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Abstract

The concordance probability is an extension of the popular area under the curve (AUC)
which is commonly used to measure the accuracy of a predictive model. It can be extended
to the thresholded and weighted concordance probability which are more appropriate for
some applications. The naive way of estimating this measure requires a quadratic com-
putation time, which is prohibitive for large data sets. We propose a new algorithm that
computes the weighted thresholded concordance probability in linearithmic time, which is
proven and empirically confirmed. This unlocks the possibility of calculating the thresh-
olded concordance probability in a big data world, and makes it possible to base the fitness
function of a machine learning algorithm on the concordance probability. These applica-
tions are successfully illustrated by two real examples from the insurance sector. The first
one focuses on feature selection based on the concordance probability using a binary parti-
cle swarm optimization. In the second application, we use a genetic algorithm to optimize
a loss function based on the concordance probability. Since both of these applications re-
quire evaluating the concordance probability a very high number of times, a huge decrease
in computation time is obtained using our fast algorithm. Moreover, it is shown that the
neural network optimized for the concordance probability with the genetic algorithm out-
performs the traditional benchmark methodology, i.e. a classical neural network optimized
for the deviance. The applicability of our fast algorithm extends beyond these illustrations
and unlocks various new uses of the thresholded and weighted concordance probability.

Keywords: c-index, quasilinear, mergesort, binary particle swarm optimization, neural
network

1. Introduction

The concordance probability, also known as the C-index, is a popular measure for the
discriminatory ability of a model. More specifically, it measures the probability that the
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order between a comparable pair of observations is kept, when comparing their predictions
obtained by the model. In case we have a binary response variable Y , the concordance
probability is equivalent to the probability that a random observation with response Y = 0
has a smaller prediction than a random observation with response Y = 1 [1]. Hence, in
this binary setting, the concordance probability C can be formulated as:

C = P (π(Xi) > π(Xj) | Yi = 1, Yj = 0) , (1)

where Xj represents the explanatory variables corresponding with observation j, such that
its prediction π(Xj) equals P(Yj = 1|Xj). This concordance probability is most commonly
estimated by dividing the number of concordant pairs Nc by the number of comparable
pairs N :

Ĉ =
Nc

N
=

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) > π̂(xj), yi = 1, yj = 0

)

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) 6= π̂(xj), yi = 1, yj = 0

) , (2)

with n the number of observations and I(·) the indicator function.
When the response variable is continuous, the concordance probability is easily extended

as follows:
C = P (π(Xi) > π(Xj) | Yi > Yj) , (3)

Here, π(Xi) still corresponds to the prediction of Yi, e.g. in case of a linear model we
have that π(Xi) = Xiβ with β the model coefficients. An equivalent definition for C is
the probability that a random comparable pair of responses with their predicted values
is a concordant pair. Here we use the fact that two pairs (π(Xi), Yi) and (π(Xj), Yj)
are concordant when sgn(π(Xi) − π(Xj)) = sgn(Yi − Yj). It is clear that the closer the
concordance probability is to 1, the better discriminatory ability of the model. The natural
estimator is

Ĉ =
Nc

N
=

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) > π̂(xj), yi > yj

)

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) 6= π̂(xj), yi > yj

) , (4)

It is worth pointing out that ties in both the predictions and the responses are left out of the
computation of the concordance probability. When there are no ties for the predictions,
the concordance probability in the binary setting coincides with the well-known AUC.
Note that the absense of ties in the predictions is necessary, since the AUC treats them as
comparable pairs [2].

In this continuous setting, a thresholded concordance probability C(ν) can also be
considered as introduced by Van Oirbeek et al. [3]. This measure does not consider nearly
identical responses, by requiring that the responses of comparable observations differ at
least ν from each other:

C(ν) = P (π(Xi) > π(Xj) | Yi − Yj > ν) . (5)

This thresholded concordance probability is very useful in the context of severity models for
insurance pricing as discussed by Ponnet et al. [4]. Such a severity model is used to predict
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the cost of an average claim. Hence, for evaluating such a severity model, we want to make
sure that it can distinguish large from small risks. Moreover, distinguishing nearly identical
claim sizes has little practical importance in this setting, which is taken into account by the
thresholded concordance probability when ν > 0. To estimate the concordance probability
in continuous settings, we can use the natural estimator given by

Ĉ(ν) =
Nc

N
=

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) > π̂(xj), yi − yj > ν

)

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) 6= π̂(xj), yi − yj > ν

) , (6)

Note that in this case, the number of concordant pairs Nc and the number of total pairs N
only consider those pairs (i, j) for which yi − yj > ν.

An extension of the thresholded concordance probability is obtained when each re-
sponse-prediction pair i has a specific weight wi. These weights can namely be considered
in the weighted thresholded concordance probability, which is defined as follows:

Ĉw(ν) =

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) > π̂(xj), yi − yj > ν

)
wiwj

∑n−1
i=1

∑n

j=i+1 I
(
π̂(xi) 6= π̂(xj), yi − yj > ν

)
wiwj

. (7)

The most straightforward way of calculating the different concordance probabilities
of Equations (2), (4), (6) and (7), is by comparing all n(n − 1)/2 pairs of observations,
for example in a nested for-loop, and keep count of the concordant, discordant, and tied
pairs. While this is easy to implement, it clearly comes with a computational complexity
of O(n2). This can become prohibitive for large data sets and when the concordance
probability needs to be computed many times, for example when it is used in the fitness
function of an evolutionary algorithm. In the currently available R packages, the estimation
of the classical concordance probability is implemented in the naive way by a nested for-
loop [5, 6, 7, 8, 9, 10]. In this paper we introduce an algorithm for computing the weighted
thresholded concordance probability with time complexity O(n log(n)). We do this by
adapting the well-known mergesort algorithm [11] for counting inversions in a vector. We
take three steps. First, we make sure that ties in predictions are adequately dealt with.
Second, we introduce an adjusted merge step of the algorithm to include a threshold on
the responses of comparable pairs to compute the expression in Equation (6). Finally, we
compute the expression in Equation (7) by introducing a second adjustment to the merge
step to appropriately deal with weights.

