findings, CMZ appears to be a safe and

346 effective alternative to MEM without increase in mortality, however, a randomized clinical trial

347 (RCT) is necessary to conclusively demonstrate this; one is currently in progress (22).

348

349

350 Acknowledgements

351 This work was supported by a Grant-in-Aid for Scientific Research (C) (grant no. 19K10573)

352 (K.H.); and a grant for International Health Research from the Ministry of Health, Labor and

353 Welfare of Japan (grant no. 19A1022) (K.H.).

354

355 **Conflict of interest**

356 The Authors declare that there is no conflict of interest.

357

358 References

359 1. WHO. GLASS report. Available at:
 360 https://www.who.int/publications/i/item/9789240027336. Accessed on April 3, 2023.

361	2. JANIS. Annual open report 2020. Available at:
362	https://janis.mhlw.go.jp/english/report/open_report/2020/3/1/ken_Open_Report_Eng_
363	202000_clsi2012.pdf. Accessed on April 3, 2023.
364	3. Ahn JY, Song JE, Kim MH, Choi H, Kim JK, Ann HW, Kim JH, Jeon Y, Jeong SJ, Kim SB,
365	Ku NS, Han SH, Song YG, Yong D, Lee K, Kim JM, Choi JY. 2014. Risk factors for the
366	acquisition of carbapenem-resistant Escherichia coli at a tertiary care center in South
367	Korea: A matched case-control study. Am J Infect Control 42:621–625.
368	4. Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, Alenazi TH, Arabi Y, Falcone
369	M, Bassetti M, Righi E, Rogers BA, Kanj S, Bhally H, Iredell J, Mendelson M, Boyles
370	TH, Looke D, Miyakis S, Walls G, Al Khamis M, Zikri A, Crowe A, Ingram P,
371	Daneman N, Griffin P, Athan E, Lorenc P, Baker P, Roberts L, Beatson SA, Peleg AY,
372	Harris-Brown T, Paterson DL, MERINO Trial Investigators and the Australasian
373	Society for Infectious Disease Clinical Research Network (ASID-CRN). 2018. Effect
374	of piperacillin-tazobactam vs meropenem on 30-day mortality for patients with E coli
375	or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: A
376	randomized clinical trial. JAMA 320:984–994.
377	5. Matsumura Y, Yamamoto M, Nagao M, Tanaka M, Takakura S, Ichiyama S. 2016. In vitro
378	activities and detection performances of cefmetazole and flomoxef for
379	extended-spectrum beta-lactamase and plasmid-mediated AmpC
380	beta-lactamase-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 84:322–327.
381	6. Doi A, Shimada T, Harada S, Iwata K, Kamiya T. 2013. The efficacy of cefmetazole against
382	pyelonephritis caused by extended-spectrum beta-lactamase-producing
383	Enterobacteriaceae. Int J Infect Dis 17:e159-e163.
384	7. Fukuchi T, Iwata K, Kobayashi S, Nakamura T, Ohji G. 2016. Cefmetazole for bacteremia
385	caused by ESBL-producing enterobacteriaceae comparing with carbapenems. BMC
386	Infect Dis 16:427.
387	8. Hamada Y, Matsumura Y, Nagashima M, Akazawa T, Doi Y, Hayakawa K. 2021.
388	Retrospective evaluation of appropriate dosing of cefmetazole for invasive urinary tract
389	infection due to extended-spectrum beta-lactamase-producing Escherichia coli. J Infect
390	Chemother 27:1602–1606.
391	9. Matsumura Y, Yamamoto M, Nagao M, Komori T, Fujita N, Hayashi A, Shimizu T,
392	Watanabe H, Doi S, Tanaka M, Takakura S, Ichiyama S. 2015. Multicenter
393	retrospective study of cefmetazole and flomoxef for treatment of
394	extended-spectrum-beta-lactamase-producing Escherichia coli bacteremia. Antimicrob
395	Agents Chemother 59:5107–5113.
396	10. Hamada Y, Kasai H, Suzuki-Ito M, Matsumura Y, Doi Y, Hayakawa K. 2022.
397	Pharmacokinetic/pharmacodynamic analysis and dose optimization of cefmetazole and
398	flomoxef against extended-spectrum beta-lactamase-producing Enterobacterales in
399	patients with invasive urinary tract infection considering renal function. Antibiotics
400	(Basel) 11.
401	11. Breen GA, St Peter WL. 1997. Hypoprothrombinemia associated with cefmetazole. Ann
402	Pharmacother 31:180–184.
403	12. Chen LJ, Hsiao FY, Shen LJ, Wu FL, Tsay W, Hung CC, Lin SW. 2016. Use of
404	hypoprothrombinemia-inducing cephalosporins and the risk of hemorrhagic events: A
405	nationwide nested case-control study. PLOS ONE 11:e0158407.
406	13. Velasco M, Horcajada JP, Mensa J, et al. Decreased invasive capacity of
40/	quinolone-resistant Escherichia coli in patients with urinary tract infections. Clin
408	Intert Dis 2001; $33(10)$: 1682-6.
409	14. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus
410	Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): 801-10.

