Article

Dearomative Spirocyclization of Tryptamine-Derived Isocyanides via Iron-Catalyzed Carbene Transfer

Thomas R. Roose, Finn McSorley, Bryan Groenhuijzen, Jordy M. Saya, Bert U. W. Maes,* Romano V. A. Orrù,* and Eelco Ruijter*

INTRODUCTION

Functionalized isocyanides have proven valuable building blocks in organic chemistry. Tethering the isocyanide moiety to other reactive functionalities provides great opportunities for the development of novel cascade and multicomponent processes.¹ For example, 3-(2-isocyanoethyl)indoles (1, Scheme 1a) have recently attracted considerable interest, as

Scheme 1. Dearomative Spirocyclization of 3-(2-Isocyanoethyl)indoles

they allow for the facile construction of (polycyclic) spiroindol(en)ines 2^{2-5} through dearomatization of the indole moiety.⁶ These spiroindolenines/indolines (2) are of considerable relevance as these motifs occur in, e.g., medicinally relevant compounds,⁷ such as Sky kinase inhibitor 5^{7a} and monoterpenoid indole alkaloids of the *Aspidosperma* and *Strychnos* types (Scheme 1b).⁸ Notably, strategies toward

construction of these natural products often involve dearomatization of the indole moiety.⁹ Several strategies for the dearomative spirocyclization of 3-(2-isocyanoethyl)indoles **1** have been reported,³⁻⁵ which differ in the transformation of the isocyano moiety providing different functionalities allowing spirocyclization (Scheme 2a). The first strategy (I) relies on trapping the isocyano moiety by an electrophile, resulting in nitrilium ion 7. Subsequently, this intermediate is trapped in an intramolecular fashion by the indole C3 position.

 $R^2 = R^4 = H_1 R^3 = Et$

32 examples

indole alkaloids

Multiple electrophiles have been applied in the formation of spirocyclic indolenines and indolines.³ Moreover, our group has demonstrated that using NIS as electrophile, 3-(2-isocyanoethyl) indoles 1 could be applied in the formal total synthesis of (\pm) -aspidofractinine.^{3g} A less explored strategy (II) involves transition-metal-catalyzed imidoylative cross-coupling,¹⁰ which proceeds via imidoylpalladium intermediate 8 (Scheme 2a).⁵ The third strategy (III) proceeds via heteroallene 9, which can be accessed via selective transition-metal-catalyzed carbene (Y = CR⁶) or nitrene transfer (Y = N) to the isocyanide moiety,¹¹ followed by nucleophilic addition of the C3-position of the indole to the heteroallene (Scheme 2a).⁴ Although one base-metal-catalyzed example is reported for the nitrene transfer to isocyanide 1,^{4b} no base-metal-

Received:	September 22, 2023
Revised:	November 6, 2023
Accepted:	November 9, 2023

b) Previous work: Pd-catalysed carbene transfer to 3-(2-isocyanoethyl)indoles^[4a] :

c) This work: Fe-catalysed carbene transfer to 3-(2-isocyanoethyl)indoles

catalyzed carbene transfers to 3-(2-isocyanoethyl)indoles (1) have been reported.

In 2020, Chen and co-workers reported the dearomative spirocyclization of isocyanides 1 using strategy III, proceeding via ketenimine intermediate 9 (Y = CR⁶, Scheme 2a).^{4a} They described the Pd-catalyzed carbene transfer to isocyanide 1 in the construction of spiroindolenine 15 and polycyclic spiroindolines 16 (Scheme 2b). Although this method displays a broad scope, a high loading of the precious palladium catalyst (10–15%) is required. In addition, despite obtaining pentacyclic scaffold 17 (resembling the core of monoterpenoid indole alkaloids), the authors could not obtain the correct relative stereochemistry at the C–E ring junction, which should be *cis*-fused as in, e.g., aspidospermidine (3, Scheme 1b).

Shifting from Pd-catalyzed processes to base metals, such as iron, is highly desired, due to their high abundancy on Earth and low cost. Recently, our group developed an iron-catalyzed carbene transfer reaction to isocyanides for the construction of multiple heterocycles.¹² The ferrate complex, Bu_4N [Fe-(CO)₃NO] (also known as the Hieber anion),¹³ was demonstrated to effectively catalyze the transfer of carbenes¹⁴ to isocyanides to give a ketenimine intermediate. In this work, we demonstrate for the first time that the Hieber anion can be employed to catalyze a dearomative spirocyclization of 3-(2-isocyanoethyl)indoles (1). The process proceeds via carbene transfer to the isocyanide moiety (Scheme 3b) to afford spiroindolenines **19** as potential synthetic intermediates in the total synthesis of indole alkaloids.

Scheme 3. Scope for C2-Substituted 3-(2-Isocyanoethyl)indoles and Substituted α -Diazo Esters^{*a*}

^{*a*}Reaction conditions: $Bu_4N[Fe(CO)_3NO]$ (0.025 mmol), 1 (0.5 mmol), and 18 (0.6 mmol) in DCE (2 mL) at 80 °C under N₂.

RESULTS AND DISCUSSION

We started our investigation using isocyanide 1a and ethyl diazoacetate (22) as model reactants for optimization (Table 1). Various iron-based catalysts (entries 1-6) were found to be inferior to the Bu₄N[Fe(CO)₃NO] as a catalyst of the reaction (entry 7). The addition of phosphine ligands negatively affected the reaction (entries 8 and 9).

Furthermore, performing the reaction at lower temperature afforded the product in low yield with slow conversion (entry 10). In addition, the reaction was found to proceed in several solvents (entries 12-16), albeit not as efficiently as in DCE. Thus, we opted to continue with the conditions in entry 7, affording spiroindolenine **23a** in 96% isolated yield.

