
This item is the archived peer-reviewed author-version of:

Regularization oversampling for classification tasks : to exploit what you do not know

Reference:
Van der Schraelen Lennert, Stouthuysen Kristof, Vanden Broucke Seppe, Verdonck Tim.- Regularization oversampling for classification tasks : to exploit what

you do not know

Information sciences - ISSN 0020-0255 - 635(2023), p. 169-194 

Full text (Publisher's DOI): https://doi.org/10.1016/J.INS.2023.03.146 

To cite this reference: https://hdl.handle.net/10067/2013710151162165141

Institutional repository IRUA



Regularization Oversampling for Classification Tasks:

To Exploit What You Do Not Know

Van der Schraelen Lennerta,b, Stouthuysen Kristofa,b, Vanden Broucke Seppec,d, Verdonck Time,f,1

aArea Accounting and Finance, Vlerick Business School, Vlamingenstraat 83, 3000 Leuven, Belgium
bDepartment of Accounting, Finance and Insurance, Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

cDepartment of Business Informatics and Operations Management, Faculty of Economics and Business Administration, UGhent, Tweekerkenstraat 2, 9000 Ghent,

Belgium
dResearch Center for Information Systems Engineering (LIRIS), Faculty of Economics and Business, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium

eDepartment of Mathematics, Faculty of Science, UAntwerpen, Middelheimlaan 1, 2020 Antwerp, Belgium
fDepartment of Mathematics, Faculty of Science, KU Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium

Abstract

In numerous binary classification tasks, the two groups of instances are not equally represented, which often implies that the

training data lack sufficient information to model the minority class correctly. Furthermore, many traditional classification models

make arbitrarily overconfident predictions outside the range of the training data. These issues severely impact the deployment

and usefulness of these models in real life. In this paper, we propose the boundary regularizing out-of-distribution (BROOD)

sampler, which adds artificial data points on the edge of the training data. By exploiting these artificial samples, we are able to

regularize the decision surface of discriminative machine learning models and make more prudent predictions. Next, it is crucial

to correctly classify many positive instances in a limited pool of instances that can be investigated with the available resources. By

smartly assigning predetermined nonuniform class probabilities outside the training data, we can emphasize certain data regions

and improve classifier performance on various material classification metrics. The good performance of the proposed methodology

is illustrated in a case study that consists of both benchmark balanced and imbalanced classification data sets.

Keywords: Binary classification, Regularization, Sampling, Data imbalance

1. Introduction

The classification of instances into two groups is one of the

core concepts of data mining. Often, a major challenge arises

because the two classes are not equally represented. For in-

stance, the imbalance is often present in fraud [1], customer

churn [49], credit scoring [32] and bankruptcy [42] data sets.

Many traditional machine learning models try to minimize the

overall error, which causes the machine learning model to focus

on the majority (negative) class which usually results in a poor

capability to find minority (positive) class samples. Hence, ma-

chine learning models could achieve excellent accuracy with-

out detecting any positive cases by training on imbalanced data

sets. Unfortunately, the detection of minority samples is of-

ten of utmost importance. For example, in fraud applications,

severe financial and credibility losses are incurred if fraudu-

lent instances cannot be detected. The authors of [14] and [49]

sorted the methods that can handle these imbalanced data sets

into several categories. First, new algorithms can be designed,

or existing algorithms can be modified to handle the class im-

balance issue. For instance, algorithms can be modified to ac-

Email addresses: lennert.vanderschraelen@vlerick.com (Van der

Schraelen Lennert), kristof.stouthuysen@vlerick.com (Stouthuysen

Kristof), seppe.vandenbroucke@ugent.be (Vanden Broucke Seppe),

tim.verdonck@uantwerpen.be (Verdonck Tim)
1Corresponding author at: Middelheimlaan 1, 2020 Antwerp, Belgium

cept costs to emphasize instance importance or in an attempt to

mimic reality.

Furthermore, the class distribution of the provided training

data can be rebalanced as a preprocessing step by decreasing the

number of majority samples or increasing the number of minor-

ity samples. Moreover, ensemble solutions that exploit the pre-

viously mentioned algorithmic or data-level solutions can also

handle the imbalance issue.

In this paper, we develop an oversampling algorithm. How-

ever, we do not create artificial samples that belong to the mi-

nority class. Instead, our method samples artificial data points

on the boundary of the data set that can be exploited during the

training phase.

Machine learning models have demonstrated that they can

achieve satisfactory performance in predicting test samples sim-

ilar to the training data. However, discriminative machine learn-

ing models tend to be overconfident in data regions they have

never seen before [21], [20], and [25]. This behavior in the pres-

ence of dissimilar or unseen data implies that developing and

deploying machine learning models in real life is very challeng-

ing. For example, dissimilar or unseen data can be encountered

in imbalanced classification tasks where the training data lack

sufficient information to model the minority class correctly.

We propose the boundary regularizing out-of-distribution

(BROOD) sampler, which adds artificial data points on the data

distribution’s boundary to aid the machine learning model in

Preprint submitted to Information Sciences August 4, 2023



learning a suitable decision surface. By exploiting these artifi-

cial samples, we are able to regularize the decision surface of

discriminative machine learning models and make more reli-

able predictions. This yields more interpretable machine learn-

ing models that exploit the assignment of high or low probabil-

ities in out-of-distribution (OOD) regions.

Using the discounted cumulative gain (DCG) metric, we

show that our approach has a substantial positive effect on de-

tecting minority instances when only limited sources are avail-

able. Moreover, we show that our approach positively affects

other performance metrics, such as the average precision (AP).

In particular, we

• propose the BROOD sampler that samples artificial data

points that lie on the data distribution’s boundary;

• investigate whether artificial samples can be used to reg-

ularize the decision surface of various machine learning

models;

• elucidate the difference between existing oversampling

approaches and show how our methodology can comple-

ment minority oversampling methods;

• illustrate the excellent performance of the proposed sam-

pler in an extensive data study by using the XGBoost [8]

algorithm.

The data study consists of various balanced and imbalanced

classification data sets. Furthermore, we focus on the XGBoost

algorithm, which is considered one of the best algorithms to

learn from tabular data.

2. Literature Review

2.1. Minority Oversampling

If the data set is imbalanced, traditional machine learning

models will only learn the specific data regions where the mi-

nority samples are present, which may have a negative impact

on the predictive power. Moreover, due to this class imbalance,

traditional classification models tend to be focused on the ma-

jority class. An extensive summary of methods mitigating the

class imbalance problem can be found in [49].

One possible procedure is to assign additional weights to

minority class instances (or to replicate the instance multiple

times) to enhance their importance. However, this approach can

result in severe overfitting. A way to mitigate this issue is to ap-

ply an oversampling technique. For instance, the conventional

SMOTE [7] generates similar synthetic samples of the minority

class from a minority instance by sampling artificial data points

on a straight line between the minority instance’s minority class

nearest neighbors. This aids the classifier in building larger de-

cision regions enclosing nearby actual and artificial minority

class points and reduces the classifier’s focus toward the major-

ity class.

A well-known extension of SMOTE is ADASYN [18].

ADASYN generates synthetic samples from minority instances

proportional to the impurity of the instance’s neighborhood.

This approach aims to shift the decision boundary by letting the

classifier focus more on difficult-to-learn minority instances. A

weakness of ADASYN is that this method emphasizes the im-

portance of noisy minority instances and outliers.

Next, ROSE [26] is a popular oversampling technique that

generates data from a class-dependent kernel density estimate

[6] with a certain smoothing matrix. By considering the ex-

tensive kernel density estimation literature, suitable smoothing

matrices can be chosen. Furthermore, ROSE can be seen as a

smoothed bootstrap resampling technique and thus has applica-

tions in bootstrap aggregating (bagging) [4] procedures.

Although synthetic oversampling techniques reduce over-

fitting by creating similar artificial minority samples, many stan-

dard oversampling techniques introduce noise into the data set

and enhance class overlap.

Recently, new methods have been proposed to mitigate the

introduction of noise and class overlap. For instance, the au-

thors of [10] used K-means clustering to discover clusters with

a high ratio of minority instances. Artificial data points are sam-

pled using SMOTE in only these data areas because it avoids

noise generation and data overlap. Moreover, within-class im-

balance can be improved by assigning more synthetic samples

to clusters with a high average distance among the cluster’s mi-

nority samples. The authors have shown that their method out-

performs various minority oversamplers. Likewise, to reduce

data overlap while generating artificial samples, the authors of

[39] trained a support vector data description (SVDD) model

[40] to define overlapping instances that will be removed dur-

ing the generation of minority samples. Furthermore, the au-

thors address hard-to-learn and within-class imbalance issues

by constructing boundary and density factors. These factors

enable the creation of more artificial samples from minority in-

stances in low-density regions and regions close to the SVDD

class boundary. The authors have shown that their sampler,

which is a weighted SMOTE scheme, achieves superior per-

formance compared to various other oversamplers. These sam-

plers, mitigating the introduction of noise, contain an additional

layer of complexity as an initial machine learning model must

be trained, such as K-means or an SVDD model.

We give an overview of existing OOD samplers in the next

subsection. Although the purpose of OOD sampling and minor-

ity oversampling is different, properly generated OOD samples

should be able to aid the classifier in building suitable decision

boundaries and should not introduce noise and data overlap.

2.2. Out-Of-Distribution Sampling

Let us introduce some notation. We denote with xxxx the data

attributes and with y the actual response of an instance. The

symbol ∂ represents a boundary, and θθθθ represents the model’s

hyperparameters.

Most discriminative machine learning models are overcon-

fident in unseen data regions, as no data are available to guide

the model. Generative classifiers can be trained to solve this is-

sue, as these models also incorporate data distributions. Gener-

ative classifiers model the joint probability P(X,Y) from which

we can derive P(Y |X). However, these classifiers often make

2



stronger modeling assumptions and are overtaken by discrimi-

native models for large sample sizes [30].

Another approach to bypass this problem is by first detect-

ing the OOD data points and only using the trained model to

predict the in-distribution (ID) data points. To detect these

OOD samples, one can train anomaly detection models such

as isolation forests (IF) [22] or one-class classification models

such as SVDD on the training data set. However, this method

is unsatisfactory because predictions of the OOD data’s label

cannot be obtained.

In the fields of open set recognition [16] (training classi-

fiers that can classify seen classes and deal with unseen classes)

and OOD detection [47] (detecting test samples drawn from a

distribution that is different from the training distribution), var-

ious oversampling techniques are proposed to tackle issues that

arise due to unseen data. In [20], deep neural networks (NNs)

are trained more conservatively by exposing the neural classifi-

cation networks to OOD samples. Denote the ID and OOD data

distributions with fid and with food respectively. The authors of

[20] propose to minimize

L(X, yyyy, θθθθ) = E fid

[

Pθθθθ (y|xxxx)
]

+ λE food

[

KL(U(y)||Pθθθθ (y|xxxx))
]

(1)

with U(y) being the uniform distribution. This causes the

classifier to assign the base value (the class prior) to the OOD

samples. As it is infeasible to sample the whole OOD space,

the OOD samples are generated relatively close to the ID data

points. A generative adversarial network (GAN) [17] is con-

structed to generate OOD samples. The discriminator is trained

to distinguish between artificiality-generated samples and ID

data points. The generator is trained to fool the discriminator

(generate samples close to the ID data points) and to generate

low-density artificial samples. The classifier is trained by mini-

mizing Equation 1. The three models are trained in an alternat-

ing manner. A limitation is that the same class prior is imposed

to all the OOD samples. The authors have shown their method’s

effectiveness using deep convolutional NNs on image data sets

by comparing their method to a baseline detector without artifi-

cially generated samples. Furthermore, the authors have shown

that the OOD samples can also aid in handling unseen classes

by learning an OOD class. Similarly, the authors of [48] gener-

ated ID and OOD samples in an unsupervised manner using

a GAN. These samples are exploited to distinguish between

all seen and potential unseen classes employing support vec-

tor machines with a radial basis function kernel. The authors

have shown effectiveness on toy, image and document classifi-

cation data sets by comparing their method to various methods

for open-set recognition. Likewise, in [15], OOD samples are

generated using a GAN, incorporating the ability to deal with

unknown classes using extreme value theory. The authors used

NNs and have shown the model’s usefulness in image classi-

fication tasks by comparing their method to baseline detectors

without artificially generated samples.

In [43], a conditional variational auto encoder (CVAE) [19],

is used to distinguish between two types of OOD samples sur-

rounding the latent encoding and exploiting the OOD samples

for OOD detection. The authors compared their model to other

classifier-based OOD detectors on image classification data sets

using NNs. Although GANs and (V)AEs are good tools for

generating data, they are often challenging to train.

