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Abstract

Two of the most common methods for robust regression are least
trimmed squares (LTS) and least median of squares (LMS) regression.
Both of these methods require sorting the squared residuals. Because
sorting is not a differentiable operation, end-to-end optimalisation with
gradient-based methods is not stable. Furthermore, existing algorithms
for estimating LTS and LMS regressors rely on multiple random initial
starting points. We propose and investigate two potential improvements
to LTS and LMS: (1) the use of soft differentiable sorting in the loss
functions and (2) deterministic initialisation of the estimators using the
wrapping transformation. The first improvement aims to tackle the draw-
backs of using hard sorting by introducing an alternative loss function
that can be optimised using gradient based optimisation schemes, while
the latter improvement aims to remove the need for multiple random ini-
tial starting points, leading to both improved accuracy as well as faster
convergence. We perform an extensive experiment on both simulated and
real world datasets and compare the performance of our introduced meth-
ods with well known baseline methods for robust regression. We show that
the deterministic initialisation has significant benefits for LTS and LMS,
both for predictive accuracy and for computational speed. The soft loss
function mostly benefits LMS, as it makes it possible to apply iterative
optimisation schemes to the LMS loss function. We also demonstrate the
potential application of the Soft LTS loss function to non-linear regression
problems using neural networks.
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1 Introduction

Regression is one of the most common problems in statistics and machine learn-
ing. Many techniques have been developed to find a relation between a set of
(continuous) predictor variables and a continuous target variable, ranging from
the well known Ordinary Least Squares (OLS) regression for fitting a straight
line to complex deep neural networks that can fit any arbitrary (non-linear)
function [11]. Unfortunately, most of these established techniques suffer from a
sensitivity to anomalies or outliers in the data.

Robust statistics is a sub-discipline of statistics that tries to address this sensi-
tivity to outliers. Many methods have been developed to perform robust linear
regression, see for example [1, 24, 31, 16]. Some of the most popular approaches
are M-estimators, S-estimators, and MM-estimators. M-estimators are general-
isations of the maximum likelihood estimator and use the following objective:

β̂M = argmin
β

1
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n
∑
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(

ri(β)

σ̂

)

with ri(β) the residual of the ith observation, σ̂ a (robust) preliminary scale
estimate and ρ : R → R. E.g. if ρ(t) = t2 we obtain least squares regression and
if ρ(t) = |t| we obtain least absolute deviation regression. The most well-known
M-estimator is probably Huber regression [18]. S-estimators [22] are based on
(robust) estimators of scale and use the objective

β̂S = argmin
β

σ̂(ri(β))

where σ̂(ri(β)) is a robust scale such as the M-estimator of scale defined as the
solution to
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= δ

with ρ a symmetric and continuously differentiable function and ρ(0) = 0. MM-
estimators [32] combine S- and M-estimators. An initial regression is estimated
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with an S-estimator. Subsequently a regression M-estimator is computed using
the fixed scale estimate σ̂S and initial estimate β̂S from the first step. This
results in an estimate with a high breakdown value (as a result of using the S-
estimator results) and high efficiency (property of M-estimators). Two popular
special cases of S-estimators, where the robust scale is based on the order statis-
tics of the residuals, are the Least Trimmed Squares (LTS) and Least Median
Squares (LMS) [23]. LTS considers the mean of the h smallest squared residuals
and LMS considers the median squared residual as loss function.

A drawback of the LTS and LMS estimators is that they require sorting the
residuals, which is a piece-wise linear function and gradient based optimisation
is thus mostly unstable. As a result, most algorithms that have been developed
for these estimators are iterative and less efficient than those for M-estimators.

Some researchers have tried to define approximate sorting operators that are
smooth and thus differentiable everywhere, which allows the use of sorting in
end-to-end optimisations. [5] define a differentiable proxy for sorting and rank-
ing by translating the operator to an optimal transport problem with entropic
regularisation. [2] propose differentiable sorting and ranking operators that
achieve O(nlogn) time and O(n) space complexity. They do this by defining
the operators as projections on the permutahedron which are then reduced to
isotonic optimisation. The authors also propose the application of their soft
sorting algorithm to robust regression. In particular, they demonstrate its po-
tential by defining a soft version of LTS regression and apply it to a set of real
datasets with artificial outliers.

