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Abstract 

Derek J. de Solla Price viewed science as a complex system and 

anticipated that the science of science can be developed via an analogy 

to thermodynamics. The main point of this article is to show a direct 

equivalence between a thermodynamic framework and the classical 

theory of evenness. It illustrates how thermodynamically inspired terms 

can lead to the measures used to quantify diversity (or lack thereof), 

balance, evenness, consistency, or concentration. A real-world example 

based on intersectional inequalities in science is used as an illustration.  
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Introduction 

The classical approach to developing a measure for evenness or 

balance is to use either a heuristic algorithm or apply statistical 

reasoning based on the Lorenz curve. This leads to measures such as 

the coefficient of variation or the Gini coefficient. In earlier publications, 

Prathap (2011a,b, 2014) introduced the idea that from a conceptual point 

of view, a thermodynamic approach based on first principles as in Gauss’ 

least-squares error treatment of uneven distributions is to be preferred. 

We consider the thermodynamic approach as the more natural in the 

sense that fewer new concepts or arbitrary constructions are needed. 

This rich, natural process includes second-order terms which can be 

interpreted as energy, exergy, and entropy. Entropy is a measure of 

disorder and serves as a measure of unevenness or imbalance of a  

distribution. 

Let X be a multiset of N non-negative numbers (not all zero), 

corresponding to data of nominal categories, such as numbers of 

publications by a given scientist in a set of N journals. We use the term 

multiset, and not set, because the same number may occur more than 

once. We rank these data in any way we like, leading to the array X 

=(xj)j=1, …, N of length N. Note that we use the term array and not vector 

because we consider a vector as an element of a vector space, which we 

do not have here because, in a vector space, one must be able to 

multiply with negative numbers.  

For such an array Prathap (2011a,b, 2014) introduced a zero-order, a 

first-order, and a second-order indicator as follows:  ∑ �𝑥𝑗0� ,   𝑁𝑗=1 ∑ �𝑥𝑗1� , ∑ �𝑥𝑗2�𝑁𝑗=1  𝑁𝑗=1                          (1) 

 

The zeroth-order indicator is just the number of elements in the multiset X, 

namely N; the first-order indicator is the sum of the elements in X, and 

the second-order indicator is the sum of the squares of the elements in X. 

If X represents an array of citations received by the publications of an 

actor (author, research group, institute, country, etc.) over a given period, 

according to the database used for the study, the zeroth-order indicator is 
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the number of publications of the actor, the first-order indicator is the 

total sum of received citations, denoted as C, and the second-order is 

called the energy of the system, here of the actor, denoted as E. Then 

the classical impact is nothing but C/N.  

 

Prathap, see also (Rousseau et al., 2018, p. 242) further introduced the 

notions of exergy, denoted as X, entropy, denoted as S, and consistency, 

denoted as ν (the Greek letter nu). These three notions are defined as 

follows: 𝑋 =  
𝐶2𝑁 , 𝑆 = 𝐸 − 𝑋, 𝜈 =  

𝑋𝐸                                 (2) 

 

In the publication-citation context, consistency can be interpreted as the 

variation in the number of received citations in the publication portfolio.  

 

Balance or evenness 

It is well-known that the evenness of a given multiset of data is best 

represented by its Lorenz curve, see e.g. (Nijssen et al., 1998). As 

Lorenz curves of different multisets may intersect, they form a partial, not 

a total, order. Any function respecting this partial order is an acceptable 

evenness measure. It has been shown in (Nijssen et al., 1998) that, for 

variable N, the following measures are acceptable evenness measures. 

1) The Gini evenness index, defined as one minus the Gini concentration 

index and formulated as: 

GE(X) = 1 -  
12𝑇 1𝑁∑ ∑ �𝑥𝑖 − 𝑥𝑗�              𝑁𝑗=1𝑁𝑖=1                   (3) 

where 𝑇 = ∑ 𝑥𝑗𝑁𝑗=1  . We deliberately use an expression for the Gini index 

which shows that its calculation doesn't require ranked data. 