In [28], an approach is proposed to sample data points close

to the ID data set without the explicit need to use a GAN or

(V)AE. The authors state that the data sampled by this method

can be used to safeguard NNs and validate generalization per-

formance. A suitable artificial sample is created by iteratively

moving in a random direction from a randomly selected ID data

point. If the minimum distance between the new location and

the ID data is satisfactory, the iteration stops, and one OOD

sample has been generated. The authors also include a ’soft-

ness’ possibility to stop iterating even if the minimum distance

is not achieved. Especially for high-dimensional data, it is dif-

ficult to assign a suitable minimum distance and step size. The

authors used a VAE to construct a low-dimensional data em-

bedding in their experiments. Furthermore, the approach is rel-

atively slow and very local in nature, as the algorithm samples

one artificial instance at a time by creating random directions

from a random ID data point. Next, fewer artificial OOD sam-

ples will be sampled in sparse data regions as the OOD sam-

pling procedure starts from a random ID data point. The authors

have shown that their method is able to improve OOD detection

on image data and provide a case study on the synthetic gener-

ation of OOD trajectories for automated driving. Nevertheless,

to our knowledge, no previous research has been done that com-

pares existing OOD samplers and discusses their limitations.

We propose a computationally attractive OOD sampler that

mitigates the previously mentioned problems without needing

GANs or (V)AEs, enabling us to assign class-specific probabil-

ities outside the training data.

2.3. Research Questions

As no data are available to guide the model due to insuf-

ficient training data or concept drift, discriminative machine

learning models assign arbitrarily overconfident predictions to

these data. This is an important problem, as it causes people to

lose confidence in the model, as the predictions are not substan-

tiated.

Hence, a machine learning model should be able to assign a

predetermined probability to data regions it has never seen be-

fore. Consider the case where resources are only available to

investigate a limited number of data instances. If low proba-

bilities are assigned to unseen data regions, these regions will

not be important, and one will exploit the current knowledge of

training data. Conversely, if high probabilities are assigned to

unseen data regions, these regions are important, and one will

be encouraged to investigate these new data regions.

Figure 1 visualizes the decision boundary of XGBoost [8]

classifiers on a toy data set created by the author and the well-

known moons data set. On the left-hand side, we plot the deci-

sion boundary of the XGBoost classifier, which is trained using

the binary cross entropy loss. One can deduce that this classifier

is arbitrarily confident in certain data regions. For instance, the

model assigns an unfounded high probability in the lower right

corner for the toy data set.

3



Visual of a toy data set which is gener-

ated by the author. The decision surface

is trained with an XGBoost classifier using

the binary cross entropy loss.

Visual of a toy data set which is gener-

ated by the author. The decision surface is

trained with an XGBoost classifier using a

regularizing loss.

Visual of the moons data set. The decision

surface is trained with an XGBoost classi-

fier using the binary cross entropy loss.

Visual of the moons data set. The decision

surface is trained with with an XGBoost

classifier using a regularizing loss.

Figure 1: Visual comparison of various decision surfaces. On the left-hand

side we plot the decision surfaces that are trained with the XGBoost classifier

using the standard binary cross-entropy loss. On the right-hand side we plot the

decision surfaces that are trained with the XGBoost classifier using a regulariz-

ing loss.

We aim to construct decision surfaces such as those on the

right-hand side. The classifier should assign, in general, a high

probability to the ID minority sample regions and a low prob-

ability to the ID majority sample regions. Next, predetermined

probabilities should be assigned to the OOD data regions 'close'

to the ID minority data points and 'far' from the ID majority

data points. Furthermore, one should be able to assign pre-

determined probabilities to the OOD regions 'far' from the ID

minority samples and 'close' to the ID majority samples. For

the plots on the right-hand side of Figure 1, OOD data regions

closer to the ID minority samples have a higher probability rel-

ative to the data regions closer to the ID majority samples.

We aim to create artificial samples on the boundary of the

training data distribution and the minority/majority class that

will guide our model in unseen data regions. More rigorously,

for all responses y, we create samples on ∂P̂(X|Y = y)∩ ∂P̂(X),

defining the class-specific boundary between ID and OOD data.

Thus, we investigate the following research questions:

RQ1: Are artificial OOD samples able to suitably regular-

ize the machine learning model’s probability boundary?

RQ2: Are artificial OOD samples able to enhance the ma-

chine learning model’s performance? Does our approach com-

plement existing minority oversampling methods?

RQ3: What are the additional advantages of artificial OOD

samples for imbalanced classification tasks?

From the previous discussion, if new data points lie in a data

region where there is no or only a little information available,

we believe that the inclusion of artificial OOD samples posi-

tively impacts the predictive power of machine learning models.

Furthermore, suppose the training data captures all data regions

present in the test data. In that case, we expect that the inclu-

sion of artificial OOD samples will not have a negative impact

on the performance measures as these samples will not interfere

with the ID data points.

3. Methodology

In this section, we first develop a new oversampling tech-

nique that can efficiently generate artificial OOD samples. Next,

we elucidate how we can use these artificial samples to regular-

ize machine learning models in unseen data regions. Finally, we

discuss how the sampler’s hyperparameters affect the samples

generated.

3.1. Boundary Regularizing Out-Of-Distribution (BROOD) Sam-

pling

To answer the research questions, we need to construct a

suitable OOD sampler. We name our sampler the boundary reg-

ularising out-of-distribution (BROOD) sampler since we con-

struct a sampler that creates artificial data points at the bound-

ary of the training data to regularize the decision surfaces of ma-

chine learning models. As properly generated BROOD samples

are situated on the edge of the training data, they should not in-

troduce noise. We divide the BROOD sampler’s pseudo-code 1

into six steps. In the following paragraphs, we substantiate the

BROOD sampler’s different steps, discuss its helper functions,

and elaborate on its five input parameters.

In the first three steps, we calculate preliminary results that

we exploit in the last three steps. In the first step, we quan-

tify data dispersion, enabling us to construct artificial samples

at a suitable distance from the ID points in the last three steps.

Moreover, we determine the data points from which we will

sample in the first step. In the second step, we construct di-

rections that we address in the future to create artificial OOD

samples. In the third step, we determine the relevant neighbor-

hoods of the ID data points from which we will sample. We

will use these neighborhoods to efficiently determine potential

artificial samples that could interfere with the ID data points.

The first three steps are all executed once.

In the fourth step, we query a data point and find the at-

tributes of the instances that belong to the relevant neighbor-

hoods of this data point. In the fifth step, we create artificial

OOD samples using the previously constructed directions and

delete OOD samples that lie too close to the ID data points and

OOD samples of the same label. The artificial OOD samples re-

ceive the same label as the point from which they are sampled.

In the last step, we update the neighborhoods with the retained

OOD samples to enhance sparseness and reduce duplicates.

The BROOD sampler makes use of several helper functions.

In Algorithm 2, we present the pseudocode for constructing

4



scalers related to data dispersion. Next, Algorithm 3 contains

the pseudocode of the function for sampling points on a sphere

and creating directions. In Algorithm 4, we present the pseu-

docode to calculate Mahalanobis distances. Finally, we present

the pseudocode for appropriately scaling the directions in Al-

gorithm 5.

The first prominent input parameter of the BROOD sampler

is hstrat. It is infeasible to sample data that cover the whole po-

tential OOD data space. Hence, we aim to generate artificial

samples that are far enough (but not too far) from the original

ID samples. Thus, one must choose a suitable distance between

the original data and the artificial samples. We use the exten-

sive literature on kernel density estimation to achieve this [6].

Kernel density estimation is a nonparametric way to estimate

the probability density function of a particular random variable.

For this task, one chooses a suitable bandwidth that balances

both bias and variance of the density estimate. Let us introduce

some notation. We denote with hi and σi the bandwidth and the

standard deviation that correspond with dimension i, respec-

tively. Next, we denote with d the number of dimensions and

with H = diag(h2
1
, . . . , h2

d
) a matrix of squared bandwidths. By

optimizing the asymptotic mean integrated squared error, under

normality of the data and a Gaussian kernel function, the rule

of thumb selector [6] can be derived, given by

ĥi =

(

4

d + 2

)
1

d+4

n
−1

d+4σi. (2)

We use this bandwidth to obtain a grasp of the dispersion of

the data over different dimensions. Recall that we are not inter-

ested in estimating the actual densities accurately. One can also

use a label-dependent version of the rule of thumb selector such

as in ROSE [26], which did not cause a substantial performance

increase in our experiments.

Although the (class-dependent) rule of thumb selector is of-

ten satisfactory, this choice can suffer from non-constant den-

sity regions in the feature space, as ĥhhh is not instance depen-

dent. Hence, we provide a dispersion measure with an instance-

dependent ĥhhh according to the sparseness of data regions. Denote

with d j k the Euclidean distance from an instance xxxx j to its k-

nearest neighbor and with n j k the set of k-nearest neighbors of

instance xxxx j. In [5], d j k is used as the bandwidth for kernel den-

sity estimation. Since outliers have a substantially higher d j k,

we decided to use local density information of the k-nearest

neighbors. Hence, instead of using the k-nearest neighbor dis-

tance of the instance itself, we take the mean of the k-nearest

neighbor distance of the instance’s neighbors. Notice the strong

connection with (simple) local factor outlying [34]. In this case,

we define ĥhhh as

ĥhhh(xxxx j) =
∑

xxxx i∈n j k

di k. (3)

One disadvantage of this approach is that we need to define one

additional hyperparameter k. We do not claim that we propose

an optimal ĥhhh, and many other choices are possible.

Under the assumption that Ĥ is positive definite, we find

that

Ĥ−1 = diag
(

1/ĥ2
1, . . . , 1/ĥ

2
d

)

. (4)

The Mahalanobis distance between two points p1 and p2

with covariance matrix Ĥ equals

d(mahal,Ĥ)(p1, p2) =

√

(p1 − p2)Ĥ−1(p1 − p2). (5)

The next crucial input parameter of the BROOD sampler is

querystrat. We use this parameter in the first step, as this pa-

rameter determines the ID data points we will utilize to sample

artificial data points. The queried data points can be chosen

randomly, by their class, or by an OOD detector such as IF [22]

or SVDD [40].

The parameter ndir max is used in the second step and rep-

resents the maximal number of directions (and thus potential

new artificial data points) that we will sample at each queried

ID data point. We create directions by sampling points on the

surface of a d-dimensional hypersphere. To generate one direc-

tion, we sample a vector vvvv from a standard normal distribution

(vvvv ∼ N(0000, Id)) [36] and scale this vector accordingly such that

the norm of vvvv is equal to one. By executing this procedure mul-

tiple times, we can randomly sample points on the surface of a

d-dimensional hypersphere. Note that we use these directions

for every point we will sample from, as this has a significant

positive effect on computation time.

Next, we want the directions to be approximately evenly

spaced to cover all data regions as well as possible. To achieve

this, we use the input parameter ndir samp in the second step of

the BROOD sampler. We employ Mitchell’s Best-Candidate al-

gorithm [27] to ensure that the 'randomly' sampled points are

approximately evenly spaced. In every iteration, we sample

several potential directions and store the direction with the high-

est angle between all the previously stored directions. We con-

tinue iterating until the number of stored directions equals ndir max.

A higher value of ndir samp will in general improve the sampling

policy but will increase the computation time. For every ID

data point from which we sample, we accordingly scale the di-

rections that we created. 2

The parameter distid ood is used in the BROOD sampler’s

steps 3−6 and captures the distance between the artificial OOD

samples and the ID data. This value must have the same mean-

ing over multiple data sets. This prerequisite is met as we use

Equation (5), exploiting data-dependent scalers, to calculate the

distance between two data points.

Furthermore, one can impose that the distance between ar-

tificial OOD samples of the same class should be greater than a

constant distood. Using this, redundant artificial OOD samples,

such as duplicates, are avoided. However, a distood that is too

high can cause fewer adjacent artificial OOD samples.

Finally, when generating artificial OOD samples, we as-

sign the same label to the artificial OOD samples as the ID

data point from which they are sampled. In the appendix, we

2Define ṽvvv = diag(ĥ1, . . . , ĥd) · vvvv. One can deduce that ||vvvv||euclid= ||ṽvvv||(mahal,Ĥ).

5



provide an extension of the BROOD sampler that uses the ID

data point’s neighborhood to assign a label to the artificial OOD

samples. This extension did not result in a substantial perfor-

mance increase in our experiments. Although we assign class-

specific labels to the BROOD samples, notice that they do not

affect class ratios since BROOD samples are inherently differ-

ent from the actual ID data. Next, our current implementation

of the BROOD sampler cannot handle nominal (=categorical)

features. We mitigate this problem by encoding nominal fea-

tures in our data study. An extension of the BROOD sampler

that can handle fully categorical or mixed data sets without en-

coding is a path for future research.

3.2. Out-Of-Distribution Regularized Supervised Machine Learn-

ing Models

Let us introduce some additional notation. We denote with

v whether the data point is artificial (v = 1) or not (v = 0). We

aim to minimize, with g(xxxx, θθθθ) the machine learning’s prediction

function, the loss

L(X, yyyy, θθθθ) =
1

n

(
∑

xxxx:y=1,v=0

l00(g(xxxx, θθθθ)) +
∑

xxxx:y=0,v=0

l10(g(xxxx, θθθθ))

+ βt

(
∑

xxxx:y=0,v=1

l01(g(xxxx, θθθθ)) +
∑

xxxx:y=1,v=1

l11(g(xxxx, θθθθ))
))

. (6)

Although the hyperparameter βt can be optimized during

cross-validation, we always choose βt = 1 in our experiments.