The idea of approximating the (robust) loss function in order to improve com-
putational performance has also been explored in [10]. In this work, the authors
propose an approximate optimisation scheme for robust M-regression losses and
demonstrate that this approach can lead to improved robustness at a desirable
computational cost. However, in general, literature on the use of approximating
loss function for robust statistics is very scarce.

In this paper, we build on the ideas proposed by [2]. We introduce soft sorting
for LMS, yielding a differentiable objective function approximating the classical
LMS loss. Furthermore, we design a more extensive experiment on simulated
data as well as real data with artificial outliers to properly evaluate soft LMS
and soft LTS and compare them with their benchmarks. Finally, we consider the
application of soft sorting for non-linear regression by using the Soft LTS loss
as objective for a multi-layer perceptron (MLP) trained on a simulated dataset.
In [15], the ’hard’ LTS objective was used to train neural networks with an
iteratively reweighted algorithm. Using the Soft LTS objective, we can train
the network end-to-end by directly passing the Soft LTS loss to the gradient
based optimiser (e.g. Adam [14]).

Another drawback of the algorithms used to the LTS and LMS estimators (and
many robust estimators in general), is that they often rely on random starting
points. E.g. FAST LTS [25] uses a certain number of random subsets of the
data to determine multiple starting points. Random starting points are very
common in robust statistics, and the use of deterministic alternatives has already
been proposed for some common robust estimation techniques, especially in
the context of location and covariance estimation. DetMCD and its extensions

3



([13, 3, 7]) rely on the use of a small number of estimators that yield determinstic
starting points as opposed to multiple random starting points in the FastMCD
algorithm ([21]). Similarly, DetS ([12]) is a deterministic alternative for FastS
([27]), an iterative algorithm for fitting an S-estimator. In this paper we propose
to mitigate the problem of random starting points for the Fast LTS and LMS by
starting from weights that are initialised by first transforming the data and then
fitting a classical regression estimator. We transform both the response and the
predictors using wrapping, which was proposed in [19] as a transformation of
the data that allows fast and robust estimation of the covariance matrix for high
dimensional datasets. By using a single starting value, we can greatly improve
on the computational speed of the algorithms based on random subsampling.

Our contributions can be summarised as follows: (1) We perform an extensive
experiment to investigate the impact of soft sorting on robust regression, more
specifically its potential application to LTS and LMS, (2) we analyse the im-
pact of smartly initialising the weights in LTS and LMS by using the wrapped
covariance [19] and (3) we investigate the potential generalisation of Soft LTS
to non-linear regression.

Throughout the paper we will consider a linear regression model where the
expected conditional response E[Y |X] is modeled by a linear combination of a
p-variate random vector X: E[Y |X] = α+Xβ. We assume that we observe a
sample (x1, . . . ,xn) of size n, where each xj is an observed p-variate vector. We
denote the residual for observation i by ri(β) = yi − xiβ, and the i-th smallest
value residual (i.e. the i-th order statistic) by r[i]. We omit the intercept here
for notational simplicity, but it can be added by including a constant in the
predictor matrix.

In section 2 we give more background information on the techniques used in this
paper, i.e. LMS, LTS, soft sorting and wrapping. In section 3 we outline how we
implement soft versions of LMS and LTS as well as our approach to wrapping
initialisation. Section 4 outlines our experimental set-up, including a description
of the datasets and section 5 presents the results from the experiments. Finally,
we discuss our conclusions and suggestions for further research in section 6.

2 Preliminaries

2.1 Least Median Squares

Least Median of Squares (LMS) regression was first proposed in [23]. Instead of
using the sum of squared residuals as the loss function, LMS tries to minimize
the median of the squared residuals, i.e.:

β̂
LMS

= argmin
β

r2[⌈n

2
⌉](β)

It has been shown that LMS has a breakdown value of 50%, but low statisti-
cal efficiency (converging at rate n−1/3). However, the main drawback of this
method is the lack of efficient algorithms [29] [24]. The main approach to fit an
LMS regression is to select N (e.g. 3000) random subsets of size p+ 1 where p
is the number of features in the dataset, fit an OLS regression on each of these
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subsets and select the weights of the model with the lowest median squared
residual on the full dataset.

Despite some of its disadvantages, in practice LMS is still often used as an initial
estimator for more efficient estimators and as a data-analytic tool because of its
high breakdown value and optimal robustness properties [17].

