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Abstract

In most practical prediction problems, such as regression and classification, the different types of

prediction errors are not equally costly in the decision-making process. Although there exist numer-

ous real-world cost-sensitive regression problems, ranging from loan charge-off forecasting to house

price predictions, the literature on cost-sensitive learning mainly focuses on classification and only a

few solutions are proposed for regression problems. These regressions are typically characterized by

an asymmetric cost structure, where over- and underpredictions of a similar magnitude face vastly

different costs. In this paper, we present a one-step boosting method (OSB) for cost-sensitive regres-

sion. The proposed methodology leverages a secondary learner to incorporate cost-sensitivity into an

already trained cost-insensitive regression model. The secondary learner is defined as a linear func-

tion of certain variables deemed interesting for cost-sensitivity. These variables do not necessarily

need to be the same as in the already trained model. An efficient optimization algorithm is achieved

through iteratively reweighted least squares using the asymmetric cost function. The obtained results

become interpretable through bootstrapping, enabling decision makers to distinguish important vari-

ables for cost-sensitivity as well as facilitating statistical inference. Applying different cost functions

and various initial cost-insensitive learning methods on several public datasets consistently yields a

significant reduction in the average misprediction cost, illustrating the excellent performance of our

approach.
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1. Introduction

Predictive models are increasingly being used to optimize decision-making. These modern-day

applications of predictive data mining techniques, such as classification and regression, are often of
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a cost-sensitive nature (Alfaro et al., 2008; Bahnsen et al., 2014; Wang et al., 2018). This implies

that different deviations from a correct prediction (over- and underprediction errors) entail different

consequences and costs, possibly based on contextual information. In many applications, the goal is

therefore to minimize the cost incurred through decisions rather than the prediction error.

A classical example of such a cost-sensitive classification problem is fraud detection, where the

cost resulting from a false positive is very different from that of a false negative (Höppner et al., 2022).

A typical example for cost-sensitive regression can be found in stock or inventory management, where

keeping 100 extra units in stock without selling them involves different costs compared to failing to

meet demand by 100 units. Whilst the prediction errors are the same in magnitude, the costs related

to the decision-making process are considerably different for under- or overpredictions. Traditional

linear regression models are not suitable for this example since they assume that the costs for over-

and underpredictions are equal. There exist numerous other application areas in which these cost-

sensitive prediction problems appear. Some of the more popular application domains are summarized

in Table 1.

Cost-sensitive learning application domains

Application Domain References

Healthcare Wang et al. (2018); Zhang et al. (2019); Qiu et al. (2015)

Forecasting Van Calster et al. (2020); Tsai et al. (2009); Arminger and Götz (1999)

Customer Churn/Retention Höppner et al. (2020); Bahnsen et al. (2015); Coussement (2014)

Real Estate Price Prediction Cain and Janssen (1995); Varian (1975)

Loan Charge-Off Forecasting Czajkowski et al. (2015); Zhao et al. (2011); Bansal et al. (2008)

Risk Prediction Hu et al. (2015); Ghatasheh et al. (2020)

Fraud Detection Sahin et al. (2013); Bahnsen et al. (2013); Nami and Shajari (2018)

Table 1: Overview of common application areas of cost-sensitive learning together with references.

Although many cost-sensitive learning methods for classification problems have been proposed in

literature, there exist only very few solutions for regression problems (Elkan, 2001). In general, two

approaches have been proposed to obtain cost-sensitive predictions in regression problems.

The first approach works by integrating costs within the learning objective of the predictive

model and hence deal with the asymmetric costs during model learning. This approach is sometimes

called the direct approach or predict-and-optimize approach (Donti et al., 2017; Wilder et al., 2019;

Vanderschueren et al., 2022). The second approach is a post hoc approach or predict-then-optimize

approach: first, a predictive model is built to maximize its predictive power and then decisions are

made based on the model’s predictions and the costs associated with these decisions. Hence, in this
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approach costs are only considered in a post hoc manner. In Vanderschueren et al. (2022), it is shown

that the best results in a classification setting were obtained when incorporating cost-sensitivity in

a post hoc manner. Moreover, post hoc cost-sensitive regression models can cope with various

cost structures without modifying the underlying learning method. Recently, Bansal et al. (2008)

and Zhao et al. (2011) proposed post hoc tuning approaches to obtain cost-sensitive predictions in

regression problems.

In this paper, we build on these proposals and present a more general strategy to incorporate

cost-sensitivity through a one-step boosting of the cost-insensitive regression model, which minimizes

the average misprediction cost under an asymmetric cost structure. A secondary learner, defined as

a linear function that optimizes the average misprediction cost given a certain cost function, is used

to achieve this goal. The combination of the initial regression model and the secondary learner then

delivers cost-sensitive predictions. Optimal coefficients for the linear function are efficiently obtained

based on the iteratively reweighted least-squares method (Huber et al., 1981). Motivated by the

low computational cost of the algorithm, a bootstrapping approach is presented to obtain confidence

intervals for statistical inference. This makes the cost-sensitive regression interpretable and may

provide important insights into how taking costs into account may alter the trained model or which

variables are important to the cost-sensitivity of the problem. It is worth noting that, in cases where

the initial regression model is trained as a linear model, the proposed one-step linear boosting is

the same as training with the cost function directly. In these cases our approach is equivalent to

direct (predict-and-optimize) methods leveraging a linear regression. We performed an empirical

evaluation of our algorithm on several public datasets using a number of different cost functions and

initial regression methods. The results show a significant reduction in the average misprediction cost

on all real cases.

Comparing our method to other post hoc techniques (Bansal et al., 2008; Zhao et al., 2011;

Hernandez-Orallo, 2014) and direct approaches based on LightGBM and neural network implemen-

tations demonstrated a performance improvement in average misprediction cost for our one-step

boosting method.

The rest of this paper is organized as follows. We start in Section 2 with an overview of the relevant

literature concerning cost-sensitive learning in a regression setting. In Section 3, the developed

method for cost-sensitivity through one-step boosting, denoted as the OSB approach, is introduced

and in Section 4 we present the empirical evaluation. Finally, concluding remarks and potential

directions for future research are provided in Section 5.
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2. Related Work

Before presenting our interpretable cost-sensitive regression through one-step boosting (OSB),

we briefly summarize relevant work on cost-sensitive regression.

2.1. Cost-sensitive regression

In regression problems, cost-sensitivity typically originates from asymmetric costs between over-

and underpredictions or from a situation-specific cost function related to the prediction errors. Just

like in classification problems, cost-sensitivity in regression problems is quite a common occurrence

in real-world applications (Bansal et al., 2008; Cain and Janssen, 1995). Despite the frequency

of asymmetric costs in regression problems, it has received relatively little attention in literature.

Current literature suggests two general avenues to deal with cost-sensitivity in regression problems.

The first approach focuses on the introduction of optimal predictors and the adjustment of re-

gression techniques in order to cope with cost-sensitivity directly (Crone, 2002; Basu et al., 1992)

(predict-and-optimize approach). This stream of literature has led to the introduction of new cost

functions (see Section 3.4) and the statistical derivations of their optimal predictors in linear re-

gression (Varian, 1975; Zellner, 1986). In order to obtain these optimal predictors for certain cost

functions new optimization techniques such as series expansions or numerical approximations have

been introduced (Christodoulakis, 2005; Christoffersen and Diebold, 1997, 1996; Niglio, 2007; Liu

and Zio, 2017). For neural networks, similar approaches have been proposed to accommodate for the

asymmetric cost structure (Crone, 2002; Crone et al., 2005; Yao and Tan, 2000). Other approaches

extend specific models such as the Cost-sensitive Global Model Tree (CGMT), which builds on the

cost-neutral solution called Global Model Tree (GMT) by introducing cost-sensitive linear regression

models in the leaves and leveraging memetic operators (Czajkowski et al., 2015). For time-series

forecasting, a cost-sensitive strategy of this nature was presented by Van Calster et al. (2020).

The second approach introduces cost-sensitivity in a post hoc manner (Bansal et al., 2008; Zhao

et al., 2011) (predict-then-optimize approach). In parallel with the post hoc approach commonly

used in classification, the main idea is that a generic, cost-insensitive regression model f is trained

and then, in a next step, adjusted to account for the asymmetric cost structure. The initial model f

can be any regression model ranging from a simple linear regression to a complex neural network. In

the method introduced by Bansal et al. (2008), the post hoc step consists of the tuning of predictions

from the regression model f by adding a constant term α to them in order to obtain the adjusted

model f ′ = f + α. It is in this tuning step that the asymmetric cost function is used to find the
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optimal α with minimal average misprediction cost, thus the cost-sensitive loss

n
∑

i=1

ρ((f(xi)− yi) + α) (1)

with f(xi) the predictions from f and yi the true responses is minimized. To achieve this a hill

climbing algorithm is designed which searches for the optimal α, thus only convex cost functions

with regards to the average mispredection cost are considered (Bansal et al., 2008). In Zhao et al.

