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Abstract—Various autonomous applications rely on recog-
nizing specific known landmarks in their environment. For
example, Simultaneous Localization And Mapping (SLAM) is an
important technique that lays the foundation for many common
tasks, such as navigation and long-term object tracking. This
entails building a map on the go based on sensory inputs which
are prone to accumulating errors. Recognizing landmarks in the
environment plays a vital role in correcting these errors and
further improving the accuracy of SLAM. The most popular
choice of sensors for conducting SLAM today is optical sensors
such as cameras or LiDAR sensors. These can use landmarks
such as QR codes as a prerequisite. However, such sensors become
unreliable in certain conditions, e.g., foggy, dusty, reflective,
or glass-rich environments. Sonar has proven to be a viable
alternative to manage such situations better. However, acoustic
sensors also require a different type of landmark. In this paper,
we put forward a method to detect the presence of bio-mimetic
acoustic landmarks using support vector machines trained on
the frequency bands of the reflecting acoustic echoes using an
embedded real-time imaging sonar.

Index Terms—Acoustic sensors, Sonar, Robot sensing systems,
Simultaneous localization and mapping

I. INTRODUCTION

Simultaneous Localization And Mapping (SLAM) is es-

sential in navigating known and unknown environments. In

the latter case, SLAM proves especially vital without external

referencing systems such as the Global Positioning System

(GPS). These include complex environments such as cave

and tunnel systems seen during search and rescue missions

or traversed by mining vehicles. Lastly, it provides the basis

for essential tasks such as long-term object tracking, path

planning, and collision avoidance [1], [2].

Optical sensors, such as cameras and laser scanners (LiDAR),

are the preferred input choice for SLAM systems. However,

under certain conditions, these sensors will drop in reliability,

e.g., foggy, dusty, reflective, or glass-rich environments [3].

In such situations, in-air sonar can provide a reliable backup,

as these factors do not hinder sonar operation using the

acoustic ultrasound spectrum. Furthermore, sonar has been

proven to be a viable primary sensor for autonomous systems

such as SLAM [4].

Additional benefits include low cost and the ability to deploy

transducer and microphone arrays for a wide field of view and

more complex signal processing, such as beamforming [5], [6].

This last option, in particular, is interesting since it provides

increased directionality and improves sensing range.

A priori landmarks improve the reliability of SLAM by

correcting errors and increasing the accuracy of the SLAM

process [7], [8] as odometry data fails to produce an acceptable

map, and sensory input is vulnerable to ambiguous measure-

ments, including when using in-air sonar [4]. Landmark recog-

nition also provides the foundation of loop-closure algorithms

[9].

Landmarks can also be ideal for other autonomous tasks, such

as specific behavior activation. For example, placing them next

to a door to be opened, a mobile robot’s charging dock to park,

or recognizing a box to be picked up. Cameras are known to

use landmarks such as fiducial markers [10].

Objects can be recognizable by sonar based on their acoustic

reflection patterns, which nature reflects in the evolution of

bat-pollinated plants [11]. Like sonar, bats produce ultrasound

chirps and extract information about the environment based

on their reflections. They are competent creatures, as they

can differentiate multiple interfering echos, identify the type

of vegetation that produced the echo, and resolve surface

structures down to 100 µm [12]. In contrast to the usual bright

colors and inwards guiding shape of other flowers, these

bat-pollinated plants lure bats by relying on their acoustic

reflections, achieved by floral parts shaped specifically to make

their echos very conspicuous. We can make bio-inspired sonar

landmarks based on different flowers by mimicking these

shapes.

One practical example is the dish-shaped leaf of the Cuban

liana Marcgravia evenia: not only can we approximate the

leaf with a spherical reflector, but there is also an opportunity

to differentiate the echos of different replicas by adjusting

individual properties such as the radius, depth, and edge

finish [13]. In these experiments by Simon et al., an array

of ultrasonic transducers was used.

