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Abstract

Various load balancing policies are known to achieve vanishing wait-
ing times in the large-scale limit, that is, when the number of servers
tends to infinity. These policies either require a communication over-
head of one message per job or require job size information. Load
balancing policies with an overhead below one message per job are
called hyper-scalable policies. While these policies often have bounded
queue length in the large-scale limit and work well when the overhead
is somewhat below one, they show poor performance when the com-
munication overhead becomes small, that is, the mean response time
tends to infinity when the overhead tends to zero even at low loads.
In this paper we introduce a hyper-scalable load balancing pol-
icy, called Join-Up-To(m), that remains effective even when the
communication overhead tends to zero. To study its performance
under general job size distributions, we make use of the “queue
at the cavity” approach. We provide explicit results for the first
two moments of the response time, the generating function of
the queue length distribution and the Laplace transform of the
response time. These results show that the mean response time
only depends on the first two moments of the job size distribution.
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1 Introduction

Load balancing plays a crucial role in any large-scale distributed system. If
the dispatcher responsible for assigning jobs to servers has perfect knowledge
of the servers that are idle, then it is intuitively clear that the waiting time
of jobs vanishes as the number of servers tends to infinity when the system
load is below 1. This can be achieved using a simple algorithm called Join-the-
Idle-Queue, where a server informs the dispatcher whenever it becomes idle
[1, 2] and incoming jobs are assigned to idle servers (if there is at least one idle
server). It is also clear that in such case the communication overhead is one
message per job. Vanishing waiting times have also been established in the so-
called hyper-scalable regime [3, 4], that is, when the communication overhead
is below one message per job, but this is not possible without information
regarding the job sizes [5].

Hyper-scalable load balancers that do not require any job size information
have been studied in [6] and [7]. Under the asynchronous policy introduced
in [6] the dispatcher maintains an upper bound on the queue length of each
server and assigns jobs in a greedy manner by selecting a server with the
lowest upper bound. When a job is assigned to a server its upper bound is
increased by one. The servers occasionally inform the dispatcher about their
current state, that is, each server sends queue length information at some rate
δ. When the dispatcher receives queue length information from a server, it
updates its upper bound by setting it equal to the reported queue length. The
pull policy presented in [7] works similarly, except that a server now sends its
queue length information at rate δ0 when it is idle and at rate δ1 when it is
busy. The value of δ0 and δ1 are set such that the overall rate of updates per
server equals δ, that is, δ = (1 − λ)δ0 + λδ1 when λ represents the load (as
1− λ is the fraction of the time that a server is idle).

These hyper-scalable policies do not have vanishing waits when fewer than
one message per job is used, but instead have bounded queue lengths in the
large-scale limit. However as the number of messages per job tends to zero,
this upper bound as well as the mean response time tend to infinity. This
means that these load balancers perform worse than simply assigning jobs to
a random server (which requires no communication overhead at all) when the
number of messages per job becomes small as demonstrated in Table 1. For
instance, for a load of 0.8 we see that both the asynchronous policy of [6]
and the pull policy of [7] perform far worse than random assignment when
δ = 1/40. For the pull policy we set the parameter δ1 = 0. Note that setting
δ1 > 0 means that we must lower the rate δ0. Now suppose we have two servers
with an estimated queue length of 5, but their actual queue lengths equal 0 and
2, respectively, then it is better that the idle server sends an update. As such
setting δ1 = 0 is expected to yield the best performance. The intuition for the
poor performance for small δ in Table 1 is that due to the infrequent updates
from the servers, the upper bounds maintained by the dispatcher become large
(and very loose) and therefore the greedy nature of these schemes implies that
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a server receives many jobs in a very short time (that is, as a batch in the
limit) whenever it sends an update on its queue length information.

In this paper we propose a new hyper-scalable load balancing scheme called
Join-Up-To(m), abbreviated as JUT(m), that outperforms random assign-
ment irrespective of the communication overhead (and coincides with random
assignment when the communication overhead tends to zero). JUT(m) is also
superior to the asynchronous schemes considered in [6] and [7], unless the com-
munication overhead is fairly close to one message per job (see Table 1). Under
the JUT(m) policy the dispatcher also maintains an upper bound on the queue
length of each server and idle servers occasionally inform the dispatcher about
their state (see Section 2 for details). Incoming jobs are assigned to a server
with the lowest upper bound strictly below m, if such a server exists, and are
assigned at random otherwise. When m is set equal to one, JUT(m) coincides
with the Join-Idle-Queue scheme with sub-linear communication overhead [5].

It should be noted that [6] also presents synchronous schemes that have
better performance than their asynchronous counterparts. However, the syn-
chronous schemes require that all servers to update their queue length
information simultaneously, which is problematic in a large-scale system as
the dispatcher needs to process a huge number of updates at once in such
case. Further note that the JUT(m) is also an asynchronous scheme for which
one could in principle also devise a synchronous version. Given the limited
practicality of any synchronous scheme, we did not explore such a version.

To understand the system behavior when the number of servers tends to
infinity, we study the queue at the cavity for the Join-Up-To(m) policy (intro-
duced in Section 3). We derive explicit expressions for the mean and the
variance of the response time, for the parameter value of m that minimizes the
mean response time and we derive expressions for the generating function and
Laplace transform of the queue length distribution and response time distribu-
tion, respectively. These results show that the mean response time and optimal
m value for the JUT(m) policy only depend on the first two moments of the
jobs size distribution, while the variance of the response time also depends
on the third moment. We also analytically invert the generating function of
the queue length distribution in case of phase-type distributed job sizes and
analytically invert the Laplace transform of the response time in case of expo-
nential job sizes. Some discussion on the asymptotic exactness of the queue
at the cavity approach is presented in Appendix A in case of bounded queues
and exponential job sizes.

The paper is structured as follows. In Section 2 we describe the system
under consideration and introduce the JUT(m) policy. The queue at the cav-
ity approach, used to analyse the performance of JUT(m) in a large-scale
setting, is discussed in Section 3. The analysis of the queue at the cavity is pre-
sented in Section 4, while Section 5 contains various numerical results. Finally,
conclusions can be found in Section 6.
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policy δ λ = 0.5 λ = 0.8 λ = 0.95
Random assignment 0 2 5 20
Asynchr. policy [6] 4/10 1.5932 3.1489 6.4542

1/10 4.3563 10.6507 22.7754
1/40 16.0860 41.3408 87.4644

Pull policy, δ1 = 0 [7] 4/10 1.0968 1.5 1.6540
1/10 3 4.5 5.0671
1/40 10.5 16.5 19.4944

JUT(mopt), this paper 4/10 1.2170 1.5451 1.7287
1/10 1.6886 2.7712 3.6549
1/40 1.9069 3.9658 6.9149

Table 1 Mean response time of some existing hyperscalable policies for exponential job
sizes with mean 1. All policies use on average δ/λ < 1 messages per job.