(2011) an extended post hoc tuning method for cost-sensitive regression is proposed. It extends upon

the first method of Bansal et al. (2008) by using a polynomial function, rather than a constant, to

adjust the predictions and make them cost-sensitive. This generalization transforms the predictions

using a new function g to obtain

n
∑

i=1

ρ(g(f(xi))− yi) (2)

where g is fitted as a polynomial function of the predictions. The first method then becomes a special

case of the extended post hoc tuning where the polynomial function only adds a constant. Comparing

the performance of the evaluated polynomial functions shows that linear functions of the predicted

values perform best, and any higher order polynomial tends to overfit (Zhao et al., 2011). Hence, the

suggested model using the linear tuning function is then defined as
n
∑

i=1
ρ((α + βf(xi)) − yi) with α

and β the parameters of the linear tuning function. The linear tuning function also clearly illustrates

how the extended tuning method is a generalization from the earlier work of Bansal et al. (2008).

Following these studies, Hernandez-Orallo (2014) introduced a local probabilistic reframing method

for post hoc cost-sensitive regression. Rather than using a global function or method to adjust all

predicted values identically to the new cost function, such as in Bansal et al. (2008) and Zhao et al.

(2011), local reframing leverages enriched soft regression models for instance-dependent optimal pre-

dictions. The method converts a traditional regression model to a soft regression model with two

parameters (mean and variance) using enrichment methods (Hernandez-Orallo, 2014; Hernández-

Orallo, 2012). The predicted values are then transformed based on the conditional density function

to new contexts or cost functions generating instance-dependent optimal cost-sensitive predictions.

Compared to the global methods of Bansal et al. (2008) and Zhao et al. (2011), local reframing

adjusts every instance differently to the cost function or cost context. Post hoc approaches to cost-

sensitivity have several advantages over the direct methods, such as model reuse, flexibility to a

changing environment, applicability to multiple problems and simplicity in implementation.

These works are an indication of the possibilities related to the post hoc introduction of costs

for regression models (Zhao et al., 2011; Bansal et al., 2008; Hernandez-Orallo, 2014). In this paper
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we expand upon the idea of making a trained regression model cost-sensitive in a post hoc, global

manner.

3. One-Step Boosting for Cost-Sensitive Regression

Building on the earlier studies in post hoc cost-sensitivity for regression problems (Zhao et al.,

2011; Bansal et al., 2008; Hernandez-Orallo, 2014), we present a more general strategy to incorporate

cost-sensitivity into already trained cost-insensitive models. Our one-step boosting (OSB) method

focuses on post hoc global reframing or adjusting. First, we describe some preliminaries followed by

our proposed approach. Then, we also present an efficient algorithm for our OSB approach. Finally,

we describe various cost functions that can be used within our methodology.

3.1. Preliminaries

Consider a multivariate independent vector of variables x with size m and a univariate and

continuous dependent (or response) variable y. Datasets or samples of size n observations can then

be denoted as S = {〈xi, yi〉|i = 1, 2, . . . , n}. A regression model then tries to approximate the

true function f : X → Y from a certain training sample S. This approximation or estimation is

typically obtained by using a predictive learning method (such as a linear regression, decision tree or

neural network). Predictions can then also be derived for unlabeled and/or new instances. In other

words, for instances xi of which the corresponding yi is not known, the regression model yields a

prediction ŷi. The performance of a regression model is often measured by the difference between

these predictions and the true responses of training instances. Costs in regression problems are then

associated with the prediction errors expressed in a cost (or loss) function. The prediction error

or residual ei of instance i from the training sample S is defined as ei = ŷi − yi with yi and ŷi

respectively the true and predicted response. Hence, an overprediction is represented by a positive

residual, whereas an underprediction results in a negative residual. These residuals incur a certain

cost based on a cost function ρ. The cost function ρ takes the true response yi of an instance and

ŷi the predicted response as inputs and then outputs a certain cost, making the function of the

form ρ : R2 → R
+. In regression, the model needs to be trained to minimize E[ρ], which in the

finite-sample S boils down to minimizing: 1
n

n
∑

i=1
ρ(ŷi, yi). This can be further simplified by assuming

that the cost function only depends on the residual ei:

1

n

n
∑

i=1

ρ(ei) (3)
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Throughout this paper, we will denote cost functions using this simplification where a residual ei

equals the difference between ŷi and yi. Note that some cost functions cannot be defined in terms

of the residuals. Equation (3) represents the average misprediction cost based on the cost function

ρ, which is often used to illustrate the performance of a certain model on that cost function (Bansal

et al., 2008; Zhao et al., 2011).

3.2. Methodology

In essence, the method of Bansal et al. (2008) can also be seen as a special case of one-step

boosting. More specifically, starting with a model f that is trained with an arbitrary loss function

(such as the least squares), the new response is then constructed as follows: (f(xi) − yi), which

equals the residuals of the existing model. Using these residuals, a ‘weak learner’ (i.e. a constant α

in the case of Bansal et al. (2008)) is leveraged to improve on the existing model (see equation (1)).

Therefore, this methodology can be described as a boosting approach of the original regression model

f using a constant α to obtain cost-sensitive predictions. In the extended proposal of Zhao et al.

(2011), we can then no longer speak of boosting, as it involves the transformation of the predictions

by leveraging a tuning function rather than the introduction of a ‘weak learner’. Instead of the

generalization by Zhao et al. (2011), we propose a generalization of Bansal et al. (2008) for post hoc

cost-sensitivity that continues to leverage the boosting framework (Schapire, 1990). Later we will

also propose an efficient algorithm and tools for statistical inference, leading to interpretable results.

First, as with other post hoc methods, a regression model f is trained without the consideration

of the asymmetric cost structure. This regression model can be fit using any learning algorithm such

as linear regression, random forest or a neural network. Next, we want to use a secondary learner

f1 to incorporate cost-sensitivity into the previously trained model f . Given an asymmetric cost

function ρ, the optimization of the learner f1 would be

1

n

n
∑

i=1

ρ(f1(xi)− (f(xi)− yi)), (4)

as to minimize the average misprediction cost of the final prediction. For an overview of suitable

and popular cost functions and their properties, we refer to Section 3.4. Equation (4) can be further

simplified to 1
n

n
∑

i=1
ρ(f1(xi)− y∗i ), where y∗i = f(xi)− yi denotes the residuals of the trained learner

f . Since the boosting occurs in a single step, the procedure is denoted one-step boosting. This can

be seen as an extension of the method of Bansal et al. (2008), where a constant function α ∈ R for

f1 is used, see equation (1). Instead of a constant function, we propose to utilize a linear function of

the predictors with an intercept f1(xi) = α+ βxi.
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In order to find the optimal coefficients of the linear function f1, we need to minimize equation

(4), which is a standard M-estimation problem. M-estimation originated from the research field of

robust statistics (see Huber (1992); Hampel et al. (2011); Huber (2004); Rousseeuw and Leroy (2005)

for more information), but we consider it more generally without necessarily plugging in robust ρ

functions. Considering the earlier simplification in equation (3), it can be seen that minimizing the

expected value of any cost function leads to an M-estimator minimizing the average misprediction

cost 1
n

n
∑

i=1
ρ(ei). When this concept is applied in the boosting step of our method, we obtain an

M-estimator minimizing 1
n

n
∑

i=1
ρ(ri) with ri = (α+βxi)− y∗i the difference between y∗i , the residuals

from the trained learner f from the first step, and the predictions from f1 of these residuals. If the

cost function ρ is then (almost everywhere) differentiable, we can efficiently solve for f1 by applying

iteratively reweighted least squares (IRLS) (Huber et al., 1981). More specifically, when the condition

of an (almost everywhere) differentiable cost function is met, then optimizing with respect to β is

M-estimation with a new response variable. With the differentiated cost function ψ we obtain

n
∑

i=1

ψ(ri)

ri
rixi = 0 (5)

with ri = (α+βxi)− y∗i and y∗i the residuals of the trained learner f . Note that the cost function ρ

needs to be convex to guarantee a unique solution. This restriction still allows for a wide applicability

of the proposed OSB method, since most cost functions, both in practice and literature, tend to be

convex (e.g., see Figure 1). The optimal coefficients of the linear function f1 in combination with

the trained model f from the first step then give cost-sensitive predictions with relation to the cost

function ρ.

3.3. Algorithm

The OSB algorithm (for detailed overview in pseudo-code, see Algorithm 1) takes five inputs:

the residuals of the initial regression model y∗i , a convex cost function ρ, the maximum number of

iterations k, a precision parameter ǫ and a training sample S. Once a cost-insensitive regression

model f has been trained on a sample S = {〈xi, yi〉|i = 1, 2, . . . , n}, the residuals y∗i = f(xi) − yi
serve as the primary input to the cost-sensitive boosting step. If the cost function satisfies the

assumptions detailed in the previous Section 3.2 (convexity and almost everywhere differentiability),

then convergence to the global optimum is guaranteed. The values for the maximum number of

iterations k and the precision parameter ǫ are user-defined.

