
Received: 6 September 2023 Revised: 18October 2023 Accepted: 23October 2023

DOI: 10.1002/pmic.202300336

R E V I EW

Machine learning-based peptide-spectrummatch rescoring
opens up the immunopeptidome

Charlotte Adams1,2 Kris Laukens1 Wout Bittremieux1 Kurt Boonen2,3

1AdremData Lab, Department of Computer

Science, University of Antwerp, Antwerp,

Belgium

2Laboratory of Protein Science, Proteomics

and Epigenetic Signaling (PPES), Department

of Biomedical Sciences, University of Antwerp,

Antwerp, Belgium

3ImmuneSpec BV, Niel, Belgium

Correspondence

Kurt Boonen, Universiteitsplein 1, 2610

Wilrijk, Belgium.

Email: kurt.boonen@uantwerpen.be

Funding information

FondsWetenschappelijk Onderzoek,

Grant/Award Number: G070722N

Abstract

Immunopeptidomics is a key technology in the discovery of targets for immunotherapy

and vaccine development. However, identifying immunopeptides remains challeng-

ing due to their non-tryptic nature, which results in distinct spectral characteristics.

Moreover, the absence of strict digestion rules leads to extensive search spaces,

further amplified by the incorporation of somatic mutations, pathogen genomes,

unannotated open reading frames, and post-translational modifications. This infla-

tion in search space leads to an increase in random high-scoring matches, resulting in

fewer identifications at a given false discovery rate. Peptide-spectrum match rescor-

ing has emerged as a machine learning-based solution to address challenges in mass

spectrometry-based immunopeptidomics data analysis. It involves post-processing

unfiltered spectrum annotations to better distinguish between correct and incorrect

peptide-spectrum matches. Recently, features based on predicted peptidoform prop-

erties, including fragment ion intensities, retention time, and collisional cross section,

have been used to improve the accuracy and sensitivity of immunopeptide identifica-

tion. In this review, we describe the diverse bioinformatics pipelines that are currently

available for peptide-spectrum match rescoring and discuss how they can be used for

the analysis of immunopeptidomics data. Finally, we provide insights into current and

futuremachine learning solutions to boost immunopeptide identification.
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1 INTRODUCTION

The adaptive immune system plays a crucial role in safeguarding the

body against pathogen-infected and cancerous cells, by recognizing

peptides bound to major histocompatibility complex (MHC) molecules

Abbreviations: CCS, collisional cross section; HLA, human leukocyte antigen; LC, liquid

chromatography;MHC, major histocompatibility complex;ML, machine learning; MS, mass

spectrometry; nuORFs, novel or unannotated open reading frames; PSM, peptide spectrum

matches; PTM, post-translational modification; SA, normalized spectral contrast angle; SVM,

support vector machine.
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on the cell surface [1]. Researchers have gained valuable insights

into the immune responses by characterizing the immunopeptidome,

which encompasses the repertoire of MHC-bound peptides presented

for immunosurveillance. The field of immunopeptidomics has made

remarkable advancements in recent years, enabling the identification

of T cell targets against tumors, autoimmune diseases, and pathogens

[2–5].

However, identifying immunopeptides from mass spectrometry

(MS) data remains challenging, with a large portion of measured spec-

tra that are left unannotated. In an immunopeptidomics experiment,
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F IGURE 1 Differences between bottom-up proteomics and immunopeptidomics. The immunopeptidomics experimental workflow differs
from the bottom-up proteomics workflow based on the way peptides are obtained prior toMS analysis. In immunopeptidomics, peptides are
processed inside the cell. The peptide-boundMHCmolecules are extracted and the immunopeptides are eluted. In bottom-up proteomics, the
peptides are produced during an experimental step where a protease, usually trypsin, is used to produce the peptides. This allows a reduction of
the search space based on known digestion rules, which is not possible in immunopeptidomics.

