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Abstract: An investigation was carried out to examine the use of national Xpert MTB/RIF data
(2013–2017) and GIS technology for MTB/RIF surveillance in South Africa. The aim was to exhibit
the potential of using molecular diagnostics for TB surveillance across the country. The variables anal-
ysed include Mycobacterium tuberculosis (Mtb) positivity, the mycobacterial proportion of rifampicin-
resistant Mtb (RIF), and probe frequency. The summary statistics of these variables were generated
and aggregated at the facility and municipal level. The spatial distribution patterns of the indicators
across municipalities were determined using the Moran’s I and Getis Ord (Gi) statistics. A case-
control study was conducted to investigate factors associated with a high mycobacterial load. Logistic
regression was used to analyse this study’s results. There was striking spatial heterogeneity in the
distribution of Mtb and RIF across South Africa. The median patient age, urban setting classification,
and number of health care workers were found to be associated with the mycobacterial load. This
study illustrates the potential of using data generated from molecular diagnostics in combination
with GIS technology for Mtb surveillance in South Africa. Spatially targeted interventions can be
implemented in areas where high-burden Mtb persists.

Keywords: Xpert MTB/RIF; mycobacterial load; rifampicin resistance; spatial analysis; tuberculosis;
South Africa

1. Introduction

Tuberculosis (TB) remains a global health concern, with reports of 1.6 million deaths
in 2021 [1]. In 2020, the WHO updated the list of 30 high TB burden countries (HBCs),
which account for 86% of all estimated incident TB cases worldwide [2]. Among the HBCs,
South Africa has the third highest absolute number of reported cases (172,200) and the
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fifth highest number of estimated prevalent TB cases (304,000) [1]. It also has the largest
number of HIV-associated TB cases (81,800) and the second-largest number of diagnosed
multidrug-resistant (MDR)-TB cases (7100) [1].

Despite South Africa’s high TB burden, relatively little is known about the spatial hetero-
geneity of tuberculosis within the country. South Africa has a centrally managed laboratory
database well suited for surveillance purposes, especially after the implementation of the
Xpert MTB/RIF (Xpert; Cepheid, Sunnyvale, CA, USA) molecular test in 2011 [3]. The
COVID-19 pandemic catapulted the use of molecular diagnostics to indicate changes in the
disease profile; South Africa leveraged its laboratory database to introduce the concept of
using qualitative diagnostic values at a national level for real-time pandemic surveillance [4].
Previous studies have also demonstrated the potential to monitor and assess TB and drug-
resistant TB disease dynamics using national surveillance data [5–8]. A 2018 retrospective
spatial analysis of routinely collected laboratory data in South Africa’s Western Cape province
revealed significant spatial and temporal heterogeneity in rifampicin-resistant (RR) TB [9].
However, as these data pre-dated the implementation of Xpert, they lack crucial qualitative
diagnostic variables that aid in monitoring TB and RR TB. These studies highlight the urgent
need for more granular surveillance to identify the hotspots of transmission and link them to
the possibility of targeting case-finding strategies in areas of concentrated risk [8].

A geographical analysis of South Africa’s routinely collected TB laboratory tests via
Geographic Information System (GIS) methods at the national level enables the spatiotem-
poral monitoring of the epidemic across the entire population, providing timely data and
spatially targeted interventions for disease control [10]. GIS methods are a powerful tool
that allow for the analysis of multiple layers of data, seamlessly integrating diverse datasets
such as population demographics, healthcare infrastructure, and environmental factors.
This comprehensive approach enhances our understanding of the complex dynamics of
the TB epidemic and supports evidence-based decision making. This study is an initial
analysis of the South African National Priority Program (NPP) of the National Health
Laboratory Service’s (NHLS) TB data with the aim to (1) analyse the collected data from
2013 through 2016 using GIS methods for identifying high risk areas that require interven-
tions and (2) show the prospects for national laboratory data use. We analyse centrally
collected national Xpert laboratory data over a four-year period (2013–2016) with GIS and
other mapping tools to exemplify the value of the aggregated Xpert molecular data in TB
control and perform a municipal-level investigation of national data and a facility-level
analysis of data from South Africa’s Eastern Cape province to highlight the applications
of the geographical analysis of molecular laboratory diagnostics for TB surveillance at a
small-area scale. Using spatial results from the analysis of the Eastern Cape province, we
also performed a case-control study to identify factors associated with a high TB burden
load. Despite ending in 2016, these data provide the first opportunity to demonstrate the
benefits of multidisciplinary analyses involving geospatial methods for TB surveillance.