The last input is the training data used in order to make the regression model cost-sensitive. Here,

we opt to use the same training sample S as in the first step. However, it should be noted that this is
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Algorithm 1: One-Step Boosting for Cost-sensitive Regression

Input: Residuals {y∗i }Ni=1 of trained cost-insensitive regression model f

Cost function ρ

Training sample S with instances {xi}Ni=1 with m variables

Maximum number of iterations k

Precision parameter ǫ

Initialization

PreviousCost = 1
n

n
∑

i=1
ρ(y∗i ) ⊲ Calculate average misprediction cost of y∗i

Start Iteratively Reweighted Least Squares

for j in range (1:k) do

if j = 1 then

ri = xi ∗ β0 − y∗i
end

wi =
ψ(ri)
ri

⊲ Calculate weights from ψ see equation 5

β ← LinearRegression(
√
wixi,

√
wiy

∗

i ) ⊲ Obtain coefficients of linear function f1

ri = xi ∗ β − y∗i ⊲ Obtain residuals from predictions

CurrentCost = 1
n

n
∑

i=1
ρ(ri) ⊲ Average misprediction cost of ri

if (PreviousCost− CurrentCost) > (ǫ ∗ σ(y∗
i
)) then

PreviousCost = CurrentCost

continue ⊲ Go to next iteration iteration

else

break ⊲ Exit for loop and stop iteration

end

end

Output: Optimal coefficients β of the linear function f1
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not a requirement as any variables deemed useful for cost-sensitivity can be used. In practice, there

can be cases where preferably a specific set of variables, not used in the initial regression f , should

be used to introduce cost-sensitivity. Thus, the second boosting step does not necessarily need to

happen with the same variables as the training of the initial regression model. The only requirement

for the sample in the second step is that there are observations of the desired variables available for

every residual y∗i . Furthermore, we assume that the training sample S in the pseudo-code contains

a column of 1’s to represent the intercept of the linear function f1.

In the initialization step the algorithm calculates the average misprediction cost using the starting

residuals, denoted as PreviousCost. Thus, the PreviousCost variable represents the average mis-

prediction cost of the cost-insensitive regression model f on the cost function ρ. Next, the iteratively

reweighted least squares (IRLS) is applied in search of the optimal coefficients. The IRLS is iterated

until convergence of the average misprediction cost is obtained (with a maximum of k runs). Due to

the nature of IRLS in combination with the convex cost function, the algorithm will continue to find

a lower cost which is why convergence up until a certain precision is used. When the difference be-

tween the costs of the current and previous iteration is not larger than the standard deviation of the

starting residuals multiplied by the user-defined factor of precision ǫ (in our implementation 1e−6),

then the algorithm has sufficiently converged to the optimum. In our implementation convergence

happens typically within 10 to 30 iterations of the algorithm. The user-defined k maximum number

of iterations is therefore mainly implemented as a fail-safe stop for potentially badly specified cost

functions. In the first iteration, when the coefficients β of the linear regression are not available,

the variables ri are calculated using a vector of zeroes for the coefficients β (represented by β0 in

the pseudo-code). Hence, the ri variables in the first iteration are equal to the negative residuals y∗i

of the initial regression f . These ri residual variables are subsequently used in the weight function

ψ (derivative of the cost function divided by ri). In a following step the weights are leveraged in

a linear regression applied to the pairs of instances (
√
wixi,

√
wiy

∗

i ) resulting in the coefficients β

for that iteration. In the last step, the final residuals are calculated of the OSB ensemble learner

followed by a convergence check using the precision parameter ǫ and the standard deviation σ(y∗
i
) of

the initial residuals. When the algorithm converges, the last β will be the optimal coefficients for

the linear function f1.

Note that in cases where f is trained as a linear model, the one-step linear boosting is the same

as training with the cost function ρ directly. Hence, when f is a linear model, the linear boosting

step for cost-sensitivity is equivalent to applying a direct (predict-and-optimize) approach with a
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linear regression. This property gives the OSB approach a distinct advantage over other post hoc

approaches. Furthermore, due to the boosting framework, the model f1 can provide insight into

how taking costs into account can alter a regression model, provided f1 is not a complex learner.

As we use a linear function for f1, we can leverage bootstrapping to make confidence intervals of

the coefficients. The confidence intervals provide insights into the significance of the coefficients

related to the cost-sensitivity, making our OSB method interpretable. Moreover, the interpretation

of the linear model is fairly straightforward, which proves to be useful in practical settings. Another

advantage of using a linear model for f1 is the fast training time, amplifying the ease of use of the

OSB algorithm in practical settings as it speeds up the process of finding a correct cost function and

allows for a quick cost function calibration, which is especially useful in dynamic environments where

costs change frequently.

3.4. Cost functions

In practice, any cost function ρ is possible based on the context. For example, a Huber loss

function (Huber, 1964):

Lδ(y, ŷ) =











1
2(ŷ − y)2, for |ŷ − y| ≤ δ

δ(|ŷ − y| − 1
2δ), otherwise

(6)

However, it is when overpredictions and underpredictions face different costs, yielding asymmet-

ric costs in the cost function ρ(e) 6= ρ(−e), that cost-sensitivity becomes relevant. In traditional

algorithms (e.g. least-squares linear regression) cost functions (or loss functions) are symmetric such

as the squared error loss function ρ(e) = e2, meaning that under- or overpredictions face the same

costs ρ(e) = ρ(−e). These conventional methods using symmetric cost functions for optimization are

thus insufficient to deal with cost-sensitive problems. Granger (1969) introduced several cost func-

tions and suggested to add a constant bias term to the predictor to account for the generalized cost

functions. These introduced cost functions are the LinLin (asymmetric linear) (8) and QuadQuad

(asymmetric quadratic) functions (7), often considered as generalizations of the absolute error loss

ρ(e) = |e| and squared error (quadratic) loss functions ρ(e) = e2 respectively. In equations (7) and (8)

the parameters a and b are two positive constants that regulate the asymmetry of the cost function.

ρ(e) =











a(e)2, if e ≥ 0

b(e)2, if e < 0

(7)
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ρ(e) =











a|e|, if e ≥ 0

b|e|, if e < 0

(8)

Christoffersen and Diebold (1997, 1996) indicate that in general (e.g. when non-normality is

present) closed-form solutions, such as the well-known solution for the least squares estimator β̂ =

(XTX)−1XT y, do not exist for the LinLin and QuadQuad cost functions. However, the predictor

in these cost functions for which a closed form solution does not exist, can be approximated using

numerical solutions (Christoffersen and Diebold, 1997, 1996). Furthermore, the severe difference in

costs between over- and underpredictions in the real estate assessment of taxable properties lead to

the introduction of the LinEx loss function by Varian (1975). This cost function is approximately

linear for underpredictions and approximately exponential for overpredictions (see Figure 1c) with

a 6= 0 and b > 0:

ρ(e) = b(exp(ae)− ae− 1) (9)

From equation 9 it can be deduced that the parameter b is a scaling parameter and parameter a

controls the asymmetry and shape of the cost function. Hence, if parameter a is negative then

an ExLin function (exponential for underprediction and linear for overprediction see Figure 1d)

would be obtained. Unlike the LinLin and QuadQuad cost functions the LinEx function has general

closed-form solutions under certain conditions (Zellner, 1986). Even under non-normality closed-

form solutions for the LinEx cost function exist or the solution can be approximated using series

expansion (Christodoulakis, 2005; Niglio, 2007). In later literature several expansions upon the

LinEx cost function have been introduced (Basu et al., 1992). Also specific case studies have been

done, such as Cain and Janssen (1995) who applied the LinEx cost functions to a real estate price

prediction problem and compared the results with LinLin and QuadQuad cost functions.

In Figure 1 the different cost functions discussed above are shown. Both the LinLin and QuadQuad

functions have 1 and 5 for the values of a and b respectively. The LinEx and ExLin functions are

made with a = 0.4 (a = −0.4 for ExLin) and b = 1. As can be seen the costs under the asymmetric

cost functions can increase rapidly for certain prediction errors, resulting in sub-optimal predictions

from regression models that optimize symmetric errors during training.
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(a) LinLin (Linear-Linear) cost function plotted with a =

1 and b = 5

(b) QuadQuad (Quadratic-Quadratic) cost function plot-

ted with a = 1 and b = 5

(c) LinEx (Linear-Exponential) cost function plotted with

a = 0.4 and b = 1

(d) ExLin (Exponential-Linear) cost function plotted with

a = -0.4 and b = 1

Figure 1: Plots of various cost functions

4. Empirical Evaluation

In this section we will illustrate the benefits of using our one-step boosting method to introduce

cost-sensitivity into a regression model. First, we will illustrate in detail the practical implementation

of our OSB approach. Then, the results from our empirical validation on various real datasets will

be discussed.

