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Abstract  1 

The in vitro production of equine embryos via ovum pick-up (OPU) and intracytoplasmic 2 

sperm injection (ICSI) has increased rapidly. There is a marked effect of the individual mare on the 3 

outcome of OPU-ICSI, but little is known about the influence of the mare’s health condition. This 4 

study aimed to investigate the potential associations between the concentrations of interleukin-6 (IL-5 

6), reactive oxygen metabolites (d-ROMs), and biological antioxidant potential (BAP) in serum of 6 

oocytes’ donor mares and the subsequent embryonic development. Just before OPU, a blood sample 7 

was collected from 28 Warmblood donor mares, that were subjected to a routine OPU-ICSI program. 8 

The serum concentrations of IL-6, d-ROMs, and BAP were assayed photometrically. The maturation, 9 

cleavage and blastocyst rate as well as the kinetics of blastocyst development were recorded. The 10 

average blastocyst rate was 24.68±5.16 % and the average concentrations of IL-6, d-ROMs, and BAP 11 

were 519.59±157.08 pg/mL, 171.30±4.55 carratelli units (UCARR), and 2711.30±4.55 µmol/L, 12 

respectively. Serum concentrations of IL-6, d-ROMs, and BAP were not significantly different 13 

between mares yielding at least one blastocyst (552.68±235.18 pg/mL, 168.36±5.56 UCARR, and 14 

2524.80±159.55 µmol/L) and mares yielding no blastocysts (468.47±179.99 pg/mL, 175.85±7.89 15 

UCARR, and 2999.50±300.13 µmol/L, respectively). Serum concentrations of d-ROMs were 16 

significantly lower in mares with fast growing (at day 7-8 post ICSI; 148.10±8.13 UCARR) compared 17 

to those with slow growing blastocysts (≥ day 9 post ICSI; 179.41±4.89 UCARR; P= 0.003). Taken 18 

together, the serum concentration of IL-6, d-ROMs, and BAP do not determine the mare’s ability to 19 

produce blastocysts in vitro. Although it may be questioned whether a single sample is representative 20 

of the mare’s health status, changes in serum metabolites related to oxidative stress at the time of 21 

oocyte retrieval were linked to a delayed blastocyst development in a clinical OPU-ICSI outcome. 22 

 23 

 24 

 25 
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1. Introduction 27 

Ovum pick-up (OPU) and intracytoplasmic sperm injection (ICSI) are substantially used to 28 

produce equine embryos in vitro [1-3]. The OPU-ICSI program is multi-advantageous and is as 29 

effective as embryo flushing when measured by the number of day 45 pregnant recipients per mare 30 

[4]. Regardless the stage of the ovarian cycle, follicular health and season, OPU-ICSI allows the 31 

production of a high number of foals, even from old, subfertile [5], and euthanized mares [6]. The 32 

success rate of OPU-ICSI is mainly evaluated by the mare’s ability to produce a blastocyst and by the 33 

rate of (transferable) blastocysts [2], which are repeatable for an individual mare between two 34 

consecutive sessions [7].   35 

There are several known mare related factors that can affect the success rate of OPU-ICSI program. 36 

Aged mares (> 20 y)  have a relatively low number of ovarian follicles [8]. As such, the number of 37 

embryos per OPU session declines in old mares, but the mare’s age does not have a significant effect 38 

on the developmental competence of the oocytes [7, 9]. A second factor which markedly affects the 39 

success rate of OPU-ICSI is the mare’s breed [2]. The oocytes of Arabian donor mares show 40 

significantly lower cleavage and blastocyst rates compared to those of Warmblood mares [10]. Still, 41 

maternal age and breed are constant factors, and they cannot explain short-term fluctuations in the 42 

success rates of OPU-ICSI for an individual mare. The relationship between maternal health, oocyte 43 

quality, and OPU-ICSI outcome has been scarcely investigated in mares. On the one hand, it has been 44 

shown that the physiological status (transitional vs. cycling; [7, 11]) and the presence of reproductive 45 

disorders [11] are not significantly affecting the blastocyst rate. On the other hand, mares engaged in 46 

intense sporting activities [11] and obese mares [12, 13] display a decreased oocyte developmental 47 

competence in vitro. Nevertheless, more research is needed to study the impact of the mare’s health 48 

condition on the success rate of OPU-ICSI.  49 

Female gametes are vulnerable to oxidative stress [14]. Estimation of the systemic oxidative stress 50 

index (OSI), measured by derivatives of reactive oxygen metabolites (d-ROMs) and biological 51 
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antioxidant potential (BAP) has been well established in women undergoing in vitro fertilization [15, 52 

