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Highlights
Ferroptosis is an iron-catalysed form of
regulated cell death which is critically
dependent on phospholipid peroxidation
of the cell membrane.

Inhibiting ferroptosis has therapeutic
potential in various diseases (ischemia–
reperfusion injury, iron toxicity, neuro-
logical disorders, multiorgan disease,
infarction, and stroke).

The exponential growth in research
Ferroptosis is an iron-catalysed form of regulated cell death, which is critically
dependent on phospholipid peroxidation of cellular membranes. Ferrostatin 1
was one of the first synthetic radical-trapping antioxidants (RTAs) reported to
block ferroptosis and it is widely used as reference compound. Ferroptosis has
been linked tomultiple diseases and the use of its inhibitors could have therapeu-
tic potential. Although, novel biochemical pathways provide insights for different
pharmacological targets, the use of lipophilic RTAs to block ferroptosis remains
superior. In this Review, we provide a comprehensive overview of the different
classes of ferroptosis inhibitors, focusing on endogenous and synthetic RTAs. A
thorough analysis of their chemical, pharmacokinetic, and pharmacological
properties and potential for in vivo use is provided.
around ferroptosis during the past few
years has unveiled different biochemical
pathways and the potential of novel
pharmacological targets.

Among the published ferroptosis inhibi-
tors, lipophilicRTAs are currently recog-
nized as the main strategy to block
phospholipid peroxidation. Recently,
RTAs with a right balance between
potency and pharmacokinetic proper-
ties have been discovered, enabling
successful in vivo proof of concept in
different disease models.
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Ferroptosis, a druggable form of regulated necrosis
In the past 20 years, new forms of regulated necrosis have been discovered alongside apoptosis
[1]. The term ferroptosis was formally introduced in 2012 by the Stockwell Laboratory, defining it
as an iron-dependent nonapoptotic type of cell death that is characterized by accumulation of
phospholipid peroxides and regulated by multiple cellular metabolic pathways [2]. The bench-
mark ferroptosis inducing compounds, erastin and RAS-selective-lethal-3 (RSL3), were already
described in the pre-ferroptosis era to induce an iron-dependent oxidative form of cell death
[3,4]. In that period, Conrad and coworkers identified a previously unknown cell death pathway
caused by glutathione peroxidase (GPX)4 (see Glossary) inactivation. This pathway, which
leads to neurodegeneration in mice, can be inhibited by α-tocopherol, an isoform of vitamin E [5].

The first synthetic ferroptosis inhibitor reported in literature was ferrostatin-1, which was extensively
used as a reference compound in the past decade [2]. The ferroptosis field experienced an exponential
growth in the past few years, with a significant increase in primary research. Although research mainly
focused on ferroptosis induction for cancer therapy, ferroptosis inhibition remains a promising target
for the prevention and management of diverse diseases such as ischemia–reperfusion injury or iron
toxicity, neurological disorders, single or multiorgan injury, infarction, and stroke [6–8]. Therefore,
several ferroptosis inhibitor classes have been developed; each with its own specific properties.
While a substantial number of reviews on the different ferroptosis inducers and emerging regulatory
mechanisms have been reported, less is described about ferroptosis inhibitors and their classification
[6,9,10]. Following the review by Friedmann Angeli et al. in 2017, we summarize the most recent
progress that has been published in the ferroptosis inhibitor field to date [11].

This Review provides a brief overview of the main regulatory mechanisms of ferroptosis involved
in the phospholipid peroxide formation (Figure 1). It particularly highlights the development
of ferroptosis inhibitors, placing significant emphasis on RTAs (Box 1), which are recognized
as the pivotal strategy to tackle phospholipid peroxidation. We discuss the five established
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Figure 1. Overview of the main endogenous regulatory pathways. System Xc-/GPX4 pathway: the system Xc-
exchanges intracellular glutamate and extracellular cystine in a 1:1 ratio. From cystine, glutathione (GSH) is synthesized
and available as a substrate for glutathione peroxidase 4 (GPX4), which is responsible for the antioxidant defense system
limiting phospholipid peroxidation. Hydropersulfides pathway: glutathione hydropersulfides (GSSHs) are able to trap lipid
reactive oxygen species (ROS) and can be obtained from CysSSH [generated through cystathionine β synthase (CBS) and
cystathionine-γ-lyase (CSE)] or from cysteine [generated from sulfurtransferase (MPST), cysteine aminotransferase (CAT),
and cysteinyl-tRNA synthetase (CARS)]. GSSH can be degraded by persulfide dioxygenase (ETHE1). GCH1/DHFR/BH4