2. Materials and Methods
2.1. Study Setting

Prior to a 2016 redistricting, South Africa was divided into 9 provinces, 52 districts,
and 234 municipalities. Xpert was rolled out in 2011. By 2013, over 5000 healthcare facilities
across all municipalities and provinces were connected to 300 GeneXpert (Cepheid, Sunny-
vale, CA, USA) instruments installed in 193 national laboratories [11]. The distribution of
GeneXpert instruments and health care facilities is representative of the population density.

At the time of the national implementation of Xpert’s roll out, the NPP ensured each
GeneXpert instrument was interfaced with the laboratory information system (LIS) so that
all authorised test results were available electronically (and as a hard copy) to treating health
practitioners [10]. The Xpert assay is a novel, fully automated polymerase chain reaction
(PCR)-based procedure that can rapidly diagnose the presence of Mycobacterium tuberculosis
(Mtb) directly in sputum with high sensitivity and specificity [12]. The GX4.7b assay software
generates the cycle-threshold (Ct) value [12–14], which is a measure of the Mtb burden [15] in
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tested specimens and could replace smear microscopy status as a marker of infectiousness, es-
pecially in high HIV burden settings [16]. The Xpert assay determines RR based on mutations
in the 81-base-pair (bp codons 507–533) regions of the β-subunit of rpoB, the RNA polymerase
enzyme, using five overlapping probes. RR is determined based on any mutation in at least
one of the five probes. The probes involved in detection are characterized as probe A (codons
507–511), probe B (codons 511–518), probe C (codons 518–523), probe D (codons 523–529), and
probe E (codons 529–533) [17]. Each probe corresponds to a different mutation. Mutations in
these regions contribute to 93% of the RR [18].

2.2. Data Sources

All Xpert test data results were queried from the NHLS’s Corporate Data Warehouse (CDW)
through two LISs: DisaLab (Laboratory System Technologies, Johannesburg, South Africa) and
TrakCare (InterSystems, Cambridge, MA, USA). A total of 11,345,104 Xpert test records were
available for the study period (2013–2017). This study period was selected to minimize variability
during the early implementation phase (2011–2013) and latter (post September 2017) phase,
during which the Xpert was transitioned to Xpert MTB/RIF Ultra (Cepheid).

We conducted a case-control study in the Eastern Cape province to assess factors asso-
ciated with a high facility mycobacterial load. We developed a methodological framework
using GIS and the Xpert test data to identify and select high- (case) and low- (control)
burden facilities to be sampled out of the total of 958 facilities in the study area. First,
given that TB transmission does not stop at the borders of census areas or districts, we
used a spatial and spatio-temporal analysis to identify the most appropriate geographical
units of analysis. Secondly, because the public health infrastructure plays a crucial role in
targeted interventions to break the TB transmission cycle, we used a hotspot analysis of the
mycobacterial load on the primary care clinics. The sampled cases and controls were 32 and
27 clinics with the highest and the lowest mycobacterial load in the study area, respectively.
High-burden facilities had median mycobacterial loads of 4.48 log 10 CFU/mL or greater,
and low-burden facilities had median mycobacterial loads under 4.48 log 10 CFU/mL. Data
were collected through observation, interviews with clinic management and staff, and a
review of clinic registries and statistics. At the patient level, we used a convenience sam-
pling strategy to identify 12 patients to be interviewed at each selected clinic. Identifying
factors measured in the survey was based on the theory proposed by Link and Phelan [19]
and Clouston and Link [20]. This approach has been widely employed in non-TB studies
and was adapted for this study, as shown in Supplementary Materials Figure S1. The
information collected included issues related to socio-economic conditions, health-seeking
behaviour, lack of skilled workers, quality of care at public facilities, accessibility of care
facilities (distance and opening hours), attitudes towards TB and HIV, and treatment ad-
herence. Participants were assigned a study number as to avoid the use of personally
identifying data.

The GIS shapefile data was downloaded from the 2016 repository of the Municipality
Demarcation Board (MDB) of South Africa [21]. The population estimates were extracted
from the most recent 2016 census online database of Statistics South Africa [22].