16]. There is a direct association between serum and follicular fluid values of d-ROMs and OSI in 53 

women [17], where higher values in serum were accompanied with abnormal fertilization, while 54 

increased values in follicular fluid were associated with diminished embryo quality [18]. In horses, we 55 

recently showed that the values of OSI in serum and follicular fluid are correlated too [19]. 56 

Pro-inflammatory cytokines play a vital role in maintaining the ovarian physiology during 57 

folliculogenesis, oocyte maturation and ovulation [20]. There is a strong association between serum 58 

and follicular fluid concentrations of IL-6 both in women [21] and mares [19]. Excess IL-6 has been 59 

associated with decreased estradiol synthesis and aromatase activity in granulosa cells of women in 60 

vitro [22]. Higher IL-6 concentrations inhibited the expression of luteinizing hormone receptor mRNA 61 

during the maturation and differentiation of cultured rat granulosa cells [23]. Higher follicular fluid 62 

IL-6 values in women were associated with decreased clinical pregnancy rate [24]. In mares, higher 63 

concentrations of IL-6 within the preovulatory follicle have been correlated with diminished oocyte 64 

quality [25].  65 

The relationship between maternal inflammation or oxidative stress, and the OPU-ICSI outcome 66 

has not been previously investigated in mares. We hypothesize that there is an association between the 67 

serum concentrations of oxidative stress markers (d-ROMs, BAP, and OSI) and the pro-inflammatory 68 

cytokine IL-6 at the time of oocytes retrieval (OPU) and the oocyte developmental competence in 69 

mares. Therefore, the objective of the present study was to investigate the associations between the 70 

serum concentrations of d-ROMs, BAP, OSI, and IL-6 and the OPU-ICSI outcome in mares.  71 

2. Materials and methods 72 

For this study, no specific samples were acquired from or extra procedures were performed with 73 

the mares included in this study as analyses were performed during routine clinical OPU-ICSI services. 74 

For this reason, no extra ethical clearance was necessary for the present study. 75 
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2.1. Animals 76 

Twenty-eight Warmblood mares, with a body condition score ranged between 3 to 6 [26] and aged 77 

2-23 years old were used between mid-January and mid-March 2022. These mares regularly 78 

participated in the OPU-ICSI program at the equine reproduction clinic, Faculty of Veterinary 79 

Medicine, Ghent University. 80 

2.2. OPU procedures 81 

Just before conducting the OPU and after blood sampling, a preoperative regime [9] of 82 

benzylpenicillin (20000 IU/ kg intramuscular; Penikel®, Kela, Sint Niklaas, Belgium) and flunixin 83 

meglumin (1.1 mg/ kg intravenous; Wellicox®, Ceva Santé Animale, Naaldwijk, The Netherlands) was 84 

used. During the OPU, detomidine hydrochloride (0.01 mg/ kg intravenous; Domidine®, Eurovet 85 

Animal Health BV, Bladel, The Netherlands) and butorphanol tartrate (0.01 mg/ kg intravenous; 86 

Dolorex®, MSD Animal Health, Sint-Lambrechts-Woluwe, Belgium) were used for sedation. To 87 

subside intestinal contractions, N-butylscopolammonium bromide (0.3 mg/ kg intravenous; 88 

Buscopan®, Boehringer Ingelheim, Brussel, Belgium) was injected. Urinary bladder catheterization 89 

and epidural anesthesia were not applied. After proper aseptic preparation for the perineal region, the 90 

transvaginal transducer (7.5 MhZ linear probe, MyLabOne, Esaote, Genoa, Italy; [9]) equipped by a 91 