Table 1. Optimization of the Fe-Catalyzed Carbene Transfer to 3-(2-Isocyanoethyl)indole 1a

۲۵ ۱a	$NC + \int_{N_2}^{CO_2Et} 22$	[Fe]-cat. (5 mol%) Solvent (0.25 M), 80 °C	23a	CO ₂ Et
Entry	[Fe]-cat.	Additive (mol %)	Solvent	Yield of $23a (\%)^a$
1	Fe(CO) ₅		DCE	92
2	Fe (Pc)		DCE	21 ^c
3	Fe(TPP)Cl		DCE	18 ^c
4	Fe(TPP)Cl	Zn (50)	DCE	trace ^c
5	$Fe(ClO_4)_2$ ·4H ₂ O	TMEDA (6) NaBarF (6)	DCE	trace ^d
6	$Fe(ClO_4)_2 \cdot 4H_2O$	DPPE (6) NaBarF (6)	DCE	trace ^d
7	Bu ₄ N[Fe(CO) ₃ NO]		DCE	98 (96 ^b)
8	Bu ₄ N[Fe(CO) ₃ NO]	PPh_3 (6)	DCE	89
9	Bu ₄ N[Fe(CO) ₃ NO]	$P(2-Fur)_{3}(6)$	DCE	86
10	$Bu_4N[Fe(CO)_3NO]$		DCE	22 ^{<i>d,e</i>}
11			DCE	0
12	$Bu_4N[Fe(CO)_3NO]$		dioxane	70
13	$Bu_4N[Fe(CO)_3NO]$		CH ₃ CN	89
14	$Bu_4N[Fe(CO)_3NO]$		PhMe	66
15	$Bu_4N[Fe(CO)_3NO]$		DMF	85
16	$Bu_4N[Fe(CO)_3NO]$		i-PrOH	56

"Reactions performed on a 0.5 mmol scale of 1a and 0.6 mmol of 22. Yields are determined by ¹H NMR analysis using 2,5-dimethylfuran as internal standard. ^bIsolated yield. ^cFull conversion of ethyl diazoacetate (22) prior to full conversion of isocyanide 1a. ^dNo full conversion of isocyanide 1a observed by TLC analysis after 22–24 h at 80 °C. ^eReaction performed at 60 °C.

With the optimal conditions in hand, we started to investigate the scope of the Fe-catalyzed carbene transfer/ spirocyclization cascade with regard to C2-substituted indole isocyanides 1b-p (Scheme 3). Aliphatic substituents were generally well tolerated, affording indolenine 23b ($R^2 = Me$) in good yield. A slower conversion and lower yields were observed with increasing bulk of the aliphatic substituent (23c, $R^2 = t$ -Bu, Scheme 3). Decoration of the indole benzene ring with several substituents at different positions afforded spiroindolenines 23d-i in good to excellent yield. In addition, the reaction allowed the presence of aromatic indole substituents (R²) including a 2-naphthyl group, and the corresponding indolenines (23j-n) were obtained in good yield. To our delight, even the use of a 2-bromoindole isocyanide 10 ($R^2 = Br$) afforded 230 in good yield, providing an imidoyl halide as a functional handle at the C2-position.¹ In addition, the tautomerized bis- β -enamino ester 23p was obtained in moderate yield starting from 2-(2-methoxy-2oxoethyl)indole isocyanide 1p ($R^2 = CH_2CO_2Me$).

After investigation of the isocyanide scope, the scope of diazo compounds was briefly explored (Scheme 3). We started with the use of diazo precursors for donor-acceptor carbenes (18a, $R^3 = Ph$, $R^4 = Me$), which afforded the products 23aa and 23ba in only trace amounts. In contrast, in the analogous Pd-catalyzed reaction, these carbenes were converted to indolenines 23aa and 23ba in good to excellent yield.^{4a} A similar limitation in scope of α -diazo esters was observed in the recently reported iron-catalyzed intermolecular carbene transfer to isocyanides, where we used amidines to trap the ketenimine intermediate.¹² Next, we employed diethyl 2-

diazosuccinate (18b) of the acceptor-type carbene class, which was reacted with isocyanides 1a and 1b to give the corresponding spiroindolenines 23ab and 23bb in moderate yield. Extending the carbon chain to diethyl 2-diazoglutarate (18c) afforded only a trace amount of product 23bc as judged by ¹H NMR analysis of the crude product. In addition, the use of α -diazo ester 18e (R³ = COMe, R⁴ = Me) from the acceptor–acceptor class did afford spiroindolenine 23be, albeit in low yield. Finally, we employed α -diazo ester 18d (R³ = *E*-CH = CHCO₂Me, R⁴ = Me) in combination with isocyanide 1a, which would allow for a carbene transfer/spirocyclization/ Mannich cascade affording tetracyclic spiroindoline 24 as described by Chen et al. (Scheme 1b).^{4a} Unfortunately, with [Fe(CO)₃NO]Bu₄N as catalyst this cascade did not occur.

In addition to the isocyanide scope bearing a C2 indole substituent, we explored the scope of the C2-unsubstituted isocyanides, where $R^2 = H$ (Scheme 4). Based on previous

Scheme 4. Scope for C2-Unsubstituted 3-(2-Isocyanoethyl)indoles^a

^{*a*}Reaction conditions: $Bu_4N[Fe(CO)_3NO]$ (0.025 mmol), 1 (0.5 mmol), and 22 (0.6 mmol) in 1,2-DCE (2 mL) at 80 °C under N₂ until full conversion of 1. Method A: Solution was cooled to 0 °C and diluted with MeOH (2 mL), and NaBH₄ (0.525 mmol) was added. Method B: Solution was cooled to 0 °C, and MeOH (2 mL). NaBH₃CN (0.525 mmol) and a few drops of AcOH were added. ^{*b*}Extra portion(s) of reducing agent (NaBH₄/NaBH₃CN) added to reach full conversion of indolenine intermediate 23 observed on TLC.