theMHC-peptide complexes are purified and the immunopeptides are

eluted [6] (Figure 1). Unlike conventional tryptic peptides, the genera-

tion of immunopeptides lacks well-defined protease specificity rules,

necessitating that every possible protein subsequence within human

leukocyte antigen (HLA) class-specific length constraints has to be con-

sidered during spectrum annotation. Consequently, the search space

significantly expands, resulting in increased false positive spectrum

annotation rates and reduced peptide identification sensitivity [7]. A

compounding factor hereof is that the search space in immunopep-

tidomics is often even further extended beyond the canonical human

proteome, by incorporating somatic mutations [8], pathogen genomes

[4], novel or unannotated open reading frames (nuORFs) [9, 10], and

post-translational modifications (PTMs) [11]. Additionally, the non-

tryptic nature of immunopeptides results in unique spectral character-

istics, such as strong internal ion series and neutral losses [12]. Because

many immunopeptides do not contain basic lysine or arginine residues

at the C-terminus, class I immunopeptides are often singly charged

[13], making their MS analysis more intricate due to poor ionization

and incomplete fragmentation coverage [14] in contrast to multiply

charged peptides encountered during bottom-up proteomics. Never-

theless, specific HLA types, such as HLA-A*03:01, HLA-A*11:01, and

HLA-A*68:0, do have binding motifs with basic amino acid residues at

the C-terminus [15]. Therefore, depending on which HLA type is being

investigated, using standardproteomicsmethodsand tools could result

in a bias in how well immunopeptides can be characterized. More-

over, immunopeptides are often present at low abundances, which can

also cause changes in fragment ion intensities [16]. These challenges in

immunopeptidomics have previously been described in several review

papers [17–19].

The most common approach to deduce the originating peptide

behind an MS/MS spectrum is sequence database searching [20].

It involves comparing MS/MS spectra against all theoretically pos-

sible peptides derived from the protein sequences present in the

database, in combination with decoy sequences that are used for sta-

tistical confidenceestimation [21].However, largedatabases, suchas in

immunopeptidomics, introduce challenges, such as an increase in ran-

dom high-scoring matches, including high-scoring decoys, resulting in

fewer identifications at a given FDR (usually 1%) [22]. Consequently,

numerous informative spectra are discarded, leading to the oversight

of many potentially therapeutically relevant targets.

PSM rescoring has emerged as a promising solution to challenges in

immunopeptidomics data analysis, reducing false positives and improv-

ing identification rates. This typically involves using (semi-)supervised

machine learning (ML) algorithms, such as Percolator [23], to generate

a new score, incorporating additional PSM features, to better distin-

guish between correct and incorrect PSMs, compared to the search

engine score. Recent advancements in peptidoform property predic-

tion have led to the incorporation of features for PSM rescoring based

on machine learning predictions. For example, fragment ion intensity

predictions can now be used as a realistic proxy for ground truth

MS/MS data from which spectral similarity features can be calculated

for PSM rescoring. In this review, we will explore the tools currently

available for PSM rescoring and discuss how they can be used to obtain

more information from immunopeptidomics data.
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F IGURE 2 Overview of the PSM rescoring pipeline. PSM rescoring is a post-processing step of unfiltered database search results. Features
from the search engines, such as the search engine score, the peptide length, and the charge state are combinedwithmachine learning-based
features, such as spectrum similarity. PSM rescoring should result in a better separation between correct and incorrect PSMs, withmore
annotated spectra at a fixed FDR (1% shown as a red line).

2 PSM RESCORING: LEVERAGING MACHINE
LEARNING FOR ENHANCED
IMMUNOPEPTIDOMICS DATA ANALYSIS

To address challenges in MS-based immunopeptidomics data analy-

sis, PSM rescoring has emerged as a machine learning-based solution

that can significantly reduce false positive spectrum assignments

and improve immunopeptide identification rates. In PSM rescoring,

machine learning algorithms such as Percolator [23], PeptideProphet

[24], and mokapot [25], are used to post-process unfiltered database

search results and learn an optimized score that effectively dis-

tinguishes between correct and incorrect PSMs based on various

informative PSM features.

PSM rescoring is most often done using Percolator [23], which

uses semi-supervised machine learning (ML) to build a linear support

vector machine (SVM)-based classifier that can distinguish between

correct and incorrectPSMs. It begins by (1) parsing the initial unfiltered

database search results into two groups: PSMs with high scores from

target peptides (positives) and PSMs from decoy peptides (negatives).

Then (2) an SVM-based classifier is trained to discriminate between

the positives and the negatives, basedon features describing thePSMs.

Finally, (3) a new score is calculated for all PSMs using the trained clas-

sifier. These three steps are repeated several times until convergence is

reached. The newly computed scores should result in a greater number

of confidently identified peptides, improving the peptide identification

performance (Figure 2).