12-G double-lumen needle attached via a double way tube system to a prewarmed collection bottle of 92 

flushing medium (Equiplus®, Mintube, Tiefenbach, Germany). All visible antral follicles were 93 

punctured, aspirated, scraped, and flushed 8 times.  94 

2.3. In vitro embryo production 95 

The collection of oocytes [9] was carried out under sterile conditions using a laminar air flow 96 

equipped with a stereomicroscope (Olympus SZX7®, Olympus Corp., Japan). The whole contents of 97 

the collection bottle (follicular fluid, flushing medium, and scrapped follicular cells) were filtrated 98 

through a sterile 70 µm filter (Cell strainer®, BD Biosciences, Falcon, Erembodegem, Belgium) and 99 

the COCs were recovered from the filtrated contents in medium 199 with Hank’s salts (Gibco, Life 100 
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Technologies, Merelbeke, Belgium) supplemented with 10% fetal bovine serum (FBS; Gibco). 101 

According to the schedule, the recovered COCs were either directly transferred to maturation medium 102 

(medium 199 with Earl’s salts (Gibco) containing 10% (v/v) FBS (Gibco), 9.4 µg/mL follicle 103 

stimulating hormone, and 1.88 g/ml luteinising hormone (Stimufol, Reprobiol, Ouffet, Belgium)) or 104 

were kept overnight in a commercial embryo holding medium (Emcare®, Agtech, Zulte, Belgium) at 105 

room temperature (~22 °C) prior to maturation. In vitro maturation was carried out in groups of 2-18 106 

COCs in 100-500 µl maturation medium under oil (CooperSurgical, Venlo, The Netherlands) at 38.2 107 

°C in 5% CO2 containing air for 28-32 h. A small piece of straw with frozen semen was thawed in 1 108 

mL G-MOPS (38.2 °C ; Vitrolife, Londerzeel, Belgium) and centrifuged twice (400 × g/ 3 min at 109 

room] temperature; ~22 °C). After the first centrifugation, the supernatant was discarded and the pellet 110 

was re-suspended in 1 mL G-MOPs. After the second centrifugation, the supernatant was discarded 111 

and the pellet was resuspended in 200 µl G-MOPS. Immediately before ICSI, a small amount of the 112 

resuspended sperm was added to a 5 µl droplet of 7% polyvinylpyrrolidone (CooperSurgical, Venlo, 113 

The Netherlands). Intracytoplasmic sperm injection, in vitro culture of presumptive zygotes, and the 114 

evaluation of embryonic development were performed until day 13 post ICSI [9].  115 

2.4. Blood collection and laboratory analyses 116 

A single blood sample per mare was collected from the jugular vein into vacutainer tubes with clot 117 

activator (BD Vacutainer®, BD-Plymouth, UK). To separate the serum, samples were centrifuged at 118 

2460 × g for 20 min at 4 °C. Serum was aliquoted into sterile 2 ml Eppendorf tubes and stored at –80 119 

°C until further biochemical analysis.  120 

Colorimetric kits (Diacron®; Diacron International, Italy) were used to measure the serum 121 

concentrations of d-ROMs and BAP, according to the manufacturer’s guidelines [19]. A Multiskan 122 

GO spectrophotometer (Thermo Fisher Scientific, Finland; at 37° C) was used to estimate the 123 

photometric measurements for both kits at 505 nm. The coefficient of variation was 1.72 % for d-124 

ROMs and 2.32 % for BAP. The lowest limit of detection for d-ROMs and BAP was 11 UCARR and 125 
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150 µmol/L, respectively. The OSI was determined from the concentrations of d-ROMs and BAP 126 

using the formula d-ROMs/BAP × 100 [27]. 127 

Serum concentrations of IL-6 were measured spectrophotometrically using an equine IL-6 ELISA 128 

kit (Nori®, Genorise Scientific, USA), according to the manufacturer’s guidelines. A Multiskan GO 129 

spectrophotometer (Thermo Fisher Scientific, Finland; room temperature) was used to determine the 130 

optical density at 450 and 540nm, which was followed by a wavelength correction. The average 131 

coefficient of variation was 6.49 % and the lowest detection limit was 16 pg/mL. 132 

2.5. Study design  133 

Blood sampling was performed just before OPU. Immediately after OPU, the cumulus-oocyte 134 

complexes (COCs) were recovered, matured, and fertilized by ICSI.  135 

At each OPU-ICSI session, (a) the number of aspirated follicles, (b) the number of recovered 136 

oocytes, (c) the recovery rate (b/a ×100), (d) the number of mature oocytes, (e) the maturation rate (d/b 137 