2 System description and the JUT(m) policy

We consider a set of N homogeneous servers, each with its own infinite buffer,
and a central dispatcher. Every server processes the jobs in its queue in First-
Come-First-Served order. Jobs arrive at the dispatcher according to a Poisson
process with rate Nλ, with 0 < λ < 1. The service requirements of a job have
a general distribution G with mean one, i.e. E[G] = 1. For each server the
dispatcher maintains an upper bound on its queue length. Henceforth, we refer
to these upper bounds as “estimates”.

The policy: The load balancing policy called Join-Up-To(m) (JUT(m))
relies on a single integer parameter m and operates as follows. When an arrival
occurs and some servers have an estimate strictly below m, then the dispatcher
assigns the job to a server with lowest estimate among all such servers (with
ties broken uniformly at random). Otherwise, if all estimates are at least m,
the dispatcher assigns the job to a random server. Whenever the dispatcher
assigns a job to a server, it increases this estimate by one. The estimate of a
server can also be reset to zero. This happens when an idle server informs the
dispatcher that its queue is empty. In order to have an average of δ/λ < 1
such messages per arrival, idle servers inform the dispatcher about their state
at rate δ0 = δ/(1− λ) as 1− λ is the fraction of time that a server is idle.

The parameter m: When m > ⌊λ/δ⌋ the performance of the JUT(m)
policy coincides with the pull policy in [7] (with δ1 = 0) when the number of
servers tends to infinity (as the dispatcher never runs out of servers with an
estimate strictly below m). Recall that this policy becomes inferior to random
assignment for δ small enough. We therefore focus on JUT(m) withm ≤ ⌊λ/δ⌋.
In Corollary 6 we present a simple explicit expression that depends only on λ,
δ and E[G2] for the value of m that minimizes the mean response time (for
the queue at the cavity with E[G] = 1).

3 Queue at the cavity approach

As the system of N servers is hard to analyze directly and simulation experi-
ments do not provide closed form expressions and become very time consuming
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for large N , we make use of the so-called “queue at the cavity approach” [8].
The basic idea of this approach is to focus on the evolution of a single server and
to assume that all other servers have independent and identically distributed
queue lengths. In some particular cases the queue at the cavity method was
proven to yield exact results as the number of servers tends to infinity (see
[8, 9]). The system that is closest to ours for which such a proof was established
is [10] which was limited to exponential job sizes. In Appendix A we prove
that the stochastic system with N servers converges to the set of solutions of
a differential inclusion as N tends to infinity over finite time scales in case of
exponential service times and finite buffers. We also identify the missing piece
that is required to extend this convergence result to the stationary regime. In
this section we limit ourselves to presenting a set of simulation results which
suggest that the queue at the cavity also yields exact results as N tends to
infinity in our setting. We start with a number of randomly selected cases
and increasing N . Afterwards we fix N at 1000 servers and vary the different
system parameters.

In Table 2, we compare the relative error of Corollary 4 for the queue at the
cavity with the simulated mean response time, for N ∈

{

102, 103, 104, 105
}

,
based on 20 runs. Each run contains 1000N arrivals and has a warm-up period
of 10%. We consider different randomly chosen values of λ, δ, m and different
job size distributions. The job size distributions considered in Table 2 are
exponential, Erlang, hyperexponential (HypExp), hyper-Erlang (HypErl) and
truncated Pareto, all with mean 1. The hyperexponential distribution of order
2 is described using the shape parameter f and the squared coefficient of
variation SCV [11]. The hyper-Erlang distribution HypErl(k, ℓ) is such that
jobs are Erlang-k with probability p and Erlang-ℓ otherwise. The truncated
Pareto distribution is characterized by three values: α,L and U , with 0 < L <
U < +∞. Its CDF is given by F (x) = (1−(L/x)α)/(1−(L/U)α) for x ∈ [L,U ].
The value of α is called the shape parameter, while L and U respectively denote
the lower and upper bound of the support of the distribution. Note, that we
require that jobs have mean 1. Hence, if X has a Pareto distribution with
parameters α,L and U , we instead work with the random variable X/E[X]
and denote X/E[X] ∼ Pareto(α, [L,U ]).

The simulation results presented in Table 2 are a random subset of simula-
tions which we performed. When N ≥ 1000 the error always stays below 1.5%.
Further, in all cases the simulated mean response time seems to be O(1/N)
accurate in function of N , similar to the results in [12]. We now set N equal to
1000 and vary the different system parameters to demonstrate that the approx-
imation is highly accurate in a variety of settings. In Figure 1 we consider 3
job size distributions: exponential, hyper-exponential and truncated Pareto.
In the first plot we vary m with λ = 0.95 and δ = 0.1, in the second plot the
impact of changing λ is shown for m = 5 and δ = 0.1 and in the third plot δ
varies with m = 5 and λ = 0.9. The red lines are the results obtained using
the queue at the cavity, the black curves are simulation results with confidence
intervals added. The simulation results are based on 50 runs with 107 arrivals
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settings N sim. ± conf. rel.err.%
Exponential 100 5.3145 ± 7.28e-03 2.4216
λ = 0.8 1000 5.4347 ± 1.75e-03 0.2147
δ = 0.05 10000 5.4450 ± 5.95e-04 0.0268
m = 10 100000 5.4463 ± 1.38e-04 0.0021

∞ 5.4464 0
HypExp(2) 100 11.7581 ± 5.55e-01 11.6331
f = 1/2, SCV = 15 1000 10.6572 ± 2.14e-01 1.1811
λ = 0.95 10000 10.5240 ± 4.34e-02 0.0836
δ = 0.05 100000 10.5349 ± 1.77e-02 0.0195
m = 15 ∞ 10.5328 0
Erlang(10) 100 3.4231 ± 9.73e-03 1.7598
λ = 0.95 1000 3.3728 ± 2.69e-03 0.2661
δ = 0.1 10000 3.3651 ± 1.17e-03 0.0378
m = 5 100000 3.3640 ± 3.58e-04 0.0046

∞ 3.3639 0
HypErl(3,7) 100 2.0574 ± 3.32e-03 2.0553
p = 0.85 1000 2.0960 ± 6.11e-04 0.2186
λ = 0.9 10000 2.1005 ± 2.61e-04 0.0053
δ = 0.05 100000 2.1006 ± 7.44e-05 0.0001
m = 7 ∞ 2.1006 0
Pareto(3, [1, 50]) 100 4.4010 ± 1.09e-02 0.2114
λ = 0.9 1000 4.3940 ± 2.13e-03 0.0522
δ = 0.05 10000 4.3914 ± 8.19e-04 0.0088
m = 7 100000 4.3918 ± 3.67e-04 0.0002

∞ 4.3917 0

Table 2 Relative error of the simulated mean response time for the JUT(m) strategy
based on 20 runs.

each. Careful examination of the plots shows that the approximation becomes
somewhat less accurate as the job size variability and load increases, which is
in agreement with intuition. The impact of m and δ on the accuracy appears
to be less pronounced.