To avoid overfitting, Percolator uses three-fold cross-validationdur-

ing training of the SVM. The inputs are divided into three equally sized

subsets and the classifier is trained three times. Each time all but one

of the subsets is used for training and the excluded subset is used for

validation. This process is repeated three times, so all combinations of

training and validation sets are used. In addition, Percolator employs

nested three-fold cross-validationwithin each training set to select the

most suitable hyperparameters for the SVM training. The two training

subsets are again divided into three parts, of which two serve as train-

ing and one as validation [26]. A robust cross-validation procedure is

essential to avoid artificially boosting the number of accepted PSMs

due to overfitting. Therefore, cross-validation is also an integral part of

other popular PSM rescoring tools, such as mokapot [25], which uses

an identical strategy as Percolator, and PeptideProphet, which uses

cross-validation in its semi-parametric mode [24].

Notably, Percolator is extremely flexible, allowing its user to con-

sider any set of features to describe a dataset of PSMs. Initially,

features based on PSMmetadata were used, such as the search engine

score, the peptide length, and the charge state. However, recently

several researchers have taken advantage of this flexibility by inte-

grating features from newly developed ML-based predictors to boost

the number of high-confidence identifications. The basic assumption is

that correct peptides should closely resemble ground truth measure-

ments, while features for incorrect peptides are more likely to follow

a random distribution. Because it is infeasible to have ground truth

measurements for all possible peptides and predictors have drastically
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improved in accuracy, predictions are used as a proxy for true ground

truth data (Figure 2).

It is important to note that for rescoring, features need to be care-

fully evaluated to ensure that they are unbiased. Features considered

by the classifier should be very similar between decoys and incorrect

target PSMs. Else, rather than resulting in a better separation between

correct and incorrect PSMs, the classifier would systematically assign

higher scores to target PSMs compared to the decoys and produce

biased results. For example, a feature included in the initial version

of Percolator [23] describing the number of PSMs that match to the

same protein (numProt) was identified as a biased feature [27], proba-

bly because it is more likely that proteins from which incorrect target

peptides are derived have a higher PSM count compared to decoy

proteins.

To evaluate feature biases, entrapment searches can be used, in

which MS/MS spectra are searched against the sample database

and against an entrapment database consisting of sequences from

evolutionary distant organisms. When the entrapment partition is suf-

ficiently large, the probability that a random match hits the sample

database should be negligible. Entrapment PSMs are treated as a rep-

resentation of incorrect matches and can be used to detect whether

there is a correct estimation of the FDR [27–29].

3 COMMON FEATURE TYPES USED DURING
IMMUNOPEPTIDE PSM RESCORING

Existing rescoring tools mainly differ from each other by their use of

distinct feature sets and prediction models. Some PSM rescoring tools

use only a few features by default [30–32], while others use dozens

[33, 34] to 100 features [35, 36]. Additionally, some tools allow adjust-

ing the number of features used. For example, MSBooster [30] has

an option to use correlated features or not, and inSPIRE [33] allows

manual feature inclusion and exclusion. Although a minor variation in

feature sets that are usedwill likely have a limited effect on the perfor-

mance, in light of the diversity in the number and type of features used

by various PSM rescoring tools, it is important to strategically select

relevant and informative features.

In addition to general information on the PSM, features can be

added based on predictions, representing the similarity between the

observed and predicted peptidoform properties, such as spectral sim-

ilarity and retention time differences. Rescoring tools with only a few

features use a single representative feature for each type, whereas

more extensive feature sets include multiple related values as distinct

features. The concept behind using such related features is that even

when they exhibit some statistical correlation, they may not be com-

pletely redundant due to subtle variations in their information content

and thus may still provide complementary signals to improve the pre-

dictive performance [37]. For example, the more extensive feature set

of MS2Rescore has been suggested as a possible driver of its perfor-

mance [35]. It is only when features are perfectly correlated that they

are truly redundant, in which case adding them yields no additional

information [37].

However, employing an extensive feature set needs careful consid-

eration. It increases the risk of overfitting, leading to a reduced number

of PSMs identified when cross-validation is applied within Percola-

tor. Because overfitting is especially an issue when a small dataset is

used, which is common in immunopeptidomics because fewer PSMs

are identified compared to standard proteomics, carefully consid-

ering the features used in the PSM rescoring pipeline is especially

relevant.