A statistic related to the the concordance probability is Kendall’s tau [12]. For Kendall’s
tau, the “naive” implementation also has a O(n2) computational complexity. The cor.fk
function of the pcaPP package [13] implements a faster algorithm which requiresO(n log(n))
computational cost. The algorithm used for that function is similar in spirit to our algo-
rithm in that it uses an adaptation of mergesort. However, it differs from ours in a number
of ways. First, it cannot deal with custom weights. Second, it cannot deal with thresholds
on the predictions. Finally, it counts ties in a different way and cannot readily be used to
compute even the simplest version of the continuous concordance probability in case of ties.
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Other packages having a fast implementation of Kendall’s tau, such as the copula package
[14], seem to rely on the implementation of pcaPP. In summary, there seem to be no fast
implementations of comparable statistics allowing for the computation of the weighted and
thresholded concordance probability.

In Section 2, we discuss how the (weighted) thresholded concordance probability can
be computed in quasilinear time. The results of this section are confirmed by a simulation
study which is the topic of Section 3. We apply the proposed algorithms on two real data
applications in Section 4. Finally, the conclusion is given in Section 5.

2. Computing the concordance probability

In this section, we describe algorithms to compute the concordance probability in quasi-
linear time. We will start with the case of a binary response variable. Then, we will treat
the concordance probability for a continuous response variable. Finally, we will show that
the extension to the weighted thresholded concordance probability can also be incorporated
into our algorithm.

2.1. Binary response

We have pointed out the equivalence between the popular AUC and C in case of a
binary response variable. The AUC is often approximated based on the trapezium rule with
O(n log(n)) computation time. For a binary response variable, it can also be computed
exactly using the following procedure. First, the observations are ordered according to
the values of the corresponding predictions (in ascending order), which takes O(n log(n))
time. Next, the crucial step is to see that every observation for which Y = 0 creates a
number of concordant pairs, which is equal to the number of one observations on its right.
Similarly, each observation for which Y = 1 creates a number of discordant pairs, which
is equal to the number of zero observations on its right. The latter can be computed in
O(n) time, such that we can conclude that the exact calculation of the AUC can be done
in O(n log(n)) time. From here on, we call this the binary algorithm.

When there are ties however, the AUC and the C-index are no longer equivalent, yet
we would still like to compute the latter very quickly. That is why several approximations
for the concordance probability were introduced by Van Van Oirbeek et al. [3], both for
the binary and the continuous setting. However, these are still approximations, and when
using the concordance probability to compare the discriminatory ability of two models, one
prefers the absence of a bias.

We now show that the exact procedure for calculating the AUC in the binary setting,
can be adjusted to appropriately deal with ties to calculate Ĉ exactly and quickly. We first
compute the AUC in O(n log(n)) time. Then, we adjust the resulting number for potential
ties in the predictions as follows. We first count the number of unique ties in the predictions,
in O(n) time. Next, on each tie in the predictions together with its corresponding response,
the binary algorithm is applied again to obtain the number of concordant and discordant
pairs that contain ties in the predictions. Proposition 1 below shows that this can once
again be done in O(n log(n)) time. Once these numbers are known, the AUC can be
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corrected for these initially incorrect numbers of concordant and discordant pairs to obtain
the concordance probability Ĉ. Ties in the responses are not considered here, since this is
not relevant in the binary setting.

Proposition 1. Let π̂ =
(
π̂(x1), . . . , π̂(xn)

)
be a vector of predictions and y = (y1, . . . , yn)

a vector of binary responses. We can can compute the concordance probability of Equation

(2) in O(n log(n)) time by adjusting the AUC for the presence of ties.

Proof. We start of by calculating the AUC in O(n log(n)) time using the sorting procedure
outlined above. This yields the number of concordant and discordant pairs but does not
discard the pairs for which the predictions are tied.

Suppose we have k ties in the vector of n predictions π̂, and each tie j appears nj times.
Furthermore, we consider unique observations as ties of multiplicity 1, such that n =∑k

j=1 nj. Additionally, denote cj =
nj

n
so that.

∑k

j=1 cj = 1 and cj > 0 for all j = 1, . . . , n.
Consider now a tie j in the predictions of the observations with indices i1, i2, . . . , inj

, i.e.
π̂(xi1) = π̂(xi2) = . . . = π̂(xinj

). In order to correct the computed AUC for this tie,
we recompute the number of concordant and discordant pairs on these observations and
subtract them from the total numbers computed on π̂. We repeat this procedure for all
ties j for which nj > 1.
This means that for each tie j, we have to perform an algorithm of O(nj log(nj)) time,

such that the total computation time has a time complexity O(
∑k

j=1 nj log(nj)). The total
complexity to correct for all ties is thus given by:

O

(
k∑

j=1

nj log(nj)

)
= O

(
k∑

j=1

cjn log(cjn)

)

= O

(
k∑

j=1

cjn
(
log(cj) + log(n)

)
)

≤ O

(
k∑

j=1

cjn log(n)

)

= O

(
n log(n)

k∑

j=1

cj

)

= O (n log(n))

Hence, the overall time complexity remains O(n log(n)).

