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Unprotected iron can rust due to oxygen exposure. Similarly, in our body,

oxidative stress can kill cells in an iron-dependent manner, which can give

rise to devastating diseases. This type of cell death is referred to as ferrop-

tosis. Generally, ferroptosis is defined as an iron-catalyzed form of regu-

lated necrosis that occurs through excessive peroxidation of

polyunsaturated fatty acids within cellular membranes. This review summa-

rizes how ferroptosis is executed by a rather primitive biochemical process,

under tight regulation of lipid, iron, and redox metabolic processes. An

overview is given of major classes of ferroptosis inducers and inhibitors,

and how to detect ferroptosis. Finally, its detrimental role in disease is

briefly discussed.

Introduction

The past two decades of cell death research have

revealed the existence of several modes of regulated

necrosis [1]. Ferroptosis as a distinct form of regu-

lated, iron-catalyzed cell death driven by excessive lipid

peroxidation (LPO) within cellular membranes was

first conceptualized by Stockwell’s lab [2]. However,

research studying the toxicity of compounds, toxins,

and transition metals already demonstrated the exis-

tence of lipid peroxidation-driven cell death far before

ferroptosis was discovered [3,4]. Furthermore, identifi-

cation of the commonly used ferroptosis-inducing

compounds, erastin and RLS3, as well as findings that

genetic modulation of genes controlling redox metabo-

lism drives non-apoptotic cell death, was also reported

in the pre-ferroptosis era [5–7]. Cell membrane rupture

during ferroptotic cell death is characterized by hydro-

gen abstraction and oxygenation of polyunsaturated

fatty acids (PUFAs) of phospholipids (PLs), which is

catalyzed by redox-active iron. This subsequently leads

to cell death due to disruption of membrane stability

and the accumulation of lipid hydroperoxides to lethal

levels [8]. Although the process of lipid peroxidation
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has been linked to several regulated cell death modali-

ties, ferroptosis is exclusively driven by excessive lipid

peroxidation [9]. By this, ferroptosis-induced cell death

relies on alterations of factors contributing to iron

metabolism, antioxidant defense, and lipid

metabolism.

In recent years, ferroptosis has been increasingly

explored in diseases related to ischemia–reperfusion
injury (IRI) or iron toxicity, including neurological

disorders, single or multiorgan injury, infarction, and

stroke [10]. Intriguingly, extensive studies also suggest

a pivotal role of ferroptosis in tumor suppression [11].

As such, pharmacological modulation of ferroptosis

either via inhibition or induction may hold great

promise for the treatment of a multitude of diseases

[12]. The detection of ferroptosis in pathophysiology

remains challenging; however, a snapshot of the most

important detection techniques is made [13]. In this

review, we discuss the main regulatory mechanisms of

ferroptosis, different classes of inhibitors and inducers,

and current available detection tools. In addition, the

role of ferroptosis in some generally accepted patholo-

gies is briefly summarized. Essentially, this review pro-

vides a guide to ferroptosis as it exists today.

Ferroptosis execution

Excessive lipid peroxidation of PUFAs containing PLs

within cellular membranes is the major executioner

mechanism of ferroptosis [2]. Although LPO events

also occur in other modes of regulated cell death, an

extended oxidative lipidomic approach showed only

excessive phospholipid peroxidation during ferroptosis

[9]. PUFA-containing PLs have weak C–H bonds in

between adjacent carbon–carbon double bonds, which

makes them susceptible to LPO [14]. Furthermore,

PUFA incorporation into cellular membranes PLs is

required for the initiation of ferroptosis [15,16]. Oxida-

tive damage of PUFA-PLs can be initiated either

through non-enzymatic free-radical chain reactions

involving Fenton chemistry [17] or enzyme-mediated

processes catalyzed by iron-dependent lipoxygenases

(LOXs) or cytochrome P450 oxidoreductase (POR)

(Fig. 1, left panel) [8,18]. The subcellular membranes

essential for ferroptosis and the sequence of their per-

oxidation remains a topic of debate and is likely

dependent on how ferroptosis is induced. Different cel-

lular organelles including endoplasmic reticulum

[15,19], mitochondria [20], and lysosomes [21–23], all

seem to be able to initiate ferroptosis.

Fenton chemistry refers to a series of iron-catalyzed

reactions in which oxygen-centered radicals such as

hydroxyl radicals are produced [24]. These highly

reactive free radicals initiate LPO by abstracting labile

hydrogen atoms from PUFAs, producing phospholipid

radicals which subsequently react with molecular oxy-

gen during the propagation phase. As a result, PL per-

oxyl radicals further attack adjacent PUFAs yielding

new phospholipid radicals along PL hydroperoxides

(PLOOH), which in the presence of redox-active labile

iron is further converted to phospholipid alkoxyl radi-

cals (Fig. 1, middle panel). All newly formed PL

radicals as well as singlet oxygen molecules generated

via the Russell mechanism can re-enter the chain reac-

tion to further amplify PLOOH [25]. Enzymatic lipid

peroxidation, which is mediated by LOXs or POR,

directly catalyzes the deoxygenation of free and esteri-

fied PUFAs producing PLOOH (Fig. 1, left panel)

[26,27]. The crucial role of LOXs during ferroptosis is

still a matter of debate, due to lack of genetic evi-

dence. Phosphatidylethanolamine binding protein 1

(PEBP1) was suggested to associate with 15LOX to

acquire specificity for the phosphatidylethanolamine

phospholipids that are key to ferroptosis [28]. Whereas

radical-trapping antioxidants (RTAs) can rescue cells

from ferroptosis by interfering with the autoxidation

process, the inhibition of LOX cannot reverse ferrop-

totic cell death [17].