Next, an example will be included to illustrate the output of the algorithm as well as the possible

interpretation that can follow from bootstrapping OSB. Furthermore, a comparison with the methods

of Bansal et al. (2008); Zhao et al. (2011); Hernandez-Orallo (2014) and a predict-and-optimize

approach based on a LightGBM implementation will be made.
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4.1. Implementation

As described in Section 3, various cost functions to incorporate cost-sensitivity can be used in

our OSB method. In our implementation we evaluate the algorithm with the LinLin, QuadQuad

and ExLin cost functions. To make the results more comparable, the underpredictions are always

considered to be more costly than the overpredictions. Hence, in the LinLin and QuadQuad cost

functions the parameter b is larger than the parameter a (see equations 7,8), illustrated in cost ratios

of the form a : b. In the cost functions we keep the cost for overpredictions a equal to 1, meaning

that overpredictions are not more costly than their intrinsic value in that cost function, whilst we

evaluate different costs b for underpredictions. Note that the ExLin cost function has a negative

value for a in the tables as it would be used in the earlier introduced formula. Due to the more

extreme nature of the ExLin cost function, we will only evaluate it for one specific cost structure.

Following Algorithm 1, the only requirements are that these cost functions are (almost everywhere)

differentiable and convex to achieve a unique optimum, which the evaluated cost functions meet.

The algorithm takes, next to the cost function, two other main inputs: the residuals of the initial

regression model f and a training sample with predictors. For simplicity in implementation, we use

the same training sample of predictors as was used in the training of the initial regression model

f . Note that this is not necessary as a different set of variables can be used. To generate the

residuals y∗i several base regression methods are used as f . The use of different regression methods

in the first step of the boosting method allows us to validate that OSB functions with any regression

method. The evaluated base regression methods f are: the least-squares linear regression (LR), linear

model trees (Zhao et al., 2011; Niglio, 2007) (MT), neural network (NN), random forest (RF), and

LightGBM (LGBM) (Ke et al., 2017). The algorithm is implemented in Python, including all of the

first step base regression methods. The default parameters for the regression methods f of the used

Python packages are retained. The scikit-learn (both LinearRegression and RandomForestRegressor)

(Pedregosa et al., 2011), TensorFlow (Keras) (Abadi et al., 2015), linear-tree1, and LightGBM (Ke

et al., 2017) packages are used for the LR, RF, NN, MT and LGBM methods respectively. The code

implementation of our algorithm is made available on GitHub2.

Similarly to Bansal et al. (2008) and Zhao et al. (2011), we use the average misprediction cost as

a measure of performance for the cost-sensitive regression problems. A 2×5 cross-validation with the

average misprediction cost is run for every evaluated combination of dataset, base regression method

1https://github.com/cerlymarco/linear-tree
2https://github.com/ThomasDecorteUA/Cost Sensitive Regression
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f and cost function ρ with certain cost ratio. Thus, generating both robust training performance

measures of the complete boosting method (step 1 and boosting step), as well as robust testing

performance measures to evaluate the generalization of the model to new data.

4.2. Data

Experiments were run generating average misprediction costs for four different regression datasets:

Abalone, Bank (8FM), House (8L), and KC House. The first three of these datasets are made available

on the DELVE3 (Data for Evaluating Learning in Valid Experiments) repository of the University

of Toronto or on the UCI repository4. The last dataset, KC House, is made available by the Center

for Spatial Data Science5 at the University of Chicago.

As the main goal of the experiment is to evaluate OSB, only minimal preprocessing is done to

each dataset. This mainly included the deletion of certain variables such as ID or date. Furthermore,

certain variables were characterized by skewed distributions (e.g. price of a house). Logarithmic

transformations are then used to reduce or even remove this skewness. Table 2 contains the relevant

information for each dataset.

Datasets for empirical evaluation

Dataset Size Attributes µ Response σ Response

Abalone 4177 8 2.25 0.32

Bank (8FM) 8192 8 0.16 0.15

House (8L) 22784 8 10.52 0.72

KC House 21613 9 13.05 0.51

Table 2: Datasets used in Section 4 and related appendices. We show the size, the number of attributes besides the

response, the mean of the response and the standard deviation of the response.

4.3. Results

The results of the OSB method for the different datasets are summarized in Tables 3 and 4 for

the LightGBM initial regression and the NN base regression method respectively. For results on

other base regression methods we refer to Appendix A.1. The tabulated results contain the name

of the dataset in column 1 and indicate the specific cost function (the LinLin, QuadQuad and ExLin

cost functions are represented as LL, QQ and EL respectively) as well as the cost ratio (expressed

3https://www.cs.toronto.edu/ delve/data/datasets.html
4https://archive.ics.uci.edu/ml/datasets.php
5https://geodacenter.github.io/data-and-lab//KingCounty-HouseSales2015/
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as a : b) in the second column (CF a : b). The reported numbers in columns 3,4,5, and 6 represent

the average misprediction costs from the 2 × 5 cross-validation. The column “Initial” refers to the

average misprediction cost of the base regression method f , i.e. the costs when only the first step

of the algorithm is applied and no cost-sensitivity is considered. The “OSB” results then contain

the average misprediction costs after the entire one-step boosting algorithm is applied. A percentage

decrease between both average misprediction cost measures is added to aid in interpretation of the

results. These results are made available both for the train and test data following the 2 × 5 cross-

validation.

The OSB method always yields significantly better predictions in every cost function, dataset,

and cost ratio, except for one case where there is no substantial improvement (Bank(8FM) with

EL − 3 : 2). In this particular case, cost-sensitivity is not useful as the cost function is badly tuned

for the residuals and the predictions of the base regression method are already very good (see also

Section 4.4). As expected, the initial costs are, across all results, higher than the post hoc cost. It is

clearly seen that there is always a significant decrease between both costs. As the cost ratios increase

and the initial costs follow, a much more gentle increase in post hoc costs can be observed. For

example, the initial costs between a LinLin cost function with b = 10 and b = 20 is almost double,

whereas the post hoc costs only increase with a small amount. Aside from the one case, this trend is

true for every cost function, cost ratio, dataset, and base regression method f . Note that the average

misprediction costs are in each evaluated cost function calculated using the residuals. Therefore, the

scale of the costs follows the scale of the residuals and hence also the scale of the response variable.

On the testing data, a similar decrease in costs is observed as on the training data. Even when we

compare the different base regression methods f , the decrease in costs (percentage decrease) remains

similar across most datasets and cost functions.

Using NN as a base regression (see Table 4), we obtain higher costs on most dataset/cost function

combinations (except for the Abalone dataset). The cause of these higher costs can be found in the

NN model performance on these datasets compared to the LGBM performance. The NN performs

worse than the LGBM both on training and testing data, leading to worse initial predictions. This

difference in performance is clearly observed in the initial costs. Even then, the secondary learner f1

in the OSB algorithm succeeds in minimizing this difference quite well, as can be seen in the post

hoc costs. Although a lower performance for the NN base regression is obtained, the percentage

decrease in costs remains similar to the LGBM case. Note that the NN base regression was run using

default parameters and hence better results could be obtained by doing advanced hyperparameter

16



One-step Boosting with LightGBM regression
Dataset CF a : b Initial Train OSB Train % Train Initial Test OSB Test % Test
Abalone LL 1:10 0.600 0.233 61.1 0.822 0.344 58.2
Abalone LL 1:20 1.146 0.272 76.3 1.570 0.421 73.2
Abalone LL 1:50 2.782 0.324 88.3 3.814 0.555 85.5
Abalone LL 1:100 5.510 0.367 93.3 7.553 0.676 91.1
Abalone QQ 1:10 0.118 0.051 57.0 0.224 0.099 56.2
Abalone QQ 1:20 0.227 0.065 71.5 0.431 0.130 69.9
Abalone QQ 1:50 0.554 0.088 84.1 1.052 0.186 82.3
Abalone QQ 1:100 1.100 0.110 90.0 2.087 0.246 88.2
Abalone EL -3:2 0.200 0.182 9.0 0.402 0.340 15.6
Bank (8FM) LL 1:10 0.087 0.036 58.6 0.120 0.053 55.6
Bank (8FM) LL 1:20 0.166 0.042 74.9 0.229 0.065 71.6
Bank (8FM) LL 1:50 0.404 0.049 87.9 0.556 0.082 85.3
Bank (8FM) LL 1:100 0.800 0.053 93.3 1.102 0.098 91.1
Bank (8FM) QQ 1:10 0.003 0.001 52.3 0.005 0.003 50.4
Bank (8FM) QQ 1:20 0.005 0.002 68.5 0.010 0.003 65.7
Bank (8FM) QQ 1:50 0.012 0.002 83.0 0.024 0.005 79.9
Bank (8FM) QQ 1:100 0.023 0.002 89.7 0.047 0.006 86.9
Bank (8FM) EL -3:2 0.004 0.004 0.3 0.008 0.008 0.9
House (8L) LL 1:10 1.303 0.483 62.9 1.463 0.561 61.7
House (8L) LL 1:20 2.487 0.563 77.4 2.793 0.664 76.2
House (8L) LL 1:50 6.040 0.666 89.0 6.784 0.817 88.2
House (8L) LL 1:100 11.961 0.744 93.8 13.436 0.947 93.3
House (8L) QQ 1:10 0.609 0.220 63.9 0.790 0.294 62.8
House (8L) QQ 1:20 1.178 0.272 76.9 1.529 0.372 75.6
House (8L) QQ 1:50 2.886 0.354 87.7 3.746 0.505 86.5
House (8L) QQ 1:100 5.732 0.426 92.6 7.441 0.633 91.5
House (8L) EL -3:2 2.334 0.742 68.3 5.311 0.988 81.4
KC House LL 1:10 1.278 0.539 57.8 1.347 0.570 57.7
KC House LL 1:20 2.440 0.626 74.4 2.571 0.665 74.1
KC House LL 1:50 5.926 0.727 87.7 6.245 0.779 87.5
KC House LL 1:100 11.736 0.800 93.2 12.367 0.868 93.6
KC House QQ 1:10 0.467 0.237 49.3 0.520 0.265 49.7
KC House QQ 1:20 0.889 0.301 66.2 0.991 0.338 65.9
KC House QQ 1:50 2.157 0.396 81.7 2.404 0.450 81.3
KC House QQ 1:100 4.269 0.474 88.9 4.759 0.545 88.6
KC House EL -3:2 0.970 0.802 17.3 1.116 0.899 19.4