2.2 Least Trimmed Squares

Similar to LMS, Least Trimmed Squares (LTS) regression also does not consider
all observations in the loss function. Instead, it considers the sum of the h
observations with the smallest residuals:

β̂
LTS

= argmin
β

h
∑

i=1

r2[i](β).

The most popular algorithm to compute the LTS coefficients is FAST LTS
[25, 26]. The idea is to use so-called concentration-steps (C-steps) on a number
of random starting points until convergence. A C-step consists of selecting the h-
subset of observations with the smallest residuals and fitting an OLS regression
on this subset. Applying C-steps iteratively guarantees a monotone decrease
in the objective function. In FAST LTS, random starting points are obtained
by selecting random subsets of size p + 1 (where p is the dimensionality of the
dataset). A predetermined set of C-steps is applied to each of these random
initial subsets, after which the n best models are selected and further C-steps
are performed until convergence. Finally, the best model (with the lowest LTS
train loss) is selected.

2.3 Soft sorting

Many robust algorithms use sorting and ranking. The drawback of these meth-
ods is that these operations are not smooth functions, making it harder to
optimize loss functions that depend on them. [2] proposed a new approximat-
ing algorithm for sorting and ranking. In this paper we focus on soft sorting, as
both LTS and LMS rely on the sorting operator.

The soft sorting operator proposed in [2] relies on projections onto the permu-
tahedron, the convex hull of permutations, and using a reduction to isotonic
optimization.

Specifically, soft sorting is defined as

sϵΨ = PΨ(ρ/ϵ, θ)

where PΨ is a regularised projection onto the permutahedron, ρ is the reversing
permutation (ρ := (n, n − 1, ..., 1)), ϵ > 0 is a regularisation parameter and θ
is the score vector we want to sort. The authors propose 2 alternative forms
of regularisation Ψ, quadratic and entropic. In this paper we only consider
quadratic regularisation, i.e.

PΨ(ρ, θ) = PQ(ρ, θ) = argmin
µ∈P (θ)

∥µ− ρ∥2
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The parameter ϵ acts as interpolator between ’hard’ sorting and ’soft’ sorting.
E.g. for the application of soft sorting to LTS, ϵ → 0 can be interpreted as
regular LTS (with a hard objective) and ϵ → ∞ results in regular least squares
regression (as the sorted scores will just approximate the mean of all scores).

The authors empirically show that their approach is significantly faster than
previously existing approaches (achieving O(nlogn) time and O(n) space com-
plexity).

2.4 Wrapping

The wrapping transformation was initially proposed in [9] as the optimal trans-
formation of the data for robust location estimation. This transformation was
dubbed ’wrapping’ in [19], where it was used for efficient estimation of robust
correlations. The transformation has the following form:

Ψb,c(zw) =











z if 0 ≤ |z| < b

q1 tanh (q2(c− |z|)) sign(z) if b ≤ |z| ≤ c

0 if c < |z|

z is the standardized variable (z = (x−mx)/sx), using a robust location (mx)
and scale (sx) estimate (e.g. median and median absolute deviation). The cut-
off values b and c are usually set to default values 1.5 and 4. The parameter b
is similar to the corner value in the Huber function, as the influence of values
more than 1.5 standard deviations away is limited. The parameters q1 and q2
can be derived by requiring continuity of Ψb,c and optimal V -robustness for the
normal distribution. Since we set b = 1.5 and c = 4, the optimal values for
q1 and q2 are 1.540793 and 0.8622731 respectively, as shown in [19]. Figure 1
shows the wrapping function Ψb,c.

Figure 1: Wrapping function Ψb,c

Using the wrapping function, the ’wrapped’ variable is finally constructed as
xw = zwsx+mx, withmx and sx the original robust location and scale estimates.
These transformed variables can then be used as input to a classical method,
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such as the estimation of covariance matrices. The resulting covariance matrix
estimate has been found to be biased, mainly because the marginal distributions
of the variables have been squashed. This can be partly mitigated by re-scaling
the data, i.e. xw = zw

sx
szw

+ mx − mzw
sx
szw

where mzw and szw are the (non-

robust) mean and standard deviation of zw. The resulting (non-robust) location
and scale of the wrapped variables are the same as the initial robust location
and scale estimates (mx and sz).