411	15. Rubin RH, Shapiro ED, Andriole VT, Davis RJ, Stamm WE. Evaluation of new
412	anti-infective drugs for the treatment of urinary tract infection. Infectious Diseases
413	Society of America and the Food and Drug Administration. Clin Infect Dis 1992;15
414	Suppl 1:S216-27.
415	16. CLSI. Performance Standards for Antimicrobial Susceptibility Testing, Clinical &
416	Laboratory Standards Institute, M100. 2021.
417	17. Tomizawa A, Nakamura T, Komatsu T, Inano H, Kondo R, Watanabe M, Atsuda K. 2017.
418	Optimal dosage of cefmetazole for intraoperative antimicrobial prophylaxis in patients
419	undergoing surgery for colorectal cancer. J Pharm Health Care Sci 3:1.
420	18. Cockcroft DW, Gault MH. 1976. Prediction of creatinine clearance from serum creatinine.
421	Nephron 16:31–41.
422	19. Andes D, Craig WA. 2005. Treatment of infections with ESBL-producing organisms:
423	Pharmacokinetic and pharmacodynamic considerations. Clin Microbiol Infect 11 Suppl
424	6:10–17.
425	20. Matsumura Y, Pitout JD, Gomi R, Matsuda T, Noguchi T, Yamamoto M, Peirano G,
426	DeVinney R, Bradford PA, Motyl MR, Tanaka M, Nagao M, Takakura S, Ichiyama S.
427	2016. Global Escherichia coli sequence Type 131 clade with blaCTX-M-27 gene.
428	Emerg Infect Dis 22:1900–1907.
429	21. Henderson A, Paterson DL, Chatfield MD, Tambyah PA, Lye DC, De PP, Lin RTP, Chew
430	KL, Yin M, Lee TH, Yilmaz M, Cakmak R, Alenazi TH, Arabi YM, Falcone M,
431	Bassetti M, Righi E, Rogers BA, Kanj SS, Bhally H, Iredell J, Mendelson M, Boyles
432	TH, Looke DFM, Runnegar NJ, Miyakis S, Walls G, Khamis MAI, Zikri A, Crowe A,
433	Ingram PR, Daneman N, Griffin P, Athan E, Roberts L, Beatson SA, Peleg AY, Cottrell
434	K, Bauer MJ, Tan E, Chaw K, Nimmo GR, Harris-Brown T, Harris PNA, MERINO
435	Trial Investigators and the Australasian Society for Infectious Disease Clinical
436	Research Network (ASID-CRN). 2021. Association between minimum inhibitory
437	concentration, beta-lactamase genes and mortality for patients treated with
438	piperacillin/tazobactam or meropenem from the Merino study. Clin Infect Dis
439	73:e3842–e3850-e50.
440	22. Hayakawa K, Yohei D, et al. Randomised Controlled Trial of Meropenem versus
441	Cefmetazole for definitive treatment of bloodstream infections due to ESBL- producing
442	Escherichia coli (CEFMEC trial). Available at:
443	https://center6.umin.ac.jp/cgi-open-bin/ctr/ctr_view.cgi?recptno=R000055809.
444	Accessed on June 23, 2023.
445	