2) The modified Simpson index, defined as  Λ(X) = 
1𝑁 ∑ 𝑝𝑗2𝑁𝑗=1  

,  where pj = 
𝑥𝑗∑ 𝑥𝑖𝑁𝑖=1 =  

𝑥𝑗𝑇                                   (4) 

The modified Simpson index is the reciprocal of the repeat rate 

(Rousseau, 2018) multiplied by N.  For the reasons given in (Rousseau, 

2018) we will from now on refer to Λ(X) as the modified repeat rate.  
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3) The reciprocal of the coefficient of variation, defined as 1𝑉(𝑋)
=  

�̅��1𝑁�∑ �𝑥𝑗−�̅��2𝑛𝑗=1 �                                        (5) 

where �̅� =  
1𝑁∑ 𝑥𝑗𝑁𝑗=1   denotes the arithmetic average of the numbers in X. 

4) The adapted entropy or Shannon-Wiener index, defined as 𝐻𝑒(𝑋) =  
1ln(𝑁)− ∑ 𝑥𝑗𝑇 𝑙𝑙�𝑥𝑗𝑇 �𝑁𝑗=1                                         (6) 

The Gini index is often used as a measure of evenness, but the other 

ones are rarely used, certainly in informetric studies. 

The modified repeat rate expressed in terms of a thermodynamic 

framework 

In this section, we will show that  

 Λ(X) = 1− 𝑆𝐸 =  
𝑋𝐸                                              (7) 

Indeed, Λ(X) = 
1𝑁 ∑ 𝑝𝑗2𝑁𝑗=1  

=  
1𝑁 ∑ � 𝑥𝑗∑ 𝑥𝑘𝑁𝑘=1 �2𝑁𝑗=1 =  

�∑ 𝑥𝑘𝑁𝑘=1 �2𝑁∑ �𝑥𝑗�2𝑁𝑗=1 =  
𝑋𝐸 = 1 − 𝑆𝐸 

In words: the modified repeat rate is equal to the ratio of the exergy over 

the energy, or one minus the ratio of the entropy over the energy. For 

later use we point out that 

Λ(X) =  

�∑ 𝑥𝑗𝑁𝑗=1 �2𝑁∑ �𝑥𝑗�2𝑁𝑗=1                                            (8) 

Within a thermodynamic framework, X/E, being equal to the modified 

repeat rate is an acceptable evenness measure. Hence S/E is an 

acceptable inequality (or concentration) measure.  

 

Different distributions with the same modified repeat rate  

From equation (8) we see that multisets with the same number of 

elements, the same sum, and the same sum of squares have the same 

modified repeat rate. In the appendix, we show that such multisets exist, 

and even provide a method to construct them. We further show that 
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there are infinitely many couples of multisets with the same modified 

repeat rate.  

The reciprocal of the coefficient of variation too can be written using 

sums and sums of squares so that the sets constructed above also have 

the same reciprocals of the coefficient of variation (and of course also 

the same coefficient of variation).  

Weighted data 

Besides multisets X and corresponding sequences X = (xj)j, one may 

consider a multiset R of weights, associated with each number in the 

multiset X. We number the weights in R in such a way that the number xj 

has weight rj for j = 1,…, N.  

It has been pointed out in (Rousseau, 2001) that such weights occur 

naturally when one wants to compare a data array with an internal or an 

external standard. A typical external standard occurs when comparing 

publications of countries with the countries’ population or their number of 

scientists. An internal standard occurs when one has a two-way 

classification: then the row sums as well as the column sums can be 

considered as an internal standard, to be used for comparing evenness.  

When the arrays X and R are normalized, this leads to the arrays P and 

W with coordinates: 𝑝𝑗 =  
𝑥𝑗∑ 𝑥𝑖𝑁𝑖=1    and 𝑤𝑗 =  

𝑟𝑗∑ 𝑟𝑖𝑁𝑖=1                                      (9) 

We re-arrange the arrays P and W such that for the new arrangement 

       
𝑝1𝑤1 ≥ 𝑝2𝑤2  ≥ ⋯  ≥ 𝑝𝑁𝑤𝑁                                              (10) 

where we have assumed that all components of W are different from 

zero. Now we can construct the corresponding weighted Lorenz curve. 

This is the broken line connecting the origin (0,0) to the points with 

components �∑ 𝑤𝑗𝑖𝑗=1 ,∑ 𝑝𝑗𝑖𝑗=1  �𝑖=1,…,𝑁                                (11) 

We easily see from its definition that if the normalized weight values are 

equal (to 1/N) then we obtain the standard Lorenz curve (Lorenz, 1905; 

Rousseau et al., 2018, p.88).  

The ratios (pj /wj) are the slopes of the line segments of the weighted 

Lorenz curve. As these slopes decrease, see equation (10), the curve is 
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concave. If we had ranked the values in (10) in an increasing way, we 

would have obtained an (equivalent) convex weighted Lorenz curve. 

