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ABSTRACT

Longitudinal MRI is an important diagnostic imaging tool for eval-

uating the effects of treatment and monitoring disease progression.

However, MRI, and particularly longitudinal MRI, is known to be

time consuming. To accelerate imaging, compressed sensing (CS)

theory has been applied to exploit sparsity, both on single image

as on image sequence level. State-of-the-art CS methods however,

are generally focused on image reconstruction, and consider analysis

(e.g., alignment, change detection) as a post-processing step.

In this study, we propose DELTA-MRI, a novel framework to

estimate longitudinal image changes directly from a reference im-

age and subsequently acquired, strongly sub-sampled MRI k-space

data. In contrast to state-of-the-art longitudinal CS based imaging,

our method avoids the conventional multi-step process of image re-

construction of subsequent images, image alignment, and deforma-

tion vector field computation. Instead, the set of follow-up images,

along with motion and deformation vector fields that describe their

relation to the reference image, are estimated in one go. Experi-

ments show that DELTA-MRI performs significantly better than the

state-of-the-art in terms of the normalized reconstruction error.

Index Terms— Longitudinal MRI, deformation vector field,

DELTA-MRI

1. INTRODUCTION

In longitudinal MRI studies, repeated MRI scans are performed in

specific clinical scenarios, such as follow up of patients [1], ther-

apy response assessment [2], and large-scale longitudinal studies [3].

They constitute one of the most efficient tools to track pathology

changes and to evaluate treatment efficacy in diseases. In such stud-

ies, patients are scanned on a regular basis, which calls for efficient

longitudinal scan protocols.

Conventional longitudinal MRI workflows consist of multiple

steps. First, complex-valued image data is acquired (in k-space) at

different time points, from which (also complex-valued) images are

individually reconstructed. Next, the magnitudes of the resulting

images are mutually geometrically aligned. Finally, local structural

deformations are detected by computing deformation vector fields

(DVFs), allowing for voxel-wise deformation analysis [4].

Unfortunately, conventional longitudinal MRI workflows are

characterized by a low time efficiency. To accelerate imaging,

techniques based on compressed sensing (CS) theory have been

applied that exploit sparsity in some spatial transform domain and

reconstruct images from substantially less data (through k-space

sub-sampling) [5]. Furthermore, since changes between two subse-

quent images in a longitudinal MRI study are generally small (apart

from global transformations), temporal redundancy can be addition-

ally exploited to shorten image acquisition time. Indeed, CS-based

methods have successfully been applied to also accelerate longi-

tudinal and 4D MRI scanning by extending spatial regularization

with temporal regularization [6–8] or by jointly reconstructing both

deformation and images [9]. Such methods, however, require care-

ful tuning of multiple regularization parameters to balance sparsity

constraints (both in spatial and time domain) and data consistency,

leading to impractical methods. Alternatively, deep learning meth-

ods have been investigated to automatically detect and exploit the

distribution of expected images in both the spatial [10] and tempo-

ral [11, 12] domain. However, most data driven methods strongly

rely on extensive training with a large number of datasets, which is

especially non-trivial to obtain for longitudinal MRI applications.

In this paper, we propose DELTA-MRI, a novel framework to es-

timate longitudinal image deformations directly from a reference im-

age and subsequently acquired, strongly sub-sampled MRI k-space

data. In contrast to state-of-the-art longitudinal MR image recon-

struction methods, which rely on the image reconstruction followed

by DVF estimation, our method avoids this multi-step process. In-

stead, the set of follow-up images, along with motion parameters

and DVFs that describe their relation to the reference image, are es-

timated in one go. We will show that DELTA-MRI performs sig-

nificantly better compared to state-of-the-art CS based longitudinal

MRI methods in terms of the normalized reconstructed error.

2. METHODS

Let x1 = {x1,k},x2 = {x2,k} ∈ C
N be two complex valued

single-coil 3D MRI images with N voxels in the image domain, of

which the elements can be expressed in polar form as

xj,k = rj,ke
iφj,k , with j = 1, 2 ; k = 1, ..., N (1)

with rj = {rj,k} ∈ R
N and φj = {ϕj,k} ∈ R

N the magnitude and

phase of xj , respectively. Furthermore, let d1,d2 ∈ C
N be the k-

space (Fourier) representations of x1,x2, respectively: dj = Fxj ,

with F ∈ C
N×N the discrete Fourier transform operator. Finally,

let v ∈ R
N×3 be a DVF, comprised of one 3D vector per voxel, de-

scribing the geometrical deformation from r1 to r2, and let W (·,v)
denote the image warping operator [13] along v that (approximately)

yields r2 when applied to r1:

W (r1,v) = r2 . (2)

We propose the estimation of v directly from k-space measure-

ments of x1 and x2. These measurements, which will be denoted by

{d̃j}
2

j=1 ∈ C
nj , are noise disturbed and can be modelled as:

d̃j = SjFxj + εj , with j = 1, 2 (3)



where εj ∈ C
nj is an additive noise contribution, modeled as a

zero-mean, complex-valued Gaussian random variable, and Sj ∈
{0, 1}nj×N , with nj ≤ N , is a sub-sampling operator that selects

the k-space points acquired for the j-th image. For fully sampled

k-space data, denoted by d̃j , the operator Sj corresponds with the

identity matrix I ∈ R
N×N .

In what follows, it is assumed that sufficient k-space data d̃1 is

acquired to allow a high quality reconstruction r̂1 of the reference

magnitude image r1. If fully sampled data d̃
1

is available, such an

estimate can be calculated as r̂1 = |F−1d̃
1
|, with | · | the point-

wise modulus operator. Furthermore, it is assumed that the phase

φ2 is slowly varying and that the low frequencies in k-space are

sufficiently sampled to obtain a good estimate of φ2 by calculating

φ̂2 = ∠(F−1d̃2), where d̃2 is zero-filled at the non-sampled indices

and ∠(·) denotes the phase operator. Under these assumptions, v

can be directly estimated by minimizing a regularized least-squares

functional without requiring the reconstruction of x2:

v̂ = argmin
v

(

∥d̃2 − S2FW (r̂1,v)e
iφ̂2∥22 + λR(v)

)

, (4)

with λR(v) a regularization term with weight λ that imposes prior

knowledge about v. In this work, R(v) is chosen equal to ∥∇v∥2,

with ∇ the gradient operator on each component of the DVF. This

choice reflects the assumption that r2 only differs from r1 by a local,

smooth deformation, for which this regularization term is small.

In practice, x2 will likely also differ from x1 by a rigid trans-

formation, on top of the local deformation. This transformation can

be included in the DVF v, but this makes it harder to provide a good

initial guess for v. Alternatively, the rigid transformation can be

isolated from the DVF, and represented by rotation and translation

parameters θ, t ∈ R
3. Eq. (4) can then be extended as follows:

{θ̂, t̂, v̂} = arg min
θ,t,v

(∥d̃2 − SFW (r̂1,θ, t, v)e
iφ̂2∥22 + λR(v)),

(5)

where W (·,θ, t, v) is an image warping operator that rotates the

image according to θ, translates the image according to t and then

applies the local deformation described by v. The optimization prob-

lem of Eq. (5) can be solved using the cyclic Block Coordinate De-

scent (cBCD) method [14], where the first block consists of the pa-

rameters θ and t and the second block consist of v. In what follows,

the initial estimates of v, t and θ will be denoted as v0, t0 and θ0,

respectively.

3. EXPERIMENTS

High-resolution, fully-sampled k-space data was acquired using a

Cartesian sampling scheme of a male C57BL/6 wild-type mouse

using a 9.4T Biospec 94/20 USR horizontal MR system (Bruker

Biospin MRI, Ettlingen, Germany), with a mouse head 2×2 ar-

ray cryo-coil, using a 3D T2-weighted Turbo-RARE sequence with

FOV: 20×15×10 mm3, image acquisition matrix: 256×192×128,

0.078 mm isotropic voxels, TE/TR: 67.2/1800 ms, RARE factor: 12.

The fully-sampled multi-coil k-space data was then averaged across

the coils to obtain d̃
2
.