×100), (f) the number of cleaved presumptive zygotes, (g) the cleavage rate (f/d ×100), (h) the number 138 

of produced blastocysts, (i) the blastocyst rate (h/d ×100), (j) the proportion of the cleaved zygotes that 139 

developed to blastocysts (h/f×100), (k) the time of blastocyst formation, and (l) the serum 140 

concentrations of d-ROMs, BAP, OSI, and IL-6 were recorded. The mares were divided into different 141 

groups according to (1) their ability to produce blastocysts: blastocyst producing (≥1 blastocyst; n=17) 142 

and non-producing (0 blastocyst; n=11) mares, (2) the required time for embryonic development: 143 

mares with fast growing (first blastocyst developed at day 7-8 post ICSI; n=6) and mares with slow 144 

growing (first blastocyst developed at day ≥ 9 post ICSI; n=11) embryos, and (3) age: young (≤ 14 y), 145 

middle-aged (15-19 y), and old (≥ 20 y) mares [28]. 146 

2.6. Statistical analyses 147 

The assessment of the normality of data was performed using a Shapiro-Wilk test. The mean values 148 

of d-ROMs, BAP, and OSI, but not IL-6, were normally distributed. For the blastocyst producing 149 
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mares, Spearman’s correlation coefficients between the blastocyst rate, the proportion of cleaved 150 

zygotes that developed to blastocysts, and the serum concentrations of d-ROMs, BAP, OSI, and IL-6 151 

were calculated. Differences in serum parameters between groups based on the mare’s ability to 152 

produce embryos (blastocyst producing vs. non-producing mares) and the onset of embryonic 153 

development (fast vs. slow growing blastocysts) were determined using the independent t-test or 154 

Mann-Whitney U-test. Differences between groups based on maternal age were explored using Welch 155 

one-way ANOVA followed by Games-Howell or Kruskal-Wallis test. The data were analyzed using 156 

the statistical package for social science SPSS® (SPSS Inc., version 16.0, Chicago, IL. USA), and a P- 157 

value <0.05 was considered significant. Data are presented as mean ±SEM. 158 

3. Results 159 

The mean ±SEM values of all the studied parameters are presented in Table 1. There were no 160 

significant correlations between the blastocyst rate, the proportion of cleaved zygotes that produced 161 

blastocysts, and the serum concentrations of d-ROMs, BAP, OSI, and IL-6.  162 

As shown in Table 2, serum concentrations of BAP were significantly higher in old mares 163 

(3544.60±218.07 µmol/L) compared to the young ones (2461.40±133.56 µmol/L). Values of OSI were 164 

significantly increased in young mares (7.41±0.52) compared to old ones (4.95±0.24). Serum 165 

concentrations of d-ROMs and IL-6 were not significantly different between young, middle-aged, and 166 

old mares.  167 

Serum concentrations of d-ROMs, BAP, OSI, and IL-6 were not significantly different between 168 

the blastocyst producing  and non-producing mares (Table 3). Serum concentrations of d-ROMs (Table 169 

4) were significantly (P= 0.003) higher in mares with slow growing blastocysts (179.41±4.89 UCARR) 170 

compared to those with fast growing ones (148.10±8.13 UCARR).  171 

 172 

 173 
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4. Discussion 174 

In this study, we found an association between the serum concentrations of oxidative stress markers 175 

(d-ROMs, BAP, and OSI) and the pro-inflammatory cytokine IL-6 at the time of OPU and kinetics of 176 

embryo development. More specifically, high concentrations of d-ROMs at the time of OPU are linked 177 

to delayed embryonic development in mares. This may point out that a disturbance in maternal health 178 

related to oxidative stress can affect the OPU-ICSI outcome in mares.  179 

Overall, the OPU-ICSI results in this study were consistent with those reported previously [2, 9]. 180 

Serum concentrations of d-ROMs, BAP, and IL-6 were within the previously reported range in 181 