Only if all (pj /wj)-values are equal to 1, the weighted Lorenz curve 

coincides with the diagonal of the unit square.   

Evenness based on weighted data has been used in (Rousseau et al., 

2022). Note that the term evenness in a weighted context refers to a 

comparison with a standard, whose distribution is followed or not. It can 

be calculated by the weighted Gini evenness index Gw(X,R):   𝐺𝑤(𝑋,𝑅) = 1− 12∑ ∑ �𝑤𝑖𝑝𝑗 −  𝑤𝑗𝑝𝑖�𝑁𝑗=1𝑁𝑖=1                           (12) 

or by the weighted modified repeat rate  Λ𝑤(𝑋,𝑅) =  
1∑ �𝑝𝑗2𝑤𝑗�𝑁𝑗=1                                       (13) 

As 𝐺𝑤(𝑋,𝑅)  and Λ𝑤(𝑋,𝑅)  take values between zero and one, 1−
 𝐺𝑤(𝑋,𝑅) =

12∑ ∑ �𝑤𝑖𝑝𝑗 −  𝑤𝑗𝑝𝑖�𝑁𝑗=1𝑁𝑖=1   and 1 −  Λ𝑤(𝑋,𝑅)  are acceptable 

measures for weighted inequality. 

Note that these measures do not depend on the shape, convex or 

concave, of the weighted Lorenz curve. 

 

Weighted data in the thermodynamical framework 

In this framework, the (weighted) exergy of the whole system (X,R), is 

equal to  
�∑ 𝑥𝑗𝑁𝑗=1 �2∑ 𝑟𝑗𝑁𝑗=1  and the (weighted) energy E is equal to  ∑ �𝑥𝑗2𝑟𝑗�𝑁𝑗=1 . 

Finally, the (weighted) entropy S is equal to E-X. We see that if all rj are 

equal to 1 the definitions for the weighted case coincide with the ones for 

the unweighted case.  

We now express the weighted modified repeat rate in terms of weighted 

thermodynamic quantities, showing that Λ𝑤(𝑋,𝑅) =
𝑋𝐸 = 1 − 𝑆𝐸                                  (14) 

Indeed, Λ𝑤(𝑋,𝑅) =  
1∑ �𝑝𝑗2𝑤𝑗�𝑁𝑗=1 =  

1∑ �𝑥𝑗2/�∑ 𝑥𝑘𝑁𝑘=1 �2𝑟𝑗/�∑ 𝑟𝑘𝑁𝑘=1 � �𝑁𝑗=1 =  
1∑ �𝑥𝑗2𝑟𝑗�.
∑ 𝑟𝑘𝑁𝑘=1�∑ 𝑥𝑘𝑁𝑘=1 �2𝑁𝑗=1 =  

1𝐸.
1𝑋 =

 
𝑋𝐸 = 1− 𝑆𝐸. 
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We observe that the weighted modified repeat rate is equal to the ratio of 

the weighted energy over the weighted energy. In a concentration 

context S/E, the weighted entropy over the weighted energy can be 

thought of as an alternative to the weighted Gini concentration index. In 

the next section, we shall take up a real-world example to illustrate the 

use of these two measures. As this example focuses on relative (with 

respect to the whole population) inequality in science we will use the 

concentration (inequality) measures: 12∑ ∑ �𝑤𝑖𝑝𝑗 −  𝑤𝑗𝑝𝑖�𝑁𝑗=1𝑁𝑖=1                                 (15) 

namely the weighted Gini concentration index, and Π =
𝑆𝐸 = 1 − 1∑ �𝑝𝑗2𝑤𝑗�𝑁𝑗=1                                    (16) 

the thermodynamic weighted concentration measure. 

A real-world example based on intersectional inequalities in science  

We complete our investigation using a recent real-world example based 

on intersectional inequalities in science (Kozlowski et al., 2022). In this 

article, it was shown that the US scientific workforce is not representative 

of the population as a whole and is characterized by an unequal relative 

dispersion of sub-populations within the scientific community. The 

authors performed an analysis based on millions of scientific papers, 

offering real-world data to illustrate our indicators for evenness.  

