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ABSTRACT 44 

Species distributions are conventionally modelled using coarse-grained macroclimate data measured 45 

in open areas, potentially leading to biased predictions since most terrestrial species reside in the 46 

shade of trees. For forest plant species across Europe, we compared conventional macroclimate-based 47 

species distribution models (SDMs) with models corrected for forest microclimate buffering. We show 48 

that microclimate-based SDMs at high spatial resolution outperformed models using macroclimate 49 

and microclimate data at coarser resolution. Additionally, macroclimate-based models introduced a 50 

systematic bias in modelled species response curves, which could result in erroneous range shift 51 

predictions. Critically important for conservation science, these models were unable to identify warm 52 

and cold refugia at the range edges of species distributions. Our study emphasizes the crucial role of 53 

microclimate data when SDMs are used to gain insights into biodiversity conservation in the face of 54 

climate change, particularly given the growing policy and management focus on the conservation of 55 

refugia worldwide.  56 
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INTRODUCTION 57 

Over the last decades, species distribution models (SDMs) have emerged as a central method to 58 

project the effects of changing environmental conditions on species’ distributions in space and time 59 

(Booth et al., 2014; Elith & Leathwick, 2009). Most SDMs are correlative models that infer relationships 60 

between species occurrences and the environment using statistical or machine-learning methods 61 

(Elith & Leathwick, 2009). Conventional SDM practices involve the incorporation of a standard set of 62 

bioclimatic variables with a typical spatial resolution of 30 arc seconds such as in the WorldClim (Fick 63 

& Hijmans, 2017) or CHELSA (Karger et al., 2017) datasets. However, these climatological data are 64 

derived from standardized meteorological stations at approximately 2 meters height above short 65 

grass, exposed to wind, and well away from trees to minimize any noise generated by microclimatic 66 

effects (Jarraud, 2008). Gridded macroclimatic data interpolate such weather station data and thus 67 

represent the free-air temperature conditions in open ecosystems. Although these data are sufficient 68 

to adequately capture changes in free-air temperatures, SDMs based on coarse-scale climate data 69 

should be expected to introduce a bias, which stems from the simplified assumptions these models 70 

make about the causal relationship between spatially averaged climatic predictors and the fitness of 71 

individual organisms (Fourcade et al., 2018). This might be especially problematic when using these 72 

data to model the response curves of species that live close to the ground, in topographically 73 

heterogeneous terrain, or under trees and shrubs. 74 

Variation in microclimates results from physical processes such as airflow and incoming solar 75 

radiation interacting with topographic factors such as slope, aspect and surface roughness (Geiger, 76 

1950). Additionally, vegetation cover is known to affect local microclimate temperature (De Frenne et 77 

al., 2019; Lenoir et al., 2017). Indeed, it is currently well acknowledged that forests harbour distinct 78 

microclimatic conditions owing to the structural complexity of the canopy, resulting in shading and 79 

evapotranspirative cooling (Geiger, 1950). Forest canopies are characterized by their buffering 80 

capacities of extreme temperatures, with cooler sub-canopy maximum temperatures and warmer 81 

sub-canopy minimum temperatures in comparison to weather station data (De Frenne et al., 2019). 82 

In European forests, this difference can add up to 9°C for mean monthly temperatures (Haesen et al., 83 

2021). There is an urgent need for greater use of fine-scale microclimatic data in ecology as ignoring 84 

the mismatch between conventionally-used macroclimatic data and the microclimatic conditions 85 

might lead to erroneous predictions, wrong ecological interpretations and, ultimately, questionable 86 

conservation decisions (Körner & Hiltbrunner, 2018). 87 

This study aims to evaluate the influence of large-scale, gridded microclimate data on the 88 

accuracy of SDMs and associated environmental niches and projected geographic ranges of European 89 
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plant species constrained to forest habitats. Challenging conventional SDMs, we separately tested the 90 

effects of using microclimate instead of macroclimate data, as well as of the spatial resolution of these 91 

data. To achieve this, we employed three types of SDMs using (1) a macroclimatic dataset at a spatial 92 

resolution of 1 × 1 km²; (2) an aggregated microclimatic dataset that matched the resolution of the 93 

macroclimatic dataset but using sub-canopy microclimate temperatures; and (3) a microclimatic 94 

dataset with a spatial resolution of 25 × 25 m², matching the species compositional patterns in the 95 

forest understory vegetation and using the microclimate temperatures as perceived below the canopy 96 