3 Methodology

This section is structured as follows: in section 3.1 we elaborate in the imple-
mentation of soft version for LTS and LMS. In section 3.2 the use of wrapping
for smart initialisation is discussed and section 3.3 shows how we apply Soft
LTS to non-linear regression.

3.1 Soft LTS and Soft LMS

To investigate the impact of using soft sorting, we implemented Soft LTS and
Soft LMS. Both algorithms are very similar and only differ in the loss function.
Soft LTS uses the soft version of the LTS loss, i.e.

β̂
sLTS

= argmin
β

h
∑

i=1

sϵΨ(r
2(β))[i].

and Soft LMS uses the soft version of the LMS loss, i.e.

β̂
sLMS

= argmin
β

sϵΨ(r
2(β))[⌈n

2
⌉]

where β are the regression parameters (intercept and coefficients), n is the size
of the dataset, h is the size of the subset (often set to 0.5n) and sϵΨ is the soft
sort operator with regularisation type Ψ [2]. We use quadratic regularisation
in both cases (i.e. Ψ = Q) and fix the soft sort regularisation parameter ϵ to
1e − 4 (experimentation with a range of values for epsilon indicated that this
is a reasonable default value). The algorithms start with a number of random
subsets with size n features + 1. Initial regression weights are estimated with
OLS on these subsets. For each initial subset, the weights are optimised with
the L-BFGS-B algorithm (as implemented in the Scipy package 1 [4]) for a
fixed number of iterations (10 in our experiments). Subsequently, the k subsets
(k = 10 in our experiments) with the lowest hard loss (i.e. regular LTS or LMS
loss) are selected and are further optimised with L-BFGS-B until convergence
or a maximum of 300 iterations is reached.

We considered alternative gradient-based optimization algorithms for the soft
loss such as Adam [14], but because there was no significant difference in per-
formance with the L-BFGS-B algorithm, we do not report results with these
alternative optimisers.

1https://docs.scipy.org/doc/scipy/reference/optimize.minimize-lbfgsb.html

7



3.2 Wrapping initialisation

Most algorithms for LTS, LMS and other robust regressors require starting val-
ues on which an iterative algorithm is applied. The choice of starting value
is very important, as it can influence both the speed as well as the quality of
convergence. Random initialisation is most common, but has a significant draw-
back: to mitigate sensitivity to noise and outliers, many random initialisations
are needed, which causes a significant computational cost. Furthermore, there
is no trivial way to determine a minimum number of random starting points to
ensure decent results.

In this paper, we use the wrapping transformation to derive initialisation weights
for LTS and LMS estimators. This can be done in 2 ways: Xy-wrapping or X-
wrapping. ForXy-wrapping, the featuresX and targets y are first concatenated.
Wrapping is then applied to the concatenated data. Subsequently, the subset of
the (concatenated) data with the h smallest Mahalanobis distances to the mean
and location of the wrapped data is selected. Finally, a regular OLS estimator
is fitted on the selected subset. X-wrapping is very similar, but wrapping is
only applied to the features. Again, a subset of the data is selected with the h
smallest Mahalanobis distances to the mean and covariance of the transformed
data. Since wrapping is only applied to the features, a Huber regressor is fitted
on this subset instead of a regular OLS.

Figure 2 shows the application of Xy-wrapping regression to simulated data
with 1 feature sampled from a univariate standard gaussian and 20% outliers.
Even though wrapping regression does not result in a perfect fit to the clean
data, it is significantly better than simple OLS. Combined with the fact that
the wrapping transformation has low computational cost, wrapping regression
proves to be a suitable initialisation method for robust regression.

Figure 2: Example of wrapping regression on simulated data

We only report results for Xy-wrapping as in most cases this proved to be more
robust than X wrapping.

3.3 Non-linear Soft LTS

Robust non-linear regression is very challenging, and many of the ideas that
work for linear regression cannot be directly translated to the non-linear setting.
Using a LTS- or LMS-type loss function for non-linear regression is possible, but
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the resulting optimization problem is even more sensitive to starting values. Us-
ing many random initialisations, which is common for linear robust regressors,
also becomes more difficult as training non-linear regression models is typically
much more costly. Furthermore, as extrapolation outside of the range of ob-
served values is very unreliable for non-linear regression (as opposed to linear
regression), ignoring part of the data during fitting can result in models that
perform very poorly at the edges of the data range [20].