Table 3: Performance of OSB for cost-sensitivity with a LightGBM initial regression (LGBM) expressed in the average

misprediction cost on training and testing data using 2 × 5 cross-validation on various datasets with different cost

functions and cost ratios.

tuning. Furthermore, when the base regression overfits the training data, then also the boosting step

will give a worse generalization. These conclusions follow quite logically from the boosting nature

of the algorithm. Similarly, in Zhao et al. (2011) the linear regression base method achieved the

worst performance on the training data comparative to the the MT and NN base models. However,
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One-step Boosting with NN regression
Dataset CF a : b Initial Train OSB Train % Train Initial Test OSB Test % Test
Abalone LL 1:10 0.852 0.318 62.7 0.854 0.326 61.8
Abalone LL 1:20 1.628 0.366 77.5 1.631 0.381 76.6
Abalone LL 1:50 3.955 0.433 89.1 3.962 0.466 88.2
Abalone LL 1:100 7.834 0.484 93.8 7.847 0.546 93
Abalone QQ 1:10 0.242 0.095 60.9 0.245 0.102 58.5
Abalone QQ 1:20 0.467 0.118 74.8 0.472 0.130 72.4
Abalone QQ 1:50 1.142 0.154 86.5 1.153 0.184 84
Abalone QQ 1:100 2.266 0.186 91.8 2.288 0.245 89.3
Abalone EL -2:3 0.449 0.338 24.6 0.455 0.355 21.9
Bank (8FM) LL 1:10 0.138 0.075 45.8 0.140 0.072 48.7
Bank (8FM) LL 1:20 0.263 0.111 57.7 0.266 0.104 61.1
Bank (8FM) LL 1:50 0.639 0.210 67.1 0.647 0.188 70.9
Bank (8FM) LL 1:100 1.265 0.368 70.9 1.282 0.322 74.9
Bank (8FM) QQ 1:10 0.006 0.003 56.7 0.006 0.003 55.5
Bank (8FM) QQ 1:20 0.012 0.003 72 0.012 0.004 71
Bank (8FM) QQ 1:50 0.029 0.004 85.3 0.030 0.005 84.6
Bank (8FM) QQ 1:100 0.058 0.005 91.3 0.059 0.005 90.8
Bank (8FM) EL -2:3 0.008 0.007 3.4 0.008 0.008 2.5
House (8L) LL 1:10 1.800 0.677 62.4 1.812 0.687 62.1
House (8L) LL 1:20 3.439 0.788 77.1 3.463 0.804 76.8
House (8L) LL 1:50 8.358 0.934 88.8 8.415 0.958 88.6
House (8L) LL 1:100 16.556 1.049 93.7 16.669 1.086 93.5
House (8L) QQ 1:10 1.122 0.427 62 1.137 0.440 61.3
House (8L) QQ 1:20 2.168 0.534 75.4 2.196 0.554 74.8
House (8L) QQ 1:50 5.304 0.704 86.7 5.374 0.741 86.2
House (8L) QQ 1:100 10.531 0.858 91.9 10.669 0.916 91.4
House (8L) EL -2:3 8.011 1.521 81 7.153 1.549 21.6
KC House LL 1:10 1.381 0.771 44.2 1.389 0.729 47.5
KC House LL 1:20 2.632 0.908 65.5 2.646 0.851 67.8
KC House LL 1:50 6.384 1.441 77.4 6.419 1.294 79.8
KC House LL 1:100 12.639 2.234 82.3 12.707 1.933 84.8
KC House QQ 1:10 0.552 0.279 49.3 0.561 0.292 47.9
KC House QQ 1:20 1.048 0.353 66.4 1.066 0.376 64.7
KC House QQ 1:50 2.539 0.461 81.8 2.582 0.516 80
KC House QQ 1:100 5.024 0.551 89 5.107 0.661 87.1
KC House EL -2:3 1.231 0.947 23 1.343 0.992 26.1

Table 4: Performance of OSB for cost-sensitivity with a neural network base regression (NN) expressed in the average

misprediction cost on training and testing data using 2 × 5 cross-validation on various datasets with different cost

functions and cost ratios.

the linear regression then outperformed both on the testing data, indicating the importance of an

appropriate model complexity for each problem (Zhao et al., 2011). In our case one base regression

model always outperforms the other on most datasets, yet the conclusion that the initial model needs

an appropriate model complexity and fit to the data remains the same.
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In Appendix A.1 we include simulations with other base regression methods, but similar results

are obtained. The same conclusions also hold when overpredictions are more costly than underpre-

dictions.

4.4. Inference on cost-sensitivity

The example below shows the result of applying the OSB method on the KC House dataset using

the LinLin cost function with b = 10, a = 1 and the LGBM base regression method. After completing

the cost-sensitive boosting step of the algorithm, we obtain the following linear function:

ŷOSB = 0.467 + 0.003x1 − 0.006x2 − 0.050x3 + 0.010x4 − 0.007x5

−0.028x6 + 0.008x7 + 0.001x8 − 0.001x9

(10)

While the coefficients of the variables may appear relatively small, it is important to note that the

response variable is log-scaled. The coefficients and confidence intervals, obtained through boot-

strapping, can then be used to explain the impact and significance of the independent variables on

the introduction of cost-sensitivity in the model.

Confidence Intervals of KC House Dataset

Variable Prediction Lower Limit CI Upper Limit CI

Intercept 0.467 0.458 0.475

Bedrooms 0.003 0.002 0.004

Bathrooms -0.006 -0.008 -0.004

Floors -0.050 -0.051 -0.048

Waterfront 0.010 -0.017 0.021

View -0.007 -0.009 -0.005

Condition -0.028 -0.030 -0.027

Grade 0.008 0.007 0.010

Age 0.001 -0.001 0.001

Age Rnvtd -0.001 -0.001 0.001

Table 5: Confidence intervals following the 100 times bootstrapping of the second cost-sensitive step in the algorithm

using the KC House data, a LinLin cost function with b = 10 and a = 1 and the LGBM base regression method.

In Table 5 the confidence intervals for the coefficients in the linear model can be found from

bootstrapping the boosting step. The significant variables are indicated in bold. Thus, from Table 5

we can deduce that the variables Waterfront, Age and Age Rnvtd are not significant and hence are

not relevant to the introduction of cost-sensitivity into the trained base regression model. In addition,

we can see that some variables, such as Floors and Condition, have a negative coefficient, indicating
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that the number of Floors the property has and the Condition of the house (integer variable between

1-14) have a negative impact on the predictions, given the other predictors. Whilst the positive

coefficients of variables, such as Grade, have the opposite effect, given the other predictors as fixed.

As can be seen, these results lead to insights relating to the variables as well as the specific cost

function for the decision-making process behind the cost-sensitive model.

In the case where cost-sensitivty might not be useful, the algorithm will only give a small im-

provement or possibly no improvement (all β of the linear function are zero). This might occur when

the predictions of the base regression method are already very good or when the cost function is

badly tuned for the residuals. An example of this can be found in Table 6, which is an extended

example from a result out of Table 3. This illustrative example is computed on the Bank (8FM)

training dataset using the ExLin cost function. To properly interpret the results of the Bank (8FM)

dataset, one has to take into account that the response variable values range between 0 and 0.802.

Two different calibrations of the ExLin cost function are shown, namely one with a = −3 and b = 2

and one where a = −20 and b = 2. The second calibration is thus a lot more extreme considering

the exponential nature of the ExLin cost function.

One-Step Boosting - Bank (8FM) Testing Data

Cost Function Cost Ratio Initial Cost post hoc Cost % Decrease

ExLin -3:2 0.00807 0.00800 0.9

ExLin -20:2 0.41645 0.36610 12.1

Table 6: Performance expressed in average misprediction cost using 2× 5 cross-validation on the Bank (8FM) testing

data and the ExLin cost function with LGBM base regression.