pathway: polyunsaturated fatty acid (PUFA) remodeling in the cell membrane is controlled by tetrahydrobiopterin (BH4),
which is obtained from dihydrobiopterin (BH2) by reduction through dihydrofolate reductase (DHFR). GTP cyclohydrolase 1
(GCH1) is the rate-limiting enzyme for the synthesis of BH4. BH4 can also induce coenzyme Q10 (CoQ10) synthesis as an
additional mechanism to block ferroptosis. Mevalonate pathway: 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) is converted to
the intermediate isopentenyl pyrophosphate (IPP), a common precursor of cholesterol and CoQ10. FSP1/CoQ10 pathway:
ferroptosis suppressor protein 1 (FSP1) can reduce CoQ10 to CoQ10H2, able to scavenge phospholipid peroxides. The
antiferroptotic activity of FSP1 is also linked with the expression of endosomal sorting complex required for transport III
(ESCRT III), which can promote membrane remodeling. Inhibition of murine double minute 2 and X (MDM2 and MDMX) (p53
suppressor proteins) can also increase FSP1 protein and CoQ10 levels. Noncanonical vitamin K cycle mediated by FSP1:
FSP1 is responsible for the reduction of vitamin K (VK) to its hydroquinone (VKH2), a potent radical-trapping antioxidant and
inhibitor of (phospho)lipid peroxidation. Iron regulatory pathway: transferrin is responsible for the intake of Fe3+ which is
reduced into a pool of Fe2+ (labile iron pool; LIP) by the metalloreductase six-transmembrane epithelial antigen of the
prostate 3 (STEAP3). LIP can be exported through ferroportin-1 (FPN1) or stored in ferritin complexes under the Fe3+ form.
The different classes of ferroptosis inducers (FINs) are reported in the glossary. The figure was created using BioRender.com.
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Glossary
2,2-Diphenyl-1-picrylhydrazyl
(DPPH): chemical compound widely
used in the assay for the assessment of
the scavenging capacity of anioxidants
towards radicals.
Bond dissociation enthalpy (BDE):
can be defined as the standard change
in enthalpy when a bond is cleaved by
homolytic fission and as such is a
measure of the strength of that chemical
bond [90] In ferroptosis and especially to
compare the different synthetic and
endogenous RTAs, this parameter is
calculated for the specific N-H (or O-H
bond as in the case of vit E) since the
H-atom transfer is involved in the
neutralization of lipid peroxyl radicals [27].
Ferroptosis inducers (FINs):
molecules that are able to trigger
ferroptosis and are divided in different
classes by their mechanism of action [9].
Class I FINs act by depleting GSH, class
II FINs directly target and inactivate
GPX4, class III FINs deplete GPX4 and
CoQ10, and class IV FINs induce lipid
peroxidation by increasing the LIP.
Fluorescence-enabled inhibited
autoxidation (FENIX) assay: a
spectrometric assay to quantify the
reactivity of putative antioxidantswith the
phospholipid peroxyl radicals. It is
performed in a liposome suspension to
mimic lipid bilayers environment
developed by Shah et al. in 2019 [29].
Glutathione peroxidase 4 (GPX4): a
selenoprotein discovered in 1982 by
Ursini F. et al., which transforms
phospholipid hydroperoxides to lipid
alcohols in a glutathione (GSH)-
dependent manner. GPX4 is the key
antioxidant enzyme in ferroptosis which
prevents phospholipid peroxide
accumulation in the cell membrane [26].
Kinetic ISOTOPE effect (KIE): the
chemical reaction rate where one atom
has been substituted with one of its
corresponding isotopes. For an
enzymatic reaction, it represents the
ratio of the reaction rate conducted with
the original atom and the isotope [66].
Labile iron pool (LIP): represent a pool
of chelatable and redox-active iron (Fe2+)
which is crucial for generation of oxygen
radicals following the Fenton reaction. as
well as catalyzing the phospholipid
radical chain reaction [19].
Lipoxygenases (LOXs): iron-containing
enzymes involved in arachidonic acid
metabolism and synthesis of leukotrienes
as inflammatory mediators [23].
endogenous RTAs [vitamin E, coenzymeQ10 (CoQ10), tetrahydrobiopterin (BH4), vitamin K (VK), and
hydropersulfides (RSSHs)] and their biochemical pathways, and the main synthetic RTAs docu-
mented in the literature to date based on their chemical and pharmacological/pharmacokinetics
aspects, mechanisms of action, and application in different disease models [12]. We present a
critical evaluation of non-RTA inhibitors (perceived as more druggable due to their protein target)
in comparison to RTAs.
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Box 1. RTAs are superior ferroptosis inhibitors

The first class of ferroptosis inhibitors are RTAs. The autoxidation process of PUFAs is the driver of ferroptosis. The radical
chain reaction can be stopped by RTAs leading to the formation of stable nonradical products and therefore preventing cell
membrane disruption. Ideally, a good RTA inhibits ferroptosis by directly terminating the autoxidation chain reaction with
high radical-trapping capacity. Among the specific properties, good RTAs should have labile H-atoms with a bond disso-
ciation enthalpy (BDE) lower than ROO-H, and the derived radical from RTA must not propagate the radical chain reaction
[90]. RTAs have been shown to be effective to reverse ferroptosis in cells and in in vivomodels. However, since RTAs target
the downstream lipid peroxides, once exhausted, they cannot suppress ferroptosis in the presence of insufficient GSH or
Gpx4 knockout.

Zilka et al. designed styrene autoxidation experiments based on the study of Ingold et al. to assess the RTA activity of Fer-1.
When the experimentwas conducted in chlorobenzene, the antioxidant capacity of Fer-1was lower than thewell-established
lipophilic antioxidant vitamin E. This is explained by the predicted BDE of the O-H bond in vitamin E (77.7 kcal/mol) which is
lower than the corresponding N-H bondBDE (83.3 kcal/mol) in Fer-1 [27]. In a liposome systemmimicking the phospholipids
bilayers of the cell membranes, the RTA activity of Fer-1 was significantly better than vitamin E. They hypothesized that the
phenol-based antioxidants are generally less effective in lipid bilayers due to the stronger hydrogen bond formation between
the phenolic proton and water at the lipid–water interface. Particularly, in Fer-1, the aromatic amine moieties are worse
H-bond donors and thus more suited for scavenging radicals in a lipidic environment. In addition, Fer-1 can stabilize
radicals since the newly formed radical can trap additional ROS. Similarly and as reported for Fer-1, Lip-1 acts as an
RTA with higher potency in phospholipid bilayers than in organic solvent compared to phenolic RTAs [27]. Both Fer-
1 and Lip-1 present a similar NH-moiety with almost identical BDE values (83.3 and 82.4 kcal/mol, respectively) able
to trap radicals and therefore prevent the propagation of the lipid peroxidation in the phospholipid bilayer [23].