While [15] empirically showed that traditional C-steps can give decent results for
non-linear neural network regression, there is no theoretical basis to guarantee
convergence (as opposed to linear regression). Furthermore, as neural networks
are very sensitive to local minima, using traditional C-steps very likely results in
sub-optimal results. We apply the Soft LTS objective to non-linear regression
modeled by a neural network. The differentiable loss function allows us to
leverage the power of deep learning to fit any non-linear function in an end-to-
end way, without relying on C-steps.

4 Experiment

4.1 Data

4.1.1 Linear regression

In order to evaluate our proposals, we use both simulated datasets as well as
real datasets from the UCI Machine Learning Repository and StatLib2 [8].

For the simulated data, we consider 2 settings.

In the first setting, we generate the features X from a 10-dimensional multi-
variate standard normal distribution with 0 mean and unit covariance matrix.
The target y is then calculated as follows:

y = Xβ + ϵ

Where β = 1p is the vector of clean regression coefficients and ϵ is a vector of
length n sampled from normal distribution with 0 mean and standard deviation
of 1. To add leverage points, we simply multiply X with a factor dx > 1. To
add vertical outliers, we calculate the targets as y = dyXβ + ϵ with dy ≤ −1.
In our experiments, we set dy = −5 and dx = 5. We refer to this setting as
simulated data with uncorrelated features.

The second setting is similar to what the authors in [6] refer to as the A09
type simulation. We generate X from a 10-dimensional multivariate normal
distribution with 0 mean and a covariance matrix Σ where the elements are
equal to ρ|i−j|, with ρ a constant between [−1, 1], and i, j are row and column
indices. Following [6], we set ρ = −0.9 in our experiments. y is then calculated
the same way as the setting with uncorrelated features described above, but with
ϵ sampled from a normal distribution with 0 mean and a standard deviation
of 0.1 instead of 1. We chose a lower standard deviation for this simulation as
the signal-to-noise ratio would otherwise be too small given the more difficult
simulation approach with correlated features. Leverage points are generated

2http://lib.stat.cmu.edu/datasets/
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from a new multivariate standard normal distribution, with the same covariance
matrix as the clean data, but a contaminated location vector that is determined
as follows:

µcont =
vdx

√

χ2
m−1,0.975

√

(v − µclean)⊤Σ−1(v − µclean)

v is the smallest eigenvector of Σ, m is the number of features and dx is a
factor greater than or equal to 1. The covariance matrix can be multiplied by
a factor to either spread the outliers further apart or centralise them. In our
experiment we put all leverage points at a single location µcont, i.e. we multiply
the covariance by 0. This specific way of generating outliers in the predictor
space is motivated by the fact that these types of outliers generate the strongest
bias on the classical covariance matrix of the predictors. Vertical outliers are
created by shifting the clean targets with a factor dy. In our experiments we
set dx = 5 and dy = −5.

For both simulations, we sample 1000 observations, (800 for training, 200 for
testing). The added outliers are always split equally over bad leverage points
and vertical outliers (i.e. if 20% outliers are added, this consists of 10% vertical
outliers and 10% bad leverage points).

For the real data sets, we consider the following datasets from StatLib and the
UCI Machine Learning repository: Bodyfat3, Computer Hardware4, Combined
Cycle Power Plant (CCPP) Data Set5[30] and Average Localization Error6[28].

Table 1: Overview of used datasets.

Dataset # observations # features

Bodyfat 252 14

Computer Hardware 209 6

CCPP 9568 4

Average Localization Error 107 4

For each of these datasets, we first split the clean data in a train and test set, 80%
of the data is used for training, 20% is used for testing. Subsequently we add
vertical outliers and bad leverage points only to the training set. Note that this
procedure implicitly assumes that the original data only contains clean samples.
As the selected datasets are well-known benchmark datasets, extensively used
to illustrate non-robust algorithms, we believe this is a safe assumption.

We generate vertical outliers by simply adding a factor dy to the clean tar-
gets. Leverage points are created by adding a factor dx in the direction of
the smallest eigenvector of the empirical covariance matrix of the clean data
(Xcont = Xclean + vdx, with v the smallest eigenvector of cov(X)). In our

3https://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/regression/bodyfat
4https://archive.ics.uci.edu/ml/datasets/Computer+Hardware
5https://archive.ics.uci.edu/ml/datasets/Combined+Cycle+Power+Plant
6https://archive.ics.uci.edu/ml/datasets/Average+Localization+Error+%28ALE%29+in+sensor+node+localization+process+in+WSNs
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experiments we set dy = 10 and dx = 5 Here as well, we split the outliers equally
over vertical outliers and bad leverage points.