Based on the experimentally acquired dataset, simulation exper-

iments were setup to validate DELTA-MRI. First, a complex valued

image x2 = F−1d̃
2

was reconstructed, with corresponding mag-

nitude r2 and phase φ2. From r2, a predefined rigid transform (θ,

t), and a predefined DVF v, a magnitude image r1 was constructed

using an inverse image warp, such that W (r1,θ, t,v) = r2. Fig. 1a

shows a cross section of the ground truth DVF v. The ground truth

parameter values of θ and t were given by (2.9◦, 4.0◦, 5.7◦) and

(−6,−5,−4.5) pixels, respectively. Fig. 2a, 2b, and 2c show cross

sections of r1, its fully aligned version W (r1,θ, t,0), and r2, re-

spectively. A complex valued image x1 with magnitude r1 was con-

structed, by setting φ1 = φ2 (DELTA-MRI does not depend on φ1,

but the reference method considered in this paper does rely on sim-

ilarity between φ1 and φ2). This complex image was polluted with

complex, Gaussian distributed white noise with standard deviation

equal to 4% of the average foreground value of r1. We denote this

noise disturbed image by x̂1 and its magnitude and phase by r̂1 and

φ̂1, respectively. Next, a sub-sampling operator S2 was applied that

under-samples d̃
2

by selecting a given percentage of the k-space data

points. In particular, a small cubic central area was complemented

by k-space points that were randomly drawn from a central Gaussian

distribution with a standard deviation that corresponds with a quar-

ter of the maximum frequency. Illustrative examples of the sampling

schemes thus designed are shown in Fig. 1b and Fig. 1c. Finally, v, θ

and t, were estimated from the under-sampled k-space data d̃2 using

the estimator described by Eq. (5). The experiments were repeated

for different sub-sampling percentages.

(a) Ground truth DVF (b) Gaussian 1% (c) Gaussian 5%

Fig. 1: Ground truth DVF (a) Sampling schemes (b) and (c).

(a) r1 (b) r1 aligned (c) r2

Fig. 2: Reconstructions from fully sampled k-space data.

Implementation details: The optimization task of Eq. (5)

was carried out using a cBCD approach [14] with v0, t0 and

θ0 all zero. The value of λ was set to λ0 · 5 · 10−5, where

λ0 = ∥d̃2∥
2

2 maintains the regularization strength when varying

the sampling scheme. This value was obtained by empirically mini-

mizing the reconstruction error at 1% Gaussian sub-sampling. In the

first block, θ and t were optimized with the L-BFGS-B method

of SciPy 1.9.3 [15], with default stopping criteria and bounds

t ∈ [−20, 20]3,θ ∈ [−0.3 rad, 0.3 rad]3. In the second block,

v was optimized with the Barzilai-Borwein gradient method [16]

with 2000 iterations to ensure convergence. The derivatives of the



objective function towards the deformation parameters were com-

puted using ImWIP [13, 17]. Because the deformation is local, the

initial estimate v0 was close enough to give an accurate estima-

tion of θ and t. Therefore, each block was optimized only once.

It was verified that adding more cycles did not change the results

significantly.

Benchmarking: DELTA-MRI was benchmarked against the

Temporal Compressed Sensing MRI (TCS-MRI) method [6], which

regularizes the reconstruction of the complex image x2 in the tem-

poral and wavelet domain, by solving

x̂2 = argmin
x2

(∥d̃2 − S2Fx2∥
2

2

+λ1∥diag(w)(x̂1 − x2)∥1 + λ2∥Ψx2∥1), (6)

with Ψ the Daubechies-4 wavelet transform and w a weight vector

that controls the demand for similarity between x1 and x2, enforc-

ing sparsity only in regions where x1 and x2 are similar. In our

experiments, w was fixed to ones on the support of the ground truth

DVF, and zeros elsewhere.

It should be noted that TCS-MRI assumes that the rigid trans-

formation aligning x1 and x2 is known. DELTA-MRI does not

make this assumption, and instead estimates the rigid transforma-

tion, along with v, from the available, sub-sampled data. In each

experiment, the rigid transformation estimated by DELTA-MRI was

used to align the data before using TCS-MRI. Furthermore, the reg-

ularization weights λ1 and λ2 in Eq. (6) were set to λ0 · 5.85 · 10
−9

and λ0 ·3.63 ·10
−10, respectively, where λ0 = ∥d̃2∥

2

2 maintains the

regularization strength when varying the sampling scheme. These

values were obtained by empirical tuning to optimize reconstruction

quality at 1% Gaussian sampling.

To evaluate how much information on r2 was present in d̃2, and

how much information was obtained from x̂1, the results of TCS-

MRI and DELTA-MRI were compared against a reconstruction ob-

tained from d̃2 alone by applying an inverse DFT to the zero filled

data d̃2. This method is denoted Z-IDFT.

Performance criterion: As a quantitative performance crite-

rion, the normalized reconstruction error of the reconstructed image

r̂2 was calculated as:

ϵ(r̂2) = ∥r̂2 − r2∥2/∥r̂1 − r2∥2 , (7)

where r̂2 := W (r̂1, θ̂, t̂, v̂) for DELTA-MRI.