Under both calibrations of the cost function, the underlying regression method already delivers

extremely good results. In the −3 : 2 cost function calibration, the boosting step does not find any

significant improvement and all β are close to zero. Even in the extreme case, the boosting step only

improves performance, based on average misprediction cost, by a relatively small percentage (12.1%)

compared to the results obtained on other datasets with less extreme cost functions. Furthermore,

the confidence intervals of the variables in the −20 : 2 calibration (many containing zero) as well

as the coefficients (many close to zero) indicated that most of the variables are not significant in

reducing costs. Thus, cost-sensitive boosting may not be necessary in this particular case with this

cost function. This type of results can be helpful to distinguish for which cost functions and datasets

cost-sensitivity needs to be incorporated and for which it can be disregarded.
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4.5. Comparison with other methods

We now compare the OSB method with the most relevant competing alternatives. In particular,

we compare OSB with the method introduced by Bansal et al. (2008) (BSZ), the extended tuning

method of Zhao et al. (2011) (BSZ-EXT), a direct method (Direct) based on the LGBM implementa-

tion in Python (Ke et al., 2017) directly optimizing the actual cost function, and the local reframing

introduced by Hernandez-Orallo (2014) (HER). We compare these methods on the datasets intro-

duced in Section 4.2, and we focus on the LinLin and QuadQuad cost functions as these are easier to

interpret. We present and discuss the methods using LGBM as initial regression model in the main

text. The results when using other initial regression methods are given in Appendix A.1, but the

same conclusions hold.

In the implementation of BSZ-EXT we only applied a linear tuning as higher order tuning func-

tions tend to overfit (Zhao et al., 2011). We also use the same parameter of precision for adjusting

the coefficients as proposed in Zhao et al. (2011) for both the BSZ and BSZ-EXT methods. In order

to objectively compare with the local reframing method, we use the same setup as in the empirical

validation of Hernandez-Orallo (2014). As a result, the parameters a and b in each cost function now

sum up to one, meaning that a 1 : 100 cost function relates to a = 1/101 and b = 100/101. Note

that this does not change the interpretation or outcomes of the comparative study. Furthermore, we

assume that the density function for local reframing follows a normal distribution. We utilize the

univariate k-nearest comparison (uKNC) enrichment (with k = 10) to transform the crisp initial

regression model (LGBM) to a soft regression model for local reframing, since this yielded the best

results in the study of Hernandez-Orallo (2014) on the LinLin and QuadQuad cost functions. The

predict-and-optimize approach based on the LGBM implementation uses the specified cost function

directly in the LGBM model training. To make the comparison more realistic some hyperparameter

tuning is done for each dataset and cost function combination using a grid search (with the searched

values between brackets) for the learning rate (0.0001,0.001,0.01,0.1,0.5,1,1.5,2), maximum depth

(-1,5,10,20), number of leaves (20,40,60,80,100) and the minimal number of data points in one leaf

(1,5,10,15,25).

The results of the comparative study are shown in Table 7. The first two columns describe the

dataset and cost function. The other columns represent the various methods as defined earlier with

the average misprediction cost per dataset and cost function multiplied by 100 for clarity. In the

”Initial Cost” column we can see that the average misprediction costs do not rise significantly when

increasing the cost ratio. This can be attributed to the cost ratios summing up to one, hence making
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the increase in cost ratio only have a marginal effect on the average misprediction cost without a

cost-sensitive method. However, the increase in cost ratio makes the overpredictions considerably

more attractive in each step.

In general our OSB approach performs very well and outperforms the alternative methods in most

cases. Significant improvements on the methods of Zhao et al. (2011) and Bansal et al. (2008) are

obtained on almost all cost functions and datasets, except for the KC House dataset. Furthermore,

the results from the extended tuning method (BSZ-EXT) are, as expected, always better or very

similar as those of BSZ. On the KC House dataset we see that both methods (BSZ and BSZ-EXT)

are almost equivalent. Here, the polynomial tuning function primarily consisted out of a large

constant and a small or no linear tuning coefficient rendering both approaches equivalent. The

difference in average misprediction costs of cases where BSZ-EXT or BSZ outperforms OBS is rather

small and our approach remains relatively competitive. Comparing the OSB approach to the local

reframing (HER) shows that both methods are relatively close in average misprediction cost on

certain dataset/cost function combinations such as Bank(8FM) with the QuadQuad cost function.

However, in other cases OSB clearly outperforms local reframing as on the House (8L) dataset. The

obtained results for local reframing could be improved by potentially using more neighbours for

the uKNC enrichment method or even using a different enrichment method. The performance of

the initial regression method can also have an impact on these results. The direct approach based

on LGBM does not always deliver competitive results. Due to the small grid search, the optimal

hyperparameters were not found in some cases or perhaps the LGBM is not the best implementation

for a direct approach on certain dataset/cost function combinations. Nevertheless, on the Bank

(8FM) dataset it outperformed all other implementations for most cost functions, indicating that

good results can be achieved with proper hyperparameter tuning and a good fit on the data. More

extensive tuning on the other datasets might lead to better results. However, such extensive tuning

is challenging and costly in terms of computation time.

The average computation time across all simulated results (every dataset/cost function combi-

nation) of OSB and the methods of Bansal et al. (2008), Zhao et al. (2011) and Hernandez-Orallo

(2014) is 165 milliseconds, 162 milliseconds, 281 milliseconds and 8557 milliseconds respectively. The

higher computation time for the local reframing method can be attributed to the need for looping

over the entire test set as well as the calculations for the various t values (See Proposition 7.7 in

Hernandez-Orallo (2014)). The computation time of the direct method on average is 10 minutes

and 59.2 seconds, which is considerably more than the other methods and can be attributed to the
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grid search for the hyperparameters. These results stress the fast computational time of our OSB

approach. All experiments were run on a Thinkpad T495 workstation, configured with AMD Ryzen

7 PRO 3700U 2.30 GHz and 16 GB of RAM, running the Windows 10 operating system.

In general, we can conclude that our OSB method performs very well compared to other post

hoc implementations, as it outperformed in most cases and otherwise remains relatively competitive

to the best performing method. Our OSB approach can even outperform a direct optimization

approach. Another important advantage is its fast computation time due to an efficient algorithm.

Moreover, the obtained results become easy to interpret through bootstrapping.

5. Conclusion

In this paper we have shown the importance of cost-sensitivity in regression problems. Since

many real-world applications of regression problems often face asymmetric costs, we have proposed a

one-step boosting algorithm (OSB) to incorporate cost-sensitivity into a cost-insensitive regression.

The OSB method allows for more realistic cost structures to be implemented in a post hoc manner,

rather than adjusting or modifying the underlying method or objective function. This post hoc

introduction of cost-sensitivity entails several advantages. It can be applied to a wide range of cost

functions and, in essence, can extend any base regression to a cost-sensitive regression, enabling

model reuse. Moreover, it allows for the evaluation of multiple cost functions without having to

make model changes, and thus enabling the practitioner to build and validate cost functions on the

fly. This proves an even bigger advantage in dynamic environments where cost structures tend to

change frequently.

Building on earlier studies that leverage a tuning function to introduce cost-sensitivity post hoc,

the OSB algorithm illustrates a more general strategy to post hoc cost-sensitivity. The proposed

method uses a linear function in the boosting step, optimized on the asymmetric cost function using

iteratively reweighted least-squares, in order to make the base regression method cost-sensitive. The

evaluated results indicate a significant reduction in average misprediction cost across various cost

functions, datasets, and base regression methods. Furthermore, following the use of a linear function

in the boosting step, the results can be made interpretable through the use of bootstrapping due to

the fast convergence of the iteratively reweighted least-squares procedure. The secondary learner can

then provide insights into how taking costs into account may alter the trained model. In addition, the

use of a linear function as the secondary learner leads to easy and understandable inferencing, fast cost

function calibration, quick evaluation of multiple cost functions and simplicity in implementation.
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Comparison of methods on testing data with LGBM base regression