4.1.2 Non-linear regression

A key attribute of the Soft loss functions is that we can more easily generalise
its application to non-linear data. To demonstrate this, we generate a simple
dataset with two features of size 1000. The featuresX are generated by sampling
from a 2-dimensional gaussian with 0 mean and covariance Σ =

(

1 0.9
0.9 1

)

. We
add 20% outliers in the direction of smallest eigenvector of the clean covariance
matrix by sampling from a 2-dimensional gaussian distribution with the same
covariance matrix as the clean data, but the following mean vector:

µcont =
v
√

χ2
1,0.975

√
vTΣ−1v

with v the eigenvector of Σ with the smallest eigenvalue. y is then calculated
as follows:

yclean = sin (1 +X1,clean +X2,clean) + ϵ

ycont = 10 + sin (1 +X1,cont +X2,cont) + ϵ

with ϵ noise sampled from a univariate gaussian with 0 mean and a standard
deviation of 0.1. Figure 3 shows what the generated data looks like.

Figure 3: Simulated data for non-linear regression

4.2 Set-up

4.2.1 Linear regression

We consider the following algorithms as baseline: simple OLS regression, default
FAST LTS (i.e. 500 initial subsets, 2 initial C-steps and 10 best models that
are fit until convergence, with a tolerance of 1e− 15), FAST LTS with a single
(random) subset that is fit until convergence and default classic LMS (i.e. 3000
subsets of which the one with the lowest loss function is selected). We have also
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included the MM-estimator ([32]) with default settings as implemented in the
lmrob function of the R-package robustbase7.

These baseline models are compared to Soft LTS with 20 random starts, Soft
LTS with a single random start, Soft LTS with a single start using Xy-wrapping
initialisation, Fast LTS with a single start using Xy-wrapping initialisation, Soft
LMS with 20 random starts, Soft LMS with a single random start and Soft LMS
with a single start using Xy-wrapping initialisation.

For each dataset we let the outlier percentage vary between 0.1 and 0.5 and fit
each model 10 times with different random seeds (which impacts the train/test
split as well as the selection of initial random subsets for most algorithms). For
all algorithms we fix the parameter α to 0.5 (i.e. the h-subset is half of the
training set). All other hyper-parameters as described above also remain fixed
during the experiment. We report the mean R2 value on the test set for each
dataset and each outlier percentage across iterations as well as the mean fit
duration for each algorithm. The experiments were executed on a MacBook
Pro with a 2,3 GHz Quad-Core Intel Core i5 processor.

4.2.2 Non-linear regression

In order to demonstrate the impact of using Soft LTS for non-linear regression,
we train a multi-layer perceptron (MLP) on the generated data with 3 different
loss functions: mean squared error (MSE), mean absolute error (MAE) and
Soft LTS loss with α = 0.7. The architecture of the MLP is the same in all
cases: 2 hidden layers with 100 neurons each and ReLU activation. The MSE
and MAE networks are trained for 2000 epochs with a batch size of 50 and an
Adam optimiser with a learning rate of 0.001, the Soft LTS network is trained
for 10 000 epochs with a batch size equal to the size of the dataset and an Adam
optimiser with a learning rate of 0.01.

For each of the networks, we also show the impact of using y-wrapping to
initialise the weights of the neural network. The initialisation weights are the
same for each network and are obtained by training an MLP with the same
architecture and MSE objective on the y-wrapped data.

We report the R2 value on the clean data for each model.