4. RESULTS & DISCUSSION

Fig. 3 shows reconstruction results obtained from Gaussian sub-

sampled k-space data with sub-sampling percentages equal to 5%

and 1%. The left column shows a cross-section of the Z-IDFT

reconstruction of r2. The middle and right column show those of

r2 obtained by TCS-MRI and DELTA-MRI, respectively. Fig. 4

shows the normalized reconstruction error (7) as a function of the

sub-sampling percentage for Z-IDFT, TCS-MRI and DELTA-MRI.

The results show that for sub-sampling percentages up to 20%,

DELTA-MRI outperforms Z-IDFT and TCS-MRI. Furthermore,

Fig. 4 shows that for a sub-sampling percentage below around 13%,

TCS-MRI outperforms Z-IDF, whereas for higher sub-sampling

percentages Z-IDF outperforms TCS-MRI. This can be explained

as follows. In our simulation study, the weights of the regular-

ization terms and data-misfit term that together constitute the cost

function of Eq. (6) were kept proportional to each other and were

tuned to be optimal for a sub-sampling percentage of 1%. For

increasing sub-sampling percentages, these regularization settings

(a) Z-IDFT (b) TCS-MRI (c) DELTA-MRI

(d) Z-IDFT (e) TCS-MRI (f) DELTA-MRI

Fig. 3: Reconstructions r̂2 from 5% (top) and 1% (bottom) sub-

sampled data.
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Fig. 4: Normalized reconstruction error of Z-IDFT, TCS-MRI and

DELTA-MRI as a function of the sub-sampling percentage of a

Gaussian sub-sampling scheme.

lead to over-regularization, causing TCS-MRI to be outperformed

by Z-IDF beyond a certain turning point. Alternatively, the regular-

ization settings of TCS-MRI and DELTA-MRI could be optimized

for each sub-sampling percentage individually, resulting in reduced

reconstruction errors for all sub-sampling percentages excluding

1%. However, this approach would not be realistic, as in practice

ground truth images are not available and regularization settings are

typically sub-optimal.

Additionally, some remarks can be made about the comparison

between DELTA-MRI and TCS-MRI. First, unlike DELTA-MRI,

TCS-MRI assumes the phases of x1 and x2 to be similar. This

assumption is reflected by the first regularization term of Eq. (6),

which enforces similarity of x1 and x2 in the complex domain. In

the simulation experiments, the ground truth phases φ1 and φ2 were



chosen equal to meet this assumption, providing optimal conditions

for TCS-MRI. In practice, however, the assumption of similar phase

images may be violated, which may negatively affect the perfor-

mance of TCS-MRI. Second, as mentioned above, unlike DELTA-

MRI, TCS-MRI does not include an alignment procedure, assuming

that the rigid transformation aligning the images x1 and x2 is known

beforehand. To allow a fair comparison that accounts for this differ-

ence, the rigid transformation estimated by DELTA-MRI was used

to align the data before applying TCS-MRI. TCS-MRI could have

been combined with alternative alignment procedures , but this is

not expected to change the main conclusions of the comparison.

The current work has some limitations that will be addressed in

future work. First, while the current version of DELTA-MRI was

designed for single-coil data, the method can be extended to account

for multi-coil data, taking coil sensitivities into account. Further-

more, to facilitate experiments with prospectively under-sampled

longitudinal data, the Gaussian distributed sampling schemes used

to evaluate DELTA-MRI in this work can be replaced by sampling

schemes that are practically more feasible.

Finally, it is worthwhile mentioning that the problem of deter-

mining a DVF that deforms a source image to a target image is under-

determined. In other words, many DVFs may transform the source

image to the same target image. This is known as the aperture prob-

lem [18]. For this reason, in simulation experiments, the quality of a

DVF estimate is not appropriately measured in terms of its deviation

from the ground truth DVF, but in terms of the difference between

the ground truth target image and the image that is obtained by ge-

ometrically deforming the source image according to the estimated

DVF. This motivates the use of the reconstruction error Eq. (7) as a

performance criterion in this work.

5. CONCLUSION

We proposed DELTA-MRI, a novel framework that estimates longi-

tudinal image changes directly from a reference image and strongly

sub-sampled k-space data of a follow-up image. The DVF and mo-

tion parameters that describe the relation between the reference im-

age and the follow-up image are estimated in one-go. For sub-

sampling percentages up to 20%, DELTA-MRI was shown to out-

perform a state-of-the-art longitudinal CS based method in terms of

the reconstruction error.
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