Furthermore, we make use of the logistic loss that is given by

l00(g(xxxx, θθθθ)) = log (1 + exp (g(xxxx, θθθθ)))

l10(g(xxxx, θθθθ)) = log (1 + exp (−g(xxxx, θθθθ))). (7)

Note that in the case of a binary response Y ∈ (0, 1) one

finds that

KL(P(Y)||P(Y |X)) = P(Y = 1) log

(

P(Y = 1)

P(Y = 1|X)

)

+ (1 − P(Y = 1)) log

(

1 − P(Y = 1)

1 − P(Y = 1|X)

)

.

(8)

Next, we denote

Pθθθθ (Y = 1|X = xxxx)) =
1

1 + exp (−g(xxxx, θθθθ))
. (9)

Moreover, let us denote with α the prior of the minority

class and with cood0
and cood1

constants to scale the prior. These

class-dependent different scales enable us to customize the de-

cision surface in data sparse regions. By using Equation (8), we

determine the loss functions l01(g(xxxx, θθθθ)) and l11(g(xxxx, θθθθ)), which

are given by

l01(g(xxxx, θθθθ)) = cood0
α log

(

cood0
α

Pθθθθ (Y = 1|X = xxxx)

)

+ (1 − cood0
α) log

(

(1 − cood0
α))

(1 − Pθθθθ (Y = 1|X = xxxx))

)

l11(g(xxxx, θθθθ)) = cood1
α log

(

cood1
α

Pθθθθ (Y = 1|X = xxxx)

)

+ (1 − cood1
α) log

(

(1 − cood1
α))

(1 − Pθθθθ (Y = 1|X = xxxx))

)

. (10)

By using these loss functions, objective function 6 is always

convex if g(xxxx, θθθθ) is linear. We impose that cood1
α and cood0

α are

bounded by 0 and 1. Furthermore, note that at these bounds, the

loss functions (10) are the same as the logistic loss functions

(7). In Figure 2, we again visualize our toy data sets with the

decision surfaces trained with XGBoost. We also include the

artificially generated OOD samples that we used to train the de-

cision surfaces. One can indeed deduce that the OOD samples

can regularize the decision surface and that the class-dependent

constants can emphasize certain data regions.

Visual of the toy data set with BROOD

samples.

Visual of the moons data set with BROOD

samples.

Figure 2: Visual of decision surfaces and generated BROOD samples. The

XGBoost classifier is trained using a regularizing loss. For the toy data set, we

use cood1
= 2 and cood0

= 1. For the moons data set, we set cood1
= 1 and

cood0
= 0.2.

3.3. The Effect Of The BROOD Sampler’s Hyperparameters

Before we investigate our methodology in a real-life setting,

we discuss the effect of the BROOD sampler’s hyperparameters

on both the generation of BROOD samples and the training of

decision surfaces.

First, let us discuss ndir samp and querystrat. As previously

mentioned, a high value of ndir samp will cause the directions to

be more uniformly distributed. Concerning querystrat, we reg-

ularize the OOD spaces close to the instances from which we

sample. For example, sampling from minority instances results

in regularized OOD spaces close to the minority instances. We

denote querystrat = ALL if we sample from all instances and

we denote querystrat = MIN if we sample from the minority

instances.

The parameter hstrat determines how we grasp the disper-

sion of the data. In subsection 3.1, we proposed multiple ways

to achieve this goal. For now, we denote hstrat = ROT if we

use Equation 2 to grasp data dispersion. The rule of thumb

6



Algorithm 1: Boundary Regularizing Out-Of-distribution (BROOD) Sampler.

Input: X: Covariates, y: Responses, hstrat: Captures how to define Ĥ, querystrat: Captures the query strategy, ndir max:

Maximal number of directions, ndir samp: Captures the number of potential directions, distid ood: The distance between

artificial samples and the data point from which they are sampled

Output: Xbrood: BROOD samples’ attributes, ybrood: BROOD samples’ labels

ĤX = scaler(X, hstrat) # ĤX represents the scalers for all instances

Denote with d the dimension of X

Determine the ID data points Xquery (and corresponding yyyyquery) we will use to

create artificial samples. This strategy is captured in the parameter querystrat

V := dir samp(ndir samp, ndir max, d)

Determine distood
†

Did = mahal(X, Xquery, ĤX)

Did query = mahal(Xquery, Xquery, ĤXquery
)

NGBHid := where(Did < 2 · distid ood, 1, 0) # element wise, 1 if true, else 0

NGBH2id := where(Did query < 2 · distid ood + distood, 1, 0)

Keep all data from X that has at least one 1 in NGBHid (in the ID ngbh of Xquery).

We denote with Xdata the retained data with label yyyydata

NGBHid ood = NGBHid

for xxxxid in Xquery do
Get label yid of xxxxid

Use NGBHid ood to get XNGBH id, that is the ID data ngbh of xxxxid (distance less than

2 · distid ood and ID data) and corresponding labels yyyyNGBH id

Use NGBHid ood to get XNGBH ood, that is the OOD data ngbh of xxxxid (distance less than

distid ood + distood and artificial OOD data) and the corresponding labels yyyyNGBH ood

Use NGBH2id to get XNGBH2 id, that is the ID data 2 step ngbh of xxxxid (distance less than

2 · distid ood + distood and of the same class) and the corresponding labels yyyyNGBH2 id

Determine matrix of scaled directions S xid
for instance xxxxid using dir scale(V, Ĥxid

)

Xsamp = xxxxid + S xid

Did samp := mahal(XNGBH id, Xsamp, ĤXNGBH id
)

Use Did samp to determine the minimum distance between each of

the samples in Xsamp and XNGBH id

Delete the samples in Xsamp with minimum distance from XNGBH id less than distid ood

Dood samp := mahal(XNGBH ood, Xsamp,min(ĤXNGBH ood
, Ĥxid

))

Use Dood samp to determine the minimum distance between each of

the samples in Xsamp and XNGBH ood

Delete the samples in Xsamp with minimum distance from XNGBH ood less than distood

Create yyyysamp by assigning the label yid to Xsamp

Xdata = Xdata ∪ Xsamp

yyyydata = yyyydata ∪ yyyysamp

Did2 samp := mahal(XNGBH2 id, Xsamp, ĤXNGBH2 id
)

Append a column of zeros in NGBHid ood for every data point in Xsamp

Use Did2 samp to determine the data points in XNGBH2 id which are closer than

distid ood + distood to at least on instance of Xsamp and of the same class.

Store this information in NGBHid ood

end

Get Xbrood by extracting all artificially sampled data points from Xdata

yyyybrood equals the artificially sampled data points’ labels

Step 1: Capture data dispersion for every

instance in X, using hstrat. Determine the

ID data points that we will use to create

artificial OOD data using querystrat.

Step 2: Use ndir max and ndir samp to create and

store approximately evenly spaced directions.

Step 3: To enhance sparseness, define

the minimum distance between artificial

OOD samples (distood). Use distid ood

and distood to determine the relevant

neighborhoods of the ID data points

from which we will sample. All the

ID data points that are not in at least

a single neighborhood can be deleted.

Step 4: Query an ID

data point from which

we will create artificial

OOD samples and get the

attributes of the data points

that are contained in the

relevant neighborhoods of

the queried ID data point.

Step 5: Investigate the

possible directions and

keep allowed artificial

OOD samples. We delete

artificial OOD samples that

lie too close to ID data

points and that lie too cloe

to OOD samples of the

same label. The artificial

OOD samples get the same

label as the point from

which they are sampled.

Step 6: If new artificial OOD sam-

ples with the same label will be

constructed in the future, ensure that

the distances toward these new artifi-

cial OOD samples will be sufficient.

† The value of distood should be between 0 and the minimum distance between artificial OOD samples generated from the same ID data point. In our experiments,

we take distood equal to one tenth of the minimum distance between artificial OOD samples generated from the same ID data point.

7



Algorithm 2: Scaler (scaler(·))
Input: X: Covariates with shape (n, d), hstrat: Captures the query strategy

Output: (H0, . . . ,Hn): vector of scalers

if hstrat = ROT then
σσσσ := std(X)

ĥhhh :=

(

4

d + 2

)
1

d+4

n
−1

d+4 σσσσ

Calculate Hi := diag

(

1/ĥhhh
2
)

for every instance in X # instance independent

end

if hstrat = KNN then
Calculate nnnnk and ddddk, which respectively equals the k-nearest neighbors and the distance from its k-nearest neighbor

from each instance in X

Calculate Hi := diag
(

1/(
∑

xxxx i∈n j k
di k)2, . . . , 1/(

∑

xxxx i∈n j k
di k)2

)

for every instance in X # instance dependent

end

Algorithm 3: Direction Sample (dir samp(·))
Input: ndir samp: Captures the number of initial directions, ndir max: Maximal number of directions, d: Data dimension

Output: V f i : Matrix of directions

Initialize the matrix of final directions V f i by sampling one sample from a standard normal distribution with d dimensions

while The number of directions in V f i is strictly smaller than ndir max do
Denote with ni samp the number of directions already sampled. Obtain a matrix of directions V by sampling

ndir samp · ni samp samples from a standard normal distribution with d dimensions

Construct a matrix of angles Θ between the directions in V f i and V

Use Θ to find the direction in V with the maximal minimal angle between the directions in V f i. Include this direction in

V f i

end

Algorithm 4: Mahalanobis Distance (mahal(·))
Input: Xa (shape (na, d)), Xb (shape (nb, d)), (S 0, . . . , S n a) (components have shape (d, d))

Output: D: Distance matrix (shape (na, nb))

Z := Xa[:,None, :] − Xb (shape (na, nb, d)) # we denote with None a dimensionality increase

for Each row i in D do
A[i, :] = Z[i, :, :] · S i

D[i, :] =
√

A[i, :] · Z[i, :, :]T

end

Algorithm 5: Direction Scale (dir scale(·))
Input: V: Matrix of Directions S : Scaler

Output: Vsc: Matrix of scaled directions

Vs :=
√

S −1V

D :=
√

VsS VT
s

Vsc := Vs/D

8



selector differs in every dimension and is the same for every in-

stance. Hence, we actually create directions on a multidimen-

sional instance-independent ellipse. Next, we denote hstrat =

KNN if we use Equation 3 to grasp data dispersion. In this case,

ĥhhh is constant but instance-dependent. Hence, we create direc-

tions on a multidimensional sphere with an instance-dependent

radius. The top images of Figure 3 visualize the effect of this

hyperparameter.

The parameter distid ood determines the distance from the

ID data points to the BROOD samples. A too low distid ood

will cause the BROOD samples to interfere with the ID data

(i.e., introduce noise) and will negatively influence computa-

tion time due to the construction of an excessive number of

BROOD samples. However, a distid ood that is too high will at-

tenuate the regularizing effect of the BROOD samples. As the

distance of the BROOD samples from the ID data increases, the

distance between the BROOD samples will also increase, and

more BROOD samples will be needed to fully regularize the

decision surface. Furthermore, if the BROOD samples are too

far away from the ID data points, the decision surface will be

more chaotic between the ID data and BROOD samples. The

images in the middle of Figure 3 visualize the effect of distid ood

on the generation of BROOD samples and the decision surface

trained by XGBoost in these extreme cases.

Next, the parameter ndir max determines the maximum num-

ber of artificial samples created from one ID sample. Thus, on

the one hand, a ndir max that is too low will not provide sufficient

BROOD samples to fully regularize the decision surface. On

the other hand, a too high ndir max will have a negative influence

on computation time due to an excessive number of training

points. Additionally, without a proper weighting strategy, an

excessively high ndir max diminishes the importance of the exist-

ing ID data points. Visualizations can be found on the bottom

side of Figure 3.

Note that the number of dimensions can affect the optimal

value of the ndir max parameter. Similar to other existing over-

sampling techniques, our method suffers from the curse of di-

mensionality, as it is more challenging to cover multidimen-

sional data regions with only a few data points. Hence, for

high-dimensional problems, an optimal OOD sampling strat-

egy will generally require more OOD samples and thus require

more computational effort.

Visual of BROOD samples with hstrat =

ROT, distid ood = 2, and ndir max = 50 .

Visual of BROOD samples with hstrat =

KNN, distid ood = 0.75, and ndir max = 50.

Visual of BROOD samples with a low

distid ood value. We take hstrat = ROT,

distid ood = 0.5, ndir max = 50 .

Visual of BROOD samples with a high

distid ood value. We take hstrat = ROT,

distid ood = 10, and ndir max = 50.

Visual of BROOD samples with a low

ndir max value. We take hstrat = ROT,

distid ood = 4, and ndir max = 5 .

Visual of BROOD samples with a high

ndir max value. We take hstrat = ROT,

distid ood = 4, ndir max = 500 .

Figure 3: Visual comparison of the effect of the BROOD sampler’s hy-

perparameters. We visualise the effect of hstrat, ndir max, and distid ood on the

generation of BROOD samples and the decision surface trained on a toy data

set. We always take querystrat = ALL and ndir samp = 50. We impose that

cood1
= 2 and cood0

= 1 and keep all XGBoost’s hyperparameters constant.