2.3. Data Preparation

The Ct value is the number of PCR cycles required to amplify mycobacterial DNA
above a background threshold [23]. Ct values can also be used to quantify the amount of
Mycobacterium tuberculosis (Mtb) in a sputum specimen (henceforth, “mycobacterial load”), a
measure of the force of infection, using the linear relationship between Ct and colony-forming
units (CFU/mL) [14,23,24]. Based on the internal calibration of GeneXpert’s instruments, the
relationship between the Ct value and CFU/mL were defined by Equation (1):

Ct = −3log (CFU/mL) + 35, (1)
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For simplicity, the CFU/mL was expressed as a log scale, as shown in Equation (2).

log (CFU/mL) =
Ct − 35
−3

× 100, (2)

The median mycobacterial load, total number of tests, number of tests positive for Mtb,
and number of tests positive for RR were calculated at the facility level and aggregated up
to the municipal and provincial level. Mtb positivity was calculated by dividing the number
of positive tests by the total number of tests performed. RR positivity was calculated by
dividing the number of tests positive for RR by the number of tests positive for Mtb.

The frequency of each probe was calculated as the total number of indicated mutations
in each probe (A, B, C, D, or E) divided by the total number of tests positive for RR.
Aggregated data were then merged with local municipality GIS shapefiles for analysis.

2.4. Analysis
2.4.1. Mapping and Spatial Analysis

Spatial autocorrelation, the degree of similarity of an event over a geographical sur-
face [25], was investigated using the Moran’s I statistic to measure the presence, strength,
and direction of spatial dependency and association among municipalities [26]. The local
Moran’s I is denoted by Equation (3):

Ii =
xi − x

m2
∑N

j=1 wij
(
xj − x

)
, (3)

The Moran’s I statistic was applied to the variables Mtb positivity, RR positivity,
mycobacterial load, and probe frequency. The p-value and z-score were used to evaluate
the significance of the Moran’s I test statistic. A disease is considered spatially aggregated
and statistically clustered when the Moran’s I is > 0 and with a z-score of ≥ 1.96 [27].

Hotspots (areas with an elevated rate of a particular variable [28]) and cold spots (areas
with a lower rate of a particular variable) were investigated using the Getis Ord (Gi) statistic,
which identifies the location, significance, and type (cold and hotspots) of cluster [27]. The
Gi statistic estimates neighbouring municipalities geographically aggregated with similar
rates. The Gi statistic was calculated for each local municipality for the Mtb positivity, RR
positivity, mycobacterial load, and probe frequency.

2.4.2. Logistic Regression

Logistic regression was conducted to determine the association between the predictor
variables and the outcome variable (low or high mycobacterial load). The predictors are
related to the outcome variables by Equation (4):

Logit(p) = β0 + β1×1 + ··· + βpXp, (4)

where p denotes the probability of high mycobacterial load, β1 is the coefficient of the predictor
X1. Exp(β1) denotes the odd ratio, which is used to interpret the effect of the predictor variable
on the outcome variable. We used the first step of the purposeful variable selection process
as discussed by Bursac et al. [29] to select significant variables at a 10% significance level in
univariate models, and these variables were considered potential candidates for a multivariate
analysis. We then ran the backward elimination method of variable selection. The final model
is reported with the parameter estimates of the selected variables.

2.5. Software

Data pre-processing and risk analysis were performed in R version 4.1.3. Spatial data
analyses were performed using ArcGIS version 10.6.
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2.6. Ethics

Approval to access the laboratory test results data was obtained from the University
of the Witwatersrand, Johannesburg, South Africa’s Human Research Ethics Committee
(M160978) and the NHLS through the NPP data access policy termed ILDAC (Integrated
Laboratory Data Analytics for Care). Permission to conduct the case-control study was
obtained from the University of the Witwatersrand Human Research Ethics Committee
clearance committee (approval no M15021).

3. Results
3.1. Spatial and Temporal Distribution of Mtb Testing

Nationally, the volume of Mtb testing follows a yearly cycle that peaks around Septem-
ber and reaches a minimum in December of each year. Mtb positivity is inversely propor-
tional to the volume of Mtb tests, although the peaks of test positivity lower each year
(Figure 1). A total of 11,345,104 Xpert tests were performed during the study period of
2013–2017. Of those, 1,124,995 (9.9%) were positive for Mtb. The Western Cape province
had the highest Mtb positivity (14.8%), followed by the Northern Cape province (11.1%). In
contrast, the Limpopo (5.7%) and the KwaZulu Natal (8.9%) provinces had the lowest rates
of Mtb positivity (Table 1).
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The Moran’s I statistic (I = 0.46, p < 0.001) indicated a significant clustering of Mtb
positivity in municipalities. The analysis revealed 36 municipalities as hotspots across the
Northern Cape, Eastern Cape, and Western Cape provinces. Conversely, 41 municipalities
were identified as cold spots in the provinces of Limpopo, KwaZulu Natal, Eastern Cape,
and North West based on the Gi statistic (Figure 2). The analysis of the force of infection,
measured by the mycobacterial load, revealed significant spatial clustering among mu-
nicipalities (I = 0.53, p < 0.001). The hotspot analysis of the mycobacterial load revealed
42 municipalities in the Western Cape, Northern Cape, and Eastern Cape provinces with
elevated levels of mycobacterial load, and 48 municipalities in the Gauteng, KwaZulu
Natal, Eastern Cape, and Free State provinces exhibited cold spots, indicating areas of a
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lower mycobacterial load during the study period (Figure 2). See Supplementary Materials
Figure S2 for the province locations.