(Figure 1; Haesen et al., 2023). 97 

Forests are recognized for their capacity to moderate temperature, and as such, plant species 98 

adapted to forest ecosystems are likely to respond to warmer minimum temperatures and cooler 99 

maximum temperatures than those estimated by free-air temperature data collected from weather 100 

stations. Therefore, we hypothesized that (1) the actual thermal response curves of forest specialist 101 

species are narrower than the thermal response curve as modelled from gridded macroclimate data. 102 

We also expect that (2) ranges projected from macroclimate-based models are overestimated, 103 

because the presence of a species at locations with distinct microclimates compared to their 104 

surroundings may be erroneously attributed to the species' ability to survive in the entire area with 105 

that macroclimate. Finally, assuming that species are constrained by the maximum temperature at 106 

the southern limit of their latitudinal range and by the minimum temperature at their northern limit, 107 

we hypothesized that (3) populations of forest specialist species may survive in local microrefugia, 108 

which are cooler than the surrounding landscape at the southern latitudinal limit but warmer than the 109 

surrounding area at the northern latitudinal limit.  110 
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 111 

Figure 1: Design of this comparative study, where we compared species distribution models with different set-112 
ups of climatic data. As forests are known to buffer sub-canopy temperatures, forest specialist plant species 113 
respond to warmer minimum temperatures and colder maximum temperatures as perceived by the free-air (i.e. 114 
macroclimate) temperature data. Therefore, we hypothesize that the actual thermal response curves of forest 115 
specialist species, as modelled with the high-resolution ForestClim dataset, would be narrower than the thermal 116 
response curve modelled by macroclimate-based SDMs. Note that ForestClim is only available for forest areas, 117 
which are delineated by green lines within the simulated grids. Black points indicate species occurrences of a 118 
virtual forest plant species (adapted from Lenoir et al., 2017).  119 
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METHODS 120 

 Study area & species selection 121 

Our study area encompasses all 27 EU countries, plus Albania, Andorra, Bosnia and Herzegovina, 122 

Kosovo, Liechtenstein, Montenegro, North Macedonia, Norway, San Marino, Serbia, Switzerland and 123 

the United Kingdom. The Canary Islands and Azores, as well as Europe's overseas territories were 124 

excluded from the analysis. 125 

Forest specialist species were selected based on the European forest vascular plant species 126 

list (Heinken et al., 2022), which is based on vegetation databases, literature and expert knowledge. 127 

From this list, we first selected shrub and herb species, which – unlike tree species – usually complete 128 

their entire life cycle within the forest understory layer, thus experiencing forest microclimate 129 

dynamics (Caron et al., 2021). Subsequently, we selected the species categorized as forest specialists 130 

(i.e., categories 1.1 and 1.2) throughout their entire range, meaning that these species occur only in 131 

closed-canopy forests, forest edges or forest openings. 132 

 Environmental predictors 133 

Three different sets of bioclimatic temperature-related variables (i.e., macroclimatic data at 1 × 1 km², 134 

microclimatic data aggregated at the spatial resolution matching the gridded macroclimate data at 1 135 

× 1 km² and microclimatic data at the native spatial resolution of 25 × 25 m²) were used to construct 136 

our SDMs, starting from the conventional set of eleven bioclimatic temperature variables. However, 137 

we excluded mean temperature of the wettest quarter (BIO8) and mean temperature of the driest 138 

quarter (BIO9) as these were recently criticized for their use within species distribution models (Booth, 139 

2022). As the available CHELSA and WorldClim data are not fully covering our study period (2000-140 

2020), we used TerraClimate to construct the ‘macroclimatic dataset’ at the typical spatial resolution 141 

of 1 × 1 km² as used in conventional SDMs (Abatzoglou et al., 2018). However, TerraClimate bioclimatic 142 

variables covering the 2000-2020 period are available at a spatial resolution of 4 × 4 km² and thus 143 

were spatially downscaled to a spatial resolution of 1 × 1 km² (Supplementary Methods S1). 144 

The ‘microclimatic dataset’ consists of the original bioclimatic variables provided within 145 

ForestClim (Haesen et al., 2023), a new high-resolution dataset of forest understory temperature for 146 

European forests at a spatial resolution of 25 × 25 m², derived from the ForestTemp model (Haesen 147 

et al., 2021). The ‘aggregated dataset’ was generated by averaging the ForestClim bioclimatic variables 148 

to a 1 × 1 km² resolution. Note that we did not opt to include a high-resolution topographically 149 

downscaled macroclimatic dataset (i.e., 25 × 25 m²) within this comparative study as this would turn 150 

it into an intermediate ‘mesoclimate’ product, adding extra layers of complexity to the comparative 151 
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analyses. Besides, the benefit of using topoclimate over macroclimate in SDMs is fairly well covered 152 

in the scientific literature (Man et al., 2022). 153 

Each set of bioclimatic temperature variables was complemented with six bioclimatic 154 

precipitation variables. From the conventional set of eight bioclimatic precipitation variables, we 155 

omitted precipitation of the warmest quarter (BIO18) and precipitation of the coldest quarter (BIO19) 156 

for similar reasons discussed by (Booth, (2022). The six bioclimatic precipitation variables were 157 

calculated from TerraClimate precipitation data for the 2000-2020 period and disaggregated to match 158 

the spatial resolution of each bioclimatic set. Finally, four edaphic variables were added 159 