Hence, these hyperparameters should be optimized using

the validation set to achieve optimal performance, which can

be time-consuming. Thus, there is a serious need to propose

some initial rules or best practices.

Using hstrat = ROT, the bandwidth actually represents the

standard deviation parameter of the Gaussian kernel. It is a

well-known heuristic that, for a Gaussian distribution, almost

all data points have a distance less than three times the standard

deviation from the mean. Hence, in this case, we reason that

distid ood should be greater than three in most cases. Further-

more, as discussed previously, distid ood should not be too large,

as this has several negative implications. In our analysis, we

noticed that distid ood should be smaller than seven. As the rule

of thumb estimator accounts for the number of dimensions, we

believe the effect of the number of dimensions on this parame-

ter is minimal. We found that good results can be achieved by

9



taking distid ood = 4 if hstrat = ROT.

Next, we derive a similar rule if one takes hstrat = KNN. De-

note by S r
d

the surface area of a d-dimensional hypersphere with

radius r. The k-nearest neighbor density estimator proposed in

[23] equals

P̂(xxxx j) =
k

nS 1
d
(d jk )

d
(11)

for xxxx j. Hence, only the k instances with a distance smaller

than or equal to d j k contribute to this nearest neighbor estimate.

Hence, following this reasoning, distid ood should be greater than

one. Furthermore, from our experiments, we recommend that

distid ood should be smaller than 2. We obtain good results on

many data sets by taking distid ood = 1.5. The authors of [23]

reason that the optimal k = O
(

n4/(d+4)
)

. By taking k = 2n4/(d+4),

we are able to achieve satisfactory performance.

In our experiments, we always take ndir max = 30 and ndir samp =

50.

4. Experiments

In the next section, we perform an extensive data study

to evaluate the performance of our proposed machine learning

models. First, we discuss the balanced and imbalanced clas-

sification data sets we will use in our experiments. Next, we

elaborate on our experimental methodology and introduce vari-

ous performance metrics. Finally, we discuss whether BROOD

samples are able to enhance the machine learning model’s per-

formance and deduce whether our approach complements ex-

isting oversampling techniques.

4.1. Experimental Design

4.1.1. Data Sets

First, we compare BROOD-enhanced models with their stan-

dard counterparts on 15 real-world benchmark data sets for bi-

nary classification. We test our models on the UCI [dataset][11]

E.coli, mammographic masses, sonar, ionosphere, breast can-

cer Wisconsin, heart, Indian liver patient, liver disorders, breast

cancer, vehicle, contraceptive method, German credit card, credit

approval, bank marketing, and madelon data set. All these data

sets, and corresponding code, can be found on GitHub3. The

term ‘benchmark data sets’ encapsulates all the previous data

sets for conciseness. A summary of the benchmark data sets

can be found in Table 1. The data sets can consist of numerical

(N) and categorical (C) features.

Next, we test our BROOD-enhanced machine learning mod-

els on multiple imbalanced data sets. We test our models on

data from the ESA Polish bankruptcy data set [dataset][11], fi-

nancial distress data set [dataset][12], UCI German credit card,

UCI credit approval and UCI bank marketing data set [dataset][11],

IBM Telco customer churn data set [dataset][3], ETL credit

card approval data set [dataset][24], VUB credit scoring data set

[dataset][44], KDD Cup 1998 data set [dataset][31], (private)

3https://github.com/CFLDT/Regularization-Oversampling-

for-Classification-Tasks-To-Exploit-What-You-Do-Not-Know

car insurance fraud data set, (private) APATE credit card fraud

data set, JAR financial statement fraud data set [dataset][46],

IEEE-CIS customer transaction fraud data set [dataset][38], syn-

thetic mobile transaction fraud data set [dataset][33], and syn-

thetic credit card fraud data set [dataset][13]. The ESA Polish

bankruptcy data set contains financial rates of Polish compa-

nies from a forecasting period of a year and bankruptcy status

after five years. The data set consists of operating companies

between 2000 and 2012 and bankrupt companies between 2007

and 2013 [50]. The financial distress data set involves informa-

tion concerning financial distress for a sample of companies.

The UCI German credit card data set classifies people as good

or bad credit risks, and the UCI credit approval data contain

credit card applications [11]. The UCI bank marketing data set

contains information from a direct marketing campaign from

May 2008 to November 2010 of a Portuguese banking insti-

tution [29]. The IBM Telco customer churn data set contains

data from a fictional telco company’s customers and their churn

behavior. The ETL credit card approval data set involves in-

formation concerning credit card applicants. The VUB credit

scoring data set consists of accepted loans given to individual

customers from January 2016 to December 2016 by a Roma-

nian nonbanking financial institution [32]. The KDD data set

contains information on a direct mailing campaign and dona-

tions and has been used for the second international knowledge

discovery and data mining tools competition. Next, we received

a private car insurance fraud data set from an international in-

surer. The data set consists of a sample of fraudulent and non-

fraudulent Belgian automobile claims from 2012 until 2021.

The APATE credit card fraud data set consists of fraudulent and

nonfraudulent transactions from a large Belgian credit card is-

suer [41]. We use an already preprocessed version of this data

set in our study. The JAR financial statement fraud data set is

a manually gathered data set [2] that contains accounting fraud

samples from the SEC’s Accounting and Auditing Enforcement

Releases (AAERs), enhanced with financial accounting data.

The data set consists of fraud and legitimate instances between

1990 and 2014. The IEEE-CIS customer transaction fraud data

set consists of real-world e-commerce transactions. The syn-

thetic mobile transaction fraud data set is a synthetic data set

based on a sample of real transactions from a mobile money

service in an African country over multiple periods. Finally,

the synthetic credit card fraud data set is a synthetic data set

that contains transactions of synthetic consumers who reside in

the United States.

We execute some additional preprocessing steps for some

imbalanced data sets. We randomly undersample certain im-

balanced data sets to ensure empirical tractability. Furthermore,

if the data set is not severely imbalanced, we randomly under-

sample its minority class. We use the provided summary vari-

ables for the KDD data set to include the promotion and dona-

tion histories. The JAR financial statement fraud data set spans

several periods [2]. The fact that the training and testing sets

could contain the same firm (and that the data contain firm-

specific characteristics) can seriously enhance the performance

of machine learning methods. To ensure that no serial correla-

tion is present in the financial statement fraud data set, we keep

10



Class 1 Class 0 # Samples Ratio # Dimensions

UCI E.coli (N) pp all other 366 0.155 7

UCI Mammographic Masses (C) 1 0 961 0.463 4

UCI Sonar (N) M R 208 0.536 60

UCI Ionosphere (N) b g 351 0.359 34

UCI Breast Cancer Wisconsin (N) M B 569 0.373 30

UCI Heart (N & C) 2 1 270 0.444 13

UCI Indian Liver Patient (N & C) 2 1 583 0.286 10

UCI Liver Disorders (N)
consumption

> 0.5

consumption

≤ 0.5
345 0.339 5

UCI Breast Cancer (C)
recurrence

-events

no-recurrence

-events
286 0.297 9

UCI Vehicle (N) VAN all others 964 0.235 18

UCI Contraceptive method (C) long term all others 1,473 0.226 9

UCI German Credit Card (N & C) 2 1 1,000 0.300 20

UCI Credit Approval (N & C) + − 690 0.445 15

UCI Bank Marketing (N & C) yes no 4,119 0.109 20

UCI Madelon (N) 1 0 2,600 0.500 501

Table 1: Summary of the benchmark data sets. The data sets can consist of numerical (N) and categorical (C) features.

only the first fraud case of a particular firm in the data set. For

the synthetic mobile transaction fraud data set, we extract the

first eight periods of the simulation. Next, we create aggregated

features that, for instance, capture the number of transactions

the recipient already received during this period. For the syn-

thetic credit card fraud data set, we extract the first three cus-

tomers of the simulation. For this data set, we also create aggre-

gate features that, for instance, capture the number of transac-

tions the customer has done in the last 24 hours. A summary of

the imbalanced data sets after these general preprocessing steps

can be found in Table 2. Despite the private car insurance fraud

data set and private APATE credit card fraud data set, all pre-

processed imbalanced data sets used in this paper can be found

on GitHub.

4.1.2. Methodology

We use random stratified sampling to obtain an initial train-

ing set consisting of 75% of all instances and a test set consist-

ing of 25% of all instances. Furthermore, we split the initial

training set (in a stratified way) into the final training set (50%

of all instances) and a validation set (25% of all instances). We

train the model on the final training set, use the validation set to

optimize the models’ hyperparameters, and assess performance

on the test set. We execute this procedure four times in a row

for every data set, each time with a completely different test set.

We train logistic regression benchmark models and XG-

Boost [8] models with and without artificially generated BROOD

samples. Logistic regression is the typical benchmark model

and is widely used in various experimental studies. The XG-

Boost algorithm is a boosted tree algorithm that involves com-

bining many trees and uses gradient information to choose the

direction it needs to improve the fit to the data. The XGBoost

algorithm is known to be computationally efficient and can con-

trol for overfitting. More details about our pipeline and the set

of hyperparameters can be found in the appendix.

We use three evaluation metrics to assess the performance

of our algorithms. First, we compare the area under the receiv-

ing operating curve (ROC-AUC) of the different models to com-

pare the aggregate performance (over different thresholds) and

minimize misclassification errors [37]. In short, the ROC-AUC

measures how well a model can distinguish the two classes. We

denote with TPR(φ) = Ey1
[gφ(xxxx, θ)] the true positive rate for

threshold φ and with FPR(φ) = Ey0
[gφ(x, θθθθ)] the false positive

rate for threshold φ. The ROC-AUC is equal to

ROC-AUC =

∫ 1

0

TPR(φ)dFPR(φ). (12)

Next, we compare the average precision (AP). The AP equals

the sum of precisions, with the increase in TPR (also known

as recall) over different thresholds as weights. This measure is

suitable for imbalanced learning because it does not incorporate

the algorithm’s ability to detect majority instances. The preci-

sion equals PR(φ) = Ey1
[gφ(xxxx, θθθθ)]/Ey[gφ(xxxx, θθθθ)] for threshold φ.

Over thresholds φ1, . . . , φn, the AP equals

11



Class 1 Class 0 # Samples Ratio # Dimensions

ESA Polish Bankruptcy (N) 1 0 7,027 0.0386 64

Financial Distress (N)
financial distress

< −0.5

financial distress

≥ −0.5
3,672 0.0370 84

UCI German Credit Card IMB (N & C) 2 1 760 0.0789 20

UCI Credit Approval IMB (N & C) + - 414 0.0749 15

UCI Bank Marketing IMB (N & C) yes no 3,758 0.0239 20

IBM Telco Customer Churn (N & C) Yes No 5,548 0.0674 19

ETL Credit Card Approval (N & C) 1 0 12,654 0.0043 17

VUB Credit Scoring (N & C) 1 0 16,352 0.0392 18

KDD Cup 1998 (N & C) 1 0 14,312 0.0519 394

(Private) Car Insurance Fraud (N & C) 1 0 16,308 0.0210 23

(Private) APATA Credit Card Fraud (N & C) True False 7,279 0.0076 7

JAR Financial Statement Fraud (N & C) 1 0 14,910 0.0270 42

IEEE-CIS Customer Transaction Fraud (N & C) 1 0 11,811 0.0328 391

Synthetic Mobile Transaction Fraud (N & C) 1 0 3,591 0.0251 13

Synthetic Credit Card Fraud (N & C) Yes No 5,784 0.0214 15

Table 2: Summary of the severely imbalanced data sets. The data sets can consist of numerical (N) and categorical (C) features. To ensure severe imbalance and

analytical tractability, certain data sets are undersampled versions of the original data sets.

AP =
∑

i∈(2,...,n)

(

TPR(φi) − TPR(φi−1)
)

PR(φi). (13)

Finally, we use the discounted cumulative gain (DCG) that

was also used in [2] to assess financial statement fraud. This

metric is material for fraud detection algorithms, as there are

often insufficient resources to investigate all suspicious cases.

Similarly, in churn and marketing data sets, there is only a lim-

ited budget to target certain customers. Hence, detecting fraud,

and targeting valuable customers can be seen as a ranking prob-

lem. The formula of discounted cumulative gain that we use in

our analysis is given by

DCG(b) =

b
∑

i=1

2reli − 1

log2 (i + 1)
. (14)

The relevance (rel) equals one if the instance is part of the

positive class and zero otherwise. We can limit the performance

evaluation to only a small number (i.e., b as defined above) of

data points with the highest predicted probability. We take the

parameter b equal to the number of instances in the positive

class in the test set.

To compare all classifiers to each other, we use the non-

parametric Nemenyi test and construct critical difference plots

[9]. The Nemenyi test for pairwise comparisons of k classifiers

on n data sets with critical value qα (confidence level α) states

that if their rank differs by at least the critical difference (CD)

CD = qα

√

k(k + 1)

6n
, (15)

the classifiers are significantly different. In the figures that

we construct, the classifiers connected by the bold horizontal

line represent the not significantly different classifiers with a

confidence level of 0.90.