2.2. Continuous response

For a continuous response variable, we no longer have two groups in the observations,
which is why the AUC and the previously discussed algorithm for Ĉ cannot be used. We
propose a new algorithm to calculate Ĉ exactly and quickly in this setting. Once again,
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the first step consists of ordering the observations based on their predictions (from small
to large). Next, the number of discordant pairs necessary for the concordance probability,
equals the number of inversions in the responses. An inversion in a vector a is defined
as a pair of elements a[i] > a[j] for which i < j. Similarly, the number of concordant
pairs necessary for the concordance probability, equals the number of non-inversions in the
responses. A non-inversion in a vector a is defined as a pair of elements a[i] < a[j] for
which i < j. Counting the number of (non)-inversions in an array, is something that can
be done in O(n log(n)), based on the mergesort algorithm [11, 15, 16].

Proposition 2. Let π̂ =
(
π̂(x1), . . . , π̂(xn)

)
be a vector of predictions and y = (y1, . . . , yn)

a vector of continuous responses. Using the merge procedure of Algorithm 1, we can can

compute the concordance probability of Equation (4) in O(n log(n)) time.

Proof. The classical mergesort algorithm is a standard example of a divide-and-conquer
recurrence. The divide step divides the sequence to be sorted in two subsequences of equal
length. The conquer step then uses mergesort on each of the two subsequences. Finally, the
combine step merges the sorted subsequences in a single sorted sequence. This algorithm
requires O(n log(n)) computation time as a result of the merge step taking O(n) time.
More precisely, assume w.l.o.g. that n = 2k. The computation time T (n) of the classical
mergesort algorithm is given by the recurrence relation

T (n) = 2T
(n
2

)
+ n

where the first term results from the splitting of the sample in 2 and the latter from the
merging step. More generally, we have that

T (n) = 2T
(n
2

)
+O(n)

implies T (n) = n log(n) through the master theorem for divide-and-conquer recurrences.
Using this algorithm, counting the number of concordant and discordant pairs can also

be done simultaneously, once the observations are ordered based on their predictions (from
small to large). To this end, only the merge function of the mergesort algorithm needs to
be adapted, as can be seen in the pseudo-code of Algorithm 1 in Appendix A, where we
suppose a 0-based indexing. More specifically, suppose we want to merge the sorted left
array x of length n with the sorted right array y of length m in a sorted way. Therefore,
we are comparing the ith element of x with the jth element of y. When x[i] is smaller than
y[j], we know that it will also be smaller than all other elements of y on the right of y[j],
since y is a sorted array. Hence, because of x being the left array and y the right array,
we know that x[i] creates m− j concordant pairs. On the other hand, when y[j] is smaller
than x[i], we know that it will also be smaller than all other elements of x on the right
of x[i], since x is a sorted array. Hence, because of y being the right array and x the left
array, we know that y[j] creates n− i discordant pairs. Finally, when x[i] is equal to y[j],
we observed a tie in the responses. In that case, we have to find the smallest index l, larger
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than j, such that y[l] is strictly larger than y[j]. If this index l does not exist, we know
that x[i] creates m− j ties. Otherwise, it creates l − j ties and m− l concordant pairs.

As a result, while merging the left and right array in the mergesort algorithm, we can
keep track of the number of ties in the responses, as well as the number of concordant and
discordant pairs without changing the time complexity of O(n log(n)).

One way of correcting for the presence of ties in the predictions is using the same
procedure as that of Proposition 1. This does not change the time complexity of the
overall algorithm, which remains O(n log(n)).

2.3. The weighted thresholded concordance probability

We start by addressing the thresholded concordance probability and include the weighted
version afterwards.

The thresholded concordance probability only considers observations with responses
that differ at least a value ν from each other. Hence, two responses are considered as
being a tie when they differ exactly ν from each other. For a naive algorithm inspecting
all pairs of predictions, it is trivial to incorporate this threshold ν, but this would still
yield a computational complexity of O(n2). Instead, we have modified the merge-step of
the mergesort-based algorithm of Section 2.2 to be able to incorporate this feature without
increasing the computational complexity. As a result, we can compute the thresholded
concordance probability in O(n log(n)) time, which is stated and proven in Proposition 3
below.

Proposition 3. Let π̂ =
(
π̂(x1), . . . , π̂(xn)

)
be a vector of predictions and y = (y1, . . . , yn)

a vector of continuous responses. Using the merge procedure of Algorithm 2, we can can

compute the thresholded concordance probability of Equation (6) in O(n log(n)) time.

Proof. We know already from Proposition 2 that the concordance probability C(0) can
be estimated in O(n log(n)) time. In order to introduce a threshold on the difference in
responses for comparable pairs, we need to only change the merge step of the previous
algorithm. It is thus sufficient to make sure that the adjusted merging step requires O(n)
time. The pseudo-code of Algorithm 2 in Appendix A, where we suppose a 0-based
indexing, shows the required adjustments to the merge function.