Warmblood mares during the non-breeding season [19]. In agreement with literature, ageing had no 182 

effect on the serum concentrations of d-ROMs in horses [29]. In our study, the serum concentrations 183 

of BAP were significantly higher and the values of OSI were significantly lower in old mares compared 184 

to young ones. In humans, the total antioxidant capacity in serum also increases with advancing age, 185 

which may be related to diet and daily routine [30]. The effect of age on the serum antioxidant status 186 

in horses is not clear. Some studies did not report any significant effect of ageing on the serum total 187 

antioxidant status [31] and BAP [29] in horses. On the other hand, Andriichuk et al. [32] found that 188 

physical exercise increases the plasma concentrations of thiobarbituric acid reactive substrates, 189 

catalase, and glutathione reductase in Warmblood horses. While our study indicates an effect of ageing 190 

on oxidative stress, further influence of diet and physical activity remains to be determined.   191 

Although oxidative stress markers in serum did not determine the mare’s ability to produce 192 

embryos, mares with slow growing blastocysts showed significantly higher serum concentrations of 193 

d-ROMs. In a previous study, we found that serum and follicular fluid values of OSI (d-ROMs/BAP 194 

× 100) are directly correlated in Warmblood mares [19]. Speed of embryo development affects both 195 

pregnancy and foaling rates in mares. Ducheyne et al. [33] found that fast growing embryos (formed 196 

before day 9 post ICSI) yield significantly higher pregnancy rates compared to the slow growing ones 197 
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(formed after day 9 post ICSI). Foaling rate was significantly higher for day 7 and day 8 embryos 198 

(71.7% and 53.3%) compared to day 9 and day 10 embryos (38.5% and 25%; [34]). In mammals, the 199 

oocyte developmental competence is linked to maternal health [35]. Maternal oxidative stress is 200 

increasing the concentrations of reactive oxygen species (ROS) in oocytes, which reduces their 201 

viability [36, 37]. Oocytes with higher levels of ROS show delayed two-cell, four-cell, and blastocyst 202 

development in mice [36, 38]. Oxidative stress in serum and follicular fluid significantly decreases the 203 

clinical pregnancy rate in women [15, 39]. Higher values of d-ROMs in follicular fluid of women have 204 

been associated with abnormal fertilization and production of bad quality embryos [18]. Here, we 205 

hypothesize that the higher serum concentrations of d-ROMs may be reflected by increased d-ROMs 206 

in the follicular fluid, which may affect oocytes quality, resulting in delayed embryo development.  207 

More studies are necessary to further explore the effect of oxidative stress and antioxidants on the 208 

oocyte developmental competence in horses. 209 

In this study, serum concentrations of IL-6 neither affected the mare’s ability to produce embryos 210 

nor the blastocyst rate. There is a positive association between serum and follicular fluid concentrations 211 

of IL-6 in mares [19, 25]. In the follicle, IL-6 is responsible for extracellular matrix formation and 212 

stabilization, which regulates cumulus cells expansion and increases the oocyte competence [40]. 213 

Several studies have been conducted, but there is no conclusive answer regarding the role of IL-6 in 214 

oocytes and subsequent embryos. Higher concentrations of IL-6  in FF can either increase [41] or 215 

decrease [24] the pregnancy outcome in women. Supplementation of culture media with IL-6 improved 216 

fetal development of IVF-embryos in cows [42] and supported embryonic compaction, blastulation 217 

and hatching in mice [43]. The expression of IL-6 and IL-6 signal transducer genes in granulosa cells 218 

was upregulated with advancing maternal age in mares [28]. In women with infertility, there was a 219 

downregulation in the expression of IL-6 signal transducer and IL-6 receptor genes in granulosa cells 220 

of older patients [44]. However, maternal age did not affect the concentrations of IL-6 in mares’ serum 221 
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(this study)  and women’s FF [45]. Therefore, it seems that the role of IL-6 in oocytes and embryos is 222 

species-specific and dose-dependent. 223 

5. Conclusions 224 

In conclusion, mares with higher serum concentrations of d-ROMs at the time of oocyte retrieval 225 

(OPU) show a delayed embryonic development. More studies should be conducted to investigate 226 

underlying mechanisms and potential therapy by antioxidants supplementation during the in vitro 227 

maturation of the oocytes collected from mares with oxidative stress. The measured ranges of d-ROMs, 228 

BAP, and IL-6 concentrations in serum at the time of OPU cannot be used to predict the mare’s ability 229 

to produce embryos in vitro.      230 
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