Let us discuss the BROOD sampler’s hyperparameters used

in our experiments and introduce some new notations to en-

hance conciseness. First, we always take ndir max = 30 and

ndir samp = 50. We denote with 'ALL' if querystrat = ALL and

we denote with 'MIN' if querystrat = MIN. We use the notation

'ROT' if we generate BROOD samples by taking hstrat = ROT

and distid ood = 4. Furthermore, we use the notation 'KNN'

if we generate BROOD samples by taking hstrat = KNN and

distid ood = 1.5. For example, BROOD(ALL ROT) uses all in-

stances to generate OOD samples with ndir max = 30, ndir samp =

50, hstrat = ROT, and distid ood = 4. We never optimize the

BROOD sampler’s hyperparameters to substantiate its real-life

practicability. We do not claim that any of our proposed hyper-

parameter combinations are optimal.

Next, we impose that βt (see Equation 6) equals one4. Fi-

nally, we find that logistic regression models are not able to

4Nevertheless, one should tune βt to obtain the best performance. If includ-

ing artificial samples (SMOTE, ADASYN, ROSE, BROOD, . . . ) reduces the

model’s performance on the validation set, using them for training the model

would not be optimal. Second, if the number of BROOD samples is low or high

12



handle the nonlinearities that can arise from the BROOD sam-

ples in particular data sets. Hence, we decided not to discuss

BROOD-enhanced logistic regression models.

4.2. Experimental Results

4.2.1. Benchmark Data Sets

We impose a maximum of 10,000 BROOD samples on the

benchmark data sets. If this bound is reached, we only create

BROOD samples from the most outlying data points. We cre-

ate critical difference diagrams to assess the difference in the

predictive power of the machine learning models with a signif-

icance level of 0.10. We always include logistic regression as a

benchmark model.

Figure 4 visualizes the Nemenyi test on the ROC-AUC, AP

and DCG of the different classifiers on the benchmark data sets.

First, we find that the XGBoost model achieves a higher av-

erage rank than the logistic regression model on all the per-

formance metrics. This can be explained by the fact that XG-

Boost can construct nonlinear decision boundaries. Next, due

to the simplicity of the benchmark data sets, there are likely

none (or a limited number) of OOD data points in the test sets.

Hence, it is essential to show that using BROOD samples does

not result in overfitting or a performance decrease (or both) on

the test set. For the ROC-AUC, on which we cross-validate,

we can deduce that the normal and BROOD-enhanced XG-

Boost models achieve similar performance. Although we did

optimize the model’s hyperparameters on the ROC-AUC, the

other performance metrics shed some light on the power of

BROOD samples. We find that the BROOD-enhanced XG-

Boost models in general perform at least as well as the reg-

ular XGBoost model on the AP and DCG metrics. Further-

more, the BROOD(ALL KNN)-enhanced XGBoost classifier

performs better than the BROOD(ALL ROT)-enhanced XG-

Boost classifier on all performance metrics on the benchmark

data sets. Table 3 contains the average number of artificial

BROOD samples created during training. On average, the

BROOD(ALL KNN) sampler samples fewer artificial points

than the BROOD(ALL ROT) sampler with the current choice

of hyperparameters.

compared to the number of ID samples, it may be appropriate to weigh them

appropriately. Finally, one can interpret the terms that account for BROOD

samples in the objective function as regularization terms, and one often opti-

mizes the weight of such terms.

Critical difference diagram for the ROC-AUC metric of the models that are trained on the

benchmark data sets.

Critical difference diagram for the AP metric of the models that are trained on the bench-

mark data sets.

Critical difference diagram for the DCG metric of the models that are trained on the bench-

mark data sets.

Figure 4: Performance metrics: critical difference diagrams with signifi-

cance level 0.10 of the models that are trained on the benchmark data sets.

We use BROOD(ALL ROT) (ndir max = 30, ndir samp = 50, distid ood = 4) and

BROOD(ALL KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to generate

BROOD samples. We abbreviate 'XGBoost' as ' XGB' and 'BROOD' as 'BR'.

4.2.2. Severely Imbalanced Data Sets

This section examines the usefulness of the BROOD sam-

pler for developing machine learning models on severely im-

balanced data sets. We investigate whether BROOD samples

can aid machine learning models in learning a suitable decision

surface to classify positive instances correctly.

Hence, both AP and DCG are suitable metrics, as one is

more interested in the model’s ability to detect minority in-

stances in many applications. Furthermore, in many applica-

tions, there is only a limited pool of resources to target positive

instances. In this case, the DCG is even more appropriate be-

cause it is only affected by the most likely positive instances in

the test set. Hence, we use the DCG to optimize the model’s

hyperparameters during cross-validation in this subsection.

The query strategies’ decision (this captures the ID data

points from which we will sample) is related to the previous

paragraph. We are less interested in the model’s ability to clas-

sify majority instances correctly. Hence, we decide to sample

BROOD samples from the minority class to indicate the OOD

spaces closer to the minority instances. Furthermore, this al-

lows us to compare BROOD sampling with existing minority

oversampling techniques. As the number of positive instances

is limited, the BROOD sampler will be quite fast, and the num-

ber of BROOD samples will be relatively low. This implies

that the negative impact of sampling on the computation time is

13



limited.

By creating BROOD samples from a limited number of data

points (only the minority instances), we find that the BROOD-

enhanced XGBoost models achieve a higher average rank than

the regular XGBoost model on all performance metrics on the

severely imbalanced data sets. We find that the XGBoost model

that exploits BROOD samples using the rule of thumb selec-

tor with the standard hyperparameters outperforms the regular

counterpart on the DCG metric. Moreover, we find that the

BROOD-enhanced XGBoost classifiers are at least able to at-

tain a similar performance as the standard XGBoost model on

the ROC-AUC and AP. One can find the numerical values of

the various performance metrics in Table 10 in the appendix.

Critical difference diagram for the DCG metric of the models that are trained on the

severely imbalanced data sets.

Critical difference diagram for the AP metric of the models that are trained on the severely

imbalanced data sets.

Critical difference diagram for the ROC-AUC metric of the models that are trained on the

severely imbalanced data sets.

Figure 5: Performance metrics: critical difference diagrams with significance

level 0.10 of the models that are trained on the severely imbalanced data sets.

We use BROOD(MIN ROT) (ndir max = 30, ndir samp = 50, distid ood = 4) and

BROOD(MIN KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to gener-

ate BROOD samples. The best-performing model is in bold. We abbreviate

'XGBoost' as ' XGB' and 'BROOD' as 'BR'.

Remember that existing minority oversampling techniques

aim to cover more broad data regions to aid machine learning

models in learning less specific data regions. Our oversampling

technique aids in regularizing the machine learning model’s de-

cision surface by assigning predetermined probabilities in pre-

viously unseen data regions. Although the purpose of BROOD

sampling is different, it is interesting to assess the performance

differences on severely imbalanced data sets.

We find that ROSE is the best-performing minority over-

sampling technique. We include the combination of both ROSE

and BROOD sampling to investigate whether BROOD sam-

ples complement existing minority oversampling methods. We

first execute the ROSE sampler on the training set and execute

the BROOD sampler on real minority data points and synthetic

ROSE minority samples with the previously mentioned hyper-

parameters.

The performance of all our models on the imbalanced data

sets can be found in Figure 6. The BROOD-enhanced XGBoost

models are at least able to attain a similar performance as the

regular XGBoost model on all performance metrics on the im-

balanced data sets. Next, we see that all XGBoost models that

exploit artificial samples achieve a higher average rank than

the standard XGBoost model on the DCG metric, on which we

cross-validate. We find that BROOD-enhanced XGBoost mod-

els are at least able to attain a similar performance as the XG-

Boost models exploiting artificial minority samples. Moreover,

we find that the XGBoost models exploiting both ROSE and

BROOD samples achieve a higher average rank than all mod-

els on the DCG metric on the imbalanced data sets. The DCG of

the XGBoost model exploiting both ROSE and BROOD(MIN KNN)

samples is significantly different compared to the standard XG-

Boost model. The numerical values of the various performance

metrics can be found in Table 10 in the appendix. Next, Table 4

contains the average number of artificial BROOD samples cre-

ated during training.

14



Critical difference diagram for the DCG metric of the models that are trained on the

severely imbalanced data sets.

Critical difference diagram for the AP metric of the models that are trained on the severely

imbalanced data sets.

Critical difference diagram for the ROC-AUC metric of the models that are trained on the

severely imbalanced data sets.

Figure 6: Performance metrics: critical difference diagrams with significance

level 0.10 of the models that are trained on the severely imbalanced data sets.

We use BROOD(MIN ROT) (ndir max = 30, ndir samp = 50, distid ood = 4) and

BROOD(MIN KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to gen-

erate BROOD samples. We use the targeted imbalance ratio that on average

performs best on all data sets. The stand alone SMOTE, ADASYN, and ROSE

samplers aim to achieve an imbalance ratio of 0.20. The ROSE sampler along

with the BROOD sampler aim to achieve an imbalance ratio of 0.10. The best-

performing model is in bold. We abbreviate 'XGBoost' as ' XGB' and 'BROOD'

as 'BR'.

5. Discussion

We wrote this manuscript to address the arbitrary overcon-

fidence of discriminative machine learning methods in unseen

data regions. We believe that this issue has not yet received

enough attention, and many methodologies tackling this prob-

lem can still be explored. We mitigate this problem by sam-

pling artificial points on the edge of the training data using the

BROOD sampler.

On the other hand, minority oversampling methods for im-

balanced classification are very popular and well-documented.

Imbalanced classification is also an application where BROOD

samples can improve performance. Of course, discriminative

machine learning models tend to be overconfident in unseen

data regions, and imbalanced data sets lack sufficient informa-

tion to model the minority class correctly. As the goal of mi-

nority oversampling and OOD sampling is inherently different,

their combination has not been discussed in previous literature.

In presenting this manuscript, we aim to inspire researchers to

investigate new usages of artificial samples in machine learn-

ing.

Our methodology and research have several limitations. First,

BROOD samples have little value in applications where one

does not encounter data points in unseen data spaces during

the test/production phase. Next, similar to all oversampling

methods, our method increases the learning time. Furthermore,

BROOD samples can diminish the importance of the original

data points and improperly generated BROOD samples can add

little value or even introduce noise. As discussed before, our

current implementation of the BROOD sampler cannot handle

nominal (=categorical) features.

We did compare our model in an extensive data study with

benchmark models and existing popular minority oversamplers.

However, comparisons with existing OOD samplers result in

some incompatibility issues. Existing research generally uses

GANs or VAEs, which are often too complex for tabular and

low-dimensional data. Moreover, existing OOD samplers usu-

ally do not distinguish between class labels, which gives com-

parability issues for the imbalanced data set experiment, where

we only sample from minority instances. Furthermore, OOD

samples are often used for other goals, such as OOD detec-

tion or open-set recognition. This is inherently different from

our goal in the experiments, which is to improve classifier per-

formance (without any unseen classes). Finally, existing OOD

samplers differ in choosing/bounding the number of OOD sam-

ples, which is an important parameter and can seriously affect

classifier performance. A survey paper discussing and compar-

ing existing OOD samplers in different fields and applications

would be an exciting path for further research.

15



ALL ROT ALL KNN

UCI E.coli 440.00
(1) 61.00

(0) 379.00
368.00

(1) 43.25

(0) 324.75

UCI Mammographic Masses 153.25
(1) 101.25

(0) 52.00
169.25

(1) 101.25

(0) 68.00

UCI Sonar 3,059.50
(1) 1,660.75

(0) 1,398.75
1,470.75

(1) 803.00

(0) 667.75

UCI Ionosphere 3,772.25
(1) 1,806.25

(0) 1,966.00
3,118.00

(1) 1,585.50

(0) 1,532.50

UCI Breast Cancer Wisconsin 7,501.00
(1) 3,055.25

(0) 4,446.25
4,603.50

(1) 1,966.50

(0) 2,637.00

UCI Heart 2,372.75
(1) 1,140.00

(0) 1,232.75
940.75

(1) 464.00

(0) 476.75

UCI Indian Liver Patient 1,614.50
(1) 203.00

(0) 1,411.5
1,001.75

(1) 212.50

(0) 789.25

UCI Liver Disorders 559.75
(1) 159.00

(0) 400.75
397.75

(1) 137.25

(0) 260.50

UCI Breast Cancer 958.25
(1) 386.00

(0) 572.25
401.75

(1) 168.50

(0) 233.25

UCI Vehicle 5,483.50
(1) 1,241.50

(0) 4,242.00
2,341.25

(1) 571.25

(0) 1,770.00

UCI Contraceptive method 1,473.75
(1) 200.75

(0) 1,273.00
576.00

(1) 105.25

(0) 470.75

UCI German Credit Card 4,583.00
(1) 1,632.25

(0) 2,950.75
1,256.00

(1) 458.75

(0) 797.25

UCI Credit Approval 3,909.75
(1) 2,079.50

(0) 1,830.25
1,897.50

(1) 1,047.75

(0) 849.75

UCI Bank Marketing 9,724.25
(1) 3,391.50

(0) 6,332.75
4,298.25

(1) 1,116.00

(0) 3,183.75

UCI Madelon 9,985.75
(1) 4,436.00

(0) 5,549.75
9,994.75

(1) 4,726.75

(0) 5,268.00

Table 3: The average number of BROOD samples generated from the benchmark data sets. We use BROOD(ALL ROT) (ndir max = 30, ndir samp = 50,

distid ood = 4) and BROOD(ALL KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to generate BROOD samples. We impose a maximum bound of 10, 000

BROOD samples. The sum of the average number of BROOD samples sampled from class 1 (denoted with (1)) and class 0 (denoted with (0)) equals the total

number of average BROOD samples.