More specifically, suppose we want to merge the sorted left array x of length n with
the sorted right array y of length m to obtain a single sorted array. In doing so, we are
comparing the ith element of x with the jth element of y. When x[i] is smaller than y[j],
we know that it will also be smaller than all other elements of y on the right of y[j], since
y is a sorted array. Hence, because of x being the left array and y the right array, x[i] can
create concordant pairs. However, since a tie in the responses is defined as two responses
that differ exactly a value ν from each other, it can also create a number of ties. To define
this number of ties and concordant pairs, we iterate over all elements after y[j] until the
first one strictly larger than x[i] + ν is found and call the index of this element j2. While
doing so, we also keep track of the number of elements that form a tie with x[i]. Hence, the
total number of ties can be updated by adding the latter and moreover, m− j2 concordant
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pairs are created by x[i]. On the other hand, when y[j] is strictly smaller than x[i], we
know that it will also be smaller than all other elements of x on the right of x[i], since x
is a sorted array. Hence, because of y being the right array and x the left array, y[j] can
create discordant pairs. However, since a tie in the responses is defined as two responses
that differ exactly a value ν from each other, it can also create a number of ties. To define
this number of ties and discordant pairs, we iterate over all elements after x[i] until the
first one strictly larger than y[j] + ν is found and call the index of this element i2. While
doing so, we also keep track of the number of elements that form a tie with y[j]. Hence, the
total number of ties can be updated by adding the latter and moreover, n− i2 discordant
pairs are created by y[j].

Note that i2 (j2) is updated each time i (j) is updated by iterating over the following
larger elements in x (y). Hence, keeping track of i2 (j2) requires O(n) time. As a result,
while merging the left and right array in the mergesort algorithm, we can keep track of the
number of ties in the responses, as well as the number of concordant and discordant pairs
without changing the time complexity of O(n log(n)). The correction for the presence of
ties in the predictions does not change this time complexity, as explained in the proof of
Proposition 1.

Finally, we address the inclusion of weights. The calculation of Ĉw(ν) would again be
trivial in a naive implementation inspecting all the pairs. By making additional adjustments
to the merge-step, we have extended the mergesort-based algorithm to be able to calculate
the weighted thresholded concordance probability in linearithmic time. This is stated and
proven in Proposition 4 below, and the pseudo-code of the adjusted merge-step can be
found in Algorithm 3 of Appendix A.

Proposition 4. Let π̂ =
(
π̂(x1), . . . , π̂(xn)

)
be a vector of predictions, y = (y1, . . . , yn) a

vector of continuous responses and w = (w1, . . . , wn) a vector of weights. Using the merge

procedure of Algorithm 3, we can can compute the concordance probability of Equation (7)
in O(n log(n)) time.

Proof. We know already from Proposition 3 that the thresholded concordance probability
C(ν) can be estimated in O(n log(n)) time. As can be seen in the pseudo-code of Algorithm
3 in Appendix A, an adaptation is necessary in the merging step used to estimate C(ν).
Building further on the notations introduced in the Proof of Proposition 3, we first define
wx (wy) as the weights corresponding to the elements in x (y). The sum of all elements in
wy is the initial value of the variable sy. Each time that the index j2 is updated, we also
update sy by subtracting wy[j2] of it. In other words, sy represents the sum of the weights
of all responses in y from index j2 on. Hence, when x[i] is smaller than y[j], the weighted
number of concordant pairs is increased with wx[i]sy. Remember that while updating j2,
we also kept track of the number of ties with x[i] in y. This time, we will keep track of the
sum of the weights of the elements in y that form a tie with x[i], defined by ty. Hence, the
weighted number of ties introduced by x[i] equals wx[i]ty.

Analogously, initialize sx by the sum of all elements in (wx) and update its value when
i2 is updated, by subtracting wx[i2] of it. When y[j] is then strictly smaller than x[i], the

8



weighted number of discordant pairs is updated by adding wy[j]sx. Similarly, tx represents
the sum of the weights of the elements in x that form a tie with y[j]. Consequently, the
weighted number of ties introduced by y[j] equals wy[j]tx.

Note that tx and sx (ty and sy) are updated each time i2 (j2) is updated. Hence, keeping
track of these values requires O(n) time. As a result, while merging the left and right array
in the mergesort algorithm, we keep track of the weighted number of ties in the responses,
as well as the weighted number of concordant and discordant pairs without changing the
time complexity of O(n log(n)). The correction for the presence of ties in the predictions
does not change this time complexity, as explained in the proof of Proposition 1.

3. Simulation study

In this section, we investigate the computational cost to estimate the concordance prob-
ability in a simulation study. The performance is measured by the run times in R 4.1.1,
on a computer with processor Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz.
First, we focus on the binary setting and simulate n values from a binomial distribution
with size 1 and success probability 0.5. These values are considered as the responses y in
Equation (2). Similarly, we take n random samples from a uniform distribution between
0 and 1, that serve as the predictions. On these n pairs of responses and predictions,
the concordance probability is calculated by both the naive and the binary algorithm as
discussed in Section 2. We repeat this process 100 times and store the computation times.
For each sample size n ∈ {102, 103, 104, 105}, the results are shown in Figure 1. It is clear
that the binary algorithm estimates the concordance probability faster than the naive one.
For n = 102, the proposed algorithm is about a factor 2 faster than the naive algorithm.
For larger sample sizes, however, the difference between the computation times of both
approaches is much larger. For n = 105 for example, the computation times of the naive
and proposed methods differ by a factor 104.
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Figure 1: Computation times of the naive and the binary algorithm to estimate the concordance probability
in the binary setting for different sample sizes n.