4 Analysis of the queue at the cavity

4.1 General job sizes

The queue at the cavity for the JUT(m) policy is defined as an M/G/1 queue
with arrival rate λ̃ = λ− δm, except that when the queue is empty there are
also batch arrivals of size m that occur at rate δ0 = δ/(1 − λ). The intuition
behind this queue at the cavity is that in the large-scale limit any idle server
that informs the dispatcher about its state (which occurs at rate δ0) will imme-
diately receive a batch of m jobs. As the overall rate of such messages is δ,
this implies that a fraction δm/λ of the jobs is assigned in this manner. The
remaining fraction 1−δm/λ of the jobs is assigned at random and corresponds
to the arrivals at rate λ̃ = λ− δm. Recall that we assume that m < λ/δ, such
that λ̃ > 0. As m is an integer, we have m ≤ ⌊λ/δ⌋.

The fact that the queue length of any idle server that updates its queue
length information immediately jumps to m for the cavity queue is due to the
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Fig. 1 Comparison of the mean response time obtained by simulation with N = 1000
servers (black) and the queue at the cavity (red) for different scenarios with varying m, λ
and δ.

greedy nature of the JUT(m) algorithm whenever there are servers available
with a queue length estimate strictly below m. Note that the same phenomena
also occurs for the cavity queue of the asynchronous policy in [6] (see Section
4 in [7]) which is also in agreement with the fixed point analysis in [6] that
suggests that a server has an estimated queue length of m∗ or m∗ + 1 with
probability one.

Let πa
i , π

d
i and πi be the steady state probability that there are i jobs in

the cavity queue at arrival, departure and at a random time, respectively. Let
πa(z), πd(z) and π(z) be the associated generating functions. Note that if a
job is the k-th job of a batch of size m, then it sees k− 1 jobs at arrival time.
It is well known and easy to see that πa(z) = πd(z). The next theorem relates
π(z) with πa(z).

Theorem 1 The generating function π(z) can be written as

π(z) =
λ

λ̃
πa(z)−

δ

λ̃

1− zm

1− z
. (1)

Proof Consider a tagged arrival (that potentially arrives in a batch of size m). In
order for the tagged arrival to observe i < m jobs upon arrival there are two options.
First, the tagged job arrives when the queue length equals exactly i with probability
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λ̃πi/λ. Second the tagged arrival is the i + 1-st arrival in a batch arrival of size m.
This occurs with probability δ0π0/λ as δ0π0 is the rate at which batches of size m
arrive and each batch contains exactly one job in position i+ 1. Hence, we have the
following relationship between the probabilities πa

i and πi:

πa
i =

(

λ̃πi + δ0π0

)

/λ,

for 0 ≤ i < m. Further, as batch arrivals only occur when the queue is empty, we have

πa
i = λ̃πi/λ,

for i ≥ m. Hence,

πa(z) =
δ

λ

m−1
∑

i=0

zi +
λ̃

λ
π(z) =

δ

λ

1− zm

1− z
+

λ̃

λ
π(z),

and therefore (1) holds. □

Recall that for an M/G/1 queue with arrival rate λ̃ and mean job size 1,
the generating function of the queue length is given by the Pollaczek-Khinchin
formula [13, (5.32)]

ξ(z) =
(1− λ̃)(1− z)G∗(λ̃− λ̃z)

G∗(λ̃− λ̃z)− z
, (2)

where G∗(s) is the Laplace-Stieltjes transform of the job size distribution.

Theorem 2 The generating function πa(z) can be written as

πa(z) =
1− α(z)

α′(1)(1− z)
ξ(z), (3)

where ξ(z) is given by (2) and

α(z) =
λ̃

λ̃+ δ0
z +

δ0

λ̃+ δ0
zm.

Note that α′(1) = (λ̃+mδ0)/(λ̃+ δ0).

Proof Consider an M/G/1 queue with arrival rate λ̃ where the server starts a vacation
each time the queue becomes empty. The vacation ends with probability λ̃/(λ̃+ δ0)
when an arrival occurs or ends when the m-th arrival occurs otherwise. The queue
length distribution of this vacation queue is the same at arrival, departure and at
random times (due to PASTA) and its generating function φ(z) obeys the well known
decomposition result for vacation queues [14, 15], that is,

φ(z) =
1− α(z)

α′(1)(1− z)
ξ(z),

where ξ(z) is the generating function of the queue length of a standard M/G/1 queue
with arrival rate λ̃ and α(z) is the generating function of the number of arrivals
during a vacation.

The proof completes by noting that the queue length distribution at departure
times in the queue at the cavity πd(z) and at departure times in the vacation queue
φ(z) are the same, while πa(z) = πd(z). □
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Corollary 3 The generating function π(z) is given by

π(z) =
λ

λ̃
β(z)ξ(z)−

δ

λ̃

1− zm

1− z
, (4)

with β(z) = (1− α(z))/(α′(1)(1− z)).

Proof This is immediate from the previous two theorems. □

Note that β(z) is the generating function of the number of customers that
arrive during a vacation period after the arrival of the random customer during
a vacation [14]. Using this interpretation we note that

β(z) =
λ̃

δ0m+ λ̃
+

δ

λ(1− λ̃)

m−1
∑

i=0

zi, (5)

as δ0m/(δ0m+ λ̃) = δm/(λ(1− λ̃)) is the probability that the random arrival
is part of a vacation with m arrivals and its position is uniform within these
m arrivals.

Corollary 4 The mean response time E[R(m)] in the queue at the cavity is given by

E[R(m)] = 1 +
λ̃E[G2]

2(1− λ̃)
+

δ

λ

m(m− 1)

2(1− λ̃)
. (6)

In particular, we have

lim
λ→1−

E[R(m)] =
1− δm

2δm
E[G2] +

m+ 1

2
. (7)

Proof Due to Little, we have E[R(m)] = π′(1)/λ. Using (4) we have

π′(1)

λ
=

β′(1)

λ̃
+

ξ′(1)

λ̃
−

δ

λ̃

m(m− 1)

2

1

λ
,

where ξ′(1)/λ̃ is the mean response time in a standard M/G/1 queue with arrival
rate λ̃, which equals 1 + λ̃E[G2]/(2(1 − λ̃)) as E[G] = 1. The first claim therefore
follows by verifying that

β′(1) =
δm(m− 1)

2λ(1− λ̃)
,

which is immediate from (5). The second claim follows immediately from (6) as λ̃
converges to 1− δm. □

Remark: As long as m > 0 and δ > 0, the mean response time remains
bounded when λ tends to one, in contrast to an ordinary M/G/1 queue. The
mean response time of JUT(m) converges to that of random assignment when
δ tends to zero, which is an improvement over the policies in [6, 7] where the
mean response time tends to infinity as δ tends to zero for any λ < 1.
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Theorem 5 The Laplace transform R∗(s) of the response time distribution of the
queue at the cavity can be expressed as

R∗(s) =
λ̃

λ
Y ∗(s)π(G∗(s))−

λ̃(1− λ)

λ
(Y ∗(s)−G∗(s))

+
δ

λ

(

1−G∗(s)m+1

1−G∗(s)
− 1

)

, (8)

where G∗(s) and Y ∗(s) are the Laplace transforms of the service time and residual
service time, respectively. It is also well known that Y ∗(s) = (1−G∗(s))/s as E[G] =
1.

