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1. INTRODUCTION 

Optimization is a widely used concept in many fields, such as engineering, economics, management, physical 
sciences, and social sciences. Its purpose is to identify the global maximum or minimum of a fitness function. 
Finding all optimal points of an objective function can aid in selecting a robust design that simultaneously 
considers various constraints and performance criteria. 

Designers of microwave and antenna systems face the challenge of finding optimal solutions for electromagnetic 
problems of increasing complexity. This can be a difficult task as it involves evaluating electromagnetic fields in 
three dimensions, considering a large number of parameters and complex constraints, and dealing with non-
differentiable and discontinuous regions. These optimization problems are often non-linear and more challenging 
to solve than linear ones, especially when many locally optimal solutions are in the feasible region. 

When developing electromagnetic systems, it is essential to carefully consider how the different design elements 
interact with each other. Instead of relying on brute-force computational techniques, experts use advanced 
optimization procedures to achieve the best results. These procedures can be grouped into two categories: 

Electromagnetic design problems involve optimizing multiple parameters that are 
nonlinearly related to objective functions. Traditional optimization techniques require 
significant computational resources that grow exponentially as the problem size 
increases. Therefore, a method that can produce good results with moderate memory and 
computational resources is desirable. Bioinspired optimization methods, such as particle 
swarm optimization (PSO), are known for their computational efficiency and are 
commonly used in various scientific and technological fields. In this article we explore 
the potential of advanced PSO-based algorithms to tackle challenging electromagnetic 
design and analysis problems faced in real-life applications. It provides a detailed 
comparison between conventional PSO and its quantum-inspired version regarding 
accuracy and computational costs. Additionally, theoretical insights on convergence 
issues and sensitivity analysis on parameters influencing the stochastic process are 
reported. The utilization of a novel quantum PSO-based algorithm in advanced scenarios, 
such as reconfigurable and shaped lens antenna synthesis, is illustrated. The hybrid 
modeling approach, based on the unified geometrical description enabled by the Gielis 
Transformation, is applied in combination with a suitable quantum PSO-based algorithm, 
along with a geometrical tube tracing and physical optics technique for solving the 
inverse problem aimed at identifying the geometrical parameters that yield optimal 
antenna performance. 
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deterministic and stochastic methods. While deterministic methods have their advantages, stochastic methods 
have the potential to find the global optima of a problem, no matter where the search begins. Stochastic 
algorithms are highly valued by electromagnetic engineers for their ability to efficiently find global optima, even 
when faced with nonlinear and discontinuous problems that involve many variables. They are flexible, adaptable, 
easy to implement, and can handle complex fitness functions without requiring the computation of derivatives. 
Unlike traditional searching methods, these algorithms are not overly reliant on the starting point, making them 
an invaluable tool for optimizing non-differentiable cost functions in complex multimodal search spaces. 
However, due to their stochastic behavior, these algorithms require many iterations to produce reliable results. 

Various swarm intelligence-based optimization algorithms have been developed to address the differing 
descriptors and unknowns in each optimization problem. These algorithms include particle swarm optimization, 
ant colony optimization, cuckoo search, firefly algorithm, bat algorithm, artificial fish swarm algorithm, flower 
pollination algorithm, artificial bee colony, wolf search algorithm, and gray wolf optimization [1]. Choosing the 
most suitable algorithm is crucial, as there is no general rule for this decision. Key factors to consider include 
good convergence properties, ease of use, ability to manage complex fitness functions, a limited number of control 
parameters, and effective use of the parallelism offered by modern computational architecture. 

Particle swarm optimization (PSO) has gained popularity among researchers in the electromagnetic community 
since its inception. Many versions of the original algorithm have been developed using different parameter 
automation strategies. PSO has proven to be a powerful optimization method for solving various EM and antenna 
design problems, such as antenna pattern synthesis, reflector antenna shaping, patch antennas, EM absorber 
designs, and microwave filter design. The parallel implementation of PSO enables the simultaneous evaluation of 
all agents involved, significantly speeding up the optimization process. Compared to other evolutionary methods, 
PSO is a more effective and cost-efficient optimization algorithm that provides better results with fewer 
parameter adjustments [2,3,4]. 

2. CLASSIC PSO ALGORITHM 

The PSO algorithm, created by Kennedy and Eberhart in 1995 [5], is a type of optimizer that mimics the behavior 
of swarms of animals like bees, fish, or birds. The focus is on the interaction between independent agents and 
social or swarm intelligence. The swarm consists of particles, each representing a potential solution to an 
optimization problem. Each particle searches for the global optimal point in a multi-dimensional solution space 
by adjusting its position based on its own experience and the experiences of other particles. The particle's position 
changes by altering its velocity and using the best position it has visited so far (called personal best) and the best 
position found by all particles (called global best). 