work,^{3g,16} we envisioned that the corresponding spiroindolines, containing an imine functionality, are relatively less stable compared to their corresponding C2-substituted counterparts. Fortunately, the obtained spiroindolenine 25a with the benchmark substrate (1a) is relatively stable upon isolation and column chromatography. However, the stability of the spiroindolenine derived from isocyanides 1q-x differs significantly depending on the substitution pattern on the indole moiety (R¹). For example, the spiroindolenine derived from isocyanide 1q (R¹ = 5-OMe) could not be isolated and fully degraded upon isolation. Therefore, we decided to *in situ* transform all C2-unsubstituted spiroindolenines 23 to the more stable spiroindolines 25q-x via a one-pot spirocyclization/reduction sequence (Scheme 4). After a brief optimization (Table S3) we were able to isolate benchmark

spiroindoline **25a** in 77% yield using NaBH₄ as the reducing agent (method A). Various C5-substituted indole isocyanides (1q-v) were converted to the corresponding spiroindolines 25q-v in moderate to good yield (Scheme 4). Next, we investigated tryptamine-derived isocyanides bearing a substituent on the ethylene linker (1w, 1x). Initially, low yields were observed for spiroindolines 25w and 25x employing NaBH₄ reductant (method A). Gratifyingly, changing to slightly different conditions (method B) using NaBH₃CN as the hydride source, spiroindolenines 25w and 25x could be isolated in reasonable yield.

Conversion of 1w to 25w proceeded with moderate diastereoselectivity (2.2:1 dr). A slightly higher stereoinduction (3:1 dr) was observed for 25x. Advantageously, when C2-methyl-substituted isocyanide 1b was employed in the one-pot sequence, spiroindoline 25b was obtained as a single diastereomer. Based on literature precedent,^{3g} the relative stereochemistry was assumed to proceed with the hydride approaching from the least hindered face.

In order to show the utility of the Fe-catalyzed carbene transfer/spirocyclization cascade methodology, we investigated the conversion of a suitably functionalized isocyanide to the core scaffold of monoterpene indole alkaloids (Scheme 5). To

Scheme 5. Application of Fe-Catalyzed Carbene Transfer/ Spirocyclization Cascade in Formal Total Synthesis^a

^aReaction conditions: (a) $Bu_4N[Fe(CO)_3NO]$ (0.63 mmol), 1y (6.3 mmol), and 22 (7.6 mmol) in DCE (25 mL), 80 °C; then NaBH₄, MeOH, 0 °C; (b) imidazole (1.35 equiv), 25y (1.0 equiv), PPh₃ (1.30 equiv), I₂ (1.30 equiv), rt, CH₂Cl₂, 1 h; (c) 26 (1.0 equiv), Boc₂O (10.5 equiv), DMAP (0.4 equiv), 72 h.

our delight, isocyanide 1y could be subjected to the one-pot spirocyclization/reduction sequence as the free alcohol, affording spiroindoline 25y in 66% yield as a single diastereomer on a 6.3 mmol scale. Next, the alcohol in 25y was converted to the corresponding iodide, which under the reactions conditions immediately cyclized to afford tetracycle 26 in excellent yield. Subsequent Boc-protection results in the desired scaffold 20, which can be transformed into pentacyclic 19-oxoaspidospermidine (27) as demonstrated by Saya et al.^{3g} Further, Dufour et al. demonstrated that scaffold 27 can be transformed into (\pm)-aspidofractinine,¹⁷ while more recently, Martin et al. also reported the conversion of indoline 27 to (\pm)-limaspermidine, (\pm)-aspidospermidine, and (\pm)-17-demethoxy-*N*-acetylcylindrocarine.¹⁸

In conclusion, we report the use of $Bu_4N[Fe(CO)_3NO]$ as catalyst in the carbene transfer/dearomative spirocyclization

cascade toward spiroindolenines. In addition, the corresponding spiroindolines could be obtained via a one-pot reduction sequence. In general, the reaction displays a high functional group tolerance for the isocyanide 1. However, the Bu₄N[Fe-(CO)₃NO]-catalyzed reaction is less tolerant of α -diazo ester input compared to the Pd-catalyzed reaction developed by Chen and co-workers.^{4a} Nonetheless, using a carefully chosen C2-prefunctionalized 3-(2-isocyanoethyl)indole, we were able to apply the Bu₄N[Fe(CO)₃NO]-catalyzed carbene transfer/ dearomative spirocyclization/reduction sequence in the formal total synthesis of the monoterpene indole alkaloids (±)-aspidofractinine, (±)-limaspermidine, (±)-aspidospermidine, and (±)-17-demethoxy-*N*-acetylcylindrocarine.