448 Tables

449 Table 1. Comparison of clinical characteristics of invasive urinary tract infection

	CMZ (n=81)	MEM (n=46)
Patient demographic and comorbid condition	5	
Age	85 (76–90)	78 (69–85)
Male sex	28 (34.6)	23 (50)
Dependent functional status	58 (71.6)	21 (45.7)
Cardiovascular disease	11 (13.6)	11 (23.9)
Cerebrovascular accident	25 (31.3)	10 (21.7)
Dementia	27 (33.3)	8 (17.4)
Connective tissue disease	6 (7.4)	9 (19.6)
Mild liver disease	8 (9.9)	1 (2.2)
Moderate to severe kidney disease	2 (2.5)	2 (4.3)
Diabetes mellitus	15 (18.5)	17 (37)
Solid tumor (localized)	13 (16)	11 (23.9)
Solid tumor (metastatic)	6 (7.4)	3 (6.5)
Leukemia or lymphoma	0 (0)	2 (4.3)
Charlson comorbidity index	2 (1-4)	3 (2-3)
Any immunosuppressive status	6 (7.5)	8 (17.8)
Urological complication	33 (41.3)	24 (52.2)
Healthcare exposure prior to ESBLEC isolation	n	
Nursing home or LTCF residence	32 (40)	10 (21.7)
Hospitalization in the previous 3 months	17 (21.3)	16 (34.8)
Hospital onset ^b	19 (23.5)	13 (28.3)
Length of hospital stay before isolation of	0 (0–3)	0 (0–11)

450 between cefmetazole and meropenem treatment groups ^a (n=127)

ESBLEC, days

ESDEEC, days		
Surgery after admission prior to ESBLEC	5 (6.3)	6 (13)
isolation		
CV/HD catheter	0 (0)	3 (6.5)
Urinary device ^c	20 (24.7)	19 (41.3)
Device other than CV/HD catheter and urinary	5 (6.2)	10 (21.7)
device ^d		
Any antimicrobial exposure in the previous 1	27 (33.3)	15 (32.6)
month		
Clinical characteristics and severity of infectio	n	
Bacteremia due to ESBLEC	35 (43.2)	27 (58.7)
Polymicrobial culture ^c	25 (30.9)	17 (37)
Fever on the day of onset	72 (90)	41 (89.1)
Pain ^f on the day of onset	10 (12.5)	12 (26.1)
Days from onset to microbiological test	0 (0-1)	0 (0–2)
Days from onset to CMZ or MEM initiation	2 (0-3)	0 (0–2)
Fever on the day of CMZ or MEM initiation	41 (50.6)	26 (57.8)
ICU stay on the day of CMZ or MEM initiation	1 (1.2)	8 (17.4)
qSOFA on the day of CMZ or MEM initiation	0 (0-1)	1 (0–2)
Pitt bacteremia score ^g on the day of CMZ or	3 (0-3)	3 (3–5)
MEM initiation		
WBC on the day of CMZ or MEM initiation	8900 (6563–12598)	10825 (7405–
(/µL)		16318)
Leukocytosis on the day of CMZ or MEM	19 (27.1)	17 (40.5)
initiation		
CRP on the day of CMZ or MEM initiation	7.3 (4.2–14.5)	13.2 (5.5–23.8)
(mg/dl)		

$CRP \ge 1$	0 (mg	g/dL)
-------------	-------	-------

30 (42.9)

27 (64.3)

Abbreviations: CMZ, cefmetazole; CV, central venous catheter/central venous port; ESBLEC, ESBL–producing *E. coli*; HD, hemodialysis; ICU, intensive care unit; LTCF, long–term care facilities, MEM, meropenem, WBC, white blood cell.

Note. "Fever" is defined as temperature equal or higher than 37.5 °C, "leukocytosis" is defined as WBC>12000 μL.

a Data are presented as number (%) or median (interquartile range) unless indicated otherwise.

b Defined as length of hospital stay before isolation of ESBLEC equal or longer than 4 days.

c Urinary device includes urinary catheter, ureteral stent, and nephrostomy catheter.

d Including percutaneous endoscopic gastrostomy tube, tracheostomy tube, endotracheal tube, and nasogastric tube.

e Isolation of additional bacteria other than ESBLEC from the same culture.

f Pain includes lower back pain, lateral abdominal pain, and renal pain (including costovertebral angle tenderness).

g Pitt bacteremia score is calculated only for bacteremic cases.