(Supplementary Methods S2), since soil data often increase model performance (Hageer et al., 2017). 160 

To reduce overfitting of SDMs, multicollinearity between the predictors was assessed using a 161 

pairwise Spearman correlation test (Figure S1). Highly correlated variables (Spearman correlation 162 

coefficients > 0.7) were removed from the analysis in order to reach the most parsimonious model 163 

(Dormann et al., 2013). When excluding one of the correlated covariate pair, we preferentially 164 

retained variables which are known to be more important for plant species distributions (Macek et al., 165 

2019). The final selection of covariates encompassed two temperature variables (maximum 166 

temperature of the warmest month (BIO5) and minimum temperature of the coldest month (BIO6)), 167 

two precipitation variables (mean annual precipitation, (BIO12) and precipitation seasonality (BIO15)) 168 

and two edaphic variables (cation exchange capacity and soil clay content). All covariate layers were 169 

projected in an equal-area projection (epsg:3035; ETRS89/LAEA). 170 

Species occurrence data 171 

Georeferenced occurrence data were downloaded from the Global Biodiversity Information Facility 172 

on the 13th of September 2022 (https://doi.org/10.15468/dl.kf533a). To improve data quality for each 173 

species, the occurrence data were filtered in the following sequential steps: (1) only records of ‘human 174 

observations’ were selected; (2) records with an unknown coordinate uncertainty or coordinate 175 

uncertainty larger than 25 m (i.e., the pixel size) were excluded; (3) records located at country or 176 

capital centroids and biodiversity institutions (e.g., botanical gardens) were omitted (Cheng et al., 177 

2021); (4) duplicate records were removed; (5) records outside our study area were deleted; (6) only 178 

records observed during our climatic reference period (2000-2020) were selected; (7) records were 179 

spatially thinned to one random observation per 25 × 25 m² grid cell; and (8) species with less than 50 180 

cleaned occurrence records were omitted, which has been postulated as a minimum standard to build 181 

robust SDMs (van Proosdij et al., 2016). 182 

https://doi.org/10.15468/dl.kf533a
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Filtering of species occurrence data resulted in a final dataset of 140 species, which are further 183 

used for the analyses (Table S1). Note that the same occurrence datasets are needed over the different 184 

climatic set-ups to have comparable model outputs. Here, we decided to work with occurrence 185 

datasets that underwent a cleaning protocol based upon the characteristics of the microclimatic 186 

dataset (i.e., maximum coordinate uncertainty of 25 m, and spatial thinning to a 25 × 25 m² grid cell). 187 

 Species distribution modelling 188 

We used MaxEnt, a presence-background algorithm that combines species presence-only data with 189 

environmental predictors for the current climate to predict the environmental suitability of each study 190 

species across our study area (Phillips et al., 2017). We did that for each of the three sets of bioclimatic 191 

variables (i.e., the macroclimatic set, the aggregated microclimatic set and the microclimatic set at the 192 

native resolution), thus generating three sets of habitat suitability maps for each study species. 193 

Background data were generated by sampling an equal amount of background points as occurrence 194 

points (i.e., so that species prevalence equals 50%) based on a 2D kernel-density estimate of the 195 

occurrence point (Venables & Ripley, 2002), meaning that the spatial density of the background points 196 

is proportional to the spatial density of occurrence points for a given species, thereby accounting for 197 

spatial bias in the occurrence points (Lake et al., 2020). 198 

Although widely-used in scientific research, MaxEnt could suffer from issues like spatial bias 199 

and bad model performance due to overfitting (Radosavljevic & Anderson, 2014). To deal with the 200 

problem of spatial bias, we conducted spatially independent evaluations in ENMeval2.0 (Kass et al., 201 

2021; Muscarella et al., 2014) using block cross-validation and allocating 80% of our occurrence points 202 

to this cross-validation procedure (20% is kept for independent evaluation). Furthermore, model 203 

performance was improved by tuning the model settings in ENMeval2.0 rather than working with the 204 

default settings of MaxEnt (Supplementary Methods S3). Here, we ensured that feature classes and 205 

regularization multipliers were tuned to limit overfitting and increase model performance by using an 206 

independent subset of the data (i.e., 20%) not involved in the block cross-validation procedure. 207 