The propagation of this free radical chain reac-

tion within cellular membranes eventually leads to

the formation of secondary toxic aldehydes such as

4-hydroxy-2-nonenal (4HNE) and malondialdehyde

(MDA) [4]. Both 4HNE and MDA can form

adducts with proteins and DNA, which in turn

results in biomolecular damage [29]. Finally, the

membrane becomes thinner and forms curvatures

followed by the increased accessibility to oxidants

and eventually cell membrane rupture [30], likely

involving mechanosensing channels [31] and osmotic

processes [32,33].

The auto-amplifying chain reaction can be termi-

nated when lipid hydroperoxides and lipid peroxyl

radicals decompose into inactive non-radical prod-

ucts (Fig. 1, right panel). For this, the cell depends

on endogenous RTAs including vitamin E [34], vita-

min K [35], tetrahydrobiopterin (BH4) [36,37], ubi-

quinol (CoQ10H2) [38,39], hydropersulfides [40,41],

vitamin A and its active derivates [42], 7-

dehydrocholesterol [43] and squalene [44]. RTAs

intervene directly in the chain reaction by scavenging

unpaired electrons thereby counteracting LPO. Fur-

thermore, the selenium-dependent glutathione peroxi-

dase 4 (GPX4), an essential enzyme of the

glutathione (GSH) system, impedes the execution of

ferroptosis by detoxifying PLOOHs to their corre-

sponding non-toxic PL alcohol forms [7].
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Ferroptosis induction

Four major classes of ferroptosis-inducing compounds

(FINs) have been described to modulate the sensitivity

towards ferroptosis (Table 1). Class I, II, and III FINs

induce ferroptosis by interfering with redox metabolism,

whereas class IV FINs overrule these redox protective

mechanisms by directly targeting iron metabolism.

Unleashing ferroptosis redox brakes

Class I ferroptosis inducers downregulate GSH

required for the proper functioning of GPX4 by

depleting directly or indirectly intracellular cysteine

for example by inhibiting cystine/glutamate antipor-

ter system XC
�. Subsequent GPX4 inactivation

results in PLOOH accumulation and ferroptotic cell

death. Erastin was the first small molecule identified

as a class I ferroptosis inducer [2]. Later, imidazole

ketone erastin (IKE), piperazine erastin (PE), and the

FDA-approved compounds sulfasalazine and sorafe-

nib were added [45,46]. In addition, excessive concen-

tration of glutamate is also classified as a class I

inducer [47]. Noteworthy, PE, IKE, and sorafenib

are the only compounds suitable for in vivo use due

to their high inhibitory potential, stability, and phar-

macokinetic profile [47]. Class II inducers directly

inhibit GPX4 function by covalent interaction with

Fig. 1. Phospholipid peroxidation process. LPO initiation step includes the formation of phospholipid radicals catalyzed by redox-active labile

iron generated during the Fenton reaction. Additionally, LOXs oxygenate PUFAs directly via an enzymatic process. In the subsequent propa-

gation phase, phospholipid radicals react with molecular oxygen forming phospholipid peroxyl radicals which in turn form phospholipid hydro-

peroxide and new phospholipid radicals. In the presence of iron, phospholipid hydroperoxide decomposes into phospholipid alkoxyl radicals

which refuel the chain reaction by attacking another PUFA. During the termination phase, damaging phospholipids can be neutralized either

through the reaction between two phospholipid peroxyl radicals, endogenous RTAs, or peroxidase activity of GPX4. 1O2, singlet oxygen;

BH4, tetrahydrobiopterin; CoQ10H2, ubiquinol; Fe
2+, ferrous iron; Fe3+, ferric iron; GPX4, glutathione peroxidase 4; H2O2, hydrogen peroxide;

HO�, hydroxyl; LOX, lipoxygenase; LPO, lipid peroxidation; O2, oxygen; O2
�, superoxide radical anion; OH�, hydroxy radicals; PL, phospho-

lipid; POR, cytochrome P450 oxidoreductase; PUFA, poly-unsaturated phospholipids; RTA, radical trapping antioxidants; Vit E, KH2 or A, vita-

min E, KH2, or A.
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the nucleophilic active-site selenocysteine [48] and

include RSL3, ML162, a variety of diphenyleneiodo-

nium compounds [8], and the medicinal plant anti-

cancer agent withaferin A [49]. Class III inducers

essentially downregulate mevalonate-derived ubiqui-

none (CoQ10), which acts as an endogenous lipophilic

radical trap. Ferroptosis inducer 56 (FIN56) was the

first compound discovered with this mode of action,

along inactivation of GPX4 [50]. Recently, the

discovery of first-generation (iFSP1) and second-

generation (icFSP1) inhibitors of ferroptosis suppres-

sor protein 1 (FSP1) showed the potential to sup-

press ferroptosis independently of GPX4 activity

[38,51]. Finally, different statins have been classified

as class III inducers since it inhibits HMG-CoA

reductase enzyme which in turn blocks CoQ10 bio-

synthesis [52,53].