EXPERIMENTAL SECTION

General Information. Unless stated otherwise, all solvents and commercially available reagents were used as purchased. Anhydrous dichloromethane, THF, DMF, and toluene were obtained via the PureSolv MD 5 Solvent Purification System. All other solvents were used as purchased from the corresponding supplier. Diazo compounds used in this work were either obtained commercially or synthesized according to the corresponding literature procedures. Caution! It should be noted that diazo compounds can be potentially explosive. Correct safety measures, such as the scale of the reaction, and careful handling are required. Use of appropriate safety gear, including a blast shield, is strongly recommended. Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance 600 MHz (150 MHz for ¹³C), Bruker Avance 500 MHz (126 MHz for ¹³C), and (470 MHz for ¹⁹F) or Bruker Avance 300 MHz (75.4 MHz for ¹³C) using the residual solvent as internal standard (¹H: δ 7.26 ppm, ¹³C {¹H}: δ 77.16 ppm for CDCl₃, ¹H: δ 2.50 ppm, ¹³C{¹H}: δ 39.52 ppm for DMSO- d_6). Chemical shifts (δ) are given in ppm, and coupling constants (J) are quoted in hertz (Hz). Resonances are described as s (singlet), d (doublet), t (triplet), q (quartet), quint (quintet), sex (sextet), sep (septet), br (broad singlet), and m (multiplet) or combinations thereof. Electrospray ionization (ESI) high-resolution mass spectrometry was carried out using a Bruker QTOF impact II instrument in positive-ion mode (capillary potential of 4500 V). Flash chromatography was performed on Silicycle Silia-P flash silica gel (particle size 40-63 μ m, pore diameter 60 Å) using the indicated eluent. Thin-layer chromatography (TLC) was performed using TLC plates from Merck (SiO₂, Kieselgel 60 F254 neutral, on aluminum with fluorescence indicator), and compounds were visualized by UV detection (254 nm) and KMnO4 stain. SFC-MS analysis was conducted using a Shimadzu Nexera SFC-MS equipped with a Nexera X2 SIL-30AC autosampler, Nexera UC LC-30AD SF CO2 pump, Nexera X2 LC-30AD liquid chromatograph, Nexera UC SFC-30A back pressure regulator, prominence SPD-M20A diode array detector, prominence CTO-20AC column oven, and CBM-20A system controller. A gradient of supercritical CO₂ (A) and methanol (B) was used. Method: 2% B/98% A \rightarrow 100% B/0% A over the course of 7 min. The flow was maintained at 2.0 mL/min, and the sample injection volume was 5 μ L. Mass spectrometry analyses were performed using a Shimadzu LCMS-2020 mass spectrometer. The data were acquired in full-scan APCI mode (MS) from m/z 100 to 800 in positive ionization mode. Data was processed using Shimadzu Labsolutions 5.82.

General Procedure A: Synthesis of Spiroindolenines 23. To a flame-dried Schlenk flask under N_2 atmosphere, charged with a stirring bean, was added $Bu_4N[Fe(CO)_3NO]$ (10.3 mg, 0.025 mmol, 0.05 equiv). Subsequently, 1,2-DCE was added (2 mL), and the mixture was stirred until the catalyst was dissolved. This was followed by the addition of tryptamine-derived isocyanide (0.5 mmol, 1.0 equiv) and ethyl diazoacetate (22) (0.6 mmol, 1.2 equiv). The solution was placed in a preheated oil bath and stirred at 80 °C until full conversion of the isocyanide was observed on TLC. Subsequently, the reaction mixture cooled to room temperature and directly

D

subjected to purification by flash column chromatography, using a mixture of EtOAc:*c*Hex as eluent.

General Procedure B: Synthesis of Spiroindolines 25. To a flame-dried Schlenk flask under N2 atmosphere, charged with a stirring bean, was added Bu₄N[Fe(CO)₃NO] (0.05 equiv). Subsequently, 1,2-DCE was added (0.25 M), and the mixture was stirred until the catalyst was dissolved. This was followed by the addition of tryptamine-derived isocyanide (0.5 mmol, 1.0 equiv) and ethyl diazoacetate (22) (0.6 mmol, 1.2 equiv). The solution was placed in a preheated oil bath and stirred at 80 °C until full conversion of the isocyanide was observed on TLC. Subsequently, the reaction mixture was cooled to 0 °C and diluted with MeOH to a concentration of 0.125 M, after which NaBH₄ (1.05 equiv) was added. The reaction was stirred at 0 °C until full conversion of indolenine intermediate 23 was observed on TLC. Afterward, the reaction mixture was quenched with saturated aqueous NH4Cl solution and stirred vigorously for 15 min. The aqueous layer was extracted with CH_2Cl_2 (3×), and the organic layers were collected, washed with brine, dried over Na_2SO_4 , and filtered. The filtrate was collected and concentrated in vacuo. Subsequently, the crude product was subjected to flash column chromatography, using a mixture of EtOAc:cHex as eluent, to obtain the pure title compound.

General Procedure C: Synthesis of Spiroindolines 23 for Diazo Scope. To a flame-dried Schlenk flask under N₂ atmosphere, charged with a stirring bean, was added Bu₄N[Fe(CO)₃NO] (20.6 mg, 0.025 mmol, 0.05 equiv). Subsequently, 1,2-DCE was added (2 mL), and the mixture was stirred until the catalyst was dissolved. This was followed by the addition of tryptamine-derived isocyanide (0.5 mmol, 1.0 equiv) and α -diazoacetate (18) (0.6 mmol, 1.2 equiv). The solution was placed in a preheated oil bath and stirred at 80 °C for 22–24 h. Subsequently, the reaction mixture was cooled to room temperature and directly purified via flash column chromatography using a mixture of EtOAc:*c*Hex as eluent to provide the title compound.

Ethyl (Z)-2-(Spiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate (23a). Ethyl (Z)-2-(spiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 3-(2isocyanoethyl)-1H-indole (85.3 mg, 0.50 mmol, 1.0 equiv). The title compound was isolated via FCC using EtOAc:cHex +5% Et₃N as eluent to obtain the title compound as a light-yellow oil (124 mg, 0.48 mmol, 96%). $R_f = 0.30$ (EtOAc:cHex = 1:9 + 5% Et₃N); ¹H NMR (600 MHz, $CDCl_3$) δ 8.11 (s, 1H), 7.99 (s, 1H), 7.63 (d, J = 7.7 Hz, 1H), 7.37 (td, J = 7.5, 1.5 Hz, 1H), 7.31-7.24 (m, 2H), 4.06-3.97 (m, 2H), 3.94 (s, 1H), 3.88 (dddd, J = 10.2, 7.8, 5.0, 1.0 Hz, 1H),3.85-3.79 (m, 1H), 2.43 (ddd, J = 12.5, 7.4, 4.9 Hz, 1H), 2.31 (ddd, J = 12.9, 7.8, 6.7 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 171.9 (CH), 170.5 (C_q), 162.0 (C_q), 155.6 (C_q), 140.1 (C_q), 128.9 (CH), 127.3 (CH), 122.3 (CH), 121.5 (CH), 77.4 (CH), 67.2 (C_q), 58.9 (CH₂), 46.0 (CH₂), 30.5 (CH₂), 14.5 (CH₃) ppm; HRMS (ESI): m/z calculated for C₁₅H₁₇N₂O₂ [M+H⁺] = 257.1285, found = 257.1281.