Proof The arrivals that occur at rate λ̃ arrive at random points in time, therefore
such an arrival sees a workload of one residual service time and i − 1 service times
with probability πi, for i > 0 and no workload with probability π0. For a tagged
arrival that occurs in a batch of size m the workload observed upon arrival is equal
to the service time of the jobs that are part of the same batch and ahead of the
tagged arrival. This implies

R∗(s) =
λ̃

λ

(

∞
∑

i=1

πiY
∗(s)G∗(s)i + π0G

∗(s)

)

+
δm

λ

m−1
∑

i=0

1

m
G∗(s)i+1

=
λ̃

λ

(

Y ∗(s)(π(G∗(s))− π0) + π0G
∗(s)

)

+
δ

λ

(

1−G∗(s)m+1

1−G∗(s)
− 1

)

.

Equation (8) then follows as π0 = 1− λ. □

Remark: We can also retrieve (6) using (8) by making use of the fact
that E[R(m)] = −R∗′(0). More specifically, we can make use of the equalities
G∗′(0) = −E[G] = −1 and −Y ∗′(0) = E[Y ] = E[G2]/2 to find that

E[R(m)] = −R∗′(0)

= −
λ̃

λ

(

Y ∗′(0)− π′(1)− (1− λ)(Y ∗′(0) + 1)
)

+
δ

λ

m(m+ 1)

2

= λ̃
π′(1)

λ
− λ̃Y ∗′(0) +

λ̃(1− λ)

λ
+

δm

λ
+

δ

λ

m(m− 1)

2

= λ̃E[R(m)] +
λ̃E[G2]

2
+ (1− λ̃) +

δ

λ

m(m− 1)

2
,

as δm + λ̃ = λ. Similarly, we can derive an explicit expression for the second
moment of the response time E[R(m)2], see Appendix.
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Theorem 6 The mean response time of the queue at the cavity E[R(m)] is minimized
by setting m equal to mopt = min(m̂, ⌊λ/δ⌋) with

m̂ =









√

(

1

2
+

1− λ

δ

)2

+
λ

δ
E[G2]−

(

1

2
+

1− λ

δ

)









. (9)

Proof Using (6) we get that

0 =
∂E[R(m)]

∂m
=

δ(δm2 + (2m− 1)(1− λ)− λE[G2])

2λ(1− λ+ δm)2
. (10)

This equation has a unique positive root given by

m∗ =

√

(1− λ)2 + δ [1 + λ (E[G2]− 1)]− (1− λ)

δ
,

as 1 + λ(E[G2]− 1) > 0. One readily verifies that

∂2E[R(m)]

∂m2
=

δ((1− λ)δ + (1− λ)2 + λδE[G2])

λ(1− λ+ δm)3
≥ 0.

for m ≥ 0. Therefore E[R(m)] is convex in m on [0,∞) and m∗ is the minimum of
E[R(m)]. However m∗ is typically not an integer.

The integer value that minimizes E[R(m)] is found by defining ∆R(m) =
E[R(m + 1)] − E[R(m)] and taking the ceil of its unique positive root. By further
using (6), one easily checks that

∆R(m) =
δm

Nλ

(

1− λ+ δ
(m+ 1)

2

)

−
δ

N
·
E[G2]

2
,

where N = (1−λ)2+(1−λ)δ(2m+1)+ δ2m(m+1) > 0. We have that ∆R(m) = 0
if and only if

m

λ

(

1− λ+
δ(m+ 1)

2

)

−
E[G2]

2
= 0,

which has a unique positive root given by

m =
− δ

2λ − 1−λ
λ +

√

(

δ
2λ + 1−λ

λ

)2
+ δ

λE[G2]

δ/λ
. (11)

As λ̃ > 0, we have m ≤ ⌊λ/δ⌋ and the result follows by the convexity of E[R(m)].
□

Remark: The optimal value mopt is decreasing in δ and increasing in both λ
and E[G2]. The next Corollary therefore implies that mopt ≤ ⌈λE[G2]/(2(1−
λ))⌉.

Corollary 7 The optimal value of m when δ → 0+ is given by

mδ→0+

opt =

⌈

1

2

λ

1− λ
E[G2]

⌉

.

The optimal value of m when λ → 1− is given by

mλ→1−

opt = min

(⌈
√

1

4
+

E[G2]

δ
−

1

2

⌉

,

⌊

1

δ

⌋

)

.
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Proof The first claim follows by application of l’Hôpital’s rule on (9), the second is
immediate. □

Remark: We have

∂E[R(m)]

∂δ
= −

m
(

1− λ+ λE[G2]− (1− λ)m
)

2λ(1− λ̃)2

= −
(1− λ)m

(

1 + λ
1−λE[G2]−m

)

2λ(1− λ̃)2
. (12)

We distinguish three possibilities:

1. If m > 1+ λ
1−λE[G2], then (12) is greater than 0, hence increasing the value

of δ increases the mean response time. In this case, having δ = 0 works the
best. If δ = 0, the queue at the cavity becomes a standard M/G/1 queue

with arrival rate λ and (6) simplifies to 1 + λ
1−λ

E[G2]
2 .

2. If m = 1+ λ
1−λE[G2], then (12) is 0, which implies that in this case E[R(m)]

is independent of δ. In fact, substituting m = 1 + λ
1−λE[G2] into (6) gives

E[R(m)] = 1 + λ
1−λ

E[G2]
2 .

3. If m < 1 + λ
1−λE[G2], then (12) is smaller than 0 and the proposed policy

works better than random assignment for any δ > 0.

Note that when m = 1 or m = mopt (due to Corollary 7), case 3) applies and
our policy improves upon random assignment.

4.2 Phase-type distributed job sizes

In this section we provide an explicit formula for the queue length distribution
in case of phase type distributed jobs, meaning we present an explicit formula
for the probabilities πk appearing in the generating function π(z) =

∑

k πkz
k.

Recall that a phase type distribution with np phases can be characterized by
a couple (α, S), where α is a row vector of length np and is called the initial
distribution vector, as αi is the probability that the distribution starts in phase
i; and where S is a np × np matrix that records the rates of phase changes.