Currently, the FENIX assay developed in the Pratt group is the recognized method to determine the antioxidant activity of
lipophilic RTAs [29,64].
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Monounsaturated fatty acids
(MUFAs): have only one unsaturated
bond on the alkyl chain, making them
inactive towards lipid peroxidation. They
are the inactive substrate for ferroptosis
and they can suppress lipid peroxidation
[12].
Polyunsaturated fatty acids (PUFAs):
represent the key substrates for
autoxidation. They are characterized by
the presence of a weak bis-allylic C-H
bond, prone to autoxidation and
ferroptosis initiation [25]. Free PUFAs are
incorporated into phospholipids,
especially phosphatidylethanolamine
(PE) and phosphatidylcholine (PC), of the
cell membrane by ACSL4 and LPCAT3
[69].
Radicals: atoms, ions, or molecules
presenting at least one unpaired
valence electron.
Radical-trapping antioxidants
(RTAs): sometimes also referred as
radical trapping agents. The term
defined molecules able to trap (block)
the reactive radicals preventing chain-
carrying reactions.
Reactive oxygen species (ROS):
defines molecular oxygen derivatives
generated by reduction-oxidation (redox)
reactions or electronic excitation. The
term ROS includes two-electron no
radical forms [H2O2, singlet molecular
oxygen (1O2) and organic hydroperoxides
(ROOHs)] and free radical forms
[superoxide anion radical (O2•−), hydroxyl
radical (•OH), peroxyl radical (ROO•) and
alkoxyl radical (RO•)] Excessive ROS
formation can promote molecular or
cellular damage, and stimulate different
cell death pathways and inflammation
[91].
System Xc-/GSH/GPX4 pathway:
transmembrane cysteine/glutamate
Na+-dependent antiporter (system Xc-)
imports cystine inside the cytosol
followed by its reduction into cysteine,
the precursor of GSH, which plays a
protective role in cells against ROS [26].
GSH is the co-factor of GPX4.
Valence electron: represent a
negatively charged particle in the outer
shell of the atom which can be involved
in bonds formation.
Phospholipid peroxidation is the key mechanism of ferroptosis
Peroxidation of phospholipids plays a central role in ferroptotic cell death [12]. The presence and
incorporation of polyunsaturated fatty acids (PUFAs) into phospholipids is essential for
ferroptosis execution allowing radical phospholipid peroxidation [13]. Much progress has been
made to understand how lipid metabolism regulates ferroptosis and how the radical chain
reaction within the phospholipid bilayer leads to the accumulation of phospholipid hydroperoxides
(PLOOH) (Figure 2) [14]. The discussion on the exact subcellular location of lipids susceptible to
trigger ferroptosis is still ongoing: Stockwell’s group identified the endoplasmic reticulum (ER),
Jiang the mitochondria, and Rodriguez the lysosomes [15–17]. Pope and Dixon reported that
independent from the ferroptosis inducing stimulus, phospholipid peroxides accumulate on the
plasma membrane [12]. Probably there is not one unique location, but rather a dependence on
the specific pathway that results in phospholipid peroxidation.

Nonenzymatic phospholipid peroxidation
The nonenzymatic generation of phospholipid peroxides is strictly dependent on intracellular iron
availability [18]. Iron is abundantly present in our body in the form of reduced ferrous (Fe2+) and
oxidized ferric (Fe3+) iron. Fe2+ from the labile iron pool (LIP) represents the redox-active pool
of cellular iron, which can generate reactive oxygen species (ROS) directly via the Haber–
Weiss reaction followed by the Fenton reaction [19]. These ROS can initiate phospholipid
autoxidation and propagate the radical chain reaction through the phospholipid bilayer generating
PLOOH. Excessive LIP in the cytosol or autophagic degradation of ferritin (ferritinophagy) are
conditions that can start the lipid peroxidation process [20]. While phospholipid peroxidation has
been widely studied in the context of ferroptosis, the precise contribution of iron and its
sublocalization in ferroptosis still needs to be defined [14].

Enzymatic phospholipid peroxidation
The initiation of lipid peroxidation can also be mediated under certain context by lipoxygenases
(LOXs), NADPH oxidase (NOX) enzymes, and cytochrome P450 oxidoreductase (POR) [21].
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Figure 2. Mechanism of lipid peroxidation and the different classes of inhibitors. Overview of lipid peroxidation with
its different steps: initiation, propagation, and termination and examples of the most active ferroptosis inhibitors. Initiation
involves extracting the bis allylic hydrogen atom from polyunsaturated fatty acids (PUFAs) within the cell membrane
phospholipid bilayer carried out by radicals such as an hydroxyl radical or a phospholipid alkoxyl radical. Consequently
the phospholipid radical (PL•) reacts with molecular oxygen generating phospholipid peroxyl radical (PLOO•), which
reacts with another PUFA removing hydrogen and generating the corresponding lipid peroxide (PLOOH). The process can
terminate when radical–radical interactions yield a nonradical product. In nature, besides glutathione peroxidase 4 (GPX4)
several endogenous radical-trapping antioxidants (RTAs) can interfere with the lipid hydroperoxide process. In the pas
10 years, many different synthetic RTAs have been developed by numerous groups working in the field. Additiona
strategies to block the lipid peroxidation chain process are iron chelators, lipoxygenase (LOX) inhibitors, GPX4 activators
and deuterated (D)-PUFA.
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How lipid peroxidation occurs on phospholipids through the action of LOXs during ferroptosis is
still a mystery. Phosphatidylethanolamine binding protein (PEBP)1 was suggested to associate
with 15LOX-2 to acquire specificity for the phosphatidylethanolamine (PE) phospholipids that
are key to ferroptosis [22]. Although RTAs can rescue cells from ferroptosis by interfering with
the autoxidation process, the inhibition of LOX cannot reverse ferroptotic cell death. Most of
the reported LOX inhibitors can inhibit ferroptosis through an RTA off-target effect [23]. Recent
studies have suggested that POR can initiate lipid peroxidation by donating electrons (accepted
by NADPH) to the electron acceptor CYP450 and CYB5A as downstream effectors [24].

Considering the progress in the field, the discrimination between enzymatic and nonenzymatic
phospholipid peroxidation in ferroptotic context starts to be outdated. It is clear now that the spe-
cific lipid composition, the presence of certain substrates and especially the balance between
redox inactive monounsaturated fatty acids (MUFAs) versus PUFAs determine the initiation
of phospholipid peroxidation and are relevant for the ferroptosis outcome [25].

Endogenous RTAs
Since oxygen is abundantly present in nature and plays a crucial role in life, it is no surprise that
living organisms developed protective mechanisms against so called biological rust.

Besides the system Xc-/GSH/GPX4 pathway that inactivates toxic phospholipid hydroperoxides
via a two-electron reduction, several endogenous RTAs dampen phospholipid peroxide propaga-
tion through trapping radicals using a one-electron reduction mechanism (Table 1) [26]. Lipophilic
RTAs generally transfer an H atom to a lipid peroxyl radical, yielding a lipid hydroperoxide and a
stable RTA-derived radical [27].