451		
452		
453		
454		
455		
456		
457		
458		
459		
460		
461		
462		
463		
464		
465		
466		

Table 2. Comparison of outcomes of invasive urinary tract infection between

	CMZ (n=81)	MEM (n=46)
Outcome		
Clinically effective (early)	75 (92.6)	38 (82.6)
Clinically effective (late) ^b	73 (96.1)	40 (90.9)
Microbiologically effective (early) ^c	61 (100)	22 (100)
Microbiologically effective (late) ^c	9 (100)	5 (100)
14-day mortality ^d	0 (0)	1 (2.3)
30-day mortality ^d	0 (0)	5 (12.5)
In-hospital mortality ^d	2 (2.6)	6 (13.3)
Recurrence within 28 days	6 (8.3)	2 (5.6)
LOS after isolation of ESBLEC among	15 (11–34)	19 (14–35)
survivors, days		
Days from CMZ or MEM initiation to fever	2 (1-6)	3 (1–9)
resolution		
Defervescence from CMZ or MEM initiation to	29 (39.7)	14 (31.8)
early treatment period		
Inadequate source control	4 (4.9)	4 (8.7)
Dependent functional status on discharge	52 (68.4)	23 (57.5)
Discharge to home	36 (46.2)	22 (55)
Clostridiodes difficile infection within 28 days	2 (2.5)	1 (2.2)
after treatment		
CRE isolation within 28 days after treatment	0 (0)	0 (0)
Abbreviations: CMZ, cefmetazole; CRE, carbap	enem-resistant Ente	erobacterales; ESBLEC,
ESBL-producing E. coli; LOS, length of hospital	stay; MEM, merope	enem.

cefmetazole and	meropenem	treatment	groups ^a	(n=127)	

Note. "Early" indicates early treatment period, and "late" indicates late treatment period, and "fever" is defined as temperature equal or higher than 37.5 °C.

a Data are presented as number (%) or median (interquartile range) unless indicated otherwise.

b Data are missing for 5 (CMZ) and 2 (MEM) cases.

c Data are available for 83 (CMZ 61. MEM 22) (early) and 14 (CMZ 9 MEM 5) (late) cases.

d Data are missing for 6/2 (CMZ/MEM) for 14-day mortality, 16/6 (CMZ/MEM) for 130-

day mortality, and 4/1 (CMZ/MEM) case for in-hospital mortality.

Variable	CMZ (n=81)	MEM (n=46)	P value ^a
Total duration of study drug,	8 (6–12)	9 (5–12)	0.920
median (IQR)			
Total duration of all antibiotics,	11 (8–14)	12 (10–16)	0.087
median (IQR)			
Empiric therapy ^b			
None	24 (29.6%)	28 (60.9%)	0.001
AMP	1 (1.2%)	0	>0.999
SAM	8 (9.9%)	3 (6.5%)	0.745
TZP	9 (11.1%)	4 (8.7%)	0.768
CFZ	1 (1.2%)	0	>0.999
CRO	33 (40.7%)	8 (17.4%)	0.01
FEP	1 (1.2%)	1 (2.2%)	>0.999
MEM	3 (3.7%)	NA	NA
FQ ^c	2 (2.5%)	2 (4.3%)	0.62
Oral cephalosporin ^d	2 (2.5%)	0	0.534
Treatment continuation after			
study therapy ^e			
Any	16 (19.8%)	24 (52.2%)	<0.001
SAM	1 (1.2%)	0	>0.999
AMC	0	1 (2.2%)	0.362
TZP	1 (1.2%)	0	>0.999
CMZ	NA	16 (34.8%)	NA
MEM	2 (2.5%)	NA	NA
FQ ^c	4 (4.9%)	1 (2.2%)	0.653

SXT	7 (8.6%)	1 (2.2%)	0.257
Other ^f	1 (1.2%)	2 (4.3%)	0.297

Abbreviations. AMC, amoxicillin–clavulanic acid; AMP, ampicillin; CFZ, cefazolin; CRO, ceftriaxone; FEP, cefepime; FQ, fluoroquinolone (levofloxacin, ciprofloxacin, garenoxacin); NA, not available; SAM, ampicillin–sulbactam; SXT, trimethoprim– sulfamethoxazole; TZP, piperacillin–tazobactam.