Ethyl (*Z*)-2-(2-Methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate (**23b**). Ethyl (*Z*)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 3-(2-isocyanoethyl)-2-methyl-1*H*-indole (91.4 mg, 0.50 mmol, 1.0 equiv). The title compound was isolated as a yellow solid (112 mg, 0.41 mmol, 83%). $R_f = 0.30$ (cyclohexane:EtOAc 3:2); ¹H NMR (500 MHz, CDCl₃): δ 8.14 (s, 1H), 7.51 (d, *J* = 7.7 Hz, 1H), 7.32 (td, *J* = 7.5, 1.3 Hz, 1H), 7.23 (d, *J* = 6.9 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 4.01 (q, *J* = 7.1 Hz, 2H), 3.94–3.79 (m, 2H), 3.88 (s, 1H), 2.39–2.29 (m, 2H), 2.27 (s, 3H), 1.16 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 181.8 (C_q), 170.8 (C_q), 164.2 (C_q), 155.2 (C_q), 142.1 (C_q), 128.8 (CH), 126.2 (CH), 122.1 (CH), 120.2 (CH), 77.1 (CH), 67.7 (C_q), 58.9 (CH₂), 46.0 (CH₂), 31.6 (CH₂), 16.4 (CH₃), 14.5 (CH₃) ppm. HRMS (ESI): *m/z* calculated for C₁₆H₁₉N₂O₂ [M+H⁺] = 271.1441, found = 271.1446.

Ethyl (*Z*)-2-(2-(*tert-Butyl*)*spiro*[*indole-3*,3'*-pyrrolidin*]-2'*-ylidene*)*acetate* (**23***c*). Ethyl (*Z*)-2-(2-(*tert*-butyl)*spiro*[*indole-3*,3'*-pyrroli*din]-2'*-ylidene*)*acetate* was prepared according to general procedure A starting from 2-(*tert*-butyl)-3-(2-*isocyanoethyl*)-1*H*-*indole* (113.2 mg, 0.50 mmol, 1.0 equiv). The title compound was isolated as a white solid (92.0 mg, 0.294 mmol, 59%). $R_f = 0.35$ (cyclohexane:EtOAc 4:1); ¹H NMR (500 MHz, CDCl₃): δ 8.22 (s, 1H), 7.54 (dz, J = 7.7 Hz, 1H), 7.30 (ddd, J = 7.8, 5.1, 3.7 Hz, 1H), 7.18–7.14 (m, 2H), 4.06–3.91 (m, 5H), 2.89 (ddd, J = 13.5, 9.3, 7.7 Hz, 1H), 2.23 (ddd, J = 13.5, 8.0, 3.6 Hz, 1H).1.41 (s, 9H), 1.16 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 190.3 (C_q), 170.8 (C_q), 164.7 (C_q), 153.6 (C_q), 144.6 (C_q), 128.5 (CH), 126.4 (CH), 120.9 (CH), 120.3 (CH₃), 30.3 (CH₂), 46.3 (CH₂), 38.1 (C_q), 30.3 (CH₃), 30.3 (CH₂), 14.6 (CH₃) ppm. HRMS (ESI): m/z calculated for C₁₉H₂₅N₂O₂ [M+H⁺] = 313.1911, found = 313.1914.

Ethyl (*Z*)-2-(5-*Methoxy*-2-*methylspiro*[*indole*-3,3' -*pyrrolidin*]-2'*ylidene*)*acetate* (**23***d*). Ethyl (*Z*)-2-(5-methoxy-2-methylspiro-[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 3-(2-isocyanoethyl)-5-methoxy-2methyl-1*H*-indole (107.3 mg, 0.50 mmol, 1.0 equiv). The title compound was isolated as a yellow waxy solid (136 mg, 0.45 mmol, 90%). *R_f* = 0.19 (cyclohexane:EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃): δ 8.12 (s, 1H), 7.41 (d, *J* = 8.5 Hz, 1H), 6.83 (dd, *J* = 8.4, 2.5 Hz, 1H), 6.79 (d, *J* = 2.5 Hz, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.93– 3.80 (m, 2H), 3.91 (s, 1H), 3.79 (s, 3H), 2.41–2.25 (m, 2H), 2.24 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 179.7 (C_q), 170.9 (C_q), 164.3 (C_q), 158.6 (C_q), 148.7 (C_q), 143.6 (C_q), 120.5 (CH), 113.3 (CH), 108.9 (CH), 77.3 (CH), 68.0 (C_q), 59.0 (CH₂), 55.8 (CH₃), 46.0 (CH₂), 31.8 (CH₂) 16.3 (CH₃), 14.6 (CH₃) ppm. HRMS (ESI): *m/z* calculated for C₁₇H₂₁N₂O₃ [M+H⁺] = 301.1547, found = 301.1552.