Vitamin E
α-Tocopherol (α-TOH), the most active form of vitamin E, and its analog pentamethyl chromanol
(PMC) are well-recognized phenolic RTAs [28]. α-TOH demonstrated potential to inhibit ferroptosis
in vitro in different cell lines [23]. Phenolic antioxidants are effective inhibitors of ferroptosis and lipid
peroxidation, but their activity is limited by the strong H-bond formation between the phenolic -OH
group and the polar phospholipids heads, making aminic RTAs superior in this respect [29].
Tocotrienols, a group of vitamin E isoforms, demonstrated to be more effective than α-TOH in
inhibiting ferroptosis. [30]. The synthetic derivatives tetrahydronaphtyridinols (THNs), are even
more effective based on an aza-phenol moiety with enhanced potency and stability resulting
from the introduction of various alkyl chain substituents (C12-THN was the best analog) [27].

Tetrahydrobiopterin (BH4)
In 2018, Kraft et al. reported the GCH1/DHFR/BH4 pathway where GTP cyclohydrolase (GCH)1
mediated the synthesis of BH4 /BH2, preventing the initiation of lipid peroxidation [31]. GCH1 is
considered to be a rate-limiting enzyme for BH4 synthesis. In parallel, Soula et al. described
dihydrofolate reductase (DHFR) activity to convert dihydrobiopterin (BH2) to BH4 upon NAD(P)
H consumption (Figure 1) [32]. GCH1 overexpression and high level of BH4 promote reduced
CoQ10 (CoQ10H2) decreasing ferroptosis sensitivity by depleting PUFAs-PL. Therefore, inhibition
of GCH1 has been linked to the promotion of ferroptosis [33].

Coenzyme Q10 (CoQ10)
The FSP1/CoQ10 pathway, discovered by Bersuker, Doll and colleagues in 2019, involves ferroptosis
suppressor protein (FSP)1, converting CoQ10 to its reduced form (CoQ10H2) and consuming NADPH
(Figure 1) [34,35]. Inhibition of negative modulators of p53, homologous murine double minute 2 and
X (MDM2 and MDMX, respectively), can increase CoQ10 and FSP1 levels, inhibiting ferroptosis in a
906 Trends in Pharmacological Sciences, December 2023, Vol. 44, No. 12
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Table 1. Overview of the main classes of ferroptosis inhibitorsa

Mechanism Class Structure Refs

Endogenous RTA α-TOH (vitamin E isoform) [92]

CoQ10 (ubiquinone 10) [38]

BH4 (tetrahydrobiopterin) [93]

Vitamin K1 (phyllohydroquinone) [40]

GSSHs [41]

Synthetic RTA Ferrostatins Fer-1 [2]

UAMC-3203 [49]

SRS11-92, SRS9-11, SRS16-86, UAMC-2418, CFI-4061,
CFI-4082

[46,47]

Liproxstatins Lip-1 [54]

Lip-2 [55]

Tricyclic
RTAs

Phenothiazine [56]

2-{1-[4-(4-methylpiperazin-1-yl)phenyl]ethyl}-10H-phenothiazine,
4-{4-[1-(10H-phenothiazin-2-yl)vinyl]phenyl}morpholine

[57,58]

3-CF3-8-tBu-PNX [59]

Other CuATSM, CuATSP, SKI II, serdemetan, AZD3463, bazedoxifene [45,60]

D-PUFA RT-001 [94]

LOX inhibitorsb Zileuton (A-64077), baicalein,
PD-146176, docebenone, MK-886, BWA4C

[23,54]

Inhibitors of
15LOX-2/PEBP1
complexa

FerroLOXIN-1, FerroLOXIN-2 [75]

GPX4 activators PKUMDL-LC-101, PKUMDL-LC-101-D04 [78]

Iron chelator Deferiprone, DFO, deferasirox, CPX, 2,2-BP,
1,10-phenanthroline, AKI-02

[2,80,95]

Others See Table S1 in the supplemental information online

aAll the structures of the inhibitors discussed in the text are reported in the supplemental information (see Table S1 in the
supplemental information online).
bConsidering the discussion in the section on LOX inhibitors, these two groups of inhibitors could also be considered as RTAs.
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p53-independent manner, as reported by Venkatesh et al. [36]. Dai et al. discovered that the
antiferroptotic activity of FSP1 is connected with the recruitment of the endosomal sorting complex
required for transport (ESCRT) III, and is responsible for membrane regeneration [37]. The discovery
of ferroptosis inducer FIN56 revealed the link between lipid metabolism dysregulation and ferroptosis
[38]. FIN56 binds SQS, a key enzyme in cholesterol synthesis, and suppresses CoQ10.

Vitamin K (VK)
In 2022, Mishima et al. discovered that the long sought warfarin-resistant noncanonical reductase
that reduces VK to VKH2 is FSP1 (Figure 1) [39]. Both CoQ10/CoQ10H2 and VK/VKH2 belong to the
1,4-benzoquinone/hydroquinone antioxidant class. VKH2 suppresses ferroptosis in a GPX4 dele-
tion cell model by tackling lipid peroxides. Recently, VK1 was also reported by Kolbrink et al. as an
effective endogenous antioxidant to prevent lipid peroxidation during acute kidney injury [40].

Hydropersulfides (RSSHs)
The latest reported endogenous regulatory mechanism that protects cells from lipid hydroperoxides
is the RSSH/trans-sulfuration pathway. Dick and coworkers verified that the antioxidant potential
of hydropersulfides (GSSHs) is strictly connected with the intracellular level of cysteine, but
Trends in Pharmacological Sciences, December 2023, Vol. 44, No. 12 907

CellPress logo


Trends in Pharmacological Sciences
OPEN ACCESS
independent from the GPX4 axis (Figure 1) [41]. In Pratt’s group, the exceptional inhibitory capacity
of RSSHs against phospholipid peroxidation was demonstrated in vitro in the fluorescence-
enabled inhibited autoxidation (FENIX) assay [42]. Despite the lower antiferroptotic activity
(micromolar range) of GSSHs in cells, they have the advantage of being endogenously produced
through the transsulfuration pathway and are more effective than vitamin E due to their low
H-bond acidity [43]. GSSHs function as early responders to ferroptosis induction, independent
of dietary uptake (differently from vitamin E and VK). RSSHs not only act as effective RTAs but
also serve as strong nucleophiles, suggesting their potential role in inhibiting lipid peroxide
byproducts such as 4-hydroxynonenal (4-HNE). These hydropersulfides continuously regenerate
through enzymatic activity, and the self-recombination of perthiyl radicals (GSS●).