Kozlowski et al. (2022) consider the publication patterns of US-affiliated 

first authors between 2008 and 2019. Their data are based on 5,431,451 

articles indexed in Clarivate Analytics’ Web of Science (WOS) and 

include 1,609,107 distinct US-affiliated first authors. The study is 

restricted to first authors, on the assumption that “they are generally 

those who have contributed the most to an article” and “represent the 

most visible name in bibliographic references” (Kozlowski et al., 2022). 
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The actual population share in the United States by cohorts based on 

ethnicity and gender serves as the external standard (see the first two 

columns of Table 1). The actual share of these cohorts within each 

scientific community based on discipline or area provides the data array 

for study (the remaining four columns of Table 1).  

Table 1. Data array for five disciplines and eight intersectional cohorts 

from Kozlowski et al. (2022) 

 

Cohorts 
Population 

share 

Soc 
Sc   

share 
Health 
share 

Eng 
& 

Tech 
share 

Nursing 
share 

Asian-M 2.3 9.4 5.3 33.2 2.1 
Asian-W 2.6 5.5 6.8 9.1 7.2 

Black-M 6 5.5 3.3 4.6 1.3 
Black-W 6.6 3.5 6.4 1 8.7 
Latin-M 8.5 3.5 2.1 4.1 1 
Latin-W 8.3 2.4 3.9 0.9 4.4 
White-M 32.3 43.3 25.1 39.1 9.5 
White-W 33.4 26.9 47.2 7.9 65.9 
TOTAL 100 100 100.1 99.9 100.1 

 

Thus, in Table 1 we have data for four disciplines and eight cohorts. Due 

to rounding off errors the numbers do not add up exactly to 100.0 but do 

nearly so. The four ethnic/racial categories are: 

1) Non-Hispanic White Alone (White) 

2) Non-Hispanic Black or African American Alone (Black),  

3) Non-Hispanic Asian, Native Hawaiian, and Other Pacific Islander 

Alone (Asian) 

4) Hispanic or Latino origin (Latin). 

In each case, the (binary) gender categories are men (M) and women 

(W).  
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The population share is based on the 2010 US Census. The four 

columns correspond to the share of the scientific workforce in the Social 

Sciences (Soc Sc), Health, Engineering & Technology (Eng & Tech), and 

Nursing as curated from the Web of Science. For precise information 

about the data used in their – and our - study, we refer to (Kozlowski et 

al., 2022). 

Calculations are performed using formulae (15) and (16). Weighted  Gini 

indices were also checked separately by constructing weighted Lorenz 

curves (this requires ranking the data). Fig. 2 summarizes the difference 

between these two main measures of inequality. As there is no such 

thing as a ground truth in these matters, it is not possible to say that one 

is better than the other. As in the unweighted case, the difference, and 

hence preference for one of these measures, is a matter of sensitivity for 

transfers (Allison, 1978; Egghe and Rousseau, 1990). Without 

investigating this deeper, we note that we have a preference for the Π-

index as the Gini-index (at least in the unweighted case) is known to be 

dependent on ranks (Egghe and Rousseau, 1990). In Fig. 2 we also 

indicated the inequality in the cohort of the distinct US-affiliated first 

authors from the Web of Science (WOS US) and also those in the 

smaller cohort of US permanent residents from the same database (WoS 

US Res). 
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Fig. 2. Difference between the Π-index and the weighted Gini 

concentration index.  

 

It is clear from Fig. 2 that the highest inequalities are seen in Engineering 

and Technology where the Asian cohorts have a disproportionate share 

of the scientific workforce. For this case, Fig. 3 shows the weighted 

Lorenz curve corresponding to a very high Π-index of 0.824 and a Gini 

concentration index of 0.620. We also illustrated that there is a 

considerable gender disparity. We see, for instance, that the intersection 

of Latin and Women is far more disadvantaged than the intersection of 

Asian and Men. 

 

 



11 

 

 

Fig. 3. The weighted Lorenz curve for Engineering &Technology shows 

the dominance of the Asian cohorts in the scientific workforce. This is 

reflected in a Π-index of 0.824 and a Gini concentration index of 0.620.  

 

Concluding remarks 

Regarding the thermodynamic approach, we recall that Derek J. de Solla 

Price viewed science as a complex system and developed the science of 

science via an analogy to thermodynamics (Price, 1963). More 

concretely, he compared science to a gas with individual molecules 

(scientists) possessing velocities and interactions, exhibiting general 

properties. In his own words: “One does not fix one's gaze on a specific 

molecule called George, traveling at a specific velocity and being in a 

specific place at some given instant; one considers only an average of 

the total assemblage in which some molecules are faster than others, 
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and in which they are spaced out randomly and moving in different 

directions.” This averaging approach using Gauss’ least squares error 

principle leads to a natural definition of the second-order terms X, E, and 

S.     