a Bold font indicates statistically significant results (p <0.05).

b Empiric therapy was defined as antibiotics active against Gram-negative bacteria that have been used within 96 hours prior to the start of the study drug (i.e., CMZ or MEM). Four patients (3 in CMZ group and 1 in MEM group) received two antibiotics, and both antibiotics were counted separately.

c FQs include 2 levofloxacin, one ciprofloxacin, and one garenoxacin in empiric
treatment, and 3 levofloxacin and one ciprofloxacin in treatment continuation.
d Oral cephalosporin include one cefditoren pivoxil and one cefcapene pivoxil.
e Two patients (1 in CMZ group and 1 in MEM group) received two antibiotics, and both
antibiotics were counted separately for each antibiotics category.
f Including one patient each treated with fosfomycin and minocycline (MEM group) and

one patient who received CFZ (CMZ group).

	AMC	ТZР ^ь	CFZ ^c	CTX	CAZ	FEP	CMZ ^d	FMOX	ATM
MIC ₅₀	8/4	2/4	>8	>16	4	8	<u><</u> 1	<u>≤</u> 0.12	8
MIC ₉₀	16/8	8/4	>8	>16	16	>32	4	0.25	>16
Susceptible,	96	119	0	1	63	29	124		31
number ^a , (%)	(77.4%)	(96%)		(0.8%)	(50.8%)	(23.4%)	(100%)		(25%)
	MEM	IMP	FRPM	GEN	TOB	AMK	CIP	SXT	FOF ^e
MIC ₅₀	≤0.12	<u><</u> 1	1	<u><</u> 4	<u><</u> 4	≤16	>4	<u><</u> 2/38	≤16
MIC ₉₀	≤0.12	<u><</u> 1	2	>16	16	≤16	>4	>4/76	≤16
Susceptible,	124	124		99	99	124	19	66	120
number, (%)	(100%)	(100%)		(79.8%)	(79.8%)	(100%)	(15.3%)	(53.2%)	(96.8%)
Abbreviations	s. AMK, an	nikacin; A	MC, amo	oxicillin-c	lavulanic a	icid; ATM	, aztreonar	n; CAZ, ce	eftazidime;
CFZ, cefazol	lin; CIP,	ciprofloxa	icin; CT	X, cefota	xime; FE	P, cefepi	me; FMO	X, flomo	xef; FOF,
fosfomycin;	FRPM, fa	aropenem;	GEN,	gentamic	in; SXT,	trimetho	prim-sulfa	methoxazo	ole; TOB,
tobramycin; T	ZP. pipera	cillin-tazo	bactam.						

a Susceptibility results were interpreted using the 2021 CLSI breakpoints.

b TZP breakpoint MIC \leq 8/4 mg/L was used for susceptible category.

c CFZ breakpoint MIC \leq 2 mg/L was used for susceptible category.

d MIC distribution of CMZ is as follows: ≤1 mg/L (n=86, 69.4%), 2 mg/L (n=23, 18.5%), 4 mg/L (n=10, 8%), 8 mg/L (n=5, 4%)

e Fosfomycin MICs were measured by broth microdilution in the presence of glucose-6-phosphate (25 mg/L in the medium).

471

472

474	Table 5. Molecular characteristics of isolated ESBL-producing E. coli (n=124)

MLST_ST ^a		СТХ	-M subtype	ST131 clade (n=91)	
131	91 (73.4%)	27	59 (47.6%)	C1-M27	43 (47.3%)
1193	6 (4.8%)	15	30 (24.2%)	C1-nM27	20 (22%)
38 ^b	6 (4.8%)	14	25 (20.2%)	C2	17 (18.7%)
95	3 (2.4%)	55	4 (3.2%)	A	8 (8.8%)
10	2 (1.6%)	8	2 (1.6%)	В	2 (2.2%)
69	2 (1.6%)	65	2 (1.6%)	C0	1 (1.1%)
393	2 (1.6%)	3	1 (0.8%)		
		104	1 (0.8%)		

a n=1 (0.8%) for ST12, 23, 73, 155, 162, 215, 450, 533, 648, 803, 1588, and 5150, respectively.

b including one isolate with single locus variant of ST38.