5 Results

5.1 Simulation data

5.1.1 Least Trimmed Squares

Figure 4 shows the impact of applying soft sorting and Xy-wrapping initiali-
sation for LTS on the simulated dataset. On the X-axis of the top 2 panels,
the outlier percentage varies from 10% to 50% outliers and the Y-axis shows
the mean R2 on the test set. The Y-axis of the bottom panel represents the
average total fit duration in seconds on a logarithmic scale across iterations and
across all outlier percentages. In terms of robustness, we can see that FAST
LTS with a single random start does not perform well on either dataset, while

7https://rdrr.io/cran/robustbase/man/lmrob.html
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Figure 4: Impact of soft loss function and Xy-wrapping initialisation for LTS
on simulated data (left: simulation with uncorrelated features, right: simulation
with correlated features)

the soft version seems to have a higher breakdown value for the data with uncor-
related features and similar performance for the data with correlated features.
If we compare FAST LTS and Soft LTS with multiple random starts we see
that Soft LTS with multiple random starts performs equally on the data with
uncorrelated features and slightly worse on the data with correlated features.
The comparison is not entirely fair as Soft LTS only has 20 random starts. The
reason why we do not consider 500 random starts is clear when we look at the
fit duration in the bottom panel of figure 4, as even with only 20 starts, Soft
LTS is already significantly slower than FAST LTS with 500 starts.

It is clear that there is a large positive effect of applying the proposed initial-
isation based on Xy-wrapping. In particular, both FAST LTS and Soft LTS
improve greatly when starting from the weights retrieved from the regression on
the wrapped data, compared with those from a single random start. On most
datasets, the single starts with Xy-wrapping even outperform FAST LTS with
500 random starts and Soft LTS with 20 random starts. Besides the positive
impact on robustness, there is also an improvement in speed. We can see a
small speed-up when comparing the single start alternatives. This seems coun-
terintuitive, but can be explained by the fact that a more robust starting value
may require fewer C-steps to converge. When compared with the more stan-
dard FAST LTS with 500 random starts, the Xy-wrapping can lead to speed
improvements up to a factor 100 for similar or better performance.

Comparison with the baseline MM-estimator shows that FAST LTS with Xy-
wrapping initialisation and Soft LTS with Xy-wrapping initialisation have sim-
ilar performance in terms of robustness, but FAST LTS with Xy-wrapping ini-
tialisation is up to a factor 10 times faster than the MM-estimator and Soft LTS
with Xy-wrapping initialisation

5.1.2 Least Median Squares

Figure 5 shows the results for the experiments with the LMS objective. Classic
LMS with 3000 random subsets appears to be more robust than Soft LMS
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Figure 5: Impact of soft loss function and Xy-wrapping initialisation for LMS
on simulated data

with 20 starts for both datasets. Soft LMS with a single random start is not
competitive at all (it is not even visible in figure 5, as its R2 value already drops
below 0 for 10% outliers). Furthermore, as can be seen in the bottom panel of
figure 5, Soft LMS with multiple starts is almost a factor 100 times slower than
Classic LMS.

Using Xy-wrapping initialisation leads to much more competitive results, as
it outperforms Classic LMS on the data with uncorrelated features and has
only a slightly worse performance for high outlier percentages on the data with
correlated features. It is even competitive with the MM estimator results on
both datasets. If we look at fit duration, we see similar times for Soft LMS with
Xy-wrapping initialisation and Classic LMS with 3000 subsets. Nonetheless,
in terms of fit duration, all LMS approaches are still outperformed by the MM
estimator. It is clear that the soft loss function is only valuable when combined
with smart initialisation for LMS.

5.1.3 Non-linear LTS

Figure 6 shows the results for the experiment on non-linear simulated data. It is
clear that both MSE and MAE loss are not capable of handling the bad leverage
points. They even have negative R2 values, indicating that the fitted models
perform worse than a horizontal plane. Using Soft LTS loss results in a nearly
perfect fit to the clean data. If we apply y-wrapping initialisation, we see a
slight additional improvement. If we look at the training loss history in figure
7, we can also see that using the smart initialisation results in a slightly faster
convergence.

5.2 Real data

5.2.1 Least Trimmed Squares

Figure 8 shows the results on real datasets for the LTS variants. Similar conclu-
sions can be drawn as for the simulated data: FAST LTS and Soft LTS initialised
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Figure 6: Results non-linear regression

with Xy-wrapping together with the MM estimator and FAST LTS with 500
random starts have the best performance on most datasets. Both FAST LTS
and Soft LTS with a single random start are consistently outperformed by the
variants with smart initialisation and multiple random starts.

If we look at the fit durations, we can see that Soft LTS does not scale well with
the dataset size. For the largest dataset (CCPP with 9568 observations), Soft
LTS is more than a factor 100 times slower than FAST LTS. We do however see
the impact of applying smart initialisation, which leads to faster convergence
for bath FAST LTS and Soft LTS. While the MM-estimator is faster than FAST
LTS with 500 starts, it is up to a factor 10 times slower than FAST LTS with
smart initialisation for the smaller datasets. For the largest dataset (CCPP),
the difference in fit duration shrinks, which indicates that the LTS algorithm
does not scale as well with the dataset size as the MM estimator.