 Model performance & sensitivity 208 

In order to customize the settings for the feature classes and the regularization multipliers, a total of 209 

24 different models were run for every single species. The Akaike Information Criterion (AIC) for small 210 

sample sizes (20 % of occurrence points) was used to select the best candidate models (Burnham & 211 

Anderson, 2004). Next, model performance was assessed using the Continuous Boyce Index (CBI), 212 

instead of the commonly-used area under the receiver-operating characteristic curve (AUC). The latter 213 

has recently been shown to be biased in presence-only models and should therefore be avoided 214 
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(Jiménez & Soberón, 2020). The CBI is a threshold-independent metric that represents the relationship 215 

between predicted habitat suitability and the distribution of occurrence records (Hirzel et al., 2006). 216 

Additionally, we calculated the sensitivity enabling us to quantify how good our model is able at 217 

distinguishing true positives from false negatives. Both were calculated based on the independent 218 

20% subset of the data.  219 

Finally, we used Bayesian regression models (BRMs) in order to assess differences in model 220 

performance and sensitivity between SDMs constructed using the three different sources of climate 221 

data (Supplementary Methods S4). We opted for BRMs as they are able to account for data 222 

dependencies (i.e., values clustered within species), unequal variances among groups and skewed 223 

distributions. When the highest posterior density intervals (α = 0.05) of the contrasts, calculated using 224 

the emmeans package (Lenth, 2021), did not overlap with zero, contrasts are considered ‘significant’. 225 

 Model predictions 226 

Habitat suitability was predicted for each species and for each of the three sets of bioclimatic 227 

temperature variables (macroclimatic, aggregated microclimatic and microclimatic) for the 2000-2020 228 

period. Furthermore, we transformed the logistic maps (i.e., probability values for habitat suitability) 229 

to binary (presence-absence) maps using the 10% training presence as a threshold, meaning that the 230 

suitable area contains 90% of the original occurrence records (Benito et al., 2013). 231 

 To compare between model predictions from SDMs constructed with different climate 232 

sources and resolutions, we calculated both the potential suitable area and the potential latitudinal 233 

range of each species. To make a valid comparison between the three climate types, we disaggregated 234 

the binary maps derived from macroclimatic and aggregated data (1 × 1 km²) to the finer resolution 235 

(25 × 25 m²), and subsequently masked out all non-forest pixels. First, the potential suitable area (km²), 236 

for each modelled species, was calculated as the sum of all forest pixels classified as potentially 237 

suitable under the binary maps. Second, the northern and southern latitudinal limit of the predicted 238 

distributional ranges were defined as the 95% and 5% quantile in latitudinal position, respectively, of 239 

all pixels classified as potentially suitable. Next, we quantified species thermal response curves for 240 

mean annual temperature (BIO1), maximum temperature of the warmest month (BIO5) and minimum 241 

temperature of the coldest month (BIO6) by extracting the climatic conditions over the entire 242 

potentially suitable area. To optimize computation power, we randomly sampled 1,000,000 pixels 243 

over the potentially suitable area for microclimate-based maps. For each variable, we derived the cold 244 

limit (Q05), the optimum (mode), the warm limit (Q95), and the niche width (Q95 – Q05). Analogous 245 

to the model performance calculations, we used BRMs with the same settings to assess differences in 246 
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model predictions between the SDMs based on the three types of climate data (Table S2). Values of 247 

bioclimatic variables were standardized before the analysis to aid model convergence. 248 

Finally, we analyzed whether species are constrained to specific (relative) temperature 249 

conditions (i.e., here defined as microrefugia ) at their northern and southern latitudinal limits, as this 250 

is important for biodiversity conservation. For the northern and southern latitudinal limit, we 251 

extracted the 5% most southern and northern occurrence records, respectively. Using paired two-252 

sided t-tests (α = 0.05), we compared the local temperature conditions of these occurrence points to 253 

the mean surrounding microclimatic conditions over a range of circular buffers (i.e., 100 m, 500 m, 254 

1000 m, 2500 m, 5000 m; Figure S2) around each occurrence record. A significant t-test implied a 255 

significant difference in local temperatures at the presence locations as compared with the 256 

surrounding area, suggesting that occurrences were restricted to microrefugia.  257 

All calculations were performed in R version 4.1.1 (R Core Team, 2021). The Tier-2 Genius 258 

cluster from the high-performance computing facilities of Flanders was used to make the predictions. 259 

In order to improve reproducibility, we followed the ODMAP (Overview, Data, Model, Assessment and 260 