Let us consider a swarm of M particles in an N-dimensional search space. Each swarm can be characterized by 
two N×M matrices, the position matrix X and the velocity matrix V: 

                                                                                                        (1) 

                                                                                                         (2) 

where t is a unit pseudo-time increment (iteration counter),  is the n-th position element of the m-th particle 
at the t-th iteration,  is the n-th velocity element of the m-th particle at the t-th iteration, and every column

 in matrix X is a possible solution for the problem. Moreover, the personal best position matrix Xb and the 
global best position vector Gb are introduced: 
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problems [13,17,18]. Furthermore, it allows for a straightforward identification of the optimal value of the 
algorithm parameter. In fact, the inertial weight and the cognitive constants are defined when only one value is 
set. This aspect makes the method very attractive and usable by non-expert users. 

3. QUANTUM-BEHAVED PSO ALGORITHM 

Several variants of the PSO algorithm improve the convergence speed and accuracy by implementing a velocity 
threshold and constriction factor. However, these variants are only semi-deterministic because the particles 
follow a deterministic trajectory with two random acceleration coefficients. This can weaken the global search 
ability, especially during the later stages of the search process. PSO's search pattern heavily relies on the personal 
and global best positions, and if these particles get stuck, the entire swarm will converge to that trapped position. 
To overcome this drawback, the quantum-behaved particle swarm optimization algorithm (QPSO) was 
developed. QPSO uses a probabilistic procedure, allowing particles to move under quantum-mechanical rules 
instead of classical Newtonian dynamics. QPSO eliminates velocity vectors, has fewer control parameters, and has 
a faster convergence rate with a stronger search ability, making it easier to implement for complex problems than 
the original PSO. 

Using the  potential well, QPSO generates new particles around the previous best point and receives feedback 
from the mean best position to enhance the global search ability. 

Assuming that the PSO is a quantum system, the m-th particle can be treated as a spin-less particle moving in an 
N-dimensional search space with a  potential centered at the point . So, the quantum state of 
the n-th component of particle m is characterized by the wave function , instead of position and velocity. In 
such a framework, the exact values of  and  cannot be determined simultaneously since only the probability 
of the particles appearing in position  can be evaluated. It is defined by the probability density function 

 satisfying the general time-dependent Schrödinger equation: 

                                                                                                                   (12) 

where  is the reduced Plank’s constant and  is a time-independent Hamiltonian operator given by: 

                                                                                                                            (13) 

where  is the mass of the particle,  is the potential energy distribution, and  is the n-th 
component of the vector difference between the m-th particle position and the corresponding  potential well 
position. Applying the separation variables method, it is possible to separate the time dependence of the wave 
function from the spatial dependence obtaining: 

                                                                                                                  (14) 

where  is the energy of the particle and  satisfies the stationary Schrödinger equation: 

                                                                                                     (15) 

and the normalization condition: 
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                                                                         (17) 

where  is the standard deviation of the distribution. Employing the Monte Carlo inverse method [19] it is 
possible to show that the update equation relevant to the n-th position component of particle m is: 

                                                                           (18) 

where: 

                                                                                                   (19) 

and ,  and  are independent random numbers generated according to a uniform probability 
distribution in the range [0,1]. In order to improve the QPSO algorithm efficiency, the mean best of the population, 

, is defined as the mean of the personal best positions of all particles: 

                                                                                                                                         (20) 

In this way, the value of  is given by: 

                                                                                                                             (21) 

with  being the contraction-expansion coefficient. Considering that both the population size and the number of 
iterations are common requirements,  is the only parameter of the QPSO algorithm that can be tuned to control 
its speed and convergence [20]. In particular, to balance the local and global search of the algorithm, a dynamic 
adjustment of the contraction-expansion coefficient in the range [0,1] can be used: 

                                                                                                                                                   (22) 

with tmax being the maximum number of iterations. 