5.2.2 Least Median Squares

Figure 9 shows the results on real datasets for the LMS variants. Classic LMS
with 3000 starts appears to be the most robust on all datasets, closely followed
by the MM estimator and Soft LMS with Xy-wrapping initialisation (except
for the ALE dataset and outlier percentages of 50%, where Soft LMS with Xy-
wrapping initialisation is significantly worse). Soft LMS with a single random
start is again not visible on the plots as this leads to very poor results, even for
small outlier percentages.

Looking at the duration we see a similar pattern as Soft LTS: for larger datasets,
Soft LMS is slower than Classic LMS with 3000 starts, even with Xy-wrapping
initialisation. All LMS variants are significantly slower than the MM estimator
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Figure 7: Training loss for Soft LTS MLP

Figure 8: Impact of soft loss function and Xy-wrapping initialisation on LTS
on real data

6 Conclusion

LTS and LMS are well known methods for robust regression. Both of these
methods rely on sorting of the squared residuals, which is a piece-wise linear
function, making it difficult to use gradient-based optimisation approaches. The
most popular existing algorithms for fitting an LTS or LMS regression use a
large number of random initialisations. In this paper, we tried to improve upon
these algorithms both in terms of robustness as well as fit duration by (1) using
soft sorting in the objective function to construct ’Soft LTS’ and ’Soft LMS’
estimators and (2) using a deterministic initialisation by applying wrapping
regression.

For LTS, we saw substantial improvements as a result of applying Xy-wrapping
initialisation. On almost all datasets, FAST LTS with Xy-wrapping initialistion
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Figure 9: Impact of soft loss function and Xy-wrapping initialisation for LMS
on simulated data

obtained the best performance, often outperforming FAST LTS with 500 random
starts and the MM estimator. Furthermore, there is a significant speed-up in fit
duration. Fitting FAST LTS with a single start, initialised with Xy-wrapping
was a factor 100 times faster than FAST LTS with 500 random starts in our
experiments and a factor of 10 times faster than the MM estimator. On the
other hand, the use of soft sorting did not result in any improvements when it
comes to robustness. In most cases a comparable performance as FAST LTS
could be achieved, but due to the higher fit durations, we can conclude that
Soft LTS is not a competitive alternative for FAST LTS.

Our experiments with LMS also confirmed that Xy-wrapping has its benefits.
However, the use of the soft loss objective is a requirement in this case, as there
is no alternative iterative optimisation method (where FAST LTS uses C-steps).
On the simulated datasets, Soft LMS with Xy-wrapping initialisation achieved
a better performance than Classic LMS with 3000 starts, with on almost equal
fit duration. On the real datasets, Classic LMS with 3000 subsets was slightly
more robust than Soft LMS with Xy-wrapping initialisation, as well as up to
a factor 10 times faster on the largest dataset (9568 observations). All LMS
variants were slower than the MM estimator.

Finally, we also demonstrated the potential use of the Soft LTS loss for non-
linear regression. On our simulated dataset with so-called bad leverage points
(i.e. points that are outlying both in X and y), an MLP with Soft LTS ob-
jective was able to achieve an almost perfect fit on the clean data, while the
same network with MSE and MAE loss were not able to handle the outliers.
Unfortunately, in real applications, the choice of α is not so straight forward to
make, as the percentage of outliers is not known. While we can use a low α of
0.5 by default in many cases, this is not the case for non-linear regression. With
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linear regression, it is safer to assume reliable extrapolation at the edges of the
distribution, while this is not possible for non-linear regression, where there is
no straightforward way to extrapolate the learned function outside of the known
domain.

Further research could be done on alternative deterministic initialisation meth-
ods. Following the example of DetMCD [13], multiple deterministic starting
points could be selected, increasing the potential to find the ’optimal’ solution
while significantly reducing the number of initial starting points and thus also
the fit duration.

The use of Soft LTS for non-linear regression also requires further in-depth
analysis. Datasets suited for non-linear regression with known outliers could be
used to further validate the potential of Soft LTS as a loss function.
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