Overruling redox protective mechanisms

Class IV FINs are grouped for their ability to

increase the levels of cytosolic non-chelatable redox-

active iron, often referred to as the labile iron pool

(LIP). Iron loading using hemin [54], hemoglobin

[55] or ferrous ammonium sulfate ((NH4)2Fe(SO4)2)

[49] have shown to trigger ferroptosis in vitro as well

as in preclinical models of intracerebral hemorrhage.

Furthermore, ferritinophagy induced by salinomycin,

artemisinin, and its prodrug artesunate triggers fer-

roptosis in cancer cells by increasing the LIP [56,57].

Ferroptosis-inducing endoperoxides such as FINO2

directly oxidize ferrous iron (Fe2+) but also inactivate

GPX4 indirectly in cells [58]. Similarly, withaferin A

also induces ferroptosis by exerting dual effects

involving LIP increase through heme oxygenase 1

(HMOX1)-mediated degradation of heme and GPX4

inactivation [49].

Ferroptosis regulation

Lipid metabolism

Peroxidation of specific membrane phospholipids and

subsequent cell membrane damage ultimately drives

cells to death. PLs acylated with PUFAs are the main

target of lipid peroxidation since weak bis-allylic pro-

tons of PUFAs are more easily abstracted in compari-

son with the hydrogens in monounsaturated fatty

acids (MUFAs) or saturated fatty acids (SFAs) [14].

PUFAs containing the heavy hydrogen isotope deute-

rium (D-PUFA) are much less susceptible to ferropto-

sis. As such, treating cells with D-PUFAs suppresses

ferroptosis sensitivity, underscoring the importance of

PUFA peroxidation in the execution of ferroptosis [8].

In addition, the lipid composition of the cellular mem-

brane as well as the abundance of PUFAs determine

the extent of LPO and thus also ferroptosis sensitivity

(Fig. 2, brown panel) [15,17]. Although free fatty acids

are substrates for the synthesis of lipid signaling medi-

ators, the incorporation of esterified PUFAs in cellular

membranes is necessary to exert lethal effects upon

oxidation [15,16]. Acyl-CoA synthetase long-chain

family member 4 (ACSL4) and lysophosphatidylcho-

line acyltransferase 3 (LPCAT3) are two key enzymes

involved in the biosynthesis and remodeling of PUFAs

in cellular membranes. Thus, the deletion of both

genes suppresses ferroptosis by depleting LPO sub-

strates [59]. In contrast, supplementing cells with exog-

enous PUFAs enhanced erastin-induced ferroptosis [8].

Unlike PUFAs, MUFAs induce a ferroptosis resis-

tance state in cells by blocking the formation of lipid

reactive oxygen species (ROS) and displacing oxidiz-

able PUFAs from the phospholipid membrane. The

protective role of MUFAs relies on the activity of

acyl-coenzyme A synthetase long-chain family member

3 (ACSL3) protein, which catalyzes the esterification

Table 1. Ferroptosis-inducing compounds. (NH4)2Fe(SO4)2, ferrous ammonium sulfate; DPI, diphenyleneiodonium; FIN, ferroptosis-inducing

compound; FSP1, ferroptosis suppressor protein 1; GPX4, glutathione peroxidase 4; GSH, glutathione; HMOX1, heme oxygenase-1; IKE,

imidazole ketone erastin; PE, piperazine erastin; SQS, squalene synthase.

Ferroptosis inducers

Class Target Mechanism Compounds

FIN I GSH Direct or indirect depletion of intracellular cysteine by

inhibiting e.g. System Xc�
Erastin, IKE, PE, sorafenib, sulfasalazine, glutamate

FIN

II

GPX4 Covalently binding and inhibition of GPX4 activity RSL3, ML162, withaferin A, DPI compounds

FIN

III

CoQ10 FSP1 inhibition or CoQ10 depletion via SQS activation FIN56, iFSP1, icFSP1, Statins

FIN

IV

Redox-

active iron

Iron loading, iron oxidation and increase in LIP by

HMOX1

FINO2, withaferin A, artemisinin, artesunate, hemin,

hemoglobin, (NH4)2Fe(SO4)2
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Fig. 2. Metabolic regulation of ferroptosis. Ferroptosis is tightly regulated by three key elements: redox, iron, and lipids. The different

antioxidant defense mechanisms implicated in the ferroptosis pathway include the XC- GSH-GPX4 pathway, transsulfuration pathway, meva-

lonate pathway, FSP1-Vitamin K (vit K)/CoQ10 pathway, glutaminolysis, DHODH-CoQ10H2 pathway, GCH1-BH4 pathway, and aldo-keto

reductases (redox metabolism displayed in green). Fluctuations in the labile iron pool (Fe2+) are mainly controlled by TFR, FPN, DMT1,