Dataset Cost Function Initial Direct BSZ BSZ-EXT HER OSB

Abalone LL 1:10 7.413 4.134 3.704 3.684 3.830 3.140

Abalone LL 1:20 7.414 2.453 2.437 2.417 2.677 2.025

Abalone LL 1:50 7.415 1.399 1.293 1.283 1.658 1.096

Abalone LL 1:100 7.415 0.956 0.778 0.764 1.178 0.679

Abalone QQ 1:10 2.018 1.156 1.108 1.101 1.160 0.898

Abalone QQ 1:20 2.034 0.875 0.798 0.791 0.877 0.621

Abalone QQ 1:50 2.044 0.609 0.486 0.480 0.594 0.369

Abalone QQ 1:100 2.048 0.480 0.323 0.319 0.444 0.246

Bank (8FM) LL 1:10 1.091 0.491 0.561 0.515 0.509 0.489

Bank (8FM) LL 1:20 1.092 0.312 0.370 0.332 0.336 0.312

Bank (8FM) LL 1:50 1.092 0.166 0.202 0.177 0.189 0.172

Bank (8FM) LL 1:100 1.092 0.115 0.124 0.108 0.124 0.101

Bank (8FM) QQ 1:10 0.046 0.020 0.026 0.024 0.024 0.023

Bank (8FM) QQ 1:20 0.046 0.014 0.019 0.017 0.017 0.016

Bank (8FM) QQ 1:50 0.046 0.007 0.011 0.010 0.011 0.009

Bank (8FM) QQ 1:100 0.046 0.003 0.008 0.007 0.007 0.006

House (8L) LL 1:10 13.328 8.958 6.711 6.704 6.964 5.075

House (8L) LL 1:20 13.331 5.794 4.360 4.354 4.779 3.154

House (8L) LL 1:50 13.333 3.351 2.298 2.295 2.883 1.593

House (8L) LL 1:100 13.333 2.218 1.384 1.383 2.013 0.931

House (8L) QQ 1:10 7.209 4.300 3.969 3.964 4.189 2.656

House (8L) QQ 1:20 7.312 3.484 2.899 2.895 3.214 1.759

House (8L) QQ 1:50 7.378 2.591 1.804 1.802 2.219 0.980

House (8L) QQ 1:100 7.401 2.153 1.227 1.225 1.690 0.618

KC House LL 1:10 12.247 5.093 5.031 5.031 5.213 5.189

KC House LL 1:20 12.249 4.349 3.130 3.130 3.307 3.173

KC House LL 1:50 12.258 1.990 1.567 1.567 1.735 1.535

KC House LL 1:100 12.257 1.113 0.901 0.901 1.059 0.863

KC House QQ 1:10 4.733 2.536 2.348 2.348 2.430 2.412

KC House QQ 1:20 4.724 1.812 1.586 1.586 1.677 1.612

KC House QQ 1:50 4.719 1.868 0.892 0.892 0.983 0.883

KC House QQ 1:100 4.717 0.872 0.560 0.560 0.647 0.540

Table 7: Performance of the OSB, the method introduced by Bansal et al. (2008) (BSZ), the extended version by Zhao

et al. (2011) (BSZ-EXT), the local reframing of Hernandez-Orallo (2014) (HER) and a direct cost-sensitive approach

based on a LGBM implementation. All post hoc methods use LGBM as an initial regression. The performance is

expressed in the average misprediction cost (multiplied by 100) on testing data of various datasets using 2 × 5 cross-

validation on different cost functions calibrations. The cost ratios a : b always sum up to one as described in Section

4.5.
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The OSB algorithm is even equivalent to direct (predict-and-optimize) approaches in cases where

the initial model is a linear regression. This aspect as well as the interpretability of the results and

potential use of a different set of variables give the OSB approach unique advantages over other post

hoc methods.

Future research can expand upon OSB in several ways. First, other cost functions can be eval-

uated in the algorithm to further validate results in potentially more specific settings. Second,

the introduced cost functions can be expanded to cost functions of the type w(x)ρ(x), where the

costs also depend on certain variables from the sample. This extension of the method will allow

for more complicated cost structures to be developed, similarly to those in classification problems.

Third, the one-step boosting method for cost-sensitivity can be more extensively compared to meth-

ods where cost-sensitivity is introduced by model adjustment. Comparing these two approaches to

cost-sensitivity can lead to interesting results regarding precision, ease of use, and relevance for prac-

titioners. Fourth, in our empirical evaluation we applied the same training sample in the boosting

step as was used in the base regression method. However, the boosting approach allows the use of a

select number of variables or even a completely different set of variables to introduce cost-sensitivity.

Depending on the specific problem and cost setting certain combinations can be evaluated further.

Finally, we introduced and evaluated the proposed boosting method from a data-science and sta-

tistical viewpoint. Evaluating the algorithm in practice on a specific problem with a dynamic and

changing environment can provide interesting results for the future use of the boosting approach to

incorporate cost-sensitivity in regression problems.
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Appendix A. Extra Results Output

Appendix A.1. Results comparison with other base regression methods

In Tables A.8, A.9, A.10 and A.11 are the results for the comparison of OSB, the method intro-

duced by Bansal et al. (2008) (BSZ), the extended version by Zhao et al. (2011) (BSZ-EXT) and the

local reframing of Hernandez-Orallo (2014) (HER) using the RF random forest, MT model tree, NN

neural network and the LR linear regression as initial models. In these comparisons we only leverage

a direct approach for the neural network implementation, as a direct approach is not always available

for other methods or in the case of a linear regression is equivalent to our method as highlighted

earlier. The setup is the same as described in Section 4.5, meaning that the costs sum up to one.

Thus a cost function of the form 1 : 10 has a = 1/11 and b = 10/11 as cost ratio values. The average

misprediction cost is in each table multiplied by 100 for clarity. The conclusions for the different base

regression methods for the OSB method are very comparable as those discussed earlier in Section

4.3. As can be seen, the base regression does not have a large influence. Of course the performance

of our method does depend on the fit of the base regression as an overfit will lead to worse results

in the subsequent boosting step, due to the poor performance in the test predictions. Here, this

can be seen in some cases where the model clearly is overfit or has a bad fit with the data such as

with the LR regression on the House (8L) dataset, which is also illustrated by the worse performance

on the initial costs. This can be attributed to the non linear relationship between the variables and

response. The conclusions for the comparison with other methods on various base regression methods

are consistent with the earlier results discussed in Section 4.5, again stressing the consistency of the

introduced OSB approach.
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Comparison of methods on testing data with MT base regression

Dataset Cost Function Initial BSZ BSZ-EXT HER OSB

Abalone LL 1:10 7.329 3.488 3.485 3.575 2.814

Abalone LL 1:20 7.327 2.159 2.156 2.312 1.724

Abalone LL 1:50 7.326 1.059 1.058 1.243 0.863

Abalone LL 1:100 7.326 0.592 0.591 0.774 0.500

Abalone QQ 1:10 1.984 1.030 1.029 1.072 0.847

Abalone QQ 1:20 1.997 0.706 0.706 0.759 0.567

Abalone QQ 1:50 2.006 0.397 0.397 0.456 0.325

Abalone QQ 1:100 2.009 0.247 0.247 0.304 0.211

Bank (8FM) LL 1:10 1.175 0.559 0.523 0.506 0.477

Bank (8FM) LL 1:20 1.175 0.350 0.326 0.320 0.290

Bank (8FM) LL 1:50 1.175 0.174 0.164 0.166 0.140

Bank (8FM) LL 1:100 1.175 0.099 0.094 0.101 0.078

Bank (8FM) QQ 1:10 0.052 0.027 0.026 0.027 0.025

Bank (8FM) QQ 1:20 0.052 0.019 0.018 0.018 0.017

Bank (8FM) QQ 1:50 0.052 0.011 0.010 0.011 0.009

Bank (8FM) QQ 1:100 0.052 0.007 0.006 0.007 0.006

House (8L) LL 1:10 15.268 7.584 7.583 7.858 5.544

House (8L) LL 1:20 15.267 4.895 4.894 5.262 3.377

House (8L) LL 1:50 15.267 2.547 2.547 3.032 1.645

House (8L) LL 1:100 15.267 1.503 1.503 2.030 0.933

House (8L) QQ 1:10 9.358 5.064 5.063 5.318 3.317

House (8L) QQ 1:20 9.493 3.659 3.658 3.995 2.156

House (8L) QQ 1:50 9.58 2.233 2.233 2.653 1.170

House (8L) QQ 1:100 9.61 1.488 1.489 1.948 0.724

KC House LL 1:10 12.46 5.071 5.071 5.264 5.236

KC House LL 1:20 12.461 3.143 3.143 3.312 3.189

KC House LL 1:50 12.461 1.569 1.569 1.696 1.531

KC House LL 1:100 12.461 0.900 0.900 1.008 0.855

KC House QQ 1:10 4.852 2.396 2.396 2.471 2.461

KC House QQ 1:20 4.842 1.613 1.613 1.691 1.638

KC House QQ 1:50 4.835 0.903 0.903 0.972 0.890

KC House QQ 1:100 4.833 0.565 0.565 0.625 0.539

Table A.8: Performance of OSB, the method introduced by Bansal et al. (2008) (BSZ), the extended version by Zhao

et al. (2011) (BSZ-EXT), and the local reframing of Hernandez-Orallo (2014) (HER). All post hoc methods use MT

as an initial regression. The performance is expressed in the average misprediction cost (multiplied by 100) on testing

data of various datasets using 2×5 cross-validation on different cost functions calibrations. The cost ratios a : b always

sum up to one as described in Section 4.5.
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Comparison of methods on testing data with NN base regression