Table 1. Summary of MTB positivity rates for 2013–2017.

Province Number of Mtb
Tests Performed

Number of Positive
Mtb Tests

MTB Test Positivity
(%)

Eastern Cape 2,202,856 232,549 10.6
Free State 640,096 62,616 9.8
Gauteng 1,716,034 171,718 10

KwaZulu Natal 2,830,422 252,877 8.9
Limpopo 1,111,262 63,749 5.7

Mpumalanga 570,906 61,288 10.7
North West 765,694 70,987 9.3

Northern Cape 372,170 41,418 11.1
Western Cape 1,135,664 167,793 14.8
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3.2. Spatial and Spatio-Temporal Analyses of Eastern Cape

The median mycobacterial load pooled across the study period showed significant
spatial heterogeneity at the facility level in the Eastern Cape (I = 0.42, p < 0.001) (Figure 3).
A higher median mycobacterial load is correlated with a higher volume of Mtb testing per
100,000 population.

Figure 4 shows facility mycobacterial load patterns from 2013–2016. Hotspot clusters
were primarily in the southwest, and coldspot clusters were in the northeast. Facilities
within the hotspot cluster displayed consistently high mycobacterial loads compared to
neighbouring facilities, while facilities within the coldspot cluster displayed consistently
lower mycobacterial loads compared to neighbouring facilities. The prominent hotspot
shifted eastward during the study period. It shrunk in size between 2013 and 2014 and
then expanded again in 2016. The coldspot cluster shifted south-eastward during the study
period, and its size decreased over time.
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3.3. Factors Associated with High Mycobacterial Load

This study revealed that only 25% of the facilities had health care workers (HCWs)
that are doctors; however, almost all the facilities had nurses and non-specified HCWs
(HCWs that are not doctors or nurses). Most (93%) of the facilities surveyed are primary
healthcare facilities, while 7% are community health centres. The findings further show that
about 46% of the facilities had not been optimised and evaluated for TB-infection control
over the past five years. At the patient level, it was observed that the average age of the
patients tested is 42 ± 10 years. The distances of patients’ journeys to facilities ranged from
1 to 7 km, with a mean of 2 km, and most of them travel by taxi and train, with an average
cost of ZAR 20 (range: 0 to 100).



Diagnostics 2023, 13, 3163 8 of 15

At the 10% level of significance, evidence of association with a high mycobacterial load
is suggested for the following variables: median patient age, number of nurses, number of
non-specified HCWs, population count, and land use class (urban/rural). See Supplementary
Table S1 for results from all univariate models. After running backwards selection, we are
left with three variables that are all significantly related to a high mycobacterial load: median
patient age, number of non-specified HCWs, and land use class. The results from the final
model are shown in Table 2. A one-year increase in the median patient age is associated with
a 14% decrease in the odds of a higher mycobacterial load, although this result is borderline
insignificant (95% Confidence Interval (CI) 0.82, 1.02)). An increase in the number of non-
specified HCWs in a facility is associated with a decrease in the odds of having a higher
mycobacterial load (odds ratio (OR) = 0.69, 95% CI = 0.46, 0.89). Facilities in urban areas have
82.4 times the odds of having high mycobacterial load (95% CI 5.09, 1334.2) compared to rural
areas. We note the wide confidence interval here due to data sparsity.

Table 2. Logistic regression analysis of risk factors associated with high mycobacterial load in the
Eastern Cape (2013–2016).