3.1 Spectral similarity features

Intensity-based scores representing the similarity between an

observed MS/MS spectrum and the predicted MS/MS spectrum for

specific peptides are valuable features in rescoring [38] that are used

by themajority of currently available rescoring tools (Table 1).

While the m/z values of the peptide fragments can easily be

calculated from the corresponding amino acid sequence, the exact

intensities of those fragments depend on the unique chemistry of each

peptide sequence [39, 40]. By predicting the fragment ion intensi-

ties, we can thus generate an MS/MS spectrum. Prediction of these

fragment ion intensities has been an active area of research for a

number of years [12, 41–45]. To obtain accurate predictions, relevant

factors that influence the fragmentation process have to be consid-

ered. For example, the applied collision energy has a profound impact

on the information content of MS/MS spectra [46]. Thus the optimal

collision energies need to be determined for accurate fragment ion

intensity predictions [36]. In addition, because of the distinct spectral

characteristics of immunopeptides, fragment ion intensity prediction

tools should be retrained using immunopeptidomics data to drastically

improve prediction accuracy [12, 35].

Various spectral similarity features can be used. Basic features indi-

cate the presence/absence of expected fragment ions and their m/z

deviation, which does not require predicted fragment ion intensities.

Additionally, various types of spectral correlation can be used based on

predicted fragment ion intensities, such as Pearson correlation, Spear-

man correlation, mean square error, cosine similarity [47], normalized

spectral contrast angle (SA) [34], spectral entropy [48], and others.

Besides calculating such scores for the full spectrum, somePSMrescor-

ing tools also include similar features separately for b- and y-ions or

when only considering the top-k peaks.

Another possible spectral feature is the Prosit-delta score. This fea-

ture, used by inSPIRE [33], represents the stability of the SA after

two amino acid positions are switched and is conceptually related to

the ΔXCorr score originally used by Percolator [23]. Sequences with

a low Prosit-delta are more likely to be misassigned to similar, though

incorrect peptide sequences.

3.2 Retention time features

Retention time features capture the behavior of the analytes on the liq-

uid chromatography (LC) column. Based on theoretical retention times
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predicted for the candidate peptides, these can be aligned to the exper-

imentally observed retention times, usually using a regression model,

and their difference (ΔRT) can be calculated, typically in terms of the

absolute differences. Most rescoring pipelines incorporate retention

time features (Table 1).

DeepRescore [32] reported that while dropping ΔRT and SA led to

reduced peptide identifications, only minor reductions in the number

of identified peptides were observed when onlyΔRT and SAwere con-

sidered. This indicates the dominant contributions of these features.

The interplay between ΔRT and SA was further highlighted by the fact

that eliminating either of these features resulted in a loss of peptide

identifications. This observation implies a complementary contribution

fromboth features, which is expected as the LC behavior of a peptide is

independent of itsMS behavior.

3.3 Ion mobility features

Ion mobility spectrometry provides an additional dimension that sep-

arates ions based on their size and shape in the gas phase. The

measured ion mobility can be used to derive a collisional cross section

(CCS), which intrinsically depends on the ion structure. Interestingly,

isobaric and isomeric peptide sequences can potentially be distin-

guished by their different CCS [49]. Similarly to retention time, the

observed and the predicted CCS values can be aligned and the dif-

ference can be calculated [50,51]. A few pipelines support the use of

ion mobility features [30,34]. As ion mobility becomes more prevalent

onmodern instruments, ion mobility-based features will becomemore

common.

In MSBooster [30] ion mobility features are not included in the

default set of features, as they only marginally improved identifica-

tions. The limited benefit of ML-based ion mobility features may be

explained by the high dependence of the CCS on the precursor mass

and charge. Because decoy PSMs have the same charge and a similar

mass as the unknown true target peptide, their CCS predictions are

highly correlated with the experimental values. Potentially more rel-

evant features are simply the peptide mass, length, charge state, and

experimental ionmobility value.

3.4 Binding affinity features

When prior knowledge is available on the HLA alleles that are present

in the sample, tools like NetMHCpan [52] can be used to predict

the binding affinity of a certain peptide to a specific MHC molecule.