16



MIN ROT MIN KNN ROSE MIN ROT ROSE MIN KNN

ESA Polish Bankruptcy 404.75 404.25 5,980.00 729.25

Financial Distress 1,504.00 84.50 4,645.25 496.25

UCI German Credit Card IMB 558.50 165.50 655.75 191.50

UCI Credit Approval IMB 379.75 206.50 474.50 218.00

UCI Bank Marketing IMB 954.75 370.00 4,740.50 1,657.00

IBM Telco Customer Churn 2,961.50 1,161.75 4,360.00 1,836.25

ETL Credit Card Approval 242.75 71.75 6,649.00 831.75

VUB Credit Scoring 2,521.75 925.50 10,990.00 5,319.75

KDD Cup 1998 9,128.25 2,323.50 17,257.50 3,957.75

(Priv.) Car Insurance Fraud 2,372.75 977.50 19,713.75 6,476.25

(Priv.) APATA Credit Card Fraud 425.00 50.00 1,564.25 558.00

JAR Financial Statement Fraud 2,003.50 1,580.50 17,424.75 13,338.00

IEEE-CIS Cus. Trans. Fraud 2,728.50 142.00 13,944.00 267.00

Synth. Mobile Trans. Fraud 159.50 136.25 1,444.75 528.25

Synthetic Credit Card Fraud 1,623.50 466.75 7,428.75 1,711.75

Table 4: The average number of BROOD samples generated from the severely imbalanced data sets. We use BROOD(MIN ROT) (ndir max = 30, ndir samp =

50, distid ood = 4) and BROOD(MIN KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to generate BROOD samples. We use the targeted imbalance ratio that on

average performs best on all data sets. The ROSE sampler along with the BROOD sampler aim to achieve an imbalance ratio of 0.10.

17



6. Conclusion and Future Research

In this paper, we develop a methodology that mitigates the

excessive confidence of discriminative machine learning mod-

els in regions where little information is known. We propose

the easily customizable BROOD sampler that generates artifi-

cial data points at the boundary of the training data.

This sampler allows assigning a customized probability to

OOD regions, mitigating the unfounded randomness and over-

confidence of discriminative classifiers in unseen data regions.

We show that the BROOD-enhanced XGBoost models perform

at least as well as the regular XGBoost model on balanced and

imbalanced data sets. We show that with a suitable choice of

hyperparameters for the BROOD sampler, the BROOD-enhanced

XGBoost model outperforms the regular XGBoost model on

the DCG on severely imbalanced data sets.

We discuss the similarities and differences with existing over-

sampling techniques. Although the purpose of BROOD sam-

pling is different compared to existing minority oversampling

techniques, we compare the performance of models that ex-

ploit BROOD samples sampled from the minority instances

with those that exploit SMOTE, ADASYN and ROSE samples.

We find that XGBoost models exploiting BROOD samples are

at least able to attain a similar performance as these oversam-

pling methods. Next, we discover that the performance of XG-

Boost models can be further enhanced by exploiting the com-

bination of artificial BROOD and ROSE samples on severely

imbalanced data sets. With a suitable choice of hyperparame-

ters for the ROSE and the BROOD sampler, we find that the

XGBoost model exploiting both ROSE and BROOD samples

outperforms the regular XGoost model on the DCG in severely

imbalanced classification tasks.

The current implementation of the BROOD sampler is able

to handle multiple classes. Hence, for further research, we will

investigate the use of unlabeled samples for multiclass clas-

sification tasks. Furthermore, we plan to develop a suitable

BROOD sampler that can handle categorical features without

encoding and to apply our methodology in a cost-sensitive set-

ting.

7. CRediT Authorship Contribution Statement

Van der Schraelen Lennert: Conceptualization, Method-

ology, Software, Validation, Formal analysis, Writing – origi-

nal draft. Stouthuysen Kristof: Conceptualization, Writing –

review & editing, Supervision. Vanden Broucke Seppe: Con-

ceptualization, Writing – review & editing. Verdonck Tim:

Conceptualization, Writing – review & editing, Supervision.

8. Declaration of Interests

The authors declare that they have no known competing fi-

nancial interests or personal relationships that could have ap-

peared to influence the work reported in this paper.

9. Funding

This research was supported by the partners of the Centre

for Financial Leadership and Digital Transformation at Vlerick

Business School.

References

[1] Abdallah, A., Maarof, M.A., Zainal, A., 2016. Fraud detection system:

A survey. Journal of Network and Computer Applications 68, 90–113.

doi:https://doi.org/10.1016/j.jnca.2016.04.007.

[2] Bao, Y., Ke, B., Li, B., Yu, Y.J., Zhang, J., 2020. Detecting accounting

fraud in publicly traded us firms using a machine learning approach. Jour-

nal of Accounting Research 58, 199–235. doi:https://doi.org/10.

1111/1475-679X.12292.

[3] blastchar, n.d. Telco customer churn. https://www.kaggle.

com/datasets/blastchar/telco-customer-churn. Retrieved on

Sep 02, 2022.

[4] Breiman, L., 1996. Bagging predictors. Machine learning 24, 123–140.

doi:https://doi.org/10.1023/A:1018054314350.

[5] Breiman, L., Meisel, W., Purcell, E., 1977. Variable kernel estimates of

probability density estimates. Technometrics 19, 135–144. doi:https:

//doi.org/10.2307/1268623.

[6] Chacón, J.E., Duong, T., 2018. Multivariate kernel smoothing and its ap-

plications. Chapman and Hall/CRC. doi:https://doi.org/10.1201/

9780429485572.

[7] Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P., 2002. Smote:

synthetic minority over-sampling technique. Journal of artificial intelli-

gence research 16, 321–357. doi:https://doi.org/10.1613/jair.

953.

[8] Chen, T., Guestrin, C., 2016. Xgboost: A scalable tree boosting sys-

tem, in: Proceedings of the 22nd acm sigkdd international conference

on knowledge discovery and data mining, pp. 785–794. doi:https:

//doi.org/10.1145/2939672.2939785.

[9] Demšar, J., 2006. Statistical comparisons of classifiers over multiple data

sets. The Journal of Machine Learning Research 7, 1–30. doi:https:

//dl.acm.org/doi/10.5555/1248547.1248548.

[10] Douzas, G., Bacao, F., Last, F., 2018. Improving imbalanced learning

through a heuristic oversampling method based on k-means and smote.

Information Sciences 465, 1–20. doi:https://doi.org/10.1016/j.

ins.2018.06.056.

[11] Dua, D., Graff, C., 2017. UCI machine learning repository. http://

archive.ics.uci.edu/ml.

[12] Ebrahimi, n.d. Financial distress prediction. https://www.kaggle.

com/datasets/shebrahimi/financial-distress. Retrieved on

Nov 23, 2022.

[13] Erik, A., n.d. Credit card transactions. https://www.kaggle.com/

datasets/ealtman2019/credit-card-transactions. Retrieved

on June 6, 2022.

[14] Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., Herrera, F.,

2011. A review on ensembles for the class imbalance problem: bagging-,

boosting-, and hybrid-based approaches. IEEE Transactions on Systems,

Man, and Cybernetics, Part C (Applications and Reviews) 42, 463–484.

doi:https://doi.org/10.1109/TSMCC.2011.2161285.

[15] Ge, Z., Demyanov, S., Chen, Z., Garnavi, R., 2017. Generative openmax

for multi-class open set classification. arXiv preprint arXiv:1707.07418

doi:https://doi.org/10.48550/arXiv.1707.07418.

[16] Geng, C., Huang, S.j., Chen, S., 2020. Recent advances in open set recog-

nition: A survey. IEEE transactions on pattern analysis and machine

intelligence 43, 3614–3631. doi:https://doi.org/10.1109/TPAMI.

2020.2981604.

[17] Goodfellow, I., 2016. Nips 2016 tutorial: Generative adversarial

networks. Conference on Neural Information Processing Systems

doi:https://doi.org/10.48550/arXiv.1701.00160.

[18] He, H., Bai, Y., Garcia, E.A., Li, S., 2008. Adasyn: Adaptive synthetic

sampling approach for imbalanced learning, in: 2008 IEEE international

joint conference on neural networks (IEEE world congress on computa-

tional intelligence), IEEE. pp. 1322–1328. doi:https://doi.org/10.

1109/IJCNN.2008.4633969.

18



[19] Kingma, D.P., Welling, M., et al., 2019. An introduction to variational

autoencoders. Foundations and Trends® in Machine Learning 12, 307–

392.

[20] Lee, K., Lee, H., Lee, K., Shin, J., 2018. Training confidence-calibrated

classifiers for detecting out-of-distribution samples. International Confer-

ence on Learning Representations doi:https://doi.org/10.48550/

arXiv.1711.09325.

[21] Liang, S., Li, Y., Srikant, R., 2018. Enhancing the reliability of out-of-

distribution image detection in neural networks. International Confer-

ence on Learning Representations doi:https://doi.org/10.48550/

arXiv.1706.02690.

[22] Liu, F.T., Ting, K.M., Zhou, Z.H., 2008. Isolation forest, in: 2008

eighth IEEE international conference on data mining, IEEE. pp. 413–422.

doi:https://doi.org/10.1109/ICDM.2008.17.

[23] Mack, Y., Rosenblatt, M., 1979. Multivariate k-nearest neighbor density

estimates. Journal of Multivariate Analysis 9, 1–15. doi:https://doi.

org/10.1016/0047-259X(79)90065-4.

[24] Mario, C., 2022. ETL credit card data set. https://github.com/

caesarmario/etl-credit-card-dataset-using-pentaho. Re-

trieved on Sep 09, 2022.

[25] Meinke, A., Hein, M., 2019. Towards neural networks that provably know

when they don’t know. International Conference on Learning Represen-

tations doi:https://doi.org/10.48550/arXiv.1909.12180.

[26] Menardi, G., Torelli, N., 2014. Training and assessing classification rules

with imbalanced data. Data mining and knowledge discovery 28, 92–122.

doi:https://doi.org/10.1007/s10618-012-0295-5.

[27] Mitchell, D.P., 1991. Spectrally optimal sampling for distribution ray

tracing, in: Proceedings of the 18th annual conference on Computer

graphics and interactive techniques, pp. 157–164. doi:https://doi.

org/10.1145/127719.122736.

[28] Moller, F., Botache, D., Huseljic, D., Heidecker, F., Bieshaar, M., Sick,

B., 2021. Out-of-distribution detection and generation using soft brown-

ian offset sampling and autoencoders, in: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 46–55.

doi:https://doi.org/10.48550/arXiv.2105.02965.

[29] Moro, S., Cortez, P., Rita, P., 2014. A data-driven approach to predict

the success of bank telemarketing. Decision Support Systems 62, 22–31.

doi:https://doi.org/10.1016/j.dss.2014.03.001.

[30] Ng, A., Jordan, M., 2001. On discriminative vs. generative classifiers: A

comparison of logistic regression and naive bayes. Advances in neural

information processing systems. 14. doi:https://doi.org/10.1007/

s11063-008-9088-7.

[31] Parsa, I., Howes, K., 1998. Kdd cup 1998 data. https://kdd.

ics.uci.edu/databases/kddcup98/kddcup98.html. Retrieved on

Oct 04, 2022.

[32] Petrides, G., Moldovan, D., Coenen, L., Guns, T., Verbeke, W., 2022.

Cost-sensitive learning for profit-driven credit scoring. Journal of the Op-

erational Research Society 73, 338–350. doi:https://doi.org/10.

1080/01605682.2020.1843975.

[33] Rojas, E.L., n.d. Synthetic financial datasets for fraud detection.

https://www.kaggle.com/datasets/ealaxi/paysim1. Retrieved

on May 5, 2022.

[34] Schubert, E., Zimek, A., Kriegel, H.P., 2014. Local outlier detection re-

considered: a generalized view on locality with applications to spatial,

video, and network outlier detection. Data mining and knowledge dis-

covery 28, 190–237. doi:https://doi.org/10.1007/s10618-012-

0300-z.

[35] Siddiqi, N., 2012. Credit risk scorecards: developing and implementing

intelligent credit scoring. volume 3. John Wiley & Sons. doi:https:

//doi.org/10.1002/9781119282396.