Variable 95% CI p-Value

Median patient age 0.86 (0.82–1.02) 0.043
Number of non-specified HCWs 0.69 (0.46–0.89) 0.007
Land use class (Urban) 82.43 (5.09–1334.23) 0.001

3.4. Spatial Analysis of RR Mtb

A total of 70,596 of the Xpert tests performed during the study period reported RR,
resulting in an RIF positivity of 6%. Mpumalanga had the highest rates of RIF positivity
(8.4%) followed by KwaZulu Natal. The North West and Western Cape provinces showed
the lowest rates of RIF positivity (5%) (Table 3). The spatial autocorrelation analysis revealed
a significant clustering of municipalities with RR (I = 0.59, p < 0.001). Hotspots of RR were
seen in 35 municipalities in the Mpumalanga and KwaZulu Natal provinces (Figure 5).
Cold spots of RR were observed in municipalities in the Western Cape, North West, Free
State, Northern Cape, and Eastern Cape provinces.
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Table 3. Summary of RR positivity rates for 2013–2017.

Province Number of Mtb Tests
Performed Reporting RR

Rate of RIF Positive Mtb
Tests (%)

Eastern Cape 13,971 6
Free State 3387 5.4
Gauteng 10,158 5.9

KwaZulu Natal 20,505 8.1
Limpopo 3363 5.3

Mpumalanga 5114 8.4
North West 3569 5

Northern Cape 2198 5.3
Western Cape 8331 5

3.5. Spatial Analysis of the Five Xpert MTB/RIF Molecular Probes

Across the four-year study period, 8.1% (5730/70,596) of the RR test results had
missing values due to changes in the LIS programs and required some manual imputation.
The distribution of probe reporting in the Xpert laboratory test results displayed notable
variations (Figure 6). Probe E emerged as the most reported with a prevalence of 56.94%
(35,403/62,177) across the tested population (Figure 6). Probes D and B followed with
frequencies of 19.15% (11,909/62,177) and 16.34% (10,159/62,177), respectively. In contrast,
probe A and probe C were reported with much lower frequencies, representing 6.20%
(3853/62,177) and 1.37% (853/62,177) of the tested specimens, respectively. Furthermore, a
subset of 4.49% (2789/62,177) of the specimens reported the presence of multiple probes,
indicating a potential co-occurrence or co-infection.
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The spatial autocorrelation analysis of probe frequencies conferring RR revealed RR
Mtb clusters for all probes across the municipalities (Figure 7). Significant hotspot and
cold spot clusters were observed for all the five probes, all in different regions across South
Africa. The Northern Cape province showed predominant hotspots of RR detected by
probe A, with clusters extending to the Free State, Western Cape, and Limpopo provinces
(Figure 7). In the Western Cape and Mpumalanga provinces, RR hotspots of probe E were
observed. The Limpopo province showed a hotspot detected by probe D, which extended
into the North West and Gauteng provinces. The Eastern Cape province showed an RR
hotspot detected by probe B.
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4. Discussion

This study aimed to exhibit how molecular diagnostic values can be used to identify
areas of a high burden and risk of Mtb and RR in South Africa to help prioritise resources
and target studies to understand the local drivers of their emergence and spread. The
results revealed significant variations in the distribution of Mtb and RR across South Africa,
with some municipalities having diagnostic rates that were more than five times higher
than others. High levels of Mtb positivity, mycobacterial load, the proportion of RR, and
their hotspots were mostly found in urban municipalities with high population densities,
indicating the potential presence of micro-epidemics. This finding was echoed by the
logistic regression analysis of risk factors associated with a high mycobacterial load in the
Eastern Cape province, which reported significantly increased odds of a high mycobacterial
load in urban areas.
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Much spatial variation in the distribution of a mycobacterial load (force of infection)
across different regions in South Africa was established, with the greatest force of infection
observed in the Western Cape province and certain municipalities of the Northern Cape
province. The greater force of infection in these regions could be attributed to the presence
of recirculating Mtb strains and a high number of susceptible hosts due to recurrent Mtb
infections in these municipalities [30,31]. This may be one of the drivers of geographical
heterogeneity of Mtb burden across the country. The patterns of Mtb positivity and the force
of infection across the country were found to be similar. Previous studies have highlighted
a correlation between Mtb incidence and mycobacterial load in a population [32]. Therefore,
municipalities with observed hotspot clusters of a mycobacterial load in the Western
Cape and Northern Cape provinces, which also coincide with municipalities with high
Mtb-positivity rates, may have also had a high Mtb transmission.