Ethyl (*Z*)-2-(2,5-Dimethylspiro[indole-3,3'-pyrrolidin]-2'ylidene)acetate (**23e**). Ethyl (*Z*)-2-(2,5-dimethylspiro[indole-3,3'pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 3-(2-isocyanoethyl)-2,5-dimethyl-1*H*indole (99.5 mg, 0.50 mmol, 1.0 equiv). The title compound was isolated as a yellow waxy solid (116 mg, 0.41 mmol, 82%). R_f = 0.24 (cHex:EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃): δ 8.14 (*s*, 1H), 7.39 (d, *J* = 7.8 Hz, 1H), 7.12 (d, *J* = 7.8 Hz, 1H), 7.05 (*s*, 1H), 4.03 (q, *J* = 7.1 Hz, 2H), 3.94–3.81 (m, 2H), 3.90 (*s*, 1H), 2.39–2.27 (m, 2H), 2.35 (*s*, 3H), 2.26 (*s*, 3H), 1.17 (*t*, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 180.8 (C_q), 170.8 (C_q), 164.5 (C_q), 152.9 (C_q), 142.3 (C_q), 136.1 (C_q), 129.3 (CH), 122.9 (CH), 119.8 (CH), 77.1 (CH), 67.7 (C_q), 58.9 (CH₂), 46.0 (CH₂), 31.7 (CH₂), 21.5 (CH₃), 16.3 (CH₃), 14.6 (CH₃) ppm. HRMS (ESI): *m*/ *z* calculated for C₁₇H₂₁N₂O₂ [M+H⁺] = 285.1598, found = 285.1603.

Ethyl (Z)-2-(5-Fluoro-2-methylspiro[indole-3,3'-pyrrolidin]-2'*ylidene*)*acetate* (23*f*). Ethyl (*Z*)-2-(5-fluoro-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene) acetate was prepared according to general procedure A starting from 5-fluoro-3-(2-isocyanoethyl)-2-methyl-1Hindole (101.3 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a light-yellow solid (140 mg, 0.49 mmol, 97%). R_f = 0.23 (cyclohexane:EtOAc 3:2); ¹H NMR (500 MHz, CDCl₃): δ 8.13 (s, 1H), 7.44 (dd, J = 8.4, 4.6 Hz, 1H), 7.01 (td, J = 8.6, 2.5 Hz, 1H), 6.95 (dd, J = 7.8, 2.6 Hz, 1H), 4.03 (q, J = 7.1 Hz, 2H), 3.94-3.80 (m, 2H), 3.89 (s, 1H), 2.41–2.27 (m, 2H), 2.26 (s, 3H), 1.17 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 181.7 (C_α, d, J = 3.6 Hz), 170.7 (C_q), 163.4 (C_q), 161.5 (d, J = 245.2 Hz, C_q), 151.2 (C_q , d, J = 2.3 Hz), 143.9 (C_q , d, J = 8.8 Hz), 120.9 (CH, d, J = 8.8 Hz), 115.4 (CH, d, J = 23.6 Hz), 110.1 (CH, d, J = 25.1 Hz), 77.3 (CH), 68.2 (C_q, d, J = 2.3 Hz), 59.0 (CH₂), 45.9 (CH₂), 31.6 (CH₂), 16.3 (CH₃), 14.5 (CH₃) ppm; ¹⁹F{¹H} NMR (470.4 MHz, CDCl₃): δ –115.90 ppm; HRMS (ESI): m/z calculated for C₁₆H₁₈FN₂O₂ [M $+H^+$ = 289.1347, found = 289.1356.

Ethyl (Z)-2-(4-bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'ylidene)acetate (**23g**). Ethyl (Z)-2-(4-bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 4-bromo-3-(2-isocyanoethyl)-2-methyl-1*H*indole (132.0 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as light brown solid (136 mg, 0.39 mmol, 78%). $R_f = 0.30$ (EtOAc:cHex = 1:5); ¹H NMR (500 MHz, CDCl₃): δ 8.19 (s, 1H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 4.08–3.95 (m, 3H), 3.91–3.81 (m, 2H), 2.86 (ddd, *J* = 13.8, 9.7, 7.5 Hz, 1H), 2.23 (s, 3H), 2.12 (ddd, J = 13.8, 8.4, 3.4 Hz, 1H), 1.15 (t, J = 7.1 Hz, 3H) ppm. ${}^{13}C{}^{1H}$ NMR (126 MHz, CDCl₃): δ 183.3 (C_q), 170.8 (C_q), 161.4 (C_q), 157.4 (C_q), 140.1 (C_q), 130.5 (CH), 129.8 (CH), 119.3 (CH), 118.0 (C_q), 76.6 (CH), 69.8 (C_q), 59.0 (CH₂), 46.4 (CH₂), 26.7 (CH₂), 16.2 (CH₃), 14.6 (CH₃) ppm. HRMS (ESI): m/z calculated for C₁₆H₁₈BrN₂O₂ [M+H⁺] = 349.0546, found = 349.0555.

Ethyl (*Z*)-2-(5-*Bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate* (**23h**). Ethyl (*Z*)-2-(5-bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 5-bromo-3-(2-isocyanoethyl)-2-methyl-1*H*-indole (132.0 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a yellow solid (124 mg, 0.35 mmol, 71%). *R*_f = 0.23 (cyclohexane:EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃): δ 8.12 (s, 1H), 7.45 (dd, *J* = 8.2, 1.9 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 1H), 7.36 (d, *J* = 1.9 Hz, 1H), 4.03 (qd, *J* = 7.1, 1.4 Hz, 2H), 3.93–3.79 (m, 2H), 3.88 (s, 1H), 2.40–2.27 (m, 2H), 2.26 (s, 3H), 1.17 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 182.4 (C_q), 170.6 (C_q), 163.1 (C_q), 154.2 (C_q), 144.2 (C_q), 131.9 (CH), 125.6 (CH), 121.6 (CH), 119.7 (C_q), 77.4 (CH), 66.1 (C_q), 59.1 (CH₂), 45.9 (CH₂), 31.5 (CH₂), 16.4 (CH₃), 14.5 (CH₃) ppm; HRMS (ESI): *m*/*z* calculated for C₁₆H₁₈BrN₂O₂ [M+H⁺] = 349.0546, found = 349.0553.