NCOA4, NRF2, and HMOX1 (iron metabolism displayed in blue). The peroxidation of PUFA-containing phospholipids (PUFA-PLs) within

cellular membranes is mainly regulated by ACSL4, LPCAT3, LOX, POR and Vitamin E (vit E), (lipid metabolism displayed in orange). An

imbalance between the production of endogenous oxidants and antioxidants and the presence of excess free labile iron and oxidizable

phospholipids acylated with PUFAs are both required for ferroptosis execution. 4HNE, 4-hydroxy-2-nonenal; ACC, acetyl CoA-carboxylase;

ACSL, acyl-CoA synthetase long-chain family member; AKR, aldo-keto reductases; BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; CoQ10,

ubiquinone; CoQ10H2, ubiquinol; DHFR1, dihydrofolate reductase; DHFR1, dihydrofolate reductase; DHODH, dihydroorotate dehydrogenase;

DMT1, divalent metal transporter 1; ETC, electron transport chain; FAS, fatty acid synthase; Fe2+, ferrous iron; FPN, ferroportin; FSP1,

ferroptosis suppressor protein 1; GCH1, guanosine triphosphate cyclohydrolase 1; GCL, glutamate-cysteine ligase; Gln, glutamine; GLS1,

glutaminases; Glu, glutamate; GOT1, glutamic-oxaloacetic transaminase 1; GPX4, glutathione peroxidase 4; GSH, glutathione; GSR,

glutathione–disulfide reductase; GSS, glutathione synthetase; GSSG, oxidized glutathione; HEPH, hephaestin; HMOX1, heme oxygenase 1;

KEAP1, Kelch-like ECH-associated protein 1; LOX, lipoxygenase; LPCAT, lysophosphatidylcholine acyltransferase; MDA, malondialdehyde;

MUFA, monounsaturated fatty acid; NCOA4, nuclear receptor coactivator 4; NRF2, nuclear factor E2-related factor 2; O2, oxygen; PCBP1/2,

poly(rC)-binding protein 1/2; PL, phospholipid; POR, cytochrome P450 oxidoreductase; PP, pyrophosphate; PROM2, prominin2; PUFA,

polyunsaturated fatty acid; ROS, reactive oxygen species; SCD1, stearoyl-CoA desaturase 1; SFA, saturated fatty acid; STEAP3,

transmembrane epithelial antigen of the prostate 3; TCA cycle, tricarboxylic acid cycle; TFR1, transferrin receptor 1; a-KG, alpha-

ketoglutarate.
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of MUFAs with coenzyme A (CoA) [60]. Downregu-

lating the expression of ACSL3 in cells treated with

exogenous MUFAs showed less protection against fer-

roptosis [61]. In addition, stearoyl-CoA desaturase 1

enzyme, which converts SFA into MUFAs, also

showed to sensitize cells to ferroptosis upon inhibition

[62].

Iron metabolism

Iron homeostasis is kept under exquisite control by

many cellular processes. Increasing levels of unbound

redox-active iron or LIP triggered by dysregulation of

either iron import, export, storage, or turnover

impacts the sensitivity towards ferroptosis (Fig. 2, blue

panel). Under physiological conditions, circulating fer-

ric iron (Fe3+) is internalized into cells as a

transferrin-iron complex through the membrane-bound

transferrin receptor 1 (TFR1) [63]. Once released in

endosome compartments, Fe3+ is reduced to Fe2+ via

the endosomal metalloreductase enzyme six-

transmembrane epithelial antigen of the prostate 3

(STEAP3) [64]. Subsequently, Fe2+ fuels the LIP in the

cytoplasm through divalent metal transporter 1

(DMT1) [65]. Genetic inactivation of TFR1 has previ-

ously been shown to prevent ferroptosis upon erastin

treatment or cystine deprivation [6]. Conversely, treat-

ment with transferrin enhanced erastin-induced cell

death [66]. Excess of cellular Fe3+, which is not needed

for metabolic functions such as synthesis of iron-

containing enzymes, is sequestered within the iron

storage protein complex ferritin [67]. Not surprisingly,

autophagy-mediated degradation of ferritin, referred

to as ferritinophagy promotes accumulation of lipid

ROS by increasing the LIP [68]. Consistently, the

knockdown of selective cargo receptor nuclear receptor

coactivator 4 (NCOA4), which recruits ferritin to

autophagosomes, blocks ferroptosis [69]. Ferrous iron

can also be released from heme by HMOX1, which is

controlled by the nuclear factor E2-related factor 2

(NRF2). Under condition of oxidative stress, NRF2

unleashes from the Kelch-like ECH associated protein

1 (KEAP1) bond, allowing nuclear translocation and

activation of target genes with mainly anti-ferroptotic

function [70]. However, in certain contexts, excessive

activation of HMOX1 along an insufficient buffer

capacity of ferritin upon NRF2 upregulation has been

shown to promote ferroptosis by increasing the LIP

[49]. Cellular iron export can be mediated through the

transmembrane protein ferroportin (FPN). Downregu-

lation of FPN either genetically or pharmacologically

increases ferroptosis sensitivity by limiting iron export

[71,72]. Alternatively, upregulation of the prominin2-

mediated ferritin exocytosis pathway promotes resis-

tance to ferroptosis [28]. Thus, modulation of the

intracellular redox-active iron levels by the cellular

iron homeostatic network is key in regulating ferropto-

sis sensitivity.