Socio-economic conditions associated with disease transmission, such as homelessness,
the HIV epidemic, and increased migration, may have also contributed to these spatial
patterns [33]. We further see this reflected in the results from our case-control study.
Working-aged adults are known to have higher rates of TB [34,35]. This may be due in
part to working-aged adults having difficulties accessing health services due to their work
hours [36]. Furthermore, the number of unspecified healthcare workers, which can be
seen as a proxy for the quality of care received, is also negatively associated with a high
mycobacterial load. Further interdisciplinary analyses, such as this, are important to better
understand how Ct values can be used as an indicator for monitoring TB-control practices,
the uptake of treatment, and equitable healthcare access.

The frequencies of mutations varied vastly across the country with the most common
rpoB mutations identified in the gene region 529–533, represented by probe E, followed
by probes D and B, while mutations identified by probes A and C were less common.
The national frequencies of mutations observed were similar to those reported in other
developing countries across Africa and Asia [37,38]. Past studies also found that mutations
in the region of the rpoB gene represented by probes E and D were the most common [39,40].
The Western Cape province had the highest detection rate of RR Mtb with probe E, followed
by parts of KwaZulu Natal and Mpumalanga, areas where previous studies have reported
high levels of drug-resistant Mtb [41–44]. The KwaZulu Natal and Mpumalanga provinces
border Swaziland, which previously reported the unreliability of Xpert in identifying the
rpoB 1491F mutation [45]. This may have contributed to the high rate of diagnostic RR Mtb,
requiring targeted approaches for diagnosis and treatment.

The Eastern Cape province reported the highest detection frequency of RR Mtb with
probe B and has almost 50% more representation than any other province, indicating the
possibility of the transmission of pre-existing strains [46]. Caution, however, is needed
in the interpretation of spatial associations of the probes for molecular epidemiology and
inferring the transmission of drug resistance. These data report only on the single rpoB
region, with no additional laboratory genotyping investigations performed. However, the
large dataset may still be relevant for a public health approach, and future studies using
additional molecular diagnostic approaches can help refine such findings.

This study highlighted the value of using connected diagnostics and GIS mapping as a
surveillance tool for TB and RR in South Africa. At the national level, TB in South Africa is
dynamic and geographically diverse, with the ongoing transmission of both drug-resistant
and susceptible strains. Our findings identify areas in need of targeted interventions. A
future data analysis could focus on specific regions at the facility level, using all available
variables, including probes, and incorporating HIV laboratory and ART monitoring data,
as well as results from the country’s TB drug-resistance survey, and using alternative GIS
tools. This approach could be used to measure ongoing transmissions and identify gaps
and effective interventions.

Centralised national data can inform national operations of laboratory coverage, moni-
tor intervention successes, and identify near real-time gaps in services or hotspots requiring
immediate action. A limitation in our study, however, is that only a single test result
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(Xpert MTB/RIF) is evaluated, as the linkage to smear microscopy, liquid culture, and DST
results require a sophisticated algorithm-driven data linkage whose challenge is a lack of a
unique patient identifier. Work to develop such an algorithm is well underway, and this
study can be repeated in the future with these linked data [47,48]. Additionally, Xpert only
interrogates a single gene region (rpoB) to identify Mtb and resistance to only the first-line
therapy, rifampicin. Whole genome sequencing has proved useful in understanding TB
transmission dynamics [49,50]. However, whole genome sequencing is costly and time
intensive and not feasible to perform at a national level. The GIS analysis of Xpert is
much less resource-intensive and can be used to identify smaller-scale areas that would
benefit from additional sequencing. Additionally, Ct values, and thus the mycobacterial
load, are known to vary at the individual level by the quality and volume of the specimen
collected [51]. For this reason, they were primarily used as a qualitative variable. However,
recent studies have shown the utility of Ct values for predicting smear and culture con-
version [13,52]. Furthermore, due to the large amount of data used in this study, variation
caused by differences in the sputum samples is negligible [53].

A final limitation is the small sample size of the case-control study. Thus, we interpret
the estimates and significances with caution. Furthermore, it only shows factors that
are associated with a high mycobacterial load—we cannot infer causation. That said,
we consider this analysis illustrative of important interdisciplinary analyses necessary to
understand factors that influence South Africa’s TB burden.

5. Conclusions

This study demonstrated the importance of GIS methods in analysing data from
molecular diagnostics. It highlighted how centrally collected data can be used for TB
surveillance, operations, and control, as well as the need for a multidisciplinary approach.
Combining geographical data analytics with epidemiologic and clinical knowledge is
necessary for best utilizing such data. Further research on the molecular variables discussed
in this study could improve patient care and TB research in the country.
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