Synthetic RTAs
Ferroptosis inhibitors are required when the physiological cellular antiferroptotic mechanisms are
disrupted and the endogenous RTAs are not sufficient to tackle the formation of lipid peroxides
(Table 1 and see Table S1 in the supplemental information online).

Ferrostatins
The first reported ferroptosis inhibitor was ferrostatin (Fer)-1 in 2012 [2]. Stockwell and coworkers
identified Fer-1 through high-throughput screening of a small molecule library containing diverse
drug-like soluble compounds. Fer-1 is an arylalkylamine that prevents lipid hydroperoxide
accumulation in an erastin-mediated ferroptosis model in HT-1080 cells. Diarylamines and
hindered dialkyl amines are commonly used as antioxidants in the food and material industries
[44]. Therefore, a similar mechanism of action was hypothesized for Fer-1. While Stockwell’s
group demonstrated Fer-1 to be only a reductant, in 2017, Pratt’s group shed light on the RTA
mechanism of Fer-1. Structure–activity relationship (SAR) studies underlined that the presence
of the N-cyclohexyl moiety, acting as a lipophilic anchor in biological membranes, is crucial [45].

To design novel ferroptosis inhibitors, the chemical structure of Fer-1 (EC50 = 95 nM) was investi-
gated in an erastin-mediated ferroptosis model in HT-1080 cells. The maintenance of activity relies
heavily on the amine group and the lipophilic anchor, as suggested by the reported SAR [46]. Further
derivatization of the ethyl chain and introduction of a benzylicmoiety on the aromatic amine improved
potency (SRS11-92 EC50 = 6 nM). However they failed to improve the activity when an amidemoiety
was introduced to replace the ethyl ester with in SRS9-11 (EC50 = 950 nM). This result was
contradicted by Hofmans et al. a few years later [47]. Plasma instability was attributed to the ethyl
ester by Scouta et al., leading to the synthesis of SRS16-86 (EC50 = 350 nM), featuring a
tert-butyl ester, and an imine, showing improved stability but decreased activity [48]. These
findings highlighted the importance of novel ferroptosis inhibitors that exhibit improved phar-
macokinetic properties while retaining potency.

Hofmans et al. replaced the labile ester with either amide or sulfonamide moieties to improve
stability, and a benzyl ring was introduced on the NH2 to enhance stability and potency, resulting
in sulfonamide analog UAMC-2418 [47]. The significant decrease in solubility drove the introduc-
tion of solubility-enhancing groups and the discovery of UAMC-3203 showing improved potency,
stability, and solubility [49]. UAMC-3203 showed a lack of toxicity in amousemodel (Table 2), and
currently is one of the most potent RTAs that can be used in in vivo disease models. Its use
protected mice from multiorgan dysfunction and death induced by iron overload [50], improved
post-resuscitation myocardial dysfunction in rats, and delayed relapse and ameliorated disease
progression of relapsing–remitting multiple sclerosis in mice [51,52]. In our opinion, UAMC-
3203 should replace Fer-1 as a reference compound in cellular and animal models due to its
superior properties.
908 Trends in Pharmacological Sciences, December 2023, Vol. 44, No. 12
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Table 2. Main pharmacokinetic properties and in vivo use of important RTAsa

Name In vivo model / clinical trial Additional information Refs

Fer-1 FeSO4 acute iron overload mouse model 5.2 mg/kg in 0.9% NaCl solution with 2% DMSO bol. i.p. [50,53]

Focal cerebral ischemia rat model 5 mg/kg in 2.5% (v/v) Tween-80, 2.5% (v/v) anhydrous
ethanol and 95% (v/v) saline, i.v. bolus

[57]

Relapsing–remitting experimental
autoimmune encephalomyelitis (EAE) in mice

5.2 mg/kg in 0.9% NaCl solution with 2% DMSO i.p. bolus [52]

Lip-1 Inducible Gpx4−/− acute renal failure and
liver mouse model

10 mg/kg i.p., q.d. [54]

FeSO4 acute iron overload mouse model 6.8 mg/kg in 0.9% NaCl solution with 2% DMSO i.p. bolus [50]

Relapsing–remitting EAE in mice 6.8 mg/kg in 0.9% NaCl solution with 2% DMSO i.p. bolus [52]

UAMC-3203 Acute iron poisoning mouse model 10.16 mg/kg in 0.9% NaCl solution i.p. bolus [49]

FeSO4 acute iron overload mouse model 12.35 mg/kg in 0.9% NaCl solution i.p. bolus [50]

Cardiac arrest and cardiopulmonary
resuscitation rat model

5mg/kg i.p. bolus [51]

Relapsing–remitting EAE in mice 12.35 mg/kg in 0.9% NaCl solution with 2% DMSO i.p. bolus [52]

Vitamin E FeSO4 acute iron overload mouse model 50 mg/kg i.p. bolus [50]

(2-{1-[4-(4-methylpiperazin-
1-yl)phenyl]ethyl}-10H-
phenothiazine)

Focal cerebral ischemia rat model 5 mg/kg in 2.5% (v/v) Tween-80, 2.5% (v/v) anhydrous
ethanol and 95% (v/v) saline, i.v. bolus

[57]

3-CF3-8-tBu-PNX Inducible Gpx4−/− acute renal failure mouse
model

10 or 20 mg/kg q.d., i.p.
(vehicle PEG400/5 % Solutol HS15/PBS; PEG E 400 and
Solutol HS 15)

[59]

CuATSM Clinical trial for early idiopathic Parkinson’s
disease (Phase 1)

30 participants p.o. 12 mg/day NCT02870634

Clinical trial for amyotrophic lateral
sclerosis/motor neuron disease (ALC/MND)
(Phases 2 and 3)

80 participants p.o. 72 mg/day NCT04082832

SOD1G93A mice with a C57BL/6 background 100 mg/kg/day p.o. b.i.d. (vehicle 0.9% w/v NaCl, 0.5% w/v
Na-carboxym-ethylcellulose, 0.5% v/v benzyl alcohol, 0.4% v/v
Tween-80)

[61]