Theorem 8 Suppose G is PH(α, S) distributed (with mean 1). Then, for k =
1, . . . ,m:

πk =

(

1− λ+
δ

λ̃

)

αRk1np +
δ

λ̃
α(I −R)−1

(

R−Rk
)

1np , (13)

and for k > m:

πk =

[(

1− λ+
δ

λ̃

)

α+
δ

λ̃
α(I −R)−1

(

R1−m − I
)

]

Rk1np , (14)

where R = −λ̃(S− λ̃I+ λ̃1npα)
−1 and where 1np is a column vector of ones of height

np.
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Proof By using [16, Theorem 3.2.1], we get

ξ(z) = (1− λ̃)

∞
∑

k=0

αRk1npz
k.

Therefore, by (4), (5) and the fact that λ(1− λ̃)/(δ0m+ λ̃) = 1− λ, we have

π(z) = (1− λ)
∞
∑

k=0

αRk1npz
k

+
δ

λ̃

m−1
∑

i=0

zi
∞
∑

k=0

αRk1npz
k −

δ

λ̃

m−1
∑

i=0

zi

= (1− λ)
∞
∑

k=0

αRk1npz
k +

δ

λ̃

m−1
∑

i=0

zi
∞
∑

k=1

αRk1npz
k

= (1− λ)

∞
∑

k=0

αRk1npz
k +

δ

λ̃

∞
∑

k=1

αRk1npz
k

+
δ

λ̃

m−1
∑

i=1

zi
∞
∑

k=1

αRk1npz
k.

On the other hand, by using (13)-(14) and π0 = 1− λ, we get
∞
∑

k=0

πkz
k = (1− λ)

∞
∑

k=0

αRk1npz
k

+
δ

λ̃

∞
∑

k=1

αRk1npz
k +

δ

λ̃

m
∑

k=1

α(I −R)−1
(

R−Rk
)

1npz
k

+
δ

λ̃

∞
∑

k=m+1

α(I −R)−1
(

Rk−m+1 −Rk
)

1npz
k.

Hence, it suffices to show that
m−1
∑

i=1

zi
∞
∑

k=1

Rkzk =
m
∑

k=1

(I −R)−1
(

R−Rk
)

zk

+
∞
∑

k=m+1

(I −R)−1
(

Rk−m+1 −Rk
)

zk. (15)

The RHS of (15) equals
m
∑

k=2

zk
k−1
∑

ℓ=1

Rℓ +
∞
∑

k=m+1

zk
k−1
∑

ℓ=k−m+1

Rℓ, (16)

while the LHS is equal to
m−1
∑

ℓ=1

zℓ
m−ℓ
∑

k=1

Rkzk +

m−1
∑

ℓ=1

zℓ
∞
∑

k=m+1−ℓ

Rkzk, (17)

where the first sum of (17) consists of all terms with the exponent of z smaller than
or equal to m and the second with exponents greater than m. The first sum of (17)
equals

m−1
∑

ℓ=1

m
∑

k=ℓ+1

Rk−ℓzk =

m
∑

ℓ=2

m
∑

k=ℓ

Rk−ℓ+1zk
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=

m
∑

k=2

zk
k
∑

ℓ=2

Rk−ℓ+1 =

m
∑

k=2

zk
k−1
∑

ℓ=1

Rℓ,

which is the first sum of (16). Proceeding similarly with the second sum of (17), we
get that it equals

m−1
∑

ℓ=1

∞
∑

k=m+1

Rk−ℓzk =
∞
∑

k=m+1

zk
k−1
∑

ℓ=k−m+1

Rℓ,

which is the second sum of (16). This finishes the proof. □

Remark: Let Πk,i be the probability that the queue at the cavity contains
k jobs and the job in service is in phase i. Denote Πk =

[

Πk,1,Πk,2, . . . ,Πk,np

]

,
for k > 0. With some additional effort one can generalize the previous theorem
and show that for k = 1, . . . ,m:

Πk =

(

1− λ+
δ

λ̃

)

αRk +
δ

λ̃
α(I −R)−1

(

R−Rk
)

,

and for k > m:

Πk =

(

1− λ+
δ

λ̃

)

αRk +
δ

λ̃
α(I −R)−1

(

Rk−m+1 −Rk
)

,

with R = −λ̃(S − λ̃I + λ̃1np
α)−1.

4.3 Exponential job sizes

If we further restrict to exponential job sizes, Theorem 8 further simplifies as
α = 1 and R = λ̃. In such case we can also analytically invert the Laplace
transform of the response time distribution given by (8).

Theorem 9 Suppose G is exponentially distributed with mean 1. The pdf of the
response time distribution is given by

fR(t) =
e−t(1−λ̃)

λ

(

δ

λ̃m−1(1− λ̃)
−

δλ̃

1− λ̃
+ λ̃(1− λ)

)

−
δe−t

λ(1− λ̃)

m−1
∑

k=1

tk−1(1− λ̃m−k)

(k − 1)!λ̃m−k
. (18)

Proof For exponential job sizes with mean 1 we have Y ∗(s) = G∗(s) = 1/(1 + s),
where the first equality follows from the memorylessness. After some simplifications,
we further get

ξ(G∗(s)) =
(1− λ̃)(1 + s)

1− λ̃+ s
.
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Fig. 2 Mean response time of JUT(mopt), random assignment and the pull policy of [7]
for λ = 0.9 and exponential (top) or hyperexponential (bottom) job sizes.

Then, by using (5), the equation above and λ(1− λ̃)/(δ0m+ λ̃) = 1− λ, we have

π(G∗(s)) =
(1− λ)(1 + s)

1− λ̃+ s
+

δ

1− λ̃+ s

m−1
∑

i=0

(

1

1 + s

)i

.

By putting everything together, it follows that

R∗(s) =
λ̃(1− λ)

λ(1− λ̃+ s)
+

δ

λ

(

λ̃

1− λ̃+ s
+ 1

) m
∑

i=1

(

1

1 + s

)i

=
1

λ(1− λ̃+ s)

(

λ̃(1− λ) + δ

m−1
∑

i=0

(

1

1 + s

)i
)

.

Applying the inverse Laplace transform to R∗(s) gives

fR(t) =
e−t(1−λ̃)

λλ̃m−1

(

δ

m−1
∑

i=0

λ̃i − λ̃m(1− λ)

)

−
δe−t

λ

m−1
∑

k=1

tk−1

(k − 1)!λ̃m−k

m−k−1
∑

i=0

λ̃i,

which equals (18). □

5 Numerical Experiments

In this section we compare the performance of JUT(m) with some existing
policies and look at how sensitive its performance is with respect to the param-
eter m. We mainly focus on the regime where the communication overhead is
well below 1 message per job as simple policies otherwise exist that can achieve
vanishing delays in the large-scale limit [1, 2].

First we compare the performance of JUT(m) with random assignment
and with the pull policy of [7]. We did not include a comparison with the
asynchronous push policy in [6] as this policy is inferior to the pull policy of [7]
as illustrated in Table 1. For the pull policy in [7] we set δ1 = 0, meaning only
idle servers send updates, as this tends to yield the best performance. In Figure
2 we compare the mean response time of the different policies as a function of
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Fig. 3 Variance of the response time of JUT(mopt) and random assignment for λ = 0.9 and
exponential (top) or more variable (bottom) job sizes with E[G2] = 11 and E[G3] = 330.
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Fig. 4 Mean and variance of the response time of JUT(m) as a function of m for λ = 0.8
and exponential job sizes.