Prediction; Zurell et al., 2020) protocol to report on the SDMs in this study (Table S3).  261 
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RESULTS 262 

 Model performance & sensitivity 263 

We found significant differences (α = 0.05) in model performance between models constructed with: 264 

(i) macroclimatic (mean CBI = 0.09; se = 0.04) and microclimatic (mean CBI = 0.67; se = 0.02) data; (ii) 265 

macroclimatic and microclimatic data but aggregated at a spatial resolution matching macroclimate 266 

data (mean CBI = 0.28; se = 0.04); and (iii) aggregated microclimatic and microclimatic data at the 267 

native resolution (Figure 2a). For 92% of the species, fine-grained microclimate data systematically 268 

improved model performance (Figure 2b). Here, 39% of macroclimate-based SDMs are characterized 269 

by CBI values smaller than zero, meaning that these models perform worse than random. On the other 270 

hand, CBI values are positive for almost all (96%) microclimate-based SDMs. Furthermore, there were 271 

no significant differences between any of the groups regarding the sensitivity of the models. 272 

 273 

Figure 2: (a) Pairwise comparison of model performance (quantified as the Continuous Boyce Index, CBI) and 274 
sensitivity between SDMs built with macroclimatic, aggregated microclimatic and microclimatic data. A positive 275 
effect size of the comparison reflects a higher model performance and sensitivity in SDMs built with the first 276 
group of climate data compared to the second group of climate data. Negative effect sizes reflect the opposite 277 
result. Points and associated black error bars correspond to posterior means and 95% highest posterior density 278 
intervals of the differences (of the scaled CBI and sensitivity). Significant differences are indicated by solid dots 279 
whereas non-significant differences are indicated by transparent dots; (b) The performance of each SDM per 280 
species (grey lines) over the three types of climate data (i.e., macroclimatic data, aggregated microclimatic data 281 
and microclimatic data). The thick black line shows the average CBI value over each of the three climate types. 282 
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 Potential suitable area & latitudinal range 283 

The binary distribution maps showed clear differences in the potential suitable area and the potential 284 

latitudinal range covered by each species between models calibrated with macroclimatic data and 285 

models calibrated with microclimatic data at the native spatial resolution of 25 × 25 m² (e.g., Paris 286 

quadrifolia; Figure S3). Bayesian regression models confirm these visual interpretations for all 287 

modelled species (Figure 3). Relative to microclimate-based SDMs at the native spatial resolution, 288 

both the northern and southern limit of the species’ latitudinal ranges are significantly overestimated 289 

when using either macroclimate-based SDMs or the aggregated version of microclimate-based SDMs. 290 

Consequently, species’ potential latitudinal ranges are significantly narrower when using SDMs 291 

calibrated with microclimatic data (mean = 2,261 km; se = 42 km) in comparison with SDMs calibrated 292 

with aggregated microclimatic data (mean = 2,580 km; se = 43 km) or macroclimatic data (mean = 293 

2,620 km; se = 49 km). Analogous, a species’ potential suitable area is significantly smaller when using 294 

SDMs calibrated with microclimatic data (mean = 911,845 km²; se = 30,383 km²) in comparison with 295 

SDMs calibrated with aggregated microclimatic data (mean = 1,148,763 km²; se = 33,527 km²) or 296 

macroclimatic data (mean = 1,268,189 km²; se = 38,274 km²). 297 

 298 

Figure 3: Pairwise comparison of the northern edge, southern edge, latitudinal range and potential suitable area, 299 
respectively between SDMs build with macroclimatic, aggregated microclimatic and microclimatic data. A 300 
positive effect size of the comparison reflects more northern latitudinal limits (at the northern and/or southern 301 
edge), higher latitudinal ranges and more potentially suitable area in SDMs built with the first group of climate 302 
data compared to the second group of climate data. Negative effect sizes reflect the opposite result. Points and 303 
associated black error bars correspond to posterior means and 95% highest posterior density intervals of the 304 
differences (of the standardized variables). Significant differences are indicated by solid dots whereas non-305 
significant differences are indicated by transparent dots. 306 
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 Species response curves 307 

A first visual assessment of the response curves showed that microclimate-based response curves of 308 

minimum temperature of the coldest month, mean annual temperature and maximum temperature 309 

of the warmest month have different optima, and narrower niches compared to macroclimate-based 310 

response curves (e.g., Paris quadrifolia; Figure 4). 311 

 312 

Figure 4: Species response curves for (a) minimum temperature of the coldest month, (b) maximum temperature 313 
of the warmest month and (c) mean annual temperature for Paris quadrifolia, illustrating the buffering effect 314 
that forest could exert on the thermal niche of species. Here, minimum temperatures are buffered at the cold 315 
edge of the response curve, whereas maximum temperatures are buffered at the warm edge of the response 316 
curve. 317 