476 Table 6. Propensity score-adjusted analyses of clinical outcomes of invasive UTI: cefmetazole vs

Variables	Adjusted Odds Ratio (95%	P value
	confidence interval)	
Clinically effective (early)	0.63 (0.15–2.75)	0.54
Clinically effective (late)	1.83 (0.26–12.75)	0.54
4-day mortality	NA	NA
0-day mortality	<0.01 (NA)	< 0.01
n-hospital mortality	0.20 (0.03–1.36)	0.10
Recurrence within 28 days	1.36 (0.14–12.93)	0.79
OS after isolation of ESBLEC	NA	0.23

477 meropenem treatment groups

among survivors

Abbreviations. LOS, length of stay; NA, not available.

The propensity score was calculated using a nonparsimonious multivariable logistic regression model including the baseline characteristic variables (age, sex, nursing home or LTCF residence, hospitalization in the past 3 months, surgery after admission prior to ESBLEC isolation, hospital onset, ESBLEC bacteremia, polymicrobial isolation, Charlson comorbidity index, immunocompromised status, urological complication, device other than CV/HD catheter and urinary device, qSOFA score, any empiric therapy before initiation of CMZ or MEM, and CRP ≥ 10 mg/dl [as defined in Table 1]. The adjusted Odds Ratio for 14-day mortality is not available owing to the small number of events. NA, not available.

478

479

481 Table 7. Summary of cefmetazole or meropenem dosing in patients with invasive urinary tract infection due to ESBL-producing *E. coli*

CMZ (n=8	1)							MEM (n=4	6)				
CrCl	n (%)	Dose	Interval	No.	MIC,	TAM for each	Clinically	CrCl	n (%)	Dose	Interval	No.	Clinically
(mL/min)		(g)	(h)		median	regimen,	ineffective	(mL/min)		(g)	(hour)		ineffective
category					(range)	median (IQR)	(early),	category					(early),
							no.						no.
<10	3	0.5	12	1	<u><</u> 1	100	1	<10	5	0.5	24	4	
	(3.7%)								(11%)				
		1	24	1	4	99.8				1	24	1	
		2	24	1	<u><</u> 1	100		10–25	16	1	12	6	1
									(35%)				
10–29	20	1	12	11	<u><</u> 1	100				0.5	12	5	
	(24.7%)				(<1-4)	(100–100)							
		1	24	5 ^a	NA	80.9				1	8	2	
					(<1-4)	(64.7–96)							
		2	12	3	2 (<u>≤</u> 1–	100	1			0.5	8	1	

					8)	(100–100)							
		2	24	1	2	82.9				0.5	24	1	
30–50	29	1	8	8	<u><</u> 1	100	4			0.25	12	1	
	(35.8%)				(≤1−2)	(100–100)							
		1	12	9	<u><1</u>	100		26–50	11	1	12	6	2
					(<u>≤</u> 1–4)	(84.6–100)			(24%)				
		1	24	5	<u><</u> 1	65				1	8	2	1
					(<u>≤</u> 1–2)	(55.6–90.2)							
		2	12	1	2	100				0.5	12	2	
		2	24	6	<u><</u> 1	58.5				2	12	1	
					(<u>≤</u> 1−8)	(43.0–62.6)							
>50	29	1	6	2	<u><</u> 1	100		>50	14	1	8	9	2
	(35.8%)				(<u><</u> 1–	(100–100)			(30%)				
					<1)								
		1	8	10 ^a	<u><</u> 1	50				0.5	12	2 ^a	2
					<u>(≤</u> 1−2)								
		1	12	11	<u><</u> 1	57.8				0.5	6	1	

			(<u>≤</u> 1–8)	(41.5-82.4)			
2	12	4	<u><</u> 1	95.2	0.5	8	1
			(<u>≤</u> 1–	(89.6–100)			
			<1)				
 2	24	2	NA (2-	43.6 (32.8–	1	12	1
			8)	NA)			

Abbreviations. NA, not available. TAM, time above MIC.

a For one case per each category, TAM could not be calculated; two isolates were missing from microbiological analyses at the central laboratory. One isolate was not identified as ESBL-producing *E. coli* in the central laboratory analysis, and thus, excluded from the analysis (ESBL production of the *E. coli* isolate was reported in the hospital microbiological laboratory, with resistance to cefotaxime).