λ/δ with λ = 0.9, where δ/λ represents the mean number of communication
overhead messages used per job. As random assignment does not require any
communication overhead, its mean response time is fixed. We consider both
exponential job sizes (in the top plot) and more variable job sizes (in the
bottom plot). For the more variable job sizes we used hyperexponential job
sizes with balanced means such that the squared coefficient of variation (SCV)
equals 10. This implies that E[G2] = 11 as E[G2] = SCV + 1 (when E[G] =
1). Note that the mean response time of JUT(m) and random assignment
only depends on E[G2] (as E[G] = 1), thus the results apply to any job size
distribution for which the SCV equals 10.

The results in Figure 2 clearly show that the mean response time of the
pull policy grows almost linearly in λ/δ and therefore the pull policy only
outperforms random assignment when λ/δ is small enough, meaning when
the communication overhead is large enough. The mean response time of the
JUT(m) policy with m = mopt on the other hand grows much more slowly, is
superior to random assignment for any λ/δ and outperforms the pull policy
unless λ/δ is close to one. We further note that both the pull and JUT(m)
policy perform better compared to random assignment when the job sizes are
more variable.
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Fig. 5 Mean and variance of the response time of JUT(m) as a function of m for λ/δ = 20
and exponential job sizes.

The previous results focused on the mean response time. We now consider
the variance of the response time. As no results for the variance of the response
time where presented in [7] for the pull policy, we only compare the variance of
the response time of JUT(m) with random assignment in Figure 3. We consider
the same two job size distributions as in Figure 2 and again set λ = 0.9. Note
that for JUT(m) and random assignment the variance is only affected by the
first three moments of the job size distribution. We see that JUT(mopt) not
only outperforms random assignment in terms of the mean response time for
any λ/δ, but also significantly reduces the variance in all cases.

In the previous experiments we set m = mopt, we now look at the impact
of m on the mean and variance of the response time of JUT(m). We start
by assuming exponential job sizes and set λ = 0.8. In Figure 4 we consider
λ/δ ∈ {10, 20, 40, 160}. We note that the mean response time is not highly
sensitive to the choice of m, especially when the communication overhead is
small (that is, λ/δ is large). This means that it suffices to get a good estimate
of the arrival rate λ and the first two moments E[G] and E[G2] of the job
size distribution to get near optimal performance as mopt does not depend
on any other job size characteristics. We further note that while the value of
m that minimizes the mean response time does not minimize the variance of
the response time, it does yield a near optimal variance. The value of m that
actually minimizes the variance appears to be somewhat larger than the value
of m that minimizes the mean.

In Figure 5 we consider the same scenario as in Figure 4, but now we fix
λ/δ = 20 and let λ ∈ {0.5, 0.8, 0.95}. The results indicate that the choice of m
appears to become more important as λ increases (for instance simply setting
m = 1 is far from optimal for larger λ). The mean response time of random
assignment (which requires no overhead) equals 1/(1−λ). Hence, the JUT(m)
policy mostly offers a significant reduction over random assignment when λ
is large. Regarding the variance of the response time, we can make the same
remarks as in Figure 4.

In the previous two figures jobs were assumed to have an exponentially
distributed size. We now consider job size distributions that are more variable.
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Fig. 6 Mean and variance of the response time of JUT(m) as a function of m for λ/δ = 20
and λ = 0.8.

As before we consider hyperexponential jobs sizes with balanced means such
that the squared coefficient of variation (SCV) equals 1, 5 and 10. This implies
that E[G2] ∈ {2, 6, 11} and E[G3] ∈ {6, 90, 330}. Figure 6 depicts the results
for λ/δ = 20 and λ = 0.8. Similar trends are observed for the three SCV values
considered. We further note that the mean response time becomes insensitive
to the job size distribution when m = λ/δ as the mean response time reduces
to 1 + (λ/δ − 1)/2 in such case according to (6).

6 Conclusion

In this paper we introduced a novel hyper-scalable load balancing policy, called
JUT(m), where m is an input parameter. We studied the performance of the
JUT(m) policy in a large-scale system using the queue at the cavity approach
and demonstrated the accuracy of this approach using simulation.

Closed form results were presented for the generating function of the queue
length distribution and the Laplace transform of the response time distribu-
tion. Using these results we derived a simple closed form solution for the mean
response time and the value of m that minimizes the mean response time.
Numerical results illustrate that the JUT(m) policy is superior to existing poli-
cies when the communication overhead is well below one message per job and
outperforms random assignment irrespective of the communication overhead
allowed. The performance gain achieved also increases as the job sizes become
more variable.

Convergence towards the queue at the cavity for exponential job sizes and
bounded queues was discussed in Appendix A, where the remaining technical
challenges were outlined to prove weak convergence of the stationary measures
of the stochastic systems as the number of servers N tends to infinity.
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A On the convergence to the queue at the
cavity

In this appendix we make a number of observations related to the convergence
to the queue at the cavity for exponential job sizes and finite buffers of size B.
The results in this section can also be generalized to phase-type distributed
job sizes (which complicates notations). In (1*) we show that the stochastic
system consisting of N servers is a density dependent population process as
defined by Kurtz [17]. In (2*) we present an expression for the drift function,
which is not continuous everywhere, and define a differential inclusions based
on the drift function. Leveraging the framework in [18] allows us to show that
the sample paths of the stochastic systems converge to the set of solutions of
the differential inclusion over finite time scales as N tends to infinity. If the
differential inclusion has multiple solutions, the system may converge to any
solution of the DI, depending on its random innovations. In (3*) we argue
that there exists a solution of the differential inclusion that makes a so-called
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sliding motion in a certain region of the state space and this region contains a
fixed point that corresponds to our queue at the cavity.

Given the above three results, weak convergence of the steady state mea-
sures to the Dirac measure of the fixed point in (3*) follows due to [18, Section
4.2] provided that we can show that the trajectory of any solution of the differ-
ential inclusion converges to this fixed point. In other words it suffices to show
that the fixed point mentioned in (3*) is a global attractor of any solution to
the differential inclusion in order to exchange the limits of t and N . This proof
of global attraction is still missing. We comment on a possible approach at the
end of this section.