A similar simulation study for the continuous setting is set up, where n responses are
sampled from a standard normal distribution. The corresponding predictions equal the
responses with an error term, which is also sampled from the standard normal distribution.
For these n pairs of responses and predictions, the concordance probability is calculated by
both the naive and the mergesort-based algorithm as discussed in Section 2. Once again,
we define pairs with the same prediction as incomparable and moreover, we set ν on zero.
The entire procedure is repeated 100 times and for each sample size n ∈ {102, 103, 104, 105},
the computation times are shown in Figure 2.

Just as in the binary setting, the naive way to estimate the concordance probability is
much slower than the one based on the mergesort algorithm. The difference is even more
pronounced however. For n = 100 we obtain a difference in computation times of a factor
4. For n = 105, we see once more that the fast algorithm has a computation time that
is about 104 times as small as the naive algorithm. Finally, we also numerically verified
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Figure 2: Computation times of the naive and the mergesort-based algorithm to estimate the concordance
probability in the continuous setting for different sample sizes n.

Propositions 1, 2 and 3 that state that the (thresholded) concordance probability can be
estimated in linearithmic time in the binary and continuous setting. For both settings,
we create the responses and the predictions in the same way as before. Moreover, we
also consider the extreme sample sizes 106 and 107. Finally, in the continuous setting, we
estimate both C and C(0.5). We consider each discussed situation 100 times and keep
track of the computation times, which are shown in Figure 3. The straight line in both
sub figures clearly confirms that the computation time for the concordance probability is
in both settings of size O(n log(n)). The fact that the computation times for the sample
size 100 seem slightly too high, can be explained by computational overhead which plays a
diminishing role for larger sample sizes.
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(b) Continuous response with ν = 0
(left) and ν = 0.5 (right).

Figure 3: Computation times of the binary and the mergesort-based algorithm of the concordance proba-
bility for different sample sizes n. The (dashed) line is an estimate of the ∼ n log(n) expected computation
time (when ν = 0.5).

4. Real data applications

In this section, we illustrate two potential applications of the mergesort-based algorithm
to compute the (thresholded) (weighted) concordance probability. The first one focuses on
feature selection based on the concordance probability, whereas the second one focuses on
the parameter estimation of a model such that the concordance probability is optimized.
Both examples focus on a real data set from the insurance sector.

4.1. Feature selection

For the first example, we focus on the data set pg16trainpol from the R-package
CASdatasets on CRAN [17]. This data set was used during the pricing game of the French
institute of Actuaries in 2016. It contains 87,226 policies for private motor insurance
of which their exposure as well as their number of claims is given. Most of the policies
experienced no claim, 4.5% had one claim and only 0.3% had two or more claims. Moreover,
there are 13 other variables that were also considered and discussed in detail by Ponnet et al.
[4], e.g. the geographical area and the vehicle power. These variables are all categorized and
their bar plots are shown in Figure B.1 in Appendix B, together with their interpretations.
Note that the majority of categorical levels are unknown due to the fact that they have
been anonymized for confidentiality reasons. Due to the anonymization, we cannot fully
interpret the final model.

The goal is to find, out of these 13 variables, the most relevant predictors to estimate
the number of claims. Instead of considering each of the 8,192 possible models by an
exhaustive search, we use a faster binary particle swarm optimization (BPSO) algorithm
that is introduced by Kennedy and Eberhart [18] and further discussed in detail by Qasim
and Algamal [19], Mirjalili and Lewis [20], Khare and Rangnekar [21]. Intuitively, each
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particle of the swarm is a binary vector of length 13, in which each element represents
whether the corresponding predictor variable is selected (1) or not (0). For each particle,
the number of claims is estimated by a Poisson model with the corresponding selected
variables x̃ as predictors and an offset equal to the logarithm of the exposure. This is
a standard approach in insurance claims modeling [22], where we denote the predicted
number of claims for observation i by π̂(x̃i). We keep track of the model that resulted in
the highest value for the fitness function for each particle separately. Moreover, we also
record the global best model, which is the model resulting in the highest value for the fitness
function over all particles in the swarm. Finally, each particle is updated based on its local
and the global best model. This entire procedure is repeated until convergence. The specific
settings for running the BPSO algorithm are as follows. We work with a population size of
30 and a maximum number of iterations of 100. The population is generated randomly with
each entry of every particle following a Bernoulli distribution with success probability 0.5.
The algorithm stops when no improvement has been found for 5 iterations. The mutation
operator is the one of [18]: for each entry of the particle is a Bernoulli random variable
with success probability determined by a sigmoid transformation of the current velocity of
that particle entry. The sigmoid ensures that the probability lies between 0 and 1.

We consider the following fitness function:

f(λ, x̃) = Ĉw,0,1+(x̃)− λ‖β‖1,

with

Ĉw,0,1+(x̃) =

∑n−1
i=1

∑n

j=i+1 wiwjI
(
π̂(x̃i) > π̂(x̃j), yi ≥ 1, yj = 0

)

∑n−1
i=1

∑n

j=i+1 wiwjI
(
π̂(x̃i) 6= π̂(x̃j), yi ≥ 1, yj = 0

) ,

where the weight wi corresponds to the exposure of claim i. Hence, policies with a smaller
duration receive a smaller weight. Furthermore, Ĉw,0,1+(x̃) represents the ability of the
model to discriminate policies that encountered at least one accident from policies that did
not encounter accidents. With λ ∈ R the tuning parameter and β the model coefficients
(without intercept), we can see λ‖β‖1 as a sparsity penalty. More specifically, it is the
lasso penalty introduced by Tibshirani [23] which shrinks the coefficients towards zero.