Bayesian regression models showed that, for all modelled species, optima significantly differed 318 

between SDMs run with microclimate and macroclimate data for minimum and maximum 319 

temperatures, with warmer optima in minimum temperature and cooler optima in maximum 320 

temperature for microclimate-based SDMs relative to macroclimate based SDMs (Figure 5). However, 321 

for mean temperature there were no significant differences in optima between the different climate 322 

types. Furthermore, the niche width was narrower in minimum and mean temperatures for 323 

microclimate-based SDMs relative to macroclimate based SDMs. Surprisingly, the niche width was 324 

significantly wider in maximum temperatures for microclimate-based SDMs relative to macroclimate 325 

based SDMs. 326 
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 327 

Figure 5: Pairwise comparison of the cold edge (Q05), optimum, warm edge (Q95) and niche width, respectively 328 
between SDMs build with macroclimatic, aggregated microclimatic and microclimatic data. Each of the 329 
comparisons is made for minimum temperature of the coldest month (BIO6), mean annual temperature (BIO1), 330 
and maximum temperature of the warmest month (BIO5), respectively. A positive effect size reflects warmer 331 
values for the cold edge, optima and warm edge as well as wider niche widths, respectively, in SDMs built with 332 
the first group of climate data compared to the second group of climate data. Negative effect sizes reflect the 333 
opposite result. Points and associated black error bars correspond to posterior means and 95% highest posterior 334 
density intervals of the differences (of the standardized variables). Significant differences are indicated by solid 335 
dots whereas non-significant differences are indicated by transparent dots. 336 

 Microrefugia 337 

We found that 66% of all studied species are constrained to local microrefugia at their range limits. 338 

More specifically, 41% of the species occur in warm refugia relative to the surrounding landscape, at 339 

the northern limit of their latitudinal while 49% of the modelled species occur as remnant populations 340 

in cool refugia relative to the surrounding landscape, at the southern limit of their latitudinal range 341 

(e.g., Paris quadrifolia; Figure 6). 342 
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 343 

Figure 6: (a) Suitability map for Paris quadrifolia resulting from an SDM built with microclimatic data at 25 × 25 344 
m² resolution. The black dots represent the occurrence points extracted from GBIF and used as an input to the 345 
SDMs. We see that the species can occur in (b) warm refugia (i.e., higher minimum temperature values in the 346 
coldest month of the year) at its northern latitudinal limit and in (c) cool refugia (i.e., lower maximum 347 
temperature values in the warmest month of the year) at its southern latitudinal limit. The grey background 348 
shows non-forest areas.  349 
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DISCUSSION 350 

Over the last years, microclimate research focused on improving our understanding of the drivers 351 

behind the differences between microclimate and macroclimate temperatures (Zellweger et al., 2019) 352 

and predicting and mapping microclimate temperatures across space and time (Greiser et al., 2018; 353 

Kearney et al., 2020). Although the drivers behind forest microclimates are relatively well understood, 354 

testing how microclimate layers perform within ecological applications such as SDMs has been limited, 355 

especially so across large (e.g., continental) spatial extents. However, with the recent advent of sub-356 

canopy microclimate layers for European forests at 25 × 25 m² resolution, a new avenue of species 357 

distribution modelling can be explored (Haesen et al., 2023). We found substantial differences in the 358 

model performance (based on the Continuous Boyce Index), indicating that microclimate-based SDMs 359 

significantly outperformed their conventional (i.e., macroclimate) counterparts and that aggregating 360 

microclimate data at coarser spatial resolutions leads to significant loss in model performance. 361 

Importantly, the use of aggregated microclimate data was still a significant improvement over the use 362 

of conventional macroclimate data in SDMs, which is especially interesting when computational 363 

capacity is limited. Our results thus agree with previous research reporting an increased performance 364 

of microclimate-based SDMs on regional scales (Slavich et al., 2014; Stark & Fridley, 2022). However, 365 

this study additionally shows significant alterations of the species response curves to temperatures 366 

fitted with microclimatic data at a finer spatial resolution, matching the scale of the studied organisms 367 

(i.e., understory plants) more closely. This particular finding represents a major scientific advance with 368 

important implications in terms of SDMs’ abilities to capture physiological processes that better reflect 369 

individual fitness. 370 

We found significant differences in the shape of the species response curves obtained from 371 

the model predictions using different temperature sources. These outcomes underscore the 372 

importance of integrating microclimate data into SDMs, as previously proposed by Lembrechts et al. 373 