[36] Simon, C., 2015. Generating uniformly distributed numbers on a

sphere. http://corysimon.github.io/articles/uniformdistn-

on-sphere/. Last checked on Apr 04, 2022.

[37] Sinha, A.P., May, J.H., 2004. Evaluating and tuning predictive data min-

ing models using receiver operating characteristic curves. Journal of Man-

agement Information Systems 21, 249–280. doi:https://doi.org/10.

1080/07421222.2004.11045815.

[38] Society, I.C.I., 2019. IEEE-CIS fraud detection. https://www.kaggle.

com/competitions/ieee-fraud-detection/overview. Retrieved

on Apr 12, 2022.

[39] Tao, X., Zheng, Y., Chen, W., Zhang, X., Qi, L., Fan, Z., Huang, S., 2022.

Svdd-based weighted oversampling technique for imbalanced and over-

lapped dataset learning. Information Sciences 588, 13–51. doi:https:

//doi.org/10.1016/j.ins.2021.12.066.

[40] Tax, D.M., Duin, R.P., 2004. Support vector data description. Ma-

chine learning 54, 45–66. doi:https://doi.org/10.1023/B:MACH.

0000008084.60811.49.

[41] Van Vlasselaer, V., Bravo, C., Caelen, O., Eliassi-Rad, T., Akoglu, L.,

Snoeck, M., Baesens, B., 2015. Apate: A novel approach for auto-

mated credit card transaction fraud detection using network-based exten-

sions. Decision Support Systems 75, 38–48. doi:https://doi.org/

10.1016/j.dss.2015.04.013.

[42] Veganzones, D., Séverin, E., 2018. An investigation of bankruptcy pre-

diction in imbalanced datasets. Decision Support Systems 112, 111–124.

doi:https://doi.org/10.1016/j.dss.2018.06.011.

[43] Vernekar, S., Gaurav, A., Abdelzad, V., Denouden, T., Salay, R., Czar-

necki, K., 2019. Out-of-distribution detection in classifiers via gen-

eration. arXiv preprint arXiv:1910.04241 doi:https://doi.org/10.

48550/arXiv.1910.04241.

[44] VUB Data Analytics Laboratory, 2020. Cost-sensitive learning for

profit-driven credit-scoring. https://github.com/vub-dl/data-

csl-pdcs. Retrieved on Apr 11, 2022.

[45] Weisstein, E.W., 2002. Hypersphere. https://mathworld.wolfram.

com/.

[46] Yang, B., Julia, Y., 2019. Jarfraud fraud detection. https://github.

com/JarFraud/FraudDetection. Retrieved on Apr 11, 2022.

[47] Yang, J., Zhou, K., Li, Y., Liu, Z., 2021. Generalized out-of-distribution

detection: A survey. arXiv preprint arXiv:2110.11334 doi:https://

doi.org/10.48550/arXiv.2110.11334.

[48] Yu, Y., Qu, W.Y., Li, N., Guo, Z., 2017. Open-category classifica-

tion by adversarial sample generation. arXiv preprint arXiv:1705.08722

doi:https://doi.org/10.48550/arXiv.1705.08722.

[49] Zhu, B., Baesens, B., vanden Broucke, S.K., 2017. An empirical compar-

ison of techniques for the class imbalance problem in churn prediction.

Information sciences 408, 84–99. doi:https://doi.org/10.1016/j.

ins.2017.04.015.

[50] Ziȩba, M., Tomczak, S.K., Tomczak, J.M., 2016. Ensemble boosted trees

with synthetic features generation in application to bankruptcy prediction.

Expert systems with applications 58, 93–101. doi:https://doi.org/

10.1016/j.eswa.2016.04.001.

19



10. Appendix

10.1. The BROOD Sampler

10.1.1. Visualization of the BROOD Sampler’s Steps

Figure 8 visualizes the different steps of the BROOD sam-

pler on an artificial data set. In this example, ndir max is equal to

8, and we will sample from data points 1, 2, and 3.

Step 1: Determine the data points from

which we will sample. These data points

have a green border in the plot.

Step 2: We employ Mitchell’s Best-

Candidate algorithm to ensure that

the sampled points are approximately

evenly spaced on the surface.

Step 3: We determine the

neighborhoods of data point

1. The distance to point

(2, 6) is smaller than 2 ·
distid ood. The distance to

the data point 3 is smaller

than 2 · distid ood + distood.

Step 3: We determine the

neighborhoods of data point

2. The distance to the data

points (1, 3) is less than 2 ·
distid ood. The distance to

points (5, 6) is less than 2 ·
distid ood + distood.

Step 3: We determine the

neighborhoods of data point

3. The distance to the data

points (2, 4, 5, 6) is less than

2 · distid ood. The distance

to point 1 is less than 2 ·
distid ood + distood.

Step 4: We found that the

data points (2, 6) have a dis-

tance less than 2 · distid ood

from data point 1. We ex-

tract their data attributes.

Step 5: We create artifi-

cial data points by sampling

from data point 1. We keep

the artificial data point if

the distance from the data

points (2, 6) to the artificial

data point is greater than

distid ood.

Step 6: We did not find any

data points for this step.

Step 4: We found that the

data points (1, 3) have a dis-

tance less than 2 · distid ood

from data point 2. We

found that data point 3 has

a distance less than 2 ·
distid ood + distood, and we

will sample from this data

point in the future. We ex-

tract their data attributes.

Step 5: We create artifi-

cial data points by sampling

from data point 2. We keep

the artificial data point if

the distance from the data

points (1, 3) to the artificial

data point is greater than

distid ood.

Step 6: The distance from

data point 2 to data point

3 (same class, and we will

sample from it in the future)

is less than 2 · distid ood +

distood. The distance from

data point 3 to one artifi-

cial data point is less than

distid ood + distood.

Step 4: We found that the

data points (2, 4, 5, 6) have

a distance less than 2 ·
distid ood from data point 3.

Further, we found that the

distance to one OOD sam-

ple is less than distid ood +

distood. We extract their

data attributes.

Step 5: We create artifi-

cial data points by sampling

from data point 3. We keep

the artificial data point if

the distance from the data

points (2, 4, 5, 6) to the ar-

tificial data point is greater

than distid ood and if the dis-

tance from the concerned

artificial data point sampled

from point 2 is less than

distood.

Step 6: We did not find any

data points for this step.

Figure 8: Visualisation of the BROOD sampler’s steps. The author created

this toy example that visualises the BROOD sampler’s working.

10.1.2. Modifications

The Python code of the BROOD sampler can be found on

Github5. We wrote a modification of the BROOD sampler that

checks the class distribution of the ID data points with Maha-

lanobis smaller than one from the ID point from which we sam-

ple. In this case, we compare the local class distribution and

the global class prior. The OOD samples receive the label for

which the quotient between the local class distribution and the

global class prior is the greatest.

Next, in the case that ĥhhh is class or instance dependent, the

Euclidean distance between the OOD samples that are sampled

from different points can differ. Hence, we propose a method

that ensures that the Euclidean distance between the OOD sam-

ples remains the same. Focusing on BROOD(KNN), the sur-

face area S r
d

of a d-dimensional hypersphere with radius r is

given by [45]

5https://github.com/CFLDT/Regularization-Oversampling-

for-Classification-Tasks-To-Exploit-What-You-Do-Not-Know

20



S r
d =

2πd/2

Γ(d/2)
rd−1. (16)

Denote with S r max
d

the surface of the hypersphere on which

we sample directions from the instance with the highest d j k.

We ensure that the number of directions that are created from

an instance i equals

S r i
d

S max r
d

ndir max. (17)

In Figure 9, one finds a visualization of the two modifica-

tions. The BROOD(KNN) sampler is found on the top left. In

this case, the artificially generated samples have the same label

as the instance from which they are sampled. The local coun-

terpart considers the labels of data points in the neighborhood

of the data point from which they are sampled. The bottom

pictures visualize the case where we use the BROOD(KNN)

sampler with more equal distances between OOD samples.

Visual of the standard BROOD(KNN) sam-

pler.
Visual of local BROOD(KNN) sampler.

Visual of the standard BROOD(KNN) sam-

pler with more equal distance between

OOD samples.

Visual of local BROOD(KNN) sampler

with more equal distance between OOD

samples.

Figure 9: Visual comparison of the BROOD sampler’s modifications. Com-

parison of the BROOD sampler’s modifications in a multi-class setting on a toy

data set.

10.2. General Overview of the Pipeline

As explained in the paper, we use random stratified sam-

pling to obtain an initial training set consisting of 75% of all

instances and a test set consisting of 25% of all instances. Fur-

thermore, we split the initial training set (in a stratified way)

into the final training set (50% of all instances) and a validation

set (25% of all instances). We train the model on the final train-

ing set, use the validation set to optimize the models’ hyperpa-

rameters, and assess performance on the test set. We execute

this procedure four times in a row for every data set, each time

with a completely different test set. A visual representation of

the procedure is presented in Figure 10.

Figure 10: Visual representation of our cross-validation structure. We cre-

ate four folds, each time with a completely different test set.

We apply a clever pipeline structure to ensure that the ma-

chine learning models can extract a maximal amount of infor-

mation from the provided data sets. First, we create an addi-

tional dummy column for every numerical feature. If the nu-

merical feature contains NaN values, the dummy column equals

true at these positions. Further, in the numerical column, the

NaN values are imputed by the median of the corresponding

column. We treat the NaN values in categorical columns as an

additional class.

Next, we use weight of evidence (WOE) encoding to quan-

tify the predictive power of each attribute [35]). The WOE

value for attribute a in column c is given by

WOEc
a =

log

(

((ratio non-event in a) + 0.5)/(ratio non-event in c)

((ratio event in a) + 0.5)/(ratio event in c)

)

(18)

where we add 0.5 to handle missing events. The informa-

tion value (IV) for column c is given by

IVc =
∑

a

( ((ratio non-event in a) + 0.5)

(ratio non-event in c)

− ((ratio event in a) + 0.5)

(ratio event in c)

)

WOEc
a. (19)

From [35], if an attribute has an IV value lower than 0.10,

it is considered weak. To calculate the IV value for numerical

features, we bin the numerical feature into 20 bins that contain

approximately the same number of instances. We only keep

informative features by deleting features with an IV value lower

than 0.10. Furthermore, if the number of features is greater

than 30, we only keep the 30 most informative features with

the highest IV value. Of course, since WOE encodings require

label information, these encodings are fitted on the training set.

Unseen categorical attributes in the test or validation set have a

WOE value of 0.

Subsequently, we standardize all features of the training set,

and we apply the same scaler to the validation and test sets. We

apply the BROOD sampler, with predetermined parameters, to

the training set.

Finally, we iterate over every possible combination of hy-

perparameters for logistic regression and XGBoost models with

21



and without artificially generated OOD samples. We test the

performance of a model with a specific combination of hyper-

parameters on the validation set. For instance, the ROC-AUC

can be compared for every combination of hyperparameters.

We use the best model to predict the test set’s instances and

calculate the corresponding performance measures.

10.3. Overview of the Results on the Benchmark Data Sets

We use a validation set to select an optimal combination of

the set of hyperparameters. The set of hyperparameters can be

found in Table 5. The performance metrics of our models on

the benchmark data sets are presented in Table 6. These values

were used to create Figure 4.

10.4. Overview of the Results on the Severely Imbalanced Data

Sets

We use a validation set to select an optimal combination of

the set of hyperparameters. The set of hyperparameters can be

found in Table 7. The performance metrics of our models on the

severely imbalanced data sets are presented in Table 10. These

values were used to create Figures 5 and 6.

22



Logit XGBoost XGBoost BROOD

βt / / [1]

cood1
/ / [0, 0.50, 1, 2, 10]

cood0
/ / [0, 0.50, 1]

L2-Regularisation [0, 0.10, 1, 10] [0, 10, 100] [0, 10, 100]

Max Tree Depth / [5, 10] [5, 10]

# Estimators / [50, 200] [50, 200]

Subsample / [0.25, 0.50, 0.75] [0.25, 0.50, 0.75]

Learning Rate [0.10] [0.10] [0.10]

Table 5: Lists of hyperparameters of the machine learning models that are trained on the benchmark data sets. We iterate over these lists during cross-

validation to find the optimal combination.

23



Logit XGBoost XGB BR(ALL ROT) XGB BR(ALL KNN)

UCI E.coli 0.932 0.953 0.967 0.959

UCI Mammographic Masses 0.870 0.865 0.854 0.857

UCI Sonar 0.776 0.859 0.912 0.878

UCI Ionosphere 0.899 0.969 0.976 0.984

UCI Breast Cancer Wisconsin 0.993 0.991 0.993 0.987

UCI Heart 0.893 0.881 0.886 0.895

UCI Indian Liver Patient 0.749 0.731 0.753 0.746

UCI Liver Disorders 0.673 0.593 0.644 0.627

UCI Breast Cancer 0.692 0.653 0.655 0.684

UCI Vehicle 0.988 0.995 0.985 0.992

UCI Contraceptive method 0.732 0.740 0.737 0.739

UCI German Credit Card 0.778 0.785 0.779 0.765

UCI Credit Approval 0.928 0.937 0.935 0.938

UCI Bank Marketing 0.934 0.938 0.938 0.940

UCI Madelon 0.629 0.857 0.835 0.850

ROC-AUC of the machine learning models that are trained on the benchmark data sets.