Redox metabolism

The thiol-containing tripeptide glutathione is an essen-

tial intracellular antioxidant that is synthesized from

cysteine via two ATP-dependent enzymes, glutamate-

cysteine ligase (GCL) and glutathione synthetase (GSS)

[73]. The importance of cystine and cysteine to maintain

GSH biosynthesis was previously shown by findings that

cells supplemented with cystine-free medium die due to

GSH depletion and this death could be prevented by

the administration of lipophilic antioxidants such as

alpha-tocopherol [74]. The intracellular cysteine pool

mainly relies on the system Xc
� which takes up extracel-

lular cystine, the oxidized form of cysteine, in exchange

for intracellular glutamate (Fig. 2, green panel) [73].

Indeed, glutamate serves as a trigger for ferroptosis

induction since high extracellular glutamate concentra-

tions inhibit system Xc
� [2]. Cellular cysteine can also

be provided via the alanine-serine-cysteine (ASC) system

or synthesized from methionine via the transsulfuration

pathway [75,76]. Conditions that hinder intracellular

cysteine and consequently GSH levels [2,77] or sele-

nium/selenocysteine uptake mechanisms via low-density

lipoprotein receptor-related protein 8 (LRP8), directly

impact the activity of the GPX4 enzyme. GPX4 con-

verts GSH to oxidized GSSG, which is then recycled

back by glutathione reductase (GSR) at the expense of

NADPH/H+ [78]. Obviously, pharmacological or genetic

inactivation of GPX4 is an often-used strategy to induce

ferroptosis [79–81].
Along the XC

�-GSH-GPX4 axis, cells can also

counteract lipid peroxidation by promoting endoge-

nous radical trapping antioxidant systems. FSP1, for-

merly known as AIFM2, maintains the reduction of

CoQ10 using NADPH [38]. Upon activation, FSP1 is

recruited to the plasma membrane where it generates

CoQ10H2 which in turn traps PL peroxyl radicals and

prevents subsequent phospholipid peroxidation [38,82].

Like the function of FSP1 in the extramitochondrial

membrane, dihydroorotate dehydrogenase (DHODH)

reduces mitochondrial CoQ10 to CoQ10H2 indepen-

dently of GPX4 or FSP1 [83]. BH4 is another endoge-

nous RTA that protects against ferroptosis

independently from GPX4 [82]. Treating BH4-deficient

cells with exogenous dihydrobiopterin (BH2), the

dehydrogenated product of BH4 that is converted by

dihydrofolate reductase (DHFR), protected against
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RSL3- and ML162-induced cell death. Consistently,

genetic deletion of the rate-limiting enzyme guanosine

triphosphate cyclohydrolase 1 (GCH1) reduced intra-

cellular levels of BH4 and decreased the antioxidant

capacity of the cells [37]. Noteworthy, a class of aldo-

keto reductases was also classified as endogenous RTA

since it has been shown to detoxify oxidative lipid

breakdown products such as 4HNE [4,84]. Finally, the

ferroptotic pathway is also tightly linked to the gluta-

mine (Gln) metabolism, known as glutaminolysis. The

Gln transporter SLC1A5, glutaminases 2 (GLS2), and

glutamic-oxaloacetic transaminase 1 (GOT1) are

required for Gln import and the conversion to gluta-

mate and a-ketoglutarate. Genetic knockdown of these

genes showed to counteract ferroptosis [20,66].

Ferroptosis detection

Considering the high clinical relevance of ferroptosis,

understanding its core molecular machinery is para-

mount for disease prevention, diagnosis, treatment, and

prognosis. Since it remains challenging to detect (per)

oxidized PLs and redox-active iron in biofluids, a vari-

ety of biomarkers related to lipid and iron metabolism

are needed to differentiate ferroptosis [48,85–87]. Con-
sidering the central role of excessive LPO in ferroptosis,

different tools have been described to study how (per)

oxidized lipids are involved in the dying process by

detecting and quantifying the extent of LPO or lipid

ROS. Both C11-BODIPY and LiperFluo are widely

used probes to measure lipid ROS. Upon oxidation, the

fluorescent switch of these probes can easily be detected

by fluorescent microscopy or flow cytometry [15,88].