The illustrated QPSO algorithm is proven to be more effective than the traditional PSO algorithm in various 
standard optimization problems [20,21,22,23,24,25]. However, from Eq. (20) it can be seen that each particle 
affects, in the same way, the value of  since the mean best position is just the average of the personal best 
position of all particles. This approach takes into account the search scope of each particle, and in some cases it 
can be reasonable. It is to be noticed, however, that based on general rules of real-life social culture, the equally 
weighted mean position could not represent the best choice. To this aim, a control method based on promoting 
particle importance has been developed [26]. In such an approach, elitism is associated with the particle’s fitness 
value. In particular, the greater the fitness value, the more critical the particle. In this way, the particle has a 
weighted coefficient  linearly decreasing with the corresponding fitness function. The closer the fitness 
function to the optimal value, the larger the weight of the particle. So, the mean best position is calculated as: 

                                                                                                                                   (23) 

where the weighting coefficient linearly ranges from 1.5 for the best particle, down to 0.5 for the worst one. The 
corresponding QPSO algorithm is called weighted QPSO (WQPSO). To further improve the convergence rate of 
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Figure 1. Flowchart of the EWQPSO algorithm regarding the minimization problem. 

( )b
nx t E

( ) ( )
( )

1

1

( )
M b

m nmb m
n M

mm

t x t
x t

t
=

=


=






( )

( )( )
( )( ) ( )( ) ( )( ) 
( )( ) ( )( ) ( )( ) 

( )( )

1 2

1 2

1 Minimization problem
max , ,

min , ,
1 Maximization problem

b
m

b b b
M

m b b b
M

b
m

t

t t t
t

t t t

t


 −
 = 

−



x

x x x

x x x

x

E

E E E

E E E

E



116 
Athena Transactions in Mathematical and Physical Sciences, Volume 1 

Proceedings of the 1st International Symposium on Square Bamboos and the Geometree (ISSBG 2022) 
 

 

4. BENCHMARK TESTS FOR THE EWQPSO ALGORITHM 

Several tests have been carried out to verify the effectiveness and performance of the proposed EWQPSO 
algorithm. In particular, the minimum searching problems regarding the Alpine and De Jong test functions are 
considered by changing both the domain dimension N and the number of particles M [8,23]. The maximum 
generation value is set to . For each function, the results calculated by using EWQPSO, WQPSO, 
and QPSO algorithms have been compared. The search algorithm is applied 100 times for each test function, and 
the mean and standard deviation values relevant to the best particle have been calculated. 

4.1. Alpine Test Function 

The Alpine function is defined as follows: 

                                                                                                                      (26) 

where the global minimum  corresponds to  coordinates. In this case, the hypercube 

searching domain is . Fig. 2 shows the evolution of the mean value corresponding to 
the best particle position considering a population of M=30 particles and N=10, N=15. In this case, the EWQPSO 
exhibits remarkable performance compared to the other PSO approaches since it is more accurate and faster. 

4.2. De Jong Test Function 

The de Jong function is defined as follows: 

                                                                                                                                                 (27) 

where the global minimum  corresponds to  coordinates. For the test, the following 

search domain , is set. Fig. 3 shows the evolution of the mean value corresponding 
to the best particle position considering a population of M=30 particles and N=5, N=10. Also, in this case, the 
EWQPSO is faster and more accurate than the alternative QPSO algorithms. 

In Table 1 are listed the mean and standard deviation (STD) values taking into account the minimum value 
associated with the best particle found in each of the 100 runs and by changing the particle number and the test 
function. By visual inspection of the results, one can easily conclude that the developed EWQPSO algorithm is 
characterized by improved accuracy. 

        
Figure 2. Evolution of the mean value corresponding to the best particle position of the EWQPSO, WQPSO and QPSO 
applied to the Alpine function for N=10 (left) and N=15 (right). A swarm composed of M = 30 particles is considered. 
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Figure 3. Evolution of the mean value corresponding to the best particle position of the EWQPSO, WQPSO and QPSO 
applied to the de Jong function for N=5 (left) and N=10 (right). A swarm composed of M = 30 particles is considered. 

Test Function N 
QPSO  WQPSO  EWQPSO 

Mean STD  Mean STD  Mean STD 

Alpine 

5 3.63e-5 1.64e-4  7.99e-5 4.70e-4  1.42e-6 8.31e-6 

10 6.94e-5 3.10e-4  6.35e-5 3.61e-4  2.05e-10 1.74e-9 

15 7.46e-5 7.45e-4  9.23e-6 6.11e-5  1.08e-10 1.08e-9 

20 5.50e-4 5.50e-3  5.09e-4 3.63e-3  2.51e-4 1.77e-3 

de Jong 

5 1.27e-169 6.48e-169  9.32e-165 6.56e-164  6.37e-193 6.05e-192 

10 3.58e-133 2.73e-132  1.00e-130 9.31e-130  1.04e-142 1.00e-141 

15 3.31e-104 1.44e-103  1.50e-101 7.46e-101  2.35e-108 1.92e-107 

20 3.72e-81 2.59e-80  3.40e-80 1.80e-79  2.29e-84 1.34e-83 

Table 1. Mean and STD values of the global best particle calculated using the EWQPSO, WQPSO and QPSO algorithms 
and considering different test functions. 