Ethyl (*Z*)-2-(7-Bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'ylidene)acetate (**23i**). Ethyl (*Z*)-2-(7-bromo-2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 7-bromo-3-(2-isocyanoethyl)-2-methyl-1*H*indole (132.0 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as brown solid (110 mg, 0.31 mmol, 63%). R_f = 0.23 (cyclohexane:EtOAc 2:1); ¹H NMR (500 MHz, CDCl₃): δ 8.12 (s, 1H), 7.47 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.16 (dd, *J* = 7.4, 1.0 Hz, 1H), 7.05 (t, *J* = 7.7 Hz, 1H), 4.02 (q, *J* = 7.1 Hz, 2H), 3.93–3.81 (m, 3H), 2.43–2.25 (m, 5H), 1.16 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 183.4 (C_q), 170.7 (C_q), 163.2 (C_q), 153.6 (C_q), 143.8 (C_q), 132.2 (CH), 127.6 (CH), 121.2 (CH), 113.9 (C_q), 77.5 (CH), 69.4 (C_q), 59.0 (CH₂), 45.9 (CH₂), 31.6 (CH₂), 16.6 (CH₃), 14.5 (CH₃) ppm; HRMS (ESI): *m/z* calculated for C₁₆H₁₈BrN₂O₂ [M+H⁺] = 349.0546, found = 349.0550.

Ethyl (Z)-2-(2-Phenylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate (23j). Ethyl (Z)-2-(2-phenylspiro[indole-3,3'-pyrrolidin]-2'ylidene)acetate was prepared according to general procedure A starting from 3-(2-isocyanoethyl)-2-phenyl-1H-indole (123.2 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as an off-white solid (141 mg, 0.424 mmol, 85%). $R_f = 0.27$ (EtOAc:cHex = 1:5); ¹H NMR (500 MHz, CDCl₃): δ 8.30 (s, 1H), 7.97 (dd, J = 8.0, 1.7 Hz, 2H), 7.71 (d, J = 7.8 Hz, 1H), 7.53–7.42 (m, 3H), 7.40 (td, J = 7.6, 1.3 Hz, 1H), 7.30 (d, J = 7.2 Hz, 1H), 7.24 (td, J = 7.4, 1.1 Hz, 1H), 4.08 (s, 1H), 4.07–3.93 (m, 4H), 2.68 (dt, J = 13.1, 9.0 Hz, 1H), 2.19 (ddd, J = 13.1, 7.3, 2.7 Hz, 1H), 1.14 (t, J = 7.1 Hz, 3H) ppm. ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 178.0 (C_q), 171.0 (C_q), 165.4 (C_q), 154.0 (C_q), 144.5 (C_q), 131.8 (C_q), 131.2 (CH), 128.9 (2 x CH), 128.8 (CH), 126.8 (CH), 121.4 (CH), 121.3 (CH), 77.7 (CH), 66.6 (C_a), 59.0 (CH₂), 46.3 (CH₂), 33.1 (CH₂), 14.5 (CH₃) ppm. HRMS (ESI): m/z calculated for $C_{21}H_{21}N_2O_2$ [M+H⁺] 333.1598, found = 333.1604.

Ethyl (*Z*)-2-(2-(*p*-Tolyl)spiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate (**23k**). Ethyl (*Z*)-2-(2-(*p*-tolyl)spiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 3-(2-isocyanoethyl)-2-(*p*-tolyl)-1*H*-indole (130.7 mg, 0.5 mmol, 1.0 equiv). The product was purified by flash column chromatography using EtOAc:*c*Hex = (1:4) as eluent to obtain the product as a white solid (125 mg, 0.36 mmol, 72%). R_f = 0.25 (EtOAc:*c*Hex = 1:4); ¹H NMR (500 MHz, CDCl₃): δ 8.29 (s, 1H), 7.88 (d, *J* = 8.1 Hz, 2H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.29 (d, *J* = 7.2 Hz, 1H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 4.07 (s, 1H), 4.05–3.94 (m, 4H), 2.67 (dt, *J* = 13.2, 9.0 Hz, 1H), 2.40 (s, 3H), 2.22–2.12 (m, 1H), 1.13 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 178.0 (C_q), 171.0 (C_q), 165.5 (C_q), 154.1 (C_q), 144.5 (C_q), 141.7 (C_q), 129.6 (CH), 129.0 (C_q), 128.8 (CH), 128.7 (CH), 126.5 (CH), 121.2 (CH), 121.1 (CH), 77.6 (CH), 66.5 (C_q), 58.9 (CH₂), 46.2 (CH₂), 33.3 (CH₂), 21.7 (CH₃), 14.5 (CH₃) ppm.; HRMS (ESI): m/z calculated for $C_{22}H_{23}N_2O_2$ [M+H⁺] = 347.1754, found = 347.1758.

Ethyl (Z)-2-(2-(4-Fluorophenyl)spiro[indole-3,3'-pyrrolidin]-2'ylidene)acetate (231). Ethyl (Z)-2-(2-(4-fluorophenyl)spiro[indole-3,3'-pyrrolidin]-2'-ylidene) acetate was prepared according to general procedure A starting from 2-(4-fluorophenyl)-3-(2-isocyanoethyl)-1H-indole (132.3 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a light-yellow solid (125 mg, 0.36 mmol, 72%). $R_f = 0.25$ (EtOAc:cHex = 1:4); ¹H NMR (500 MHz, CDCl₃): δ 8.29 (s, 1H), 7.98 (dd, J = 8.8, 5.4 Hz, 2H), 7.69 (d, J = 7.7 Hz, 1H), 7.39 (td, J = 7.7, 1.0 Hz, 1H), 7.29 (d, J = 7.1 Hz, 1H), 7.23 (t, J = 7.4 Hz, 1H), 7.13 (t, J = 8.6 Hz, 2H), 4.06 (s, 1H), 4.05-3.93 (m, 4H), 2.62 (dt, J = 13.2, 9.0 Hz, 1H), 2.22-2.13 (m, 1H), 1.14 (t, I = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 176.8 (C_q), 170.9 (C_q), 165.1 (C_q), 164.8 (d, J = 253.2 Hz, C_q), 153.8 (C_q), 144.4 (C_q), 130.9 (d, J = 8.6 Hz, CH), 128.9 (CH), 128.0 (C_q, d, J = 3.3 Hz), 126.7 (CH), 121.3 (2 x CH), 116.0 (d, J = 21.8 Hz, CH), 77.8 (CH), 66.5 (C_q) , 59.0 (CH₂), 46.2 (CH₂), 33.2 (CH₂), 14.5 (CH₃) ppm; ¹⁹F $\{^{1}H\}$ NMR (470 MHz, CDCl₃): δ –108.27 ppm; HRMS (ESI): m/z calculated for $C_{21}H_{20}FN_2O_2$ [M+H⁺] = 351.1503, found = 351.1515.