Toxic lipid degradation products, such as MDA and

4HNE, can be determined by thiobarbituric acid reac-

tive substances (TBARS) approach [89], western blot-

ting, or staining procedures [90]. Another approach to

detect oxidized phospholipids involves the use of an E06

antibody that specifically labels oxidized phosphatidyl-

cholines [91,92]. The most sophisticated and specific

approach for detection of PLOOHs is the use of liquid

chromatography with tandem mass spectrometry (LC–
MS/MS) analysis, referred to as oxidative lipidomics

[15,93].

Furthermore, alterations in iron homeostasis have

shown to control the sensitivity towards ferroptosis. For

instance, increased expression of iron influx proteins

TFR1 and DMT1, or contrary, decreased expression of

efflux proteins FPN, ceruloplasmin, and hephaestin

enhance ferroptosis induction [94]. Recently, TFR1 was

proposed as a biomarker to detect ferroptosis in vitro

and in vivo [95]. However, the use of TFR1 antibodies is

dependent on cell type, tissue, and condition since iron

influx may be orchestrated by several influx transporters

in different cell types [94]. Additionally, altered expres-

sion levels of NCOA4 [96], HMOX1 [49], NRF2 [97,98],

and heat shock protein beta-1 (HSPB1) [99] have also

been linked to ferroptosis. However, many of these sug-

gested biomarkers are often context-dependent and

therefore considered as rather bystander effects of fer-

roptosis. Next to the analysis of protein and/or gene

expression, several commercial assays are available to

measure the iron content such as calcein-AM assay

[100], FeRhoNox, FerroOrange, Mito-FerroGreen

probes [49,101,102], and Perl’s Prussian Blue staining

with or without DAB-enhancement [103]. However, a

more reliable technique to measure the total iron con-

tent, ferrous iron as well as ferric iron, is capillary elec-

trophoresis coupled plasma mass spectrometry with

dynamic reaction cell (CE-ICP-DRC-MS) [104–106].

Pharmacological ferroptosis inhibition

The high clinical relevance of ferroptosis in a variety

of diseases has boosted the development of novel ther-

apeutics (Table 2). Here, we will only give a snapshot

of the most potent ferroptosis inhibitors.

Iron chelators

Considering the central role of iron in ferroptosis exe-

cution, iron-chelating therapies such as deferasirox

Table 2. Ferroptosis inhibiting compounds. (NH4)2Fe(SO4)2, ferrous

ammonium sulfate; DPI, diphenyleneiodonium; FIN, ferroptosis-

inducing compound; FSP1, ferroptosis suppressor protein 1; GPX4,

glutathione peroxidase 4; GSH, glutathione; HMOX1, heme

oxygenase-1; IKE, imidazole ketone erastin; PE, piperazine erastin.

Ferroptosis inhibitors

Class Characteristics

Mechanism of

action Compounds

I Iron chelators Remove excess

iron

Deferasirox,

deferiprone,

deferoxamine,

ciclopirox, CN128

II Lipophilic

radical traps

Trapping chain-

carrying radicals

in phospholipid

bilayer

Vitamin E, BHT, Fer-

1, Lip-1, XJB-5-131,

CoQ10, UAMC-3203

III Deuterated

PUFAs

Prevent initiation

and propagation

of lipid

peroxidation

D4-arachidonic acid,

D10-

docosahexaenoic

acid

IV Lipoxygenase

inhibitors

Prevent LOX-

induced LPO

CDC, baicalein, PD-

146176, AA-861,

zileuton,

FerroLoxin-1/2
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[107], deferiprone [108], deferoxamine [2], ciclopirox

olamine [2] and CN128 [109] have been widely consid-

ered as potential therapeutic agents in the treatment of

ferroptosis-driven diseases. Indeed, iron chelators have

already been shown to mitigate ischemia–reperfusion
injury (IRI) in a variety of experimental animal models

[110–112], as well as the severity of several neurode-

generative diseases in both animal models and human

clinical trials [113–116]. Although these compounds

show different pharmacokinetic and metabolic proper-

ties, the mechanism of action relies on free iron chela-

tion thereby avoiding the formation of highly reactive

hydroxyl radicals [117]. However, side effects related

to the essential role of iron in many metabolic pro-

cesses are discouraging this treatment strategy.

Lipophilic radical traps

Since ferroptosis is driven by a radical chain reaction

within cellular membranes, different strategies that halt

this process have been developed. Small molecules that

react with chain-carrying radicals, and thus inhibit

phospholipid autooxidation are identified as lipophilic

radical trapping antioxidants. Extensive high-

throughput screenings using cell-based ferroptosis

assays identified novel synthetic RTAs such as

Ferrostatin-1 (Fer-1) and Liproxstatin-1 (Lip-1) [118–
120]. These lipophilic RTAs scavenge unpaired elec-

trons at the level of toxic phospholipid radicals [121].

Although Fer-1 has been shown to be a potent inhibi-

tor of ferroptosis in multiple in vitro settings, it is not

well-suited for in vivo use because it suffers from solu-

bility and metabolic stability problems [122].

Consequently, different improved analogues were

developed showing highly improved in vivo efficacy

such as SRS16-86 [123] or UAMC-3203 [81,122].