RT-001 Clinical trial for infantile neuroaxonal
dystrophy (Phases 2 and 3)

19 participants, p.o. 3.84 g/day NCT03570931

Clinical trial for Frederich’s ataxia (Phases 1
and 2)

1.8 g (q.d.) or 9 g (b.i.d.), p.o. NCT02445794

Aldh2−/− mice with D-PUFA supplemented
diet in AD model

1.2 g (1.2%) 11,11-D2 LA ethyl ester and 11,11,14,14-D4
α-ALA ethyl ester/100 g diet in a 1:1 ratio, 18 weeks

[96]

Deferiprone Clinical trial for Parkinson’s diseases (Phase 2) 22 participants, 20mg/kg/day or 30mg/kg/day, p.o. b.i.d. NCT01539837

Clinical trial for Frederich’s ataxia (Phase 2) 36 participants, 20mg/kg/day or 40mg/kg/day, p.o. b.i.d. NCT00897221

Zileuton NaIO3-induced acute retinal degeneration
of murine model

20 mg/kg 10% DMSO in corn oil i.p. bis, at 24h and 15min
before NaIO3 treatment

[97]

Baicalein Intracerebral hemorrhage mouse model 20 mg/kg in 0.5% carboxymethylcellulose sodium solution
(0.5mg/ml) p.o. b.i.d.

[98]

Myocardial ischemia/reperfusion injury rat
model

100 mg/kg or 200 mg/kg p.o. gavage, q.d. [99]

FerroLOXIN-1
FerroLOXIN-2

Total body irradiation mouse model 25 mg/kg i.p. bolus 24 h after radiation [76]

aStructures of inhibitors reported in Table 2 are depicted in Figure 2.
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To specifically target neurodegenerative diseases and the penetration through the blood–brain
barrier (BBB) a novel series of Fer-1 analogs has been recently patented by Stockwell’s group.
In place of the ethyl ester/sulfonamide moiety, they introduced different heterocycles, including
oxazole and oxadiazoles [53].

Liproxstatins
Similar to Fer-1, liproxstatin (Lip)-1 was selected from a small molecule screening in TAM-inducible
gpx4−/− mouse embryonic fibroblasts (MEFs) [54]. With this study, a novel class containing a
spiroquinoxalinamine scaffold with inhibitory potency against ferroptosis in the nanomolar range
was introduced. The removal of the amine group (NH) from the quinoxaline was detrimental to
the activity independently from the position of the -CH3 or Cl on the benzyl ring. Considering the
mechanism of Fer-1 as RTA, this should be explained by the H-bond donor function of NH to
block phospholipid peroxidation. However, in the explanation provided by the study of Pratt and
coworkers, where they confirmed the RTA activity of Lip-1, the quinaxoline ring was highlighted
as a key blocker of peroxyl radicals [27]. Lip-1, together with UAMC-3203, was demonstrated to
be a superior RTA in terms of activity, solubility, and especially stability in different mouse models
[50]. Recently, Conrad and coworkers, reported a novel Lip-1 analog, Lip-2 (chemical structure
not disclosed), with even improved pharmacokinetic properties, and effectiveness in lupus nephritis
in vitro and in vivo [55]. So far, no other structural modifications of Lip-1 have been reported.

Tricyclic aromatic rings: phenoxazines and phenothiazines
Phenoxazines and phenothiazines are another class of aminic RTAs with excellent antiferroptotic
potency [56]. in particular, phenothiazine and its analogs are known for their antipsychotic
properties; therefore, their chemical structures are attractive for BBB permeability [56]. In the
SAR reported by Yang et al., the introduction of a substituent presenting different alkyl/aryl
moieties with different hydrophobicity in the C-10 position was detrimental to the activity of pheno-
thiazines [57]. Instead, the derivatization at the C-2 position leads to a significant increase in
antiferroptotic potency, with the most active compound 51 featuring a 2-phenyl-methyl piperazine
moiety (EC50 = 0.5 nM in erastin-induced ferroptosis in HT-1080 cells). Another potent phenothia-
zine analog was reported by You et al. with a 2-vinyl-10H-substituent based on the previously
reported SAR [58]. The compound showed an EC50 = 10 nM in erastin-induced ferroptosis in
HT-1080 cell with no toxicity in an in vivomodel (Table 2). Farmer et al. also investigated the poten-
tial of different substituents on phenothiazine and phenoxazines scaffolds [59]. They could not re-
produce the result obtained by Yang et al. Since they tested their compounds in RSL3-induced
ferroptosis in MEFs, the different IC50 values can be explained by the different assay conditions.
In our opinion this demonstrates the importance of assay conditions on the variability of results:
cell lines (HT-1080 vs Pfa-1 MEF), ferroptosis inducers (FINs) and their concentrations (erastin
vs RSL3) and the specific cell density. All these parameters need to be carefully analyzed when
discussing results and comparing inhibitors from different papers. It demonstrates the importance
of taking control reference compounds along in each round of evaluating new inhibitors. The results
obtained with the phenothiazines seem to confirm the study of Devisscher et al. that a piperazine
ring is a favorable moiety for interaction with the phospholipid head group [49]. Similarly,
phenoxazines, the most potent RTAs up to date, were investigated [59]. While the introduction
on C2, C3, C7, and C8 of electron-withdrawing groups decreases activity, electron-donating
groups increase the intrinsic activity. Lipophilicity correlates well with the potency and steric
hindrance around the NH has a minimal impact on the RTAs activity. The presence of
nonoxidizable substituents on C3 or C7 was however necessary to reduce metabolism in
mouse liver microsomes. Compound 11 (EC50= 3.6 nM in RSL3-induced ferroptosis in MEFs)
was the most potent analog of the series 3-CF3-8-tBu-PNX (CF3 in C3 and tert-butyl in C8), with
favorable pharmacokinetics properties.
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Other RTAs
In an FDA-approved drugs screening, Dixon and coworkers identified SKI II, serdemetan, AZD3463,
and bazedoxifene as potent RTAs able to suppress ferroptosis in erastin-2- and ML162-induced
ferroptosis in HT-1080 cells, showing IC50 values <150 nM [60]. Bazedoxifene was more potent
than Fer-1 and phenothiazine. The library was also screened in a 2,2-diphenyl-1-picrylhydrazyl
(DPPH) cell-free radical scavenging assay and ferrozine Fe2+ binding assay to verify their mecha-
nism of action as RTAs or iron chelators.