We randomly split 70% of the data set into a training set, 15% into a validation set and
the remaining 15% forms a test set. On this training set, we ran the BPSO algorithm for
50 equally spaced values of λ in the range [0, 0.2]. Hence, we obtained 50 possible models

to predict the number of claims. For each model, the concordance probability Ĉw,0,1+(x̃) is

calculated on the validation set. Figure 4 shows the maximal value of Ĉw,0,1+(x̃) in function
of the number of predictors selected in the model. It shows us that the full model obtains a
similar concordance probability compared to the one where only 6 predictors are selected:
FleetMgt, FleetSizeCateg, PayFreq, VehiclAge, Deduc and VehiclPower. This model
has a concordance probability of 66.88% on the test set, which is only 0.36% smaller than
the one of the full model. We thus obtain a model with less than half of the predictors and
with virtually identical out-of-sample performance.
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Figure 4: The maximal value for Ĉw,0,1+ in function of the number of predictors in the model to predict
the number of claims.

4.2. Model training on the concordance probability

Rather than using the concordance probability for feature selection, we can also consider
training directly on the concordance probability, i.e. using it as a loss function. This is not
trivial, since many regression estimators require the loss-function to be differentiable. This
is why differentiable approximations to the concordance probability have been proposed [24,
25, 26, 27], which can then be used in boosting algorithms such as XGBoost or LightGBM
and in neural networks [28, 29].

Alternatively, one can take the approach of trying to optimize a non-differentiable
loss/fitness function based on the concordance probability. In that case, one has to re-
sort to algorithms that can deal with this non-differentiability. Examples of those are the
particle swarm algorithm of the previous section, ant colony optimization, genetic algo-
rithms and Cuckoo search [30, 31, 32, 33]. This approach was also taken in Kalderstam
et al. [34]. Any of these approaches require evaluating the concordance probability a very
high number of times, and this represents most of the computational cost of the opti-
mization process. As a result, a fast computation of the concordance probability is highly
beneficial for this purpose.

We illustrate this on the data of the 2015 pricing game of the French institute of Actuar-
ies, which is publicly available under the name pg15training in the R-package CASdatasets
on CRAN. Our goal is to predict the number of claims made by the insured based on six
variables, three continuous and three categorical. The three continuous variables are the
driver’s age (Age), the population density in the city that the driver of the car lives in
(Density) and the car value (Value). The three categorical variables are the category of
the car (Category), the type of the car (Type) and the job of the car owner (Occupation).
These variables have three, six and five categories respectively, and were one-hot encoded
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before training the models on 70% of the data. The remaining 30% of the data form the
test set. Note that more than 70% of the policies had an exposure of 1 and for the other
variables, the histograms and bar plots are shown in Figure B.2 in Appendix B.

We will model the response Y by

E[Y |X = x] = ef(x)+c

where c is an offset given by the logarithm of the exposure, and f is a neural network with
a single hidden layer of size 2 and a ReLU activation function. Figure 5 shows the skeleton
of the neural network for a single random initialization of the weights.

Typically, this model would be fit using backpropagation on the deviance corresponding
with conditional Poisson models. We would like to directly optimize the prediction model
for the concordance probability Ĉw,0,1+. Therefore, we cannot use backpropagation, and
we use a genetic algorithm instead. In particular, we use the ga function of the R-package
ga [35]. The specific setup of this genetic algorithm is as follows. The population size
is set at 30. Instead of using purely random starts for the genetic algorithm, we use the
initial weights from training with a conditional Poisson distribution, with offset equal to the
logarithm of the exposure. This initial training step was done using the R-package h2o [36].
In addition to these initial weights, we add 29 uniformly random generated starting values.
The maximum number of iterations is fixed at 100. We used a local arithmetic crossover,
with uniform mutation as the mutation operator. Finally, the selection procedure we used
is proportional selection after linear scaling of the fitness values.

As both the initial weights for training the neural network and the genetic algorithm use
randomness, we repeat the procedure 100 times, starting from a new random initialization
of the neural network. The purpose of repeating the whole procedure 100 times, is to
eliminate the possibility that the performance of the genetic algorithm is due to a poor or
lucky random initialization of the neural net.

To illustrate the potential of our approach, we compare the performance of the classical
neural network optimized for the deviance corresponding with conditional Poisson models,
with the performance of the neural network optimized for the concordance probability
with the genetic algorithm. Figure 6 shows the performance of the procedures over 100
random initializations of the neural network. In the left panel, we see the performance
on training and test data for the classical neural network, as well as the neural network
trained with the genetic algorithm. We clearly see that both on training and on test data,
the genetic algorithm yields substantial improvements in the concordance probability of
the resulting model. The right panel of the same figure shows the relative performance
improvement. On test data, the genetic algorithm yields up to 10% improvement in the
concordance probability over the classical neural network, and never worsens the out-of-
sample concordance probability. The obtained outperformance is strongly significant with
p-values of close to zero for, e.g., a Wilcoxon rank-sum test. It is clear that directly
optimizing for the concordance probability can be very beneficial if this is the metric of
interest. A fast computation of the concordance probability is indeed vital, as the many
evaluations of the fitness function make the naive approach computationally prohibitive.
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5. Conclusion

In this article we addressed the efficient computation of the weighted thresholded con-
cordance probability. This measure represents the probability of having a concordant pair
of responses with their predictions. The measure optionally incorporates a threshold ν
which excludes similar observations. It also has the ability of including weights, so that
each pair of a response with its prediction receives a specific weight while calculating the
concordance probability. In the currently available algorithms, the concordance probabil-
ity is estimated in a quadratic run time. Since this is problematic for large data sets, we
propose a new algorithm based on the mergesort algorithm. This computes the weighted
thresholded concordance probability in linearithmic time, which is both proven and empir-
ically confirmed.