Dataset Cost Function Initial Direct BSZ BSZ-EXT HER OSB

Abalone LL 1:10 7.439 3.663 3.559 3.558 3.658 2.789

Abalone LL 1:20 7.434 2.376 2.201 2.201 2.375 1.684

Abalone LL 1:50 7.432 1.267 1.063 1.063 1.276 0.841

Abalone LL 1:100 7.431 0.762 0.596 0.596 0.795 0.503

Abalone QQ 1:10 2.043 1.577 1.051 1.051 1.095 0.822

Abalone QQ 1:20 2.061 1.020 0.720 0.719 0.777 0.542

Abalone QQ 1:50 2.072 0.750 0.400 0.400 0.468 0.300

Abalone QQ 1:100 2.076 0.633 0.245 0.245 0.313 0.193

Bank (8FM) LL 1:10 1.296 0.517 0.569 0.549 0.534 0.474

Bank (8FM) LL 1:20 1.301 0.320 0.362 0.348 0.343 0.281

Bank (8FM) LL 1:50 1.305 0.162 0.184 0.180 0.183 0.131

Bank (8FM) LL 1:100 1.306 0.107 0.108 0.106 0.114 0.071

Bank (8FM) QQ 1:10 0.059 0.027 0.029 0.029 0.028 0.023

Bank (8FM) QQ 1:20 0.059 0.021 0.021 0.020 0.020 0.015

Bank (8FM) QQ 1:50 0.060 0.014 0.012 0.012 0.012 0.008

Bank (8FM) QQ 1:100 0.060 0.016 0.008 0.008 0.008 0.005

House (8L) LL 1:10 16.281 7.535 7.856 7.750 8.167 6.160

House (8L) LL 1:20 16.294 4.816 5.042 4.967 5.434 3.797

House (8L) LL 1:50 16.303 2.512 2.605 2.568 3.072 1.900

House (8L) LL 1:100 16.306 1.484 1.529 1.509 2.022 1.106

House (8L) QQ 1:10 10.228 5.336 5.452 5.353 5.731 4.148

House (8L) QQ 1:20 10.342 3.786 3.890 3.820 4.239 2.848

House (8L) QQ 1:50 10.415 2.316 2.334 2.302 2.743 1.720

House (8L) QQ 1:100 10.441 1.501 1.532 1.522 1.963 1.197

KC House LL 1:10 12.919 5.277 5.239 5.254 5.431 5.356

KC House LL 1:20 12.930 3.289 3.254 3.267 3.429 3.247

KC House LL 1:50 12.936 1.671 1.627 1.635 1.764 1.568

KC House LL 1:100 12.939 0.965 0.938 0.943 1.053 0.876

KC House QQ 1:10 5.222 2.637 2.589 2.626 2.745 2.609

KC House QQ 1:20 5.214 1.777 1.745 1.770 1.879 1.741

KC House QQ 1:50 5.210 1.019 0.980 0.995 1.081 0.957

KC House QQ 1:100 5.208 0.632 0.617 0.628 0.696 0.594

Table A.9: Performance of OSB, the method introduced by Bansal et al. (2008) (BSZ), the extended version by Zhao

et al. (2011) (BSZ-EXT), a direct implementation using NN, and the local reframing of Hernandez-Orallo (2014) (HER).

All post hoc methods use NN as an initial regression. The performance is expressed in the average misprediction cost

(multiplied by 100) on testing data of various datasets using 2×5 cross-validation on different cost functions calibrations.

The cost ratios a : b always sum up to one as described in Section 4.5.
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Comparison of methods on testing data with RF base regression

Dataset Cost Function Initial BSZ BSZ-EXT HER OSB

Abalone LL 1:10 7.319 4.711 4.623 4.923 4.491

Abalone LL 1:20 7.309 3.638 3.556 4.088 3.563

Abalone LL 1:50 7.303 2.570 2.494 3.263 2.634

Abalone LL 1:100 7.301 1.978 1.925 2.824 2.117

Abalone QQ 1:10 2.003 1.388 1.361 1.457 1.148

Abalone QQ 1:20 2.017 1.151 1.122 1.265 0.927

Abalone QQ 1:50 2.027 0.880 0.854 1.053 0.699

Abalone QQ 1:100 2.030 0.716 0.692 0.925 0.565

Bank (8FM) LL 1:10 1.144 0.756 0.708 0.723 0.698

Bank (8FM) LL 1:20 1.144 0.592 0.550 0.582 0.545

Bank (8FM) LL 1:50 1.145 0.421 0.386 0.443 0.404

Bank (8FM) LL 1:100 1.145 0.322 0.296 0.368 0.319

Bank (8FM) QQ 1:10 0.052 0.036 0.034 0.035 0.032

Bank (8FM) QQ 1:20 0.053 0.030 0.028 0.030 0.026

Bank (8FM) QQ 1:50 0.053 0.023 0.021 0.023 0.020

Bank (8FM) QQ 1:100 0.053 0.019 0.017 0.020 0.016

House (8L) LL 1:10 13.337 8.917 8.830 9.004 8.573

House (8L) LL 1:20 13.322 6.944 6.847 7.441 6.297

House (8L) LL 1:50 13.313 4.858 4.771 5.925 4.480

House (8L) LL 1:100 13.309 3.623 3.552 5.115 3.441

House (8L) QQ 1:10 7.425 5.298 5.246 5.474 3.745

House (8L) QQ 1:20 7.523 4.485 4.428 4.833 2.989

House (8L) QQ 1:50 7.586 3.492 3.435 4.105 2.211

House (8L) QQ 1:100 7.608 2.845 2.791 3.658 1.759

KC House LL 1:10 13.191 6.411 6.421 6.669 6.542

KC House LL 1:20 13.208 4.225 4.237 4.788 4.352

KC House LL 1:50 13.219 2.259 2.269 3.122 2.431

KC House LL 1:100 13.223 1.369 1.376 2.329 1.500

KC House QQ 1:10 5.646 3.123 3.125 3.268 3.155

KC House QQ 1:20 5.652 2.243 2.246 2.487 2.284

KC House QQ 1:50 5.655 1.372 1.376 1.726 1.418

KC House QQ 1:100 5.656 0.920 0.924 1.327 0.966

Table A.10: Performance of OSB, the method introduced by Bansal et al. (2008) (BSZ), the extended version by Zhao

et al. (2011) (BSZ-EXT), and the local reframing of Hernandez-Orallo (2014) (HER). All post hoc methods use RF

as an initial regression. The performance is expressed in the average misprediction cost (multiplied by 100) on testing

data of various datasets using 2×5 cross-validation on different cost functions calibrations. The cost ratios a : b always

sum up to one as described in Section 4.5.
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Comparison of methods on testing data with LR base regression

Dataset Cost Function Initial BSZ BSZ-EXT HER OSB

Abalone LL 1:10 7.889 3.808 3.807 4.023 2.962

Abalone LL 1:20 7.888 2.354 2.354 2.644 1.796

Abalone LL 1:50 7.887 1.134 1.134 1.443 0.891

Abalone LL 1:100 7.887 0.627 0.627 0.911 0.512

Abalone QQ 1:10 2.336 1.205 1.205 1.315 0.987

Abalone QQ 1:20 2.354 0.822 0.822 0.944 0.668

Abalone QQ 1:50 2.366 0.455 0.455 0.578 0.387

Abalone QQ 1:100 2.370 0.277 0.277 0.391 0.263

Bank (8FM) LL 1:10 1.426 0.682 0.642 0.618 0.533

Bank (8FM) LL 1:20 1.426 0.429 0.403 0.395 0.319

Bank (8FM) LL 1:50 1.426 0.215 0.206 0.207 0.149

Bank (8FM) LL 1:100 1.426 0.124 0.120 0.126 0.083

Bank (8FM) QQ 1:10 0.078 0.041 0.039 0.042 0.035

Bank (8FM) QQ 1:20 0.078 0.028 0.027 0.029 0.023

Bank (8FM) QQ 1:50 0.078 0.016 0.016 0.017 0.012

Bank (8FM) QQ 1:100 0.078 0.010 0.010 0.011 0.008

House (8L) LL 1:10 19.707 10.098 10.098 10.115 7.379

House (8L) LL 1:20 19.706 6.402 6.402 6.660 4.202

House (8L) LL 1:50 19.706 3.276 3.276 3.696 1.764

House (8L) LL 1:100 19.705 1.904 1.903 2.382 0.896

House (8L) QQ 1:10 15.968 8.646 8.646 8.577 5.758

House (8L) QQ 1:20 16.171 6.139 6.138 6.225 3.634

House (8L) QQ 1:50 16.302 3.634 3.632 3.902 1.827

House (8L) QQ 1:100 16.347 2.357 2.356 2.714 1.034

KC House LL 1:10 12.784 5.207 5.207 5.397 5.336

KC House LL 1:20 12.784 3.227 3.227 3.402 3.223

KC House LL 1:50 12.783 1.608 1.608 1.758 1.548

KC House LL 1:100 12.783 0.921 0.921 1.048 0.858

KC House QQ 1:10 5.097 2.518 2.518 2.600 2.567

KC House QQ 1:20 5.086 1.693 1.693 1.782 1.697

KC House QQ 1:50 5.078 0.945 0.945 1.028 0.915

KC House QQ 1:100 5.076 0.590 0.590 0.664 0.553

Table A.11: Performance of OSB, the method introduced by Bansal et al. (2008) (BSZ), the extended version by Zhao

et al. (2011) (BSZ-EXT), and the local reframing of Hernandez-Orallo (2014) (HER). All post hoc methods use LR

as an initial regression. The performance is expressed in the average misprediction cost (multiplied by 100) on testing

data of various datasets using 2×5 cross-validation on different cost functions calibrations. The cost ratios a : b always

sum up to one as described in Section 4.5.
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