(2019). The recent increased availability of microclimatic data products at fine spatial resolution that 374 

cover large spatial extents has enabled us to uncover the true realized thermal niches and reveal the 375 

environmental conditions that actually matter for species living close to the ground surface (such as 376 

tree seedlings and herbaceous plants growing in the shade of trees). We demonstrate that species 377 

response curves derived from conventional macroclimate-based SDMs are much wider than one 378 

would expect given the buffering effect of forests (De Frenne et al., 2019; Harwood et al., 2014). 379 

Conventional SDMs might thus capture spurious correlations and fail to encompass the genuine 380 

factors constraining species distributions. The optima of the species response curves to maximum and 381 

minimum temperatures systematically shifted towards colder and warmer conditions, respectively, 382 

when using microclimate-based SDMs at fine spatial resolution, suggesting significant improvements 383 
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in SDMs’ abilities to capture plant individual fitness in the forest understory. The same argument 384 

applies to the species’ thermal tolerance limits as we found systematic shifts towards warmer 385 

conditions for the cold and warm tolerance limits of forest understory plants when using 386 

microclimate-based SDMs at fine spatial resolution. The ability of microclimate-informed SDMs to 387 

more accurately capture thermal tolerance limits holds important implications for exploring broader 388 

macrophysiological thermal response patterns and organismal processes (Sentinella et al., 2020; 389 

Sunday et al., 2012). This capability could further advance the research domain, aiding in the enhanced 390 

comprehension of plants' thermal safety margins in the face of climate change, which are intricately 391 

tied to their survival, productivity, and reproductive capacities (Lancaster & Humphreys, 2020). 392 

Wider niches estimated by macroclimate-based SDMs also resulted in an overestimation of 393 

the predicted range sizes, thereby confirming our second hypothesis. Indeed, the occurrence of a 394 

species’ individual within a specific macroclimatic pixel does not guarantee that the species will occur 395 

in all other macroclimatic pixels with the same temperature because of considerable variations in 396 

microclimate heterogeneity. This is especially important at range edges, where species will be found 397 

in macroclimate pixels with above-average microclimate heterogeneity. Indeed, the populations of 398 

66% of the studied species at the northern and southern limits of their latitudinal range are confined 399 

to warm or cold spots in the landscape, respectively (Figure 6; Figure S2). Microclimate-based SDMs 400 

thus allow for better identification of local microrefugia. Current macroclimate-based SDM practices 401 

are unable to identify these microrefugia correctly as conventional macroclimate data represent the 402 

overarching free-air temperatures rather than the local temperatures as perceived by organisms living 403 

inside these microrefugia (Lenoir et al., 2017). Given the importance of microrefugia regarding the 404 

accumulation and conservation of biodiversity (Nadeau et al., 2022), forest management practices 405 

should be optimized to protect local microclimates and increase the capacity of species and 406 

communities to resist to climate change (Hylander et al., 2022). 407 

There are various reasons for the increased performance of microclimate-based SDMs, which 408 

mainly relate to characteristics of the two primary input sources of each SDM: the occurrence points 409 

and predictor variables. First, each occurrence point is subjected to a certain amount of positional 410 

error (Wüest et al., 2020). In this study, we exclusively used records with a reported coordinate 411 

uncertainty below 25 m. Nevertheless, applying a threshold on the positional error like this may induce 412 

a loss of model performance by decreasing the number of occurrence points (Guisan et al., 2007). 413 

Thus, it is conventionally recommended to decrease the spatial resolution of the analysis to account 414 

for any positional errors in the occurrence points, rather than excluding the less precise records. 415 

However, SDMs are sensitive to changes in the spatial resolution (Chauvier et al., 2022). Decreasing 416 

spatial resolution inherently induces a loss of information as the data is smoothed (i.e., aggregated), 417 
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which comes at the cost of model performance as shown by the CBI values from the models built with 418 

aggregated microclimatic data. Therefore, recent research strongly recommends to fit SDMs as close 419 

as possible to the spatial grain that matches the biology of the focal species (Gábor et al., 2022), 420 

meaning that it is recommended to calibrate SDMs with environmental data consistent with the 421 

biological scale of the system or organism under study (Randin et al., 2009). For instance, when 422 

modelling sessile species (i.e., species with limited mobility) or organisms in ecosystems with high 423 

environmental heterogeneity, higher-resolution predictors are essential to more precisely capture the 424 

intricacies of their niches (Norberg et al., 2019). For example, sessile species are more prone to 425 

microclimate limitations due to their inability to actively relocate, rendering them highly sensitive to 426 

variability in local environmental conditions and more likely to be spatially limited to habitats with a 427 

particular microclimate. As a result, we anticipate that the findings of this study may not be readily 428 

transferable when studying mobile species (such as birds or mammals) or uniform environments. 429 