In this research, we present the possibility of using a real-time

imaging sonar with a single transducer to recognize artificial

landmarks based on dish leaves of the Marcgravia evenia in

real-time. The following section details the sensor hardware,

landmark design, and algorithm using a support vector ma-

chine (SVM) for landmark classification and detection. This is

followed by the experimental results for the proposed system,

and finally, this paper is closed off by the conclusions and

future work in the final section.



Fig. 1. Embedded Real-Time Imaging Sonar.

II. LANDMARK DETECTION & CLASSIFICATION

A. 3D Sonar

The sonar module used is an Embedded Real-Time Imag-

ing Sonar (eRTIS) [14] equipped with one SensComp 7000

transducer and 32 Knowles SPH0641LU4H-1 omnidirectional

microphones scattered irregularly inside of an ellipsoidal

boundary in its frontal face [15]. It also houses an embedded

computing platform using an NVIDIA Jetson module system

for onboard GPU-accelerated signal processing of the ultra-

sonic signals [16].

The eRTIS sensor outputs a data stream of pulse-density

modulated binary data sequences from the microphones. This

is converted to a 450 kHz sampled digital audio signal onboard

the eRTIS module. The resulting audio file is either processed

on the eRTIS or stored to be processed offline by the landmark

detection algorithm at a later point in time. The sensor is

shown in Figure 1.

To match the behavior of a bat identifying the Marcgravia

evenia, the emitted call should match as close as possible. As

discussed in [13], the ideal chirp would be broadband and be

a linear frequency sweep between 180 kHz to 30 kHz in 1ms.
To pertain more energy in the signal, a long sweep of 6ms
between 160 kHz and 10 kHz can also be used. In practice,

the transducer and microphones on the eRTIS cannot produce

and record frequencies that high.

Another significant design difference is that the eRTIS sensor

only has a single transducer compared to the array of 14

broadband transducers used in the earlier experiments by

Simon et Al. [13]. Each of those transducers would emit

sequentially to be able to calculate the landmark directionality,

causing the detection algorithm to perform rather slowly.

B. Landmarks

The landmarks are based on research by Simon et al. [13],

where different bat-pollinated flowers were examined for their

acoustic profile and how bats can recognize them.
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Fig. 2. (a) Comparison of a natural (top) and synthetic (bottom) Marcgravia

evenia leaf showing the impulse response of the echo made from the frontal
angle. The arrows indicate the three prominent peaks originating from the
edges and the inner concave surface. The synthetic dish shown here has a
radius of 35mm and a depth of 25mm and uses tapered edges. [13] (b) The
reflection paths illustrated for the spherical shape of the leaf of a Marcgravia

evenia. (c) 3D printed artificial landmarks with tapered edges and a depth of
30% of the total diameter with respective aperture radii of 35mm, 48mm,
58mm, and 70mm respectively.

The Marcgravia evenia has developed a unique dish leaf to be

recognizable to bats. The leaf has a spherical body that, when

struck by sound from the convex side, will reflect acoustic

energy to the source through the very center of the dish leaf.

Sound will also return after following any secondary paths and

through edge reflections. Thus, the resulting echo will consist

of a small peak originating from the edge reflections, a promi-

nent peak from the center of the landmark, and subsequent

peaks coming from the secondary paths in rapid succession,

as shown in Figures 2a and 2b. These properties are unique

and depend only on the metrics of the landmark, such that

we can differentiate differently sized landmarks based on

the timings and amplitude of these peaks. Furthermore, they

are direction-independent [11]. This forms the basis for the

artificial landmark design, consisting of a spherical body. Since

we want to maximize the energy in the second and third peaks,

we can minimize the edge reflections by tapering the edges.

The final artificial landmarks have a depth of 30% of their

diameter and are 3D printed in polylactic acid (PLA). Some

examples are shown in Figure 2c.