Features based on these predictions incorporate biological knowl-

edge, in contrast to the previously mentioned features that are purely

chemistry-based. It is important to note the biases that can be intro-

duced by imposing expected binding motifs based on prior knowl-

edge. Moreover, because some HLA alleles are better characterized

than others, the strength of the predictors varies depending on the

HLA allele, potentially introducing a bias towards well-known HLA

alleles. This conflicts with part of the goal of using untargeted MS-

based immunopeptidomics for the unbiased discovery of immunopep-

tides. Predicted binding affinity-based features are supported by only

two PSM rescoring tools, MHCquant [31] and inSPIRE [33].

inSPIRE [33] uses MHC binding affinity predictions in combination

with RT and fragment ion intensity predictions and showed that not

only peptides with higher binding affinities were identified, but also

those with overall better spectral features. This suggests that the fea-

tureswork in concert rather than one being prioritized over the others.

In contrast, MHCquant [31] only uses binding affinity as a feature

and thus has an increased risk of introducing a bias, resulting in the

identification of mainly already known binders. Other features, such

as spectral similarity features and retention time features, provide a

quality check. Without these features, there is no filter for low-quality

spectra, which can lead to an increased risk of introducing false posi-

tive peptide identifications primarily based on a couple of amino acids

on specific anchor positions.

4 CONSIDERATIONS FOR THE PREDICTION
MODELS

Prediction models are used instead of ground truth values, as it would

be infeasible to obtain referencemeasurements for all potential candi-

date peptides, especially in an immunopeptidomics setting. Evidently,

the closer the predictions are to the ground truth, the more rele-

vant the features will be. For example, MHCquant [31] tested ΔRT
and concluded that it was not an effective feature. In contrast, for

DeepRescore [32], ΔRT was consistently one of the features with the

highest weight. A possible explanation for this apparent contradic-

tory conclusion is that the RTPredict tool [53,54] MHCquant used was

published more than 15 years ago and might provide less accurate

predictions compared to more recent alternative retention time pre-

diction models. Hence, this illustrates that highly accurate predicted

peptide properties are needed to provide informative features for PSM

rescoring.

To obtainmore effective features, improvements in predictionmod-

els could be implemented. In the last couple of years, transformers

[55] have rapidly become the dominant neural network architec-

ture, including several applications in bioinformatics. For example, a

transformer, in combination with a pretraining strategy, outperformed

Prosit’s recurrent neural network in predicting fragment ion intensities

[56]. Another way to improve the model performance is to use trans-

fer learning. This is a process by which a neural network is first trained

on a large dataset, after which it is adapted to another related task or

dataset by finetuning it on a smaller training dataset. In this way, model

performance can be optimized for specific datasets, even when only a

limited amount of training data is available. Transfer learning is used

by several deep learning tools [34,44,57] and may help to create mod-

els better suited for different scenarios, such as finetuning them for

different fragmentation mechanisms, instrument platforms, and even

lab-specific data properties [58].
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5 FUTURE PERSPECTIVES

5.1 Further expand the feature set

Originally, the Percolator feature set included basic PSM features

such as the search engine score, the peptide length, and the charge

state, which has currently been extended with features based on ML

predictions. As PSM rescoring continues to evolve, we expect that

features will be updated employing improved prediction models and

that the currently used feature sets will be extended with novel fea-

tures containing orthogonal information. For example, based on the

isotope distribution, it is possible to determine the number of Sul-

fur atoms present in the sample, indicating the number of cysteine

residues [59].

Currently, the spectral features are typically only based on canoni-

cal b- and y-ions, optionally considering common neutral losses as well.

With the advent of full spectrum prediction models [60], this might be

expanded to theentireMS/MSspectrum, using the intensities for every

m/z bin. This may include internal fragment ion intensities, which are

common for immunopeptides that lack basic C-terminal residues.

5.2 Identification of post-translational
modifications

PTMs can regulate key processes by altering protein structure, loca-

tion, or function [61]. These modified proteins, along with their

unmodified counterparts, enter antigen processing pathways resulting

in both unmodified and modified immunopeptides being presented by

MHCmolecules [62]. PTMs on immunopeptides have been reported to

modulate antigen presentation and recognition [63].