This faster algorithm unlocks various new applications. We have illustrated two such use
cases on the problem of insurance claims modeling. The first uses the weighted thresholded
concordance probability to perform variable selection. The second uses it in an objective
function of a neural network. The applicability of our methods extends beyond these illus-
trations, however. As the C-index measures the quality of the ranking of the predictions,
rather than the precise values of the predictions, the C-index can be of interest any time
the main goal is to rank items rather than predict their values. There are many situations
in which ranking is the main goal, and we discuss three prominent ones here. An important
one is in the context of recommender systems. Examples of those are Netflix suggesting
movies to its users or Kindle suggesting new books to buy. In this setting, the interest is
primarily in which movie or book the user would prefer out of all possible movies or books,
rather than how much the user would like the proposed movie or book. Another application
is in information retrieval, where a query of a user prompts the search for the documents
best matching the query. Again, the focus is not on the precise quality on the match, but
rather on the ranking of the different documents. A final example is that of portfolio asset
allocation. In a long-short equity portfolio, the portfolio manager is primarily interested
in the ranking of the performances of the equities under considerations rather than their
exact performance. In particular, the top ranks and bottom ranks determine the portfolio,
irrespective of their precise performance. For each of the previously mentioned examples,
there are scenarios where the number of observations (e.g. films to recommend, or files to
retrieve) is very large. In that case, it is useful and potentially required that the measure
of the quality of the ranking is easy to compute. Therefore, we believe that there are many
practical scenarios in which the fast thresholded and weighted concordance probability can
prove useful. It is worth noting that the weights and thresholds add additional flexibility
with practical relevance. For example, the weights can give a subset of observations (clients,
document types, equity classes, etc.) a higher importance in the ranking, prompting the
model to prioritize ranking these items accurately. Additionally, the threshold allows for
ignoring the quality of the rankings of items that are very close to one another. For exam-
ple, if two books will be received almost equally well or two assets will perform nearly the
same, it may not be as important to rank them correctly. Instead, the model could focus on
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correctly ranking those books which will be received very differently or those assets which
will perform very differently, since getting such a ranking wrong would have a much larger
impact on the system.

In addition to potential applications in ranking challenges, a faster algorithm also the
benefit that it allows for easier bootstrap-based inference on the weighted thresholded
concordance probability. This is also a computationally demanding task where speed of
calculation is of vital importance. The alternative which is typically faster, but requires
more strict assumptions, is to work with an asymptotic expression for the variance of the
C-index. A basic one, which can be derived from Kendall’s tau, is given by 2n+5

18n(n−1)
. An

alternative and more generally applicable expression, derived from the results in [37, 38], is

given by
∑n

i=1
(Nc,i−Nd,i)

2
−2n(n−1)

4n(n−1)(n−2)(n−3)
, where Nc,i and Nd,i denote the number of concordant and

discordant pairs associated with observation i. This last expression can also be computed
in O(n log(n) time.

All the algorithms discussed in this paper are written in R and C++ and are available in
the R-package fastConcProb on github.
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Appendix A. Algorithms

Algorithm 1 merge

Input: y, left, middle, right, invCount, concCount, tiesCount
Output: Sorted y from index left until index right, together with updated values for
invCount, concCount and tiesCount
Left← y[left,middle], Right← y[middle+ 1, right]
n← length Left, m← length Right
i← index in Left, initialized at 0
j ← index in Right, initialized at 0
k ← index in y, initialized at left
while i < n or j < m do

if Left[i] < Right[j] then
concCount← concCount+ (m− j)
y[k]← Left[i]
k ← k + 1
i← i+ 1

else if Left[i] > Right[j] then
invCount← invCount+ (n− i)
y[k]← Right[j]
k ← k + 1
j ← j + 1

else

l ← j
while l < m and Right[l] == Left[i] do
l ← l + 1

end while

tiesCount← tiesCount+ (l − j)
concCount← concCount+ (m− l)
y[k]← Left[i]
k ← k + 1
i← i+ 1

end if
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while i < n do

y[k]← Left[i]
k ← k + 1
i← i+ 1

end while

while j < m do

y[k]← Right[j]
k ← k + 1
j ← j + 1

end while

end while

Algorithm 2 merge with ν ≥ 0

Input: y, ν, left, middle, right, invCount, concCount, tiesCount
Output: Sorted y from index left until index right, together with updated values for
invCount, concCount and tiesCount

Left← y[left,middle], Right← y[middle+ 1, right]

n← length Left, m← length Right
i← index in Left, initialized at 0
j ← index in Right, initialized at 0
k ← index in y, initialized at left
i2 ← index in Left pointing to smallest element that is at least ν larger than Right[j],
initialized at 0
j2 ←index in Right pointing to smallest element that is at least ν larger than Left[i],
initialized at 0
tiesCountLeft← 0, tiesCountRight← 0

while i < n or j < m do

if i2 < n and Left[i2] ≤ Right[j] + ν then

if Left[i2]− ν == Right[j] then
tiesCountLeft← tiesCountLeft+ 1

end if

i2 ← i2 + 1
else if j2 < m and Right[j2] ≤ Left[i] + ν then

if Right[j2]− ν == Left[i] then
tiesCountRight← tiesCountRight+ 1

end if

j2 ← j2 + 1
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else if Left[i] < Right[j] then
concCount← concCount+ (m− j2)
tiesCount← tiesCount+ tiesCountRight
y[k]← Left[i]
k ← k + 1
i← i+ 1
if (i < n) and (Left[i]! = Left[i− 1]) then
tiesCountRight← 0