(1*) We first show that the stochastic system consisting of N servers with
exponential service times and finite buffers of size B is a density dependent

population process. Define the variables Y
(N)
i,j (t), for 0 ≤ j ≤ i ≤ B as the

fraction of the N servers that have queue length j and for which the dispatcher
has an estimated queue length equal to i ≥ j at time t. Clearly, due to the

exponential job sizes the variables Y
(N)
i,j (t) form a continuous time Markov

chain on the state space S(N) = {yi,j | 0 ≤ j ≤ i ≤ B,
∑

i,j yi,j = 1, Nyi,j ∈ N}

⊆ Z
(B+1)(B+2)/2/N . This Markov chain is a density dependent population

process if there exists a finite set L ⊂ Z
(B+1)(B+2)/2 (with 0 ̸∈ L), such that

for each ℓ ∈ L and y ∈ S(N), the rate of transition from y to y + ℓ/N is of
the form Nβℓ(y) ≥ 0, where βℓ(·) does not depend on N . Let e(i,j) ∈ S(N)

be the vector with yi,j = 1 (and zeros elsewhere). For the JUT(m) system we
have three types of transitions. (1) We can have an arrival that is assigned to
a queue with length j and estimated length i. These transitions are denoted
as ℓa(i,j) = −e(i,j)+ e(i+1,j+1) (for i < B) as they change the queue state from
(i, j) to (i+1, j+1). Let κ(y) be the minimum of m and the smallest estimated
queue length when the system is in state y, that is, κ(y) = min(m,min{i |
∃j : yi,j > 0}). As the job arrivals occur at rate λN and a job is assigned to
a queue with the smallest estimated queue length if κ(y) < m and at random
otherwise, we have

βℓa(i,j)
(y) =







0 i ̸= κ(y) < m
λyi,j/

∑

s yi,s i = κ(y) < m
λyi,j κ(y) = m

(2) A service completion can occur in a server with length j and estimated
queue length i. We denote these transitions as ℓs(i,j) = −e(i,j) + e(i,j−1) for
i ≥ j > 0. As service completions do not depend on other queues we have
βℓs(i,j)(y) = yi,j due to the exponential service times with mean 1. (3) The
last type of transition that can occur is an update from an idle server, which
changes its state from (i, 0) to (0, 0) for i > 0. We denote these as ℓu(i,0) =
−e(i,0) + e(0,0). As such updates occur at rate δ0 in any idle queue, we have
βℓu(i,0)

(y) = δ0yi,0. The functions βℓ(·) do not depend on N , therefore the
Markov chain is a density dependent population process.
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(2*) The drift function f(y), with components f(i,j)(y) in our case, of a
density dependent population process are defined as f(y) =

∑

ℓ∈L βℓ(y)ℓ. Let

ui =
∑i

j=0 yi,j . Given the above discussion on the transitions in L, we have

f(i,j)(y) = −1[j > 0]yi,j + 1[i > j]yi,j+1

− 1[0 = j < i]δ0yi,0 + δ01[i = j = 0]
∑

s>0

ys,0

− 1[i < m]
λ

ui
yi,j1[κ(y) = i] + 1[0 < j ≤ i ≤ m]

λ

ui−1
yi−1,j−11[κ(y) = i− 1]

− 1[i ≥ m]λyi,j1[κ(y) = m] + 1[i > m, j > 0]λyi−1,j−11[κ(y) = m],
(19)

where 1[A] = 1 if A is true and 1[A] = 0 otherwise. The first two terms are due
to the service completions, the next two due to the updates and the remaining
ones are a result of the arrivals. Note that the 1[i ≥ m] and 1[i > m] conditions
on the last two terms can be dropped as yi,j = 0 for i < m when κ(y) = m.
Further, for ease of presentation the changes needed due to having a finite B
are omitted.

When the drift function f(y) is Lipschitz continuous Kurtz showed that
the sample paths of the stochastic system converge to the solution of the set
of ODEs given by dy(t)/dt = f(y(t)) over any finite time interval [0, T ]. In our
case the drift function f is clearly not continuous due to the presence of the
κ(·) function. The result of Kurtz was however generalized in [18, Theorem
5] to systems with drifts that contain discontinuities. More specifically, define
the differential inclusion (DI) dy(t)/dt ∈ F (y(t)) with y(0) = y0 where F (y)
is the convex closure of the set of all f(y) values that can be obtained as
f(y) = limn f(yn) with limn yn = y. Let GT (y0) be the set of solutions to
the DI on [0, T ] with y(0) = y0, where a solution is an absolutely continuous
function y such that df(y)/dt ∈ F (y(t)) almost everywhere. [18, Theorem 5]
then implies that

inf
y∈GT (y0)

sup
t∈[0,T ]

∥Y (N)(t)− y(t)∥ → 0,

in probability provided that supy
∑

ℓ∈L βℓ(y) < ∞ and
∑

ℓ∈L ∥ℓ∥ supy βℓ(y) <
∞. Both conditions hold in our case as L is finite and supy βℓ(y) ≤ max(1, δ0).

To define the set valued function F (y), we introduce the vectors wk(y) for
k = 0, . . . , κ(y)− 1 with (i, j)-th component given by:

wk
(i,j)(y) = −1[j > 0]yi,j + 1[i > j]yi,j+1

− 1[i > j = 0]δ0yi,0 + δ01[i = j = 0]
∑

s>0

ys,0

− λ1[k = i] + λ1[j > 0, k = i− 1]. (20)
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Looking at (19) one finds that the set F (y) is defined as the convex closure
of the set {w0(y), . . . , wκ(y)−1(y), f(y)}. When κ(y) = m this means that F (y)
contains all functions f̃(y), with components f̃(i,j)(y) of the form

f̃(i,j)(y) =− 1[j > 0]yi,j + 1[i > j]yi,j+1

− 1[i > j = 0]δ0yi,0 + δ01[i = j = 0]
∑

s>0

ys,0

− 1[i < m]λαi + 1[0 < j ≤ i ≤ m]λαi−1

− λyi,jαm + 1[j > 0]λyi−1,j−1αm, (21)

with αi ∈ [0, 1] and
∑m

i=0 αi = 1.
(3*) Suppose now that we are in a region of the state space where κ(y) = m

and q0(y) =
∑

i≥0 yi,0 ≤ 1 − λ. In order to remain in this part of the state
space by making a so-called sliding motion, the drift of y0,0 should be zero,
such that y0,0 remains zero. By (21) and the fact that yi,j = 0 for i < m when
κ(y) = m shows that α0 = δ0q0(y)/λ. Further, if we demand that yi,j remains
zero for 0 < i < m, then (21) indicates that αi = αi−1. As the sum of all α’s
equals one, we have αm = 1− δ0q0(y)m/λ ≤ 1 when q0(y) ≤ 1− λ due to our
assumption throughout the paper that λ > δm and the fact that δ0 = δ/(1−λ).
If we now focus on the region with q0(y) = 1 − λ during this sliding motion,
we find that αi = δ/λ for 0 < i < m and αm = 1 − δm/λ = λ̃/λ. When we
plug in the above α values in (21), we find

f̃(i,j)(y) =− 1[j > 0]yi,j + 1[i > j]yi,j+1

− 1[i > j = 0]δ0yi,0 + δ01[i = j = 0]
∑

s>0

ys,0

− 1[i = j < m]δ + 1[0 < j = i ≤ m]δ

− λ̃yi,j + 1[j > 0]λ̃yi−1,j−1,

=− 1[j > 0]yi,j + 1[i > j]yi,j+1

− 1[i > j = 0]δ0yi,0 + 1[i = j = m]δ0(1− λ)

− λ̃yi,j + 1[j > 0]λ̃yi−1,j−1, (22)

where the second equality is due to
∑

s>0 ys,0 =
∑

s≥m ys,0 = 1 − λ = δ/δ0
when κ(y) = m.