5. EWQPSO FOR SUPERSHAPED LENS ANTENNA SYNTHESIS 

Researchers and engineers have shown extensive interest in dielectric lens antennas due to their potential use in 
various fields, such as wireless communication systems, smart antennas and radar systems. These antennas are 
attractive because they are easy to integrate and have the ability of shaping and collimating beams. In the past, 
most research was focused on developing 3D dielectric lenses with simple geometries, but recent studies have 
explored complex shapes using Gielis’ superformula [27,28,29,30]. This formula allows for generating a wide 
range of 3D shapes by changing a few parameters, which can be optimized using an automated procedure based 
on the QPSO algorithm. 

The surface of the lens can be described by the following Gielis’ equations in a Cartesian coordinate system: 

                                                                                                                   (28) 

                                                                                                                    (29) 

                                                                                                                                            (30) 

                                                                                        (31) 
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                                                                                     (32) 

where ,  are positive real numbers and ,  are strictly positive real numbers 
selected in such a way that the surface of the lens is closed and characterized, at any point, by a curvature radius 
that is larger than the working wavelength. The parameters  and  denote convenient 
angle values, whereas the spherical angles are obtained by the equations: 

                                                                                                                                                   (33) 

                                                                                                                                                   (34) 

where . 

Fig. 4 shows the antenna structure used in the synthesis procedure. It consists of a large dielectric lens placed in 
the center of a circular plate made of electrically conductive material. The plate acts as a ground plane and also 
helps to reduce back-scattered radiation. The lens is illuminated by the electromagnetic field emitted by an open-
ended circular waveguide filled with the same dielectric material as the lens. The propagation of the 
electromagnetic waves inside the lens is modeled using the tube tracing approach based on the combined 
geometrical optics/physical optics (GO/PO) approximation. This approximation allows significant simplification 
of the mathematical model making the simulation of electrically large structures possible with a lower 
computational effort than full-wave numerical methods. In fact, by virtue of the GO/PO approximation, the 
traveling electromagnetic wave can be approximated by a set of tubes propagating over a rectilinear path inside 
the lens [31,32,33]. The accuracy of the method can be further improved by considering the effects of multiple 
internal reflections occurring within the lens. 

The developed GO/PO tube-tracing algorithm has been validated by comparison with the full-wave finite 
integration technique (FIT) adopted in the commercially available electromagnetic solver CST Microwave Studio 
[31,32,33]. A dedicated novel synthesis procedure based on EWQPSO is adopted to design a particular lens 
antenna showing a fixed 3D radiation pattern at frequency f=60 GHz. Such antennas could improve the channel 
capacity in communication systems implementing spatial-division multiplexing. The lens is made from a 
dielectric material with relative permittivity equal to εr= 2, the cylindrical open-ended waveguide and the metal 
plate have diameter  and , respectively. A swarm of M=48 particles has been launched 
over a maximum pseudo-time . The position vector relevant to the m-th particle is 

. The multidimensional search space has been restricted by assuming that all the 
components of the vector position can range from 1 to 5, while the remaining Gielis’ parameters are 

 and . 

Figure 4. Structure of a supershaped dielectric lens antenna. 
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Figure 5. Radiation solid (left) generated by the current density distribution (right) on the lens surface. 
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Figure 6. Comparison between the target directivity and the directivity of the Gielis’ lens antenna synthesized by means 
of the EWQPSO procedure:  (left) and  (right). 

Figure 7. Convergence rate of the EWQPSO procedure. 

6. CONCLUSION 

This research study has illustrated an optimization algorithm, EWQPSO, based on the quantum-behaved PSO 
approach, to solve complex electromagnetic problems. Comparative analysis with conventional QPSO and WQPSO 
algorithms indicates that EWQPSO is faster and more accurate. 

The EWQPSO algorithm is applied to the solution of inverse problems concerning the determination of the Gielis 
parameters of supershaped dielectric lens antennas with multi-beam characteristics at mm-wave frequencies. 
The obtained results demonstrate the effectiveness of the proposed approach in identifying optimal solutions. 
Additionally, the algorithm is easy to implement, as it does not require the evaluation of complicated evolutionary 
operators or a large number of synthesis parameters. Even when using the generalized Gielis formula [35], with 
additional design parameters, the same algorithm can be applied [36]. This makes it an appealing and efficient 
alternative tool for designing and characterizing these types of antennas. 
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