In this article, we showed a direct relationship between the 

thermodynamic framework and the classical theory of evenness as 

measured using the modified repeat rate and its weighted form. This 

does not seem to be possible with the Gini evenness index.  

As an extra, we recalled (see appendix) Sridhar Ramesh’ construction of 

arrays with the same sum and the same sum of squares. 

We completed our study with a recent real-world example based on 

intersectional inequalities in science (Kozlowski et al. 2022). The highest 

inequalities are seen in Engineering and Technology where the Asian 

cohorts have a disproportionate share of the scientific workforce. We 

also noted that there is a considerable gender disparity. 
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Appendix.  

Construction of different distributions with the same modified 

repeat rate 

There exists an interesting way of constructing multisets with the same 

modified repeat rate. We illustrate this in the case of four numbers (N=4). 

The method explained here is due to Sridhar Ramesh (no date available).  

Consider a three-dimensional cube with vertices a, b, c, and d on the 

upper facet and e, f, g, and h on the lower facet. Vertices are named 

counterclockwise and vertex e is situated below vertex a (see Fig.1).  

 

Fig. 1 Cube used to perform Ramesh’s algorithm 

 

In this theory vertices a, c, f, and h are called the white vertices, while 

vertices b, d, e, and g are called the black vertices. A cube has six facets, 

here bounded by a,b,c,d; a,b,f,e; b,c,g,f; c,d,h,b; a,d,h,e and finally by 

e,f,g, and h. Now assign to each facet a non-negative number and finally, 

assign to each vertex the sum of the numbers of the three facets 
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adjacent to it. This number is called a V-number. The multiset of the four 

V-numbers of the white vertices has the same sum and the same sum of 

squares as the multiset of the four V-numbers of the black vertices, and 

hence they have the same modified repeat rate. A simple example is 

given in Table 2. 

 

Table 2. An example of Ramesh’s algorithm,  

2a: facets  

facet number number 
abcd 3 u 
abfe 4 v 
bcgf 6 w 
cdhg 2 x 
adhe 5 y 
efgh 1 z 

 

2b: vertices 

vertex V-number V-number 
a 3+4+5=12 u+v+y 
b 3+4+6=13 u+v+w 
c 3+6+2=11 u+w+x 
d 3+2+5=10 u+x+y 
e 4+5+1=10 v+y+z 
f 4+6+1=11 v+w+z 
g 6+2+1=9 w+x+z 
h 2+5+1=8 x+y+z 

 

The multisets {12,11,11,8} and {13,10,10,9}  have the same sum, namely 

42, and the same sum of squares, namely 450. Proof of this property can 

be given based on symmetry properties of the assigned numbers, but we 

provide a very elementary proof by just doing the calculations for an 

abstract assignment of numbers to facets, as shown in the third column 

of Table 2a and of Table 2b. 

We see that the sum of the white V-numbers is: (u+v+y)+(u+w+x) + 

(v+w+z) + (x+y+z) = 2(u+v+w+x+y+z), which is equal to the sum of the 

black numbers: (u+v+w)+(u+x+y)+(v+y+z)+(w+x+z). Similarly, one can 
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easily check that (u+v+y)2+(u+w+x)2 + (v+w+z)2 + (x+y+z)2 = (u+v+w)2 

+(u+x+y)2 +(v+y+z)2 +(w+x+z)2. 

The previous construction deals with the case N = 4. Performing this 

construction two, three, or more times yields the cases N=8,12, etc. (take 

the union of the obtained multisets). Taking two sets with 4 numbers and 

appending the same number to both yields an example with N=5; 

appending two or three numbers to both multisets (the same numbers) 

yields examples for the cases N=6 and N=7. The construction performed 

on a cube and also be done on a square yielding the case N=2, such as 

{3,7} and {5,5}. 

As, for N=4, the sum of the white V-numbers is equal to the sum of the 

black V-numbers, and is twice the sum of the freely chosen numbers 

u,v,w,x,y,z one can form as many couples of multisets with the same 

modified repeat rate as there are numbers with the same sum. This 

reasoning also applies to other values of N. 

 

 

 

 

 

 

 

 

 

 