Additionally, other lipophilic RTAs have been sug-

gested as potential ferroptosis inhibitors for both in

vitro (e.g. butylated hydroxytoluene (BHT) [2] and

CoQ10 [38,39]) and in vivo use (e.g. XJB-5-131

[124,125]).

Other ferroptosis inhibitors

PUFAs containing the heavy hydrogen isotope deute-

rium at the peroxidation site have also been found to

suppress ferroptosis induced by RLS3 and erastin [8].

Apart from agents interfering with iron metabolism or

harboring anti-oxidant properties, a range of ferropto-

sis inhibitors directed to the lipoxygenase enzyme have

been described [8,15,126–129]. However, since genetic

targeting of LOXs failed to prevent ferroptotic cell

death, this class of inhibitors is still controversial

[17,121].

Ferroptosis in disease

Emerging evidence indicates the involvement of ferrop-

tosis in many human disorders. Therefore, pharmaco-

logical modulation of ferroptosis, by either inhibiting

or inducing it, may represent a possible avenue for

treating multiple pathologies. Here, an overview of the

main diseases in which a ferroptosis signature in

humans as well as its therapeutic potential in preclini-

cal models have been explored is briefly discussed

(Fig. 3). How infectious agents regulate ferroptosis to

Fig. 3. Ferroptosis-driven pathologies and

ferroptosis-associated therapeutic benefits

in experimental rodent models. Although

the number of ferroptosis-driven

pathologies is increasing, only a few

pathologies have shown a convincing

ferroptosis signature in patients along with

a therapeutic benefit in representative

experimental preclinical models. To date,

evidence of a ferroptosis signature in

human disorders is based on the presence

of elevated levels of redox-active iron,

peroxidized phospholipids and lipid

degradation products in either biofluids or

injured tissue. Therapeutic targeting of

ferroptosis using mainly lipophilic radical

trapping agents in experimental rodent

models highlights its therapeutic potential.
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promote their replication, dissemination, and patho-

genesis [130], and how ferroptosis induction might be

a promising novel anti-cancer therapy [12] is reviewed

elsewhere. The immune response to ferroptotic cells is

still debated requiring further clarification and is out

of the scope of this review. Essentially, current knowl-

edge suggests that ferroptosis boosts innate immunity

[49,80], in which M1, but not M2, macrophages

seemed to survive this oxidative stress environment

[131], while suppressing adaptive immunity, at least in

vaccination anti-cancer setup [132].

Organ injury

Ischemia–reperfusion injury is a complex pathophysio-

logical condition induced by an imbalance between

oxygen/nutrient needs and supply upon vascular occlu-

sion of the organ during the ischemic event. Paradoxi-

cally, subsequent reperfusion exacerbates the injury of

the affected organ through destructive inflammatory

responses and massive cell death [133,134]. Eventually,

IRI can lead to devastating diseases ranging from

single to multiple organ-injury. Mounting evidence

suggests ferroptosis as a major contributor to IRI-

associated cell death and multiple preclinical studies

have already shown the beneficial effects of targeting

ferroptosis during IRI [135]. For instance, kidney

tubular cells are sensitive to ferroptosis in response to

IRI, a leading cause of acute kidney injury (AKI).

Consistently, different ferroptosis inhibitors were able

to mitigate kidney tubular cell death using preclinical

models of AKI induced by IRI, genetic deletion of

GPX4, and folic acid [81,136]. Furthermore, increased

levels of ferroptotic oxygenated PLs were found in uri-

nary cell pellets obtained from patients with AKI who

did not recover [28]. Beyond the kidney, the liver has

also shown to be dependent on the functionality of

GPX4, since inducible knockout of this enzyme leads

to massive hepatocyte cell death [81]. Moreover, lipo-

philic RTAs protect liver parenchyma from IR-

induced injury in a preclinical mouse model [80]. The

importance of monitoring ferroptosis during hepatic

IRI has also been investigated in a transplantation

clinical setting since higher levels of circulating MDA

were observed in non-surviving patients undergoing

liver transplantation when compared to those who sur-

vived [137]. Pharmacological inhibition of ferroptosis

significantly reduced myocardial infarct size using an

in vivo mouse heart model mimicking IRI [138] as well

as injury during heart transplantation in mice [139].

Note that a beneficial effect of inhibiting LPO for

organ preservation during heart transplantation in

dogs was already shown in the nineties [140]. Lastly, a

case report revealed a ferroptosis signature in myocar-

dial tissue derived from patients suffering from

COVID-19. Although this highlights the importance of

ferroptosis monitoring in COVID-19 cardiac damage,

further research is required [141].

Ferroptosis has also been implicated in plaque

destabilization during atherosclerosis. For example,

erythrophagocytosis as a key feature of advanced

human atherosclerosis, induced ferroptosis in vitro and

was characterized by increased HMOX1 and ferritin

expression. In line with this finding, ferroptosis inhibi-

tion decreased HMOX1 and ferritin expression

observed in erythrocyte-rich plaque regions derived

from a mouse model of advanced atherosclerosis [142].