end if

else

invCount← invCount+ (n− i2)
if ν > 0 then

tiesCount← tiesCount+ tiesCountLeft
end if

y[k]← Right[j]
k ← k + 1
j ← j + 1
if (j < m) and (Right[j]! = Right[j − 1]) then
tiesCountLeft← 0

end if

end if

while i < n do

y[k]← Left[i]
k ← k + 1
i← i+ 1

end while

while j < m do

y[k]← Right[j]
k ← k + 1
j ← j + 1

end while

end while
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Algorithm 3 merge with ν ≥ 0 and weights

Input: y, ν, w, left, middle, right, invCount, concCount, tiesCount
Output: Sorted y and w from index left until index right, together with updated values
for invCount, concCount and tiesCount

Left← y[left,middle], Right← y[middle+ 1, right]
wLeft ← w[left,middle], wRight ← w[middle+ 1, right]

n← length Left, m← length Right
i← index in Left, initialized at 0
j ← index in Right, initialized at 0
k ← index in y, initialized at left
i2 ← index in Left pointing to smallest element that is at least ν larger than Right[j],
initialized at 0
j2 ←index in Right pointing to smallest element that is at least ν larger than Left[i],
initialized at 0
tiesCountLeft← 0, tiesCountRight← 0
sLeft ←

∑
wLeft, sRight ←

∑
wRight

while i < n or j < m do

if i2 < n and Left[i2] ≤ Right[j] + ν then

if Left[i2]− ν == Right[j] then
tiesCountLeft← tiesCountLeft+ wLeft[i2]

end if

sLeft = sLeft − wLeft[i2]
i2 ← i2 + 1

else if j2 < m and Right[j2] ≤ Left[i] + ν then

if Right[j2]− ν == Left[i] then
tiesCountRight← tiesCountRight+ wRight[j2]

end if

sRight = sRight − wRight[j2]
j2 ← j2 + 1

22



else if Left[i] < Right[j] then
concCount← concCount+ wLeft[i]sRight

tiesCount← tiesCount+ wLeft[i]tiesCountRight
y[k]← Left[i]
w[k]← wLeft[i]
k ← k + 1
i← i+ 1
if (i < n) and (Left[i]! = Left[i− 1]) then
tiesCountRight← 0

end if

else

invCount← invCount+ wRight[j]sLeft
if ν > 0 then

tiesCount← tiesCount+ wRight[j]tiesCountLeft
end if

y[k]← Right[j]
w[k]← wRight[j]
k ← k + 1
j ← j + 1
if (j < m) and (Right[j]! = Right[j − 1]) then
tiesCountLeft← 0

end if

end if

while i < n do

y[k]← Left[i]
w[k]← wLeft[i]

k ← k + 1
i← i+ 1

end while

while j < m do

y[k]← Right[j]
w[k]← wRight[j]

k ← k + 1
j ← j + 1

end while

end while
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Appendix B. Data description

Name Interpretation

Year The covering year. Categorical variable with 3 levels
(2011, 2012 and 2013).

VehiclPower The vehicle power. Categorical variable with 11 levels
(P1, P2, . . . , P11).

VehiclAge The vehicle age. Categorical variable with 2 levels
(0− 5 years, > 5 years).

Deduc The deductible category. Categorical variable with 6 levels (0 euro,
1− 200 euro, 201− 300 euro, 301− 400 euro, 401− 600 euro,
> 600 euro).

BusinessType The business type. Categorical variable with 8 levels (B1, B2, . . . , B8).
ChannelDist The distribution channel. Categorical variable with 3 levels

(D1, D2, D3).
PolicyAgeCateg The category of the policy age. Categorical variable with 6 levels

(0− 1 year, 1− 2 years, 2− 3 years, 3− 4 years, 4− 5 years,
> 5 years).

PolicyCateg The category of the policy. Categorical variable with 4 levels
(C2,C3,C4,C5).

CompanyCreation A dummy indicating if the company has been created.
FleetMgt The fleet management category. Categorical variable with 2 levels

(N, P).
FleetSizeCateg The fleet size category. Categorical variable with 2 levels (S1, S2).

Area The geographical area. Categorical variable with 6 levels
(A1, A2, . . . , A6).

PayFreq The payment frequency.
Categorical variable with 3 levels (quarter, semester, year).

Table B.1: The selected predictor variables from the data set pg16trainpol, that are used to predict the
number of claims.
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Figure B.1: Bar plots for each considered predictor variable from the data set pg16trainpol to predict
the number of claims.
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Figure B.2: Histograms and bar plots of the considered variables from the data set pg15taining to predict
the number of claims.
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Name Interpretation

Age The drivers’ age, expressed in years.
Density The population density (number of inhabitants per square km) in the city

that the driver of the car lives in.
Value The car value in euro.
Type The car type. Categorical variable with 6 levels (A, B, C, D, E, F).

Category The car category. Categorical variable with 3 levels (Small, Medium, Large).
Occupation The occupation of the driver. Categorical variable with 5 levels

(Employed, Housewife, Retired, Self-employed and Unemployed).

Table B.2: The selected predictor variable from the data set pg15training, that are used to predict the
number of claims.
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