Although promising, microclimate-based SDMs inherently face challenges beyond just 430 

microclimate considerations. Analogous to other correlative climate-based SDMs, they are likely to 431 

fail for many reasons unrelated to the accuracy and resolution of the climate data. For example, SDMs 432 

often do not consider demographic processes and biotic interactions that mediate population 433 

responses (Sanczuk et al., 2023). However, the SDM toolbox has been extended to accommodate 434 

these shortcomings. For instance, range dynamic models explicitly consider demographic processes 435 

such as dispersal and population dynamics (Zurell et al., 2016) and joint SDMs infer species 436 

interactions from co-occurrence data (Ovaskainen & Abrego, 2020). Genomics-informed SDMs aiming 437 

at including adaptability and demographic processes also offer interesting research avenues (Hudson 438 

et al., 2021). Additionally, many SDMs do not include the fine-grained spatial heterogeneity of soil 439 

conditions that may occur across few meters and which matter for species distributions (Beauregard 440 

& de Blois, 2014; Roe et al., 2022). Disregarding the edaphic dimension in SDMs may lead to 441 

overestimating the species’ potential distribution as well as underestimating its spatial fragmentation 442 

with important implications under anthropogenic climate change (Bertrand et al., 2012).  443 

Gridded microclimatic data at a resolution of 25 × 25 m² are currently restricted to European 444 

forests, which limits this study to 140 forest specialist plant species that exclusively live in forests 445 

throughout their range. Herbaceous plant species living in open habitats, such as grasslands or 446 

heathlands, are not included, as gridded microclimate data with the necessary spatial resolution is not 447 

currently available for these environments at continental scale. The main reason for this is that 448 

temperature sensors in open ecosystems are highly exposed to direct solar radiation, leading to 449 

significant errors in the measurements recorded by the microclimate loggers (Maclean et al., 2021). 450 

Consequently, the development of accurate microclimatic grids for these habitats is hindered. 451 
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Alternatively, mechanistic models that provided fine-grained gridded data products over large spatial 452 

extents could also be used, but they are still missing because of computational challenges (Maclean, 453 

2020). Nevertheless, accurate microclimate data over large spatial extents in open systems are 454 

urgently needed to assess the transferability of the results from this study to a wider range of species. 455 

Finally, while current microclimate products allow improved predictions of current species 456 

distributions, microclimatic data predicted under future shared socioeconomic pathways (SSPs) are 457 

needed to assess the impact of microclimate change on species ranges or the composition of species 458 

communities (Lembrechts, 2023). However, forests are dynamic systems and their structural 459 

characteristics that influence the forest microclimate cannot be assumed to remain constant over 460 

time, making the development of such products challenging (De Lombaerde et al., 2022; Lenoir et al., 461 

2017). In a warming world, disturbances affecting forest canopies (e.g., drought, pests, storms) will 462 

become more frequent and pronounced, drastically affecting the sub-canopy microclimate drastically 463 

(Kopáček et al., 2020; Thom et al., 2020) . Given that many forest specialist species have slow dispersal 464 

rates, often only several meters per year (Hermy et al., 1999; Svenning et al., 2008), accurately 465 

evaluating their distribution ranges becomes crucial. It is very unlikely that these species will be able 466 

to keep pace with contemporary macroclimate warming, wherein climate zones are shifting several 467 

kilometres each year along the latitudinal gradient (Burrows et al., 2011). In this regard, microclimate-468 

based SDMs may allow us to accurately assess the velocity of microclimate warming experienced by 469 

organisms in their immediate habitats and identify the locations where species may become impacted 470 

due to climate change. While not explored in this study, this approach could potentially reveal that 471 

microclimate heterogeneity mitigates the impact of climate change (Maclean & Early, 2023), and 472 

therefore presents opportunities and obvious priorities for area-based conservation.  473 
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CONCLUSIONS 474 

To summarize, our study highlights the significant benefits of including microclimatic data in species 475 

distribution models for forest plant species. By using microclimate-based SDMs, we were able to 476 

uncover the hidden niche of forest plants, providing insights into their tolerance limits in response to 477 

climate warming. This is in contrast to macroclimatic data, which estimated broader niches and could 478 

not identify warm and cold refugia at the range edges of species distributions. Microclimate-based 479 

SDMs are therefore essential for biodiversity conservation in the face of climate change, by providing 480 

insights to optimize management actions and prioritize conservation efforts, particularly given the 481 

growing policy and management focus on conservation of refugia worldwide.  482 
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