Moreover, several studies reported upregulation of

important ferroptosis-related genes [143–145] as well

as increased levels of iron in atherosclerotic lesions

from humans [146].

Interestingly, multiple organ dysfunction syndrome

(MODS), which refers to the critical illness that causes

30% of deaths worldwide has been linked to ferropto-

sis [147,148]. A prospective cohort study involving

plasma samples of 176 critically ill adult patients

revealed that the extent of organ dysfunction, reflected

in the patient’s sequential organ failure assessment

(SOFA) score, is positively correlated to increased

levels of MDA and catalytic iron. Furthermore, an

excess amount of iron sulfate proved to be sufficient

to overrule the systemic buffer capacity and induce

MODS in mice. In this experimental model, a rapid

increase of MDA in plasma and tissue was observed.

Additionally, the administration of a highly soluble

lipophilic RTA UAMC-3203 attenuated

ferroptosis-driven multi-organ injury and death [81].

These findings suggest ferroptosis inhibition as a possi-

ble strategy to prevent MODS in critical care settings.

Central nervous system

The high content of PUFAs, dependency on iron, and

limited antioxidant defense, make the central nervous

system (CNS) highly vulnerable to damage by lipid

peroxidation [149]. Before the conceptualization of fer-

roptosis in 2012, oxytosis, glutamate toxicity, or exci-

totoxicity were described to be involved in neuronal

cell death in the context of several neurological disor-

ders including Alzheimer’s disease (AD), Parkinson’s

disease (PD), Huntington’s disease (HD) and amyo-

trophic lateral sclerosis (ALS) [150]. Later, it was sug-

gested that cell death by oxytosis and ferroptosis have

overlapping pathways [151]. Iron chelation or thera-

peutic intervention with ferrostatins prevented disease

development in preclinical models of AD [152] and PD
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[153], while healthy neurons were rescued in HD [154].

Recently, the detrimental role of ferroptosis was

revealed in multiple sclerosis, a chronic inflammatory

disorder of the CNS. A prominent ferroptosis signa-

ture was reflected by the accumulation of ferrous iron

and an increase of oxidized phospholipids in the

lesions and cerebrospinal fluid of patients. In addition,

therapeutic intervention with the lipophilic RTA

UAMC-3203 delayed relapse and ameliorated disease

progression in a preclinical model for relapsing–remit-

ting multiple sclerosis [155]. Strokes, including ische-

mic and hemorrhagic stroke, are the second leading

cause of death after coronary heart disease and are

characterized by acute focal CNS injury [156]. Both

iron accumulation, as well as lipid peroxidation, are

involved in the pathogenesis of stroke, indicating a

role for ferroptotic cell death. The neurotoxic effects

of MDA and 4HNE have been reported extensively,

and 4HNE has been studied as a potential biomarker

for ischemic stroke [157]. Thereby, it was demon-

strated that intracerebroventricular treatment with

Fer-1 after hemorrhage exhibited marked brain protec-

tion and improved neurologic function in mice [55].

Consequently, intranasal delivery of Fer-1 and Lip-1,

as an easy method to pass the blood–brain barrier,

attenuated neurological deficits after ischemic stroke

[158]. This is further underscored by the use of a-
Tocotrienol, one of the eight fat-soluble chemicals in

vitamin E, which decreases stroke size in animal

models [159] and is currently validated in clinical trials

as a neuroprotectant in stroke (NCT01578629). Signa-

tures of altered lipid metabolism [160] and GPX4

depletion in post-mortem samples of ALS patients

[161] highlight the importance of ferroptosis targeting.

In line with these recent findings, neuron-specific deliv-

ery of GPX4 and Fer-1 treatment ameliorated motoric

impairment in a classical preclinical model for ALS

(SOD1G93A) [162], suggesting GPX4 as an interesting

therapeutic target. Note that data related to the in vivo

use of Fer-1 should be interpreted with caution consid-

ering its metabolic instability in vivo.

Conclusion and perspectives

Although ferroptosis has only been conceptualized in

2012, it was supposedly already studied since the 50s or

earlier. Since its conceptualization, ferroptosis has been

a flourishing field with cutting-edge discoveries of novel

regulatory genes, its involvement in disease, and novel

pharmacological intervention tools. It is tempting to

speculate that ferroptosis might be a very ancient cell

death process, which evolved 2.5 billion years ago dur-

ing the great oxygenation event. To create life, one had

to find ways to protect biological membranes against

excessive lipid peroxidation catalyzed by oxygen and

iron. The genetic pathways discovered to date, likely

reflect these protective mechanisms, rather than pro-

active signaling towards cell death as is the case in apo-

ptosis, necroptosis, or pyroptosis. The clinical relevance

of ferroptosis as a detrimental factor in a multitude of

diseases as well as its tumor-suppressing efficacy has

boosted translational ferroptosis research. The in vivo

effectiveness of novel small molecule ferroptosis inhibi-

tors and/or inducers in experimental disease models

gives hope for future novel treatment options related to

targeting ferroptosis.
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