However, because modified peptides can have different properties

compared to their unmodified counterparts, predictions from deep

learning tools trained on modified peptides are expected to perform

better than simply shifting fragment ions and using the same retention

time as for the unmodified peptide. With the use of transfer learning,

the fragment ion intensity prediction tool pDeep2 [64] was extended

to include 22 PTMs. Notably, it is difficult to train goodmodels for low-

abundant PTMs, as unlike for common PTMs, it is more challenging to

collect sufficientMS/MS spectra.

When there are a couple of PTMs of interest, it is recommended

to choose up to about 5 PTMs in a standard sequence database

search. When a more explorative approach is preferred, one could

consider using open modification searching, an unbiased approach for

investigating PTMs [65]. In standard database searching an observed

spectrum is not scored against the complete database, instead, only a

subset of the peptides is scored, namely those whose mass is within

a narrow tolerance window of the observed precursor mass. When

this is extended to a larger window, a so-called open search is per-

formed in which a modified peptide can be matched to its unmodified

counterpart, enabling the identification of any PTM within the mass

window.

There are some technical challenges when performing open mod-

ification searching that are exacerbated by the large search space

in immunopeptidomics. Efficient new tools tackle these technical

challenges and have been starting to integrate rescoring [34,66,67].

However, it is important to note that currently most PTMs found with

open modification searching might not be supported by the under-

lying predictors. In this case, transfer learning can be used [57], as

well as emerging algorithmic solutions that can predict peptide prop-

erties for unseen PTMs [34,68]. Additionally, even though several

approaches have been proposed to control the FDR in open modifica-

tion searching [69], further research is necessary to investigate how

the FDR behaves and to ensure that PSM rescoring does not introduce

biases.

5.3 De novo peptide sequencing

An alternative to standard sequence database searching and open

modification searching that allows the identification of novel or unex-

pected peptides is de novo peptide sequencing. Rather than searching

for peptides in a database, the peptide sequence is directly determined

from the MS/MS spectrum [70]. This provides some advantages in

immunopeptidomics, where it is challenging to construct a complete

database accounting for genetic variation, unannotated open read-

ing frames, and the presence of pathogens. However, because spectra

might not contain a complete fragmentation pattern, as well as the

presence of noise peaks, de novo peptide sequencing is a challenging

task [71].

Deep learning has led to a new generation of de novo sequenc-

ing tools, with promising applications in immunopeptidomics [72-75].

An important consideration is that due to the different peptide and

spectral characteristics of immunopeptidomics data, depending on the

initial training strategy, such deep learning-based de novo sequencing

tools typically need to be optimized to handle immunopeptides, for

example, to avoid a tryptic bias in their results [71].

5.4 Adjustment to new experimental settings

When new experimental setups are being implemented, prediction

models and feature sets will need to be updated and developed. For

example, while the initial Prosit fragment ion intensity prediction

model was trained on data from Thermo Scientific Orbitrap instru-

ments [43], it was recently optimized to accurately predict fragment

ion intensities for timsTOF data as well by finetuning the original

model [58]. Similarly, as new instrument platforms are introduced,

such as electron-activated dissociation provided by Sciex ZenoTOF

instruments or data from Thermo Scientific Astral instruments, new

prediction models need to be developed. A challenge with developing

prediction models for new experimental settings is that initially only a

limited amount of training datamight be available. Therefore, if there is

still some similarity between thenewexperimental set-up andprevious
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models, such as similar fragmentation methods on related instrument

platforms, finetuning can be used instead [58]. In contrast, when the

two settings are sufficiently different, retraining new prediction mod-

els from scratch might be necessary. When using PSM rescoring there

needs to be a careful consideration of the settings inwhich themachine

learning models were developed, as using suboptimal prediction mod-

els can lead to unexpected gaps in performance, as demonstrated by

the RT example previously described.

6 CONCLUSION

The integration of machine learning into immunopeptidomics data

analysis throughPSMrescoringholds immensepotential. By increasing

the number of MS/MS spectra that can be accurately annotated, this

approach addresses the important challenge of immunopeptide iden-

tification, which can ultimately lead to advances in our understanding

of immune responses. While PSM rescoring has gained in popularity

over the past few years and has grown into a common analysis strategy,

we expect that it will become even more ubiquitous in the near future

by shifting from an external post-processing step to a core component

integrated in search engines directly.
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