Pratt and coworkers studied the RTA potential of the clinical candidate copper(II)-diacetyl-bis
(N4-methyl thiosemicarbazone)(CuATSM) [45]. CuATSM slowed disease progression in
amyotrophic lateral sclerosis (ALS) (Table 2) and inhibited RSL3-induced ferroptosis in rat mesen-
cephalic (N27) cells [61,62]. Despite high bond dissociation enthalpy (BDE) values calculated
for the N-H group of CuATSM (97.3 kcal/mol) compared to Fer-1 (83.3 kcal/mol) and Lip-1
(82.4 kcal/mol), CuATSM acted as a highly potent RTA (IC50 = 160 nM in RSL3 induced ferroptosis
in Pfa1 cells) with a unique mechanism of action and BBB permeability. The structural analog
CuATSP, which has two extra phenyl moieties on the two N-H of the bis(thiosemicarbazone),
was 20-fold more active in cellulo. The increased lipophilicity of the molecule facilitates membrane
permeability, making CuATSPone of themost potent ferroptosis inhibitors discovered to date (IC50

= 8.5 nM in RSL3 induced ferroptosis in Pfa1 cells). Next to its antioxidant properties the
compound also works by improving mitochondrial respiration [63].

With the implementation of the FENIX-2 assay, the radical trapping potential of various ferroptosis
inhibitors could be more precisely assessed [64]. Necrostatin-1, a well-known necroptosis inhibitor,
was confirmed to act as an RTA in ferroptosis inhibition, as speculated previously [65]. Mallais et al.
demonstrated that the thiohydantoin moiety reacts with hydroperoxides, but the sulfenic acid
formed in situ effectively acts as an RTA [64].

Non-RTA ferroptosis inhibitors
Deuterated PUFAs
Cell treatment with PUFAs containing deuterium (D-PUFAs) at the peroxidation site can prevent
ferroptosis by stopping the autoxidation process through the kinetic isotope effect (KIE)
(Table 1) [66]. The protective effect of D-PUFAs was verified in erastin- and RSL3-induced ferrop-
tosis models, with demonstrated efficacy in various diseasemodels, particularly neurodegenerative
disorders [67]. The company Retrotope started a clinical trials in 2018 with a candidate compound
RT001 containing a deuterated form of linoleic acid (Table 2) [68].

LOX inhibitors and GPX4 activators
5-LOX, 12-LOX, and 15-LOX, are the three lipoxygenase isoforms responsible for enzymatic
phospholipid peroxidation [69]. The most relevant inhibitors reported in the literature are: the
5-LOX inhibitors (zileuton, MK-886, and BWA4C) the 12/15-LOX inhibitor PD-146176; the
15-LOX inhibitor baicalein; and the 5/12-LOX inhibitor docebenone (AA-861) (Table 1)
[70–72]. However, not all the LOX inhibitors have an antiferroptotic activity. This has been demon-
strated by Shah et al. [23]. In their study, zileuton, PD-146176, baicalein, AA-861, and two addi-
tional 5-LOX inhibitors CJ-13610 and CAY-10649 were tested for their RTA potential in
comparison with Fer-1 and Lip-1. Except for CJ-13610 and CAY-10649 which desensitize cell
to ferroptosis induction, the antiferroptotic activity of LOX inhibitors was linked to their RTA
mechanism. Zileuton displayed higher activity, likely due to the O-H bond in its hydroxamic acid
moiety, while PD-146176 exhibited moderate activity due to the presence of an N-H bond in its
arylamine moiety. Baicalein and AA-861 also demonstrated RTA activity attributed to the lipophilic
pyrogallol in baicalein and the lipophilic quinone (similar to CoQ10) in AA-861.
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In the same study, the potential of RTAs such as Fer-1 to inhibit LOX was also investigated. They
demonstrated comparable ferroptosis protection by the RTAs such as Fer-1 and Lip-1, and
the LOX inhibitors zileuton and PD14676. However, the activity of Fer-1 and Lip-1 as 15-LOX
inhibitors turned out to be poor compared to their RTA activity [27].

Recently, Anthonymuthu et al., confirmed that Fer-1 does not inhibit 15-LOX directly, but they
revealed that it can inhibit 15-hydroperoxy-eicosatetraenoyl phosphatidylethanolamine (15-HpETE-
PE) production by the 15LOX-2/PEBP1 complex [73]. In a recent patent of 2022, a series of aryl-
substituted imidazoles were reported as selective inhibitors of 15LOX-2/PEBP1 complex to
treat necroinflammation associated with ferroptosis [74]. Recently, Kagan and coworkers
reported FerroLOXIN-1 and 2 as inhibitors of the 15LOX-2/PEBP1 complex, suppressing lipid perox-
idation and ferroptosis in vitro and in vivo [75]. However, considering the presence of the classical
aromatic amine moieties typical of RTAs (Fer-1, Lip-1, and phenoxazines) it is likely that the
antiferroptotic activity is at least in part due to an RTA-off target effect [76]. The inhibition of
15LOX-2/PEBP1 as an upstream mechanism of phospholipid peroxidation represents an emerging
inhibition strategy that could complement the activity of RTAs [30].

Inducing GPX4 activation can be a promising approach to control the accumulation of lipid
peroxides. However, designing a protein activator is challenging. In the past, ebselen was
reported as a GPX4 (and GPX1) mimetic and included in several unsuccessful clinical trials [77].
More recently, with a computation-based approach, Li et al. managed to design and synthesize
eight allosteric activators for GPX4 [78]. These compounds present a unique mechanism of
action with no overlap with other strategies commonly used in ferroptosis inhibition. PKUMDL-
LC-101 and its optimized analog PKUMDL-LC-101-D04 were among the most potent to
increase GPX4 activity in a cellular model. However, the molecules showed IC50 > 100 μM
(erastin-induced ferroptosis in HT-1080 cells), making them moderate ferroptosis inhibitors.
This therapeutic strategy might be considered for a synergistic effect with RTAs.