If we sum these drifts over i and use the fact that
∑

i>0 yi,0 = 1−λ, we find

∑

i≥j

f̃(i,j)(y) =− 1[j > 0]yj + yj+1 − 1[j = 0]δ0(1− λ)

+ 1[j = m]δ0(1− λ)− λ̃yj + 1[j > 0]λ̃yj−1, (23)

where yj =
∑

i≥j yi,j . Recall now that the queue at the cavity for the JUT(m)
policy with exponential job sizes is defined as an M/M/1 queue with arrival
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rate λ̃ = λ − δm, except that when the queue is empty there are also batch
arrivals of size m that occur at rate δ0 = δ/(1 − λ) such that the probability
that the queue is idle is given by 1− λ. By demanding that

∑

i≥j f̃(i,j)(y) = 0
and by replacing 1 − λ by y0, we obtain the balance equations of such an
M/M/1 queue given by

y0(δ0 + λ̃) = y1,

ym(1 + λ̃) = λ̃ym−1 + ym+1 + y0δ0

yj(1 + λ̃) = yj+1 + λ̃yj−1,

for m ̸= j > 0.
This completes items (1*) to (3*). To prove convergence of the stationary

measures, we must show that the fixed point of (3*) is a global attractor for
any solution of the differential inclusion. This could be done by first showing
that there is a unique solution and subsequently showing that any trajectory
of this solution (for any starting point y0, including all points with κ(y0) < m)
converge to this fixed point. A sufficient condition such that we have at most
one solution is that the set valued function F (y) is one-sided Lipschitz. This
means that for any y, y′ ∈ R

(B+1)(B+2)/2 and any z ∈ F (y), z′ ∈ F (y′) we have

⟨y − y′, z − z′⟩ ≤ L∥y − y′∥2,

for some constant L, where ⟨x, y⟩ is the inner product. The following example
indicates that the set valued function F (y) that characterizes our differential
inclusion is not one-sided Lipschitz. Let m = 1 and let y be such that y0,0 =
ϵ, y1,1 = 1 − ϵ which implies that the only non-zero f(y) components are
f0,0(y) = −λ, f1,0(y) = 1 − ϵ and f1,1(y) = λ + ϵ − 1. Let y′ be such that
y′1,1 = 1 − 2ϵ and y′2,1 = 2ϵ, then the non-zero components of f(y′) are given
by f1,0(y

′) = 1 − 2ϵ, f1,1(y
′) = −1 + 2ϵ − λ, f2,2(y

′) = λ, f(2,0)(y
′) = 2ϵ and

f(2,1)(y
′) = −2ϵ. As f(y) ∈ F (y) and ∥y − y′∥2 = O(ϵ2), we must have that

⟨y − y′, f(y)− f(y′)⟩ = O(ϵ2). However,

⟨y − y′, f(y)− f(y′)⟩ = ϵ(f(0,0)(y)− f(0,0)(y
′)) + ϵ(f(1,1)(y)− f(1,1)(y

′))

− 2ϵ(f(2,1)(y)− f(2,1)(y
′))

= −ϵλ+ ϵ(2λ− ϵ)− 2ϵ(−2ϵ) = λϵ+O(ϵ2).

Hence, F (y) is not one-sided Lipschitz and the uniqueness of the solution of
the differential inclusion must be proven in some other manner. One possible
approach could be to find a change of variables such that the set valued drift
does become one-sided Lipschitz. Once uniqueness of the solution is estab-
lished, one can try to use monotonicity arguments to prove global attraction
of the fixed point in (3*).
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B Calculation of second (raw) moment of the
response time

In this appendix we derive a formula for the second (raw) moment E[R2]
of the response time, which combined with E[R] yields a formula for the
variance V ar[R]. We have E[R2] = R∗′′(0). By using (8) together with
G∗′(0) = −E[G] = −1, −Y ∗′(0) = E[Y ] = E[G2]/2 and G∗′′(0) = E[G2], we
obtain

E[R2] = λ̃Y ∗′′(0)

+
λ̃

λ

(

π′′(1) + 2π′(1)E[G2] + (1− λ)E[G2]
)

+
δ

λ

(

E[G2]
m(m+ 1)

2
+

(m− 1)m(m+ 1)

3

)

.

One readily checks that Y ∗′′(0) = E[G3]/3 and we already know that π′(1) =
λE[R]. From (4) we have

π′′(1) =
λ

λ̃
(β′′(1) + 2β′(1)ξ′(1) + ξ′′(1))

−
δ(m− 2)(m− 1)m

3λ̃
.

Making use of (5) one finds

β′′(1) =
δ

λ(1− λ̃)

m−1
∑

i=1

i(i− 1) =
δ(m− 2)(m− 1)m

3λ(1− λ̃)
.

We still need to find ξ′′(1). Denote respectively by R̃ and W the response and
waiting time of an ordinary M/G/1 queue with arrival rate λ̃. By using [13,
(5.30)], we get ξ′′(1) = λ̃2E[R̃2]. We have E[R̃2] = E[(W + G)2] = E[W 2] +

2E[W ]E[G]+E[G2]. As E[G] = 1 and E[W ] = λ̃E[G2]

2(1−λ̃)
, we obtain 2E[W ]E[G]+

E[G2] = E[G2]/(1− λ̃). E[W 2] is given by [19, p.256]:

E[W 2] =
λ̃2E[G2]2

2(1− λ̃)2
+

λ̃E[G3]

3(1− λ̃)
.

It follows that

ξ′′(1) =
λ̃4E[G2]2

2(1− λ̃)2
+

λ̃3E[G3]

3(1− λ̃)
+

λ̃2E[G2]

1− λ̃
.
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Putting everything together, we get

E[R2] =
λ̃E[G3]

3
+

δλ̃(m− 2)(m− 1)m

3λ(1− λ̃)

+ λ̃
δm(m− 1)

λ(1− λ̃)

(

1 +
λ̃E[G2]

2(1− λ̃)

)

+
λ̃4E[G2]2

2(1− λ̃)2
+

λ̃3E[G3]

3(1− λ̃)
+

λ̃2E[G2]

1− λ̃

+ 2λ̃E[G2]

(

1 +
λ̃E[G2]

2(1− λ̃)
+

δ

λ

m(m− 1)

2(1− λ̃)

)

+
λ̃(1− λ)

λ
E[G2]

+
δ

λ

(

E[G2]
m(m+ 1)

2
+

(m− 1)m(m+ 1)

3

)

.
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