Logit XGBoost XGB BR(ALL ROT) XGB BR(ALL KNN)

UCI E.coli 0.798 0.851 0.863 0.852

UCI Mammographic Masses 0.831 0.810 0.807 0.808

UCI Sonar 0.772 0.868 0.920 0.885

UCI Ionosphere 0.890 0.961 0.970 0.976

UCI Breast Cancer Wisconsin 0.991 0.989 0.991 0.987

UCI Heart 0.885 0.875 0.878 0.888

UCI Indian Liver Patient 0.495 0.483 0.521 0.526

UCI Liver Disorders 0.505 0.443 0.473 0.492

UCI Breast Cancer 0.489 0.443 0.451 0.491

UCI Vehicle 0.961 0.984 0.971 0.974

UCI Contraceptive method 0.434 0.467 0.469 0.476

UCI German Credit Card 0.585 0.591 0.607 0.596

UCI Credit Approval 0.914 0.921 0.916 0.924

UCI Bank Marketing 0.609 0.638 0.635 0.647

UCI Madelon 0.579 0.849 0.825 0.848

AP of the machine learning models that are trained on the benchmark data sets.

24



Logit XGBoost XGB BR(MIN ROT) XGB BR(MIN KNN)

UCI E.coli 4.087 4.408 4.529 4.504

UCI Mammographic Masses 18.248 18.239 18.070 18.041

UCI Sonar 6.496 7.228 7.607 7.429

UCI Ionosphere 8.067 8.787 8.794 8.896

UCI Breast Cancer Wisconsin 12.939 12.894 12.983 13.025

UCI Heart 7.746 7.489 7.792 7.761

UCI Indian Liver Patient 5.299 5.458 6.062 6.133

UCI Liver Disorders 4.487 3.823 4.046 4.336

UCI Breast Cancer 3.511 3.137 3.218 3.566

UCI Vehicle 12.075 12.256 12.237 12.060

UCI Contraceptive method 8.637 9.379 9.283 9.246

UCI German Credit Card 10.353 10.552 10.422 10.565

UCI Credit Approval 15.231 15.398 15.277 15.314

UCI Bank Marketing 14.209 14.674 14.866 14.873

UCI Madelon 29.449 40.607 40.011 40.394

DCG of the machine learning models that are trained on the benchmark data sets.

Table 6: Performance metrics of the machine learning models on the benchmark data sets. We use BROOD(ALL ROT) (ndir max = 30, ndir samp = 50,

distid ood = 4) and BROOD(ALL KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to generate BROOD samples. The best-performing model is in bold. The

best-performing model is in bold. We abbreviate 'XGBoost' as ' XGB' and 'BROOD' as 'BR'.

25



Logit XGBoost XGBoost BROOD

βt / / [1]

cood1
/ / [0, 1, 2, 5, 10, 100, 1,000]

cood0
/ / /

L2-Regularisation [0, 0.10, 1, 10] [0, 10, 100] [0, 10, 100]

Max Tree Depth / [5, 10] [5, 10]

# Estimators / [50, 200] [50, 200]

Subsample / [0.25, 0.50, 0.75] [0.25, 0.50, 0.75]

Learning Rate [0.10] [0.10] [0.10]

Table 7: Lists of hyperparameters of the machine learning models that are trained on the severely imbalanced data sets. We iterate over these lists during

cross-validation to find the optimal combination.

26



Logit XGBoost XGBoost SMOTE XGBoost ADASYN XGBoost ROSE

ESA Polish Bankruptcy 0.852 0.892 0.906 0.902 0.900

Financial Distress 0.913 0.912 0.922 0.920 0.911

UCI German Credit Card IMB 0.774 0.805 0.773 0.763 0.783

UCI Credit Approval IMB 0.908 0.930 0.915 0.941 0.936

UCI Bank Marketing IMB 0.897 0.917 0.925 0.926 0.910

IBM Telco Customer Churn 0.817 0.591 0.629 0.638 0.642

ETL Credit Card Approval 0.618 0.597 0.592 0.586 0.635

VUB Credit Scoring 0.775 0.784 0.753 0.759 0.763

KDD Cup 1998 0.528 0.517 0.526 0.532 0.519

(Priv.) Car Insurance Fraud 0.677 0.708 0.707 0.717 0.718

(Priv.) APATA Credit Card Fraud 0.810 0.500 0.500 0.500 0.500

JAR Financial Statement Fraud 0.708 0.728 0.718 0.716 0.714

IEEE-CIS Cus. Trans. Fraud 0.768 0.828 0.770 0.753 0.783

Synt. Mobile Trans. Fraud 0.948 0.993 0.990 0.984 0.993

Synthetic Credit Card Fraud 0.980 0.981 0.981 0.987 0.983

XGB BR(MIN ROT) XGB BR(MIN KNN) XGB ROSE BR(MIN ROT) XGB ROSE BR(MIN KNN)

ESA Polish Bankruptcy 0.895 0.908 0.891 0.897

Financial Distress 0.915 0.915 0.921 0.931

UCI German Credit Card IMB 0.766 0.764 0.734 0.782

UCI Credit Approval IMB 0.928 0.947 0.929 0.945

UCI Bank Marketing IMB 0.912 0.923 0.911 0.918

IBM Telco Customer Churn 0.820 0.820 0.814 0.819

ETL Credit Card Approval 0.599 0.581 0.589 0.629

VUB Credit Scoring 0.777 0.776 0.773 0.771

KDD Cup 1998 0.536 0.527 0.533 0.541

(Priv.) Car Insurance Fraud 0.699 0.690 0.761 0.751

(Priv.) APATA Credit Card Fr. 0.853 0.708 0.655 0.808

JAR Financial Statement Fr. 0.719 0.730 0.729 0.737

IEEE-CIS Cus. Trans. Fraud 0.825 0.839 0.778 0.769

Synth. Mobile Trans. Fr. 0.992 0.989 0.989 0.991

Synthetic Credit Card Fraud 0.983 0.985 0.982 0.985

ROC-AUC of the machine learning models that are trained on the severely imbalanced data sets.

27



Logit XGBoost XGBoost SMOTE XGBoost ADASYN XGBoost ROSE

ESA Polish Bankruptcy 0.476 0.630 0.632 0.619 0.618

Financial Distress 0.313 0.400 0.384 0.366 0.389

UCI German Credit Card IMB 0.271 0.299 0.286 0.282 0.321

UCI Credit Approval IMB 0.561 0.571 0.576 0.629 0.616

UCI Bank Marketing IMB 0.239 0.294 0.278 0.268 0.292

IBM Telco Customer Churn 0.226 0.110 0.126 0.137 0.132

ETL Credit Card Approval 0.053 0.041 0.022 0.030 0.052

VUB Credit Scoring 0.129 0.127 0.121 0.128 0.125

KDD Cup 1998 0.059 0.058 0.058 0.061 0.055

(Priv.) Car Insurance Fraud 0.068 0.064 0.069 0.075 0.073

(Priv.) APATA Credit Card Fraud 0.052 0.008 0.008 0.008 0.008

JAR Financial Statement Fraud 0.072 0.084 0.079 0.073 0.071

IEEE-CIS Cus. Trans. Fraud 0.289 0.322 0.237 0.245 0.310

Synt. Mobile Trans. Fraud 0.678 0.880 0.856 0.881 0.898

Synthetic Credit Card Fraud 0.797 0.839 0.845 0.853 0.866

XGB BR(MIN ROT) XGB BR(MIN KNN) XGB ROSE BR(MIN ROT) XGB ROSE BR(MIN KNN)

ESA Polish Bankruptcy 0.623 0.648 0.622 0.629

Financial Distress 0.392 0.383 0.400 0.388

UCI German Credit Card IMB 0.275 0.282 0.272 0.273

UCI Credit Approval IMB 0.608 0.609 0.559 0.613

UCI Bank Marketing IMB 0.211 0.265 0.248 0.275

IBM Telco Customer Churn 0.232 0.233 0.228 0.228

ETL Credit Card Approval 0.051 0.037 0.050 0.078

VUB Credit Scoring 0.124 0.126 0.123 0.131

KDD Cup 1998 0.058 0.057 0.058 0.060

(Priv.) Car Insurance Fraud 0.087 0.074 0.111 0.086

(Priv.) APATA Credit Card Fr. 0.256 0.178 0.147 0.171

JAR Financial Statement Fr. 0.084 0.083 0.095 0.096

IEEE-CIS Cus. Trans. Fraud 0.325 0.343 0.297 0.298

Synth. Mobile Trans. Fr. 0.878 0.890 0.907 0.910

Synthetic Credit Card Fraud 0.884 0.875 0.880 0.869

AP of the machine learning models that are trained on the severely imbalanced data sets.

28



Logit XGBoost XGBoost SMOTE XGBoost ADASYN XGBoost ROSE

ESA Polish Bankruptcy 9.312 10.788 10.803 10.795 10.796

Financial Distress 3.363 4.480 4.497 4.174 4.404

UCI German Credit Card IMB 1.679 2.028 2.049 1.779 2.104

UCI Credit Approval IMB 2.097 1.966 2.128 2.126 2.232

UCI Bank Marketing IMB 2.039 2.605 2.486 2.486 2.779

IBM Telco Customer Churn 5.293 4.005 4.035 4.589 3.654

ETL Credit Card Approval 0.408 0.520 0.322 0.398 0.733

VUB Credit Scoring 5.431 4.992 5.140 5.228 5.435

KDD Cup 1998 2.104 1.984 2.003 2.221 1.705

(Priv.) Car Insurance Fraud 2.541 2.288 2.400 2.885 2.527

(Priv.) APATA Credit Card Fraud 0.000 0.000 0.000 0.000 0.000

JAR Financial Statement Fraud 2.023 2.703 2.384 2.210 2.329

IEEE-CIS Cus. Trans. Fraud 8.463 9.191 7.698 7.939 8.889

Synth. Mobile Trans. Fraud 5.282 6.519 6.610 6.693 6.720

Synthetic Credit Card Fraud 7.600 7.628 7.644 7.803 7.964

XGB BR(MIN ROT) XGB BR(MIN KNN) XGB ROSE BR(MIN ROT) XGB ROSE BR(MIN KNN)

ESA Polish Bankruptcy 10.851 10.936 10.846 10.989

Financial Distress 4.562 4.464 4.696 4.255

UCI German Credit Card IMB 1.774 1.707 1.906 1.830

UCI Credit Approval IMB 2.151 2.072 2.049 2.072

UCI Bank Marketing IMB 1.902 2.241 2.321 2.592

IBM Telco Customer Churn 5.344 5.359 5.674 5.662

ETL Credit Card Approval 0.590 0.465 0.677 0.955

VUB Credit Scoring 5.050 5.116 5.109 5.771

KDD Cup 1998 1.949 1.698 2.218 1.967

(Priv.) Car Insurance Fraud 3.217 2.764 4.002 2.911

(Priv.) APATA Credit Card Fr. 2.086 1.572 1.562 1.580

JAR Financial Statement Fr. 3.073 2.842 3.258 3.130

IEEE-CIS Cus. Trans. Fraud 9.290 9.560 8.888 8.971

Synth. Mobile Trans. Fr. 6.720 6.705 6.670 6.794

Synthetic Credit Card Fraud 8.104 8.034 8.155 8.019

DCG of the machine learning models that are trained on the severely imbalanced data sets.

Table 10: Performance metrics of the machine learning models that are trained on the severely imbalanced data sets. We use BROOD(MIN ROT) (ndir max =

30, ndir samp = 50, distid ood = 4) and BROOD(MIN KNN) (ndir max = 30, ndir samp = 50, distid ood = 1.5) to generate BROOD samples. We use the targeted

imbalance ratio that on average performs best on all data sets. The stand alone SMOTE, ADASYN, and ROSE samplers aim to achieve an imbalance ratio of 0.20.

The ROSE sampler along with the BROOD sampler aim to achieve an imbalance ratio of 0.10. The best-performing model is in bold. We abbreviate 'XGBoost' as '

XGB' and 'BROOD' as 'BR'.

29


	Introduction
	Literature Review
	Minority Oversampling
	Out-Of-Distribution Sampling
	Research Questions

	Methodology
	Boundary Regularizing Out-Of-Distribution (BROOD) Sampling
	Out-Of-Distribution Regularized Supervised Machine Learning Models 
	The Effect Of The BROOD Sampler's Hyperparameters

	Experiments
	Experimental Design
	Data Sets
	Methodology

	Experimental Results
	Benchmark Data Sets
	Severely Imbalanced Data Sets


	Discussion
	Conclusion and Future Research
	CRediT Authorship Contribution Statement
	Declaration of Interests
	Funding
	Appendix
	The BROOD Sampler
	Visualization of the BROOD Sampler's Steps
	Modifications

	General Overview of the Pipeline
	Overview of the Results on the Benchmark Data Sets
	Overview of the Results on the Severely Imbalanced Data Sets