Iron chelators
Iron chelators inhibit lipid peroxidation either by binding iron in the catalytic center of LOX or by
chelating iron in the cytosolic LIP, thus inhibiting radical generation. The ones reported in the
literature up to date are: deferoxamine (DFO); deferasirox, which is the first oral medication
approved by the FDA for chronic iron overload; ciclopirox (CPX), an FDA-approved antifungal
which acts as iron chelator and ALOX5/PTGS inhibitor; and 2,2′-bipyridine (2,2-BP), which can
sequester Fe2+ from LIP similarly to 1,10-phenanthroline (Table 1) [2,19]. The LOX inhibitor
baicalein also acts as an iron chelator due to the 5,6,7-hydroxyl groups that form complexes
with iron in a stoichiometry of 1:1 [79]. Recently, a new hydroxypyridinone-based iron chelator,
AKI-02, was reported as an effective iron-chelating agent in rhabdomyolysis (RM)-induced AKI [80].

The delicate equilibrium between redox active and inactive forms of iron can be altered and result in
ferroptosis among the many possible outcomes. Considering the central role of iron in ferroptosis,
iron chelators are effective inhibitors and an effective strategy to control ferroptosis [9]. However,
the inhibitory potency of small RTAs seems to be superior. Nevertheless, we should question
whether the mechanism of synthetic RTAs is only ascribable to their radical trapping capacity or
perhaps an iron chelation mechanism is also involved.

Additional ferroptosis inhibitors
Bardoxolone methyl (BXM) is in Phase 3 clinical trials for the treatment of chronic diabetic kidney
disease and it promotes the activation of Nrf2. In the p62/Keap1/Nrf2 pathway, Nrf2 protects
from ferroptosis by binding with different antioxidant response elements [81]. ACSL4 inhibitors,
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Outstanding questions
Currently lipophilic RTAs are the most
effective ferroptosis inhibitors to
tackle the formation of phospholipid
peroxides. Are there any specific
upstream pharmacological targets
that can result in inhibitors with the
same potency and efficiency in
in vivo disease models?

What is the exact cellular or
subcellular location of lipids that are
most susceptible to peroxidation
(if there is an unique one)?

Which are themost specific and sensitive
biomarkers to detect ferroptosis in vivo?

How can these biomarkers help in
translating the current ferroptosis
inhibitors to the clinic?

Are there any additional endogenous
RTAs to be considered in the
complicated ferroptosis regulatory
machinery?

How can we improve pharmacokinetic
properties such as oral bioavailability,
half-life and organ distribution (espe-
cially BBB permeability) to increase
RTAs potential as therapeutic drugs?
rosiglitazone and pioglitazone, activate Nrf2 through stimulation of peroxisome proliferator-acti-
vated receptor γ. The benzoxazole sepanisertib (INK128) and the pyridopyrimidine AZD8055
are orally bioavailable ATP-competitive mechanistic rapamycin complex (mTORC)1 inhibitors
are in clinical trials (Phase 2 for pancreatic cancer and Phase 1 for glioma, respectively) and
inhibited ferroptosis induced by class I FIN. The role of mTORC1 in ferroptosis seems to be
context-dependent as described by Zhang et al. and Yi et al. [82,83]. Erastin-mediated ferrop-
tosis in HL-60 cells can be inhibited by c-Jun N-terminal kinase inhibitor SP600125 and p38
inhibitor SB202190 at 10 μM in acute myeloid leukemia [84]. A769662 and AICAR are activa-
tors of AMP-activated protein kinase (AMPK) and responsible for decreased levels of PUFA-
containing Pes [85]. 5-(tetradecyloxy)-2-furoic acid is a context-dependent allosteric acetyl
CoA carboxylase 1 inhibitor; a downstream protein regulated by AMPK activation [86].
Go6983 and enzastaurin present a bisindolylmaleimide scaffold and act as protein kinase
(PK)C inhibitors in an erastin and RLS3 ferroptosis cell model. Their activity is related to PKC
inhibition, and involved in the execution of ferroptosis, as confirmed from their inactivity in the
FENIX assay [87]. Vildagliptin, alogliptin, and linagliptin inhibit dipeptidyl-peptidase (DPP)4
and DPP4-mediated lipid peroxidation induced by ferroptosis inducers FIN I in p53 knockout
cells [88] (see Table S1 in the supplemental information online for all the discussed structures).
The rapid advances in ferroptosis have led to the necessity for an accessible tool to facilitate the
classification and identification of novel ferroptosis inhibitors. FerrDb V2 is a collection of more
than 1000 ferroptosis regulators now available and freely accessible (http://www.zhounan.org/
ferrdb/current/), which also include 179 inhibitors [89].

Concluding remarks and future perspectives
The discovery of different metabolic pathways regulating ferroptosis sensitivity has improved the un-
derstanding of this type of cell death. Evidence for its implication in various diseases is increasingly
convincing, and therefore the interest in novel ferroptosis inhibitors is high. The identification of specific
in vivo biomarkers remains an important area to explore (seeOutstanding questions). Another point of
attention for the field is the crucial importance of various factors such as the specific class of FINs
used, cell line, and cell density, when comparing the potency of ferroptosis inhibitors.

Endogenous RTAs are one of the main natural defense mechanisms and there is probably more
to discover. In addition, library screening of drug-like/approved molecules led to the identification
of many synthetic ferroptosis inhibitors showing RTA activity. This confirms the potential of
lipophilic RTAs as a superior class of ferroptosis inhibitors. The recently discovered novel
enzymatic targets open the door to new potential directions. However, initial results indicate
that many of the inhibitors of these enzymes owe at least part of their ferroptosis inhibition to
their potential to trap radicals.

Much has been done already to improve the initially discovered inhibitors Fer-1 and Lip-1, and
this identified novel drug-like candidates to address different ferroptosis-driven diseases in vivo
(e.g., UAMC-3203, Lip-2, and substituted phenothiazine/phenoxazine). Even if the lack of a protein
target might remain a hurdle for further development, the data collected so far seem to indicate the
blockade of phospholipid peroxidation through radical-trapping molecules as an unquestionable
mechanism for ferroptosis inhibition. The assay recently developed in Pratt’s group (FENIX-2)
could facilitate the discrimination of RTAs versus non-RTAs during library screening and therefore
accelerate the discovery of novel RTAs.
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