C. SVM Classification

Due to the difference in sonar sensor design as discussed in

Subsection II-A, and the goal to reach the real-time operation

of the detection algorithm, a different approach had to be

used as to the probabilistic algorithm to detect the different

peaks as described in [13]. This algorithm, combined with the

eRTIS sensor, caused multiple issues. Most notably, the limited

bandwidth of the emitted call possible by the transducer used

on the eRTIS causes a lower time resolution due to the

Rayleigh criterion.



Furthermore, since the radii of the different landmarks are

pretty close to each other and thus so are the timings between

the peaks, the original detection algorithm will sometimes

result in positive detection of multiple landmarks with different

radii despite only one present. When a landmark is oriented

away from the transducer, it can prevent secondary paths from

forming. The limiting angle depends on the ratio of the depth

of the landmark and the radius of the sphere it is formed

around. Finally, if a landmark is too far away or in the side

lobe of the transducer, the peaks do not have enough amplitude

to stand out from other reflections originating from the main

lobe.

Alternatively, we propose to use Support Vector Machines

(SVMs) to differentiate between echos originating from differ-

ent landmarks, as SVMs are widely and successfully used in

classifying audio fragments and pattern recognition, among

others [17]. Additionally, we inquired if SVMs could dif-

ferentiate between audio fragments that contain landmark

reflections and those that do not. And finally, be more robust

against the above-mentioned difficult conditions where the

peak detection probabilistic algorithm failed.

III. EXPERIMENTAL RESULTS

A. SVM Training

The training data set consists of recordings made in seven

vastly different environments, totaling 944 recordings taken

in multiple positions and angles in each environment. They

cover four landmarks with respective aperture radii of 35mm,

48mm, 58mm, and 70mm. The environments range from

open lab areas to a packed garage with landmarks between

60 cm and 420 cm from the eRTIS module. The recordings

are labeled by landmark size and cropped to the samples that

match the range at which the landmark was placed, with a

±20 cm margin, leaving us with precisely 1024 samples. After

that, we apply a window function to dampen the start and

end of the fragment and a band-pass filter between 30 kHz
and 100 kHz. This bandwidth is divided into 20 linearly

spaced frequency bins for training the SVM on the spectrum

magnitude obtained through a regular fast Fourier transform.

The SVM uses a linear kernel, one-versus-one coding, and is

cross-validated 20 times during training.

B. Validation

The resulting SVMs successfully identified whether or not

a landmark was present in a fragment with an accuracy

of (89.1 ± 0.8)%. The confusion matrix of this validation

can be seen in Figure 3. When differentiating between all

four categories, it had a success rate of (67.2 ± 1.3)%. The

confusion matrix of this validation can be seen in Figure 4.

The overall accuracy was (73.8± 0.9)%.

IV. CONCLUSIONS & FUTURE WORK

Using an embedded real-time imaging sonar with a singular

transducer with limited bandwidth in both the transducer

and receiver array creates a unique constraint to solving
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Fig. 3. The results of the landmark detection (landmark present or none
present) using SVMs in the form of a confusion matrix.
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Fig. 4. The landmark detection and classification results using SVMs for four
different landmark sizes in the form of a confusion matrix.

the problem of detecting unique acoustic reflectors as land-

marks. We proposed using SVMs to identify and classify

landmarks in acoustic reflections more reliably as a solution.

The experimental results show that it is successful in this

task, particularly in landmark detection. The differentiation

between the different landmark sizes is less accurate but can

be potentially increased by a more extensive training dataset.

Additionally, using the SVM classification method on the fre-

quency spectrum of directional audio fragments can be further

explored. Further expansion could create even more distinct

acoustic landmarks by using multiple acoustic reflectors in

unique patterns similar to fiducial markers for cameras. With

regards to obtaining a landmark’s bearing, beamforming can

be implemented to use the microphone array’s properties to

find the landmark’s direction once the SVM has classified

the landmark. Different techniques, such as deep learning-

based classifiers (e.g., convolutional neural networks), have

also shown promising results and could improve the be more

robust than using SVM in the future [11], [18], [19]. Finally,

a SLAM algorithm can implement the landmark detection

system to provide more stable loop closure events.
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