Ethyl (Z)-2-(2-(4-Chlorophenyl)spiro[indole-3,3'-pyrrolidin]-2'ylidene)acetate (23m). Ethyl (Z)-2-(2-(4-chlorophenyl)spiro-[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 2-(4-chlorophenyl)-3-(2-isocyanoethyl)-1H-indole (140.3 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a light-yellow solid (138 mg, 0.38 mmol, 76%). $R_f = 0.21$ (EtOAc:cHex = 1:4); ¹H NMR (500 MHz, CDCl₃): δ 8.28 (s, 1H), 7.92 (d, J = 8.6 Hz, 2H), 7.92 (d, J = 7.7 Hz, 1H), 7.46–7.37 (m, 3H), 7.30 (d, J = 7.1 Hz, 1H), 7.24 (t, J = 7.3 Hz, 1H), 4.05 (s, 1H), 4.06–3.93 (m, 4H), 2.62 (dt, J = 13.0, 8.9 Hz, 1H), 2.17 $(dd, J = 12.9, 6.1 Hz, 2H)1.14 (t, J = 7.1 Hz, 1H) ppm; {}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 176.8 (C_a), 170.9 (C_a), 164.9 (C_a), 153.8 (C_q), 144.5 (C_q), 137.4 (C_q), 130.1 (C_q), 130.0 (CH), 129.2 (CH), 129.0 (CH), 126.9 (CH) 121.4 (CH), 121.3 (CH), 77.8 (CH), 66.4 (C₀), 59.0 (CH₂), 46.2 (CH₂), 33.1 (CH₂), 14.5 (CH₃) ppm. HRMS (ESI): m/z calculated for C₂₁H₂₀ClN₂O₂ [M+H⁺] = 367.1208, found = 367.1215.

Ethyl (Z)-2-(2-(Naphthalen-2-vl)spiro[indole-3,3'-pvrrolidin]-2'ylidene)acetate (23n). Ethyl (Z)-2-(2-(naphthalen-2-yl)spiro-[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 3-(2-isocyanoethyl)-2-(naphthalen-2-yl)-1H-indole (148.1 mg, 0.5 mmol, 1.0 equiv). The product was purified by flash column chromatography using EtOAc:cHex = 1:4 as eluent to obtain the product as a white solid (115 mg, 0.30 mmol, 60%). $R_f = 0.30 (1\% \text{ Et}_3 \text{N in EtOAc:} cHex = 1:4);$ ¹H NMR (500 MHz, CDCl₃) δ (ppm): 8.44–8.30 (m, 2H), 8.18 (dd, J = 8.7, 1.8 Hz, 1H), 7.95–7.89 (m, 2H), 7.87 (d, J = 7.9, 1H), 7.75 (d, J = 7.8 Hz, 1H), 7.59–7.50 (m, 2H), 7.45 (td, J = 7.5, 1.3 Hz, 1H), 7.34 (dd, J = 7.5, 1.2 Hz, 1H), 7.26 (td, J = 7.4, 1.0 Hz, 1H), 4.12 (s, 1H), 4.11-3.94 (m, 4H), 2.78 (dt, J = 13.2, 9.0 Hz, 1H), 2.24 (ddd, J = 13.1, 6.7, 3.1 Hz, 1H), 1.12 (t, J = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 177.9 (C_q), 170.9 (C_q), 165.4 (C_q), 154.0 (C_q), 144.7 (C_q), 134.6 (C_q), 133.0 (C_q), 129.3 (CH), 129.3 (CH), 129.2 (C_q), 128.9 (CH), 128.6 (CH), 127.8 (CH), 127.8 (CH), 126.8 (CH), 126.6 (CH), 125.3 (CH), 121.4 (CH), 121.3 (CH), 77.8 (CH), 66.6 (CH_q), 58.9 (CH₂), 46.3 (CH₂), 33.4 (CH₂), 14.5 (CH₃) ppm. HRMS (ESI): m/z calculated for $C_{25}H_{22}N_2O_2$ [M+H⁺] = 383.1754, found = 383.1750.

Ethyl (*Z*)-2-(2-Bromospiro[indole-3,3' -pyrrolidin]-2'-ylidene)acetate (**230**). Ethyl (*Z*)-2-(2-bromospiro[indole-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from 2-bromo-3-(2-isocyanoethyl)-1*H*-indole (129.9 mg, 0.52 mmol, 1.0 equiv). The title compound was isolated as a light-yellow solid (136 mg, 0.40 mmol, 78%). $R_f = 0.43$ (EtOAc:cHex = 1:3); ¹H NMR (500 MHz, CDCl₃): δ 8.12 (s, 1H), 7.55 (d, *J* = 7.7 Hz, 1H), 7.35 (td, *J* = 7.3, 2.0 Hz, 1H), 7.30–7.22 (m, 2H), 4.10–3.94 (m, 5H), 2.53 (ddd, *J* = 13.1, 7.9, 5.0 Hz, 1H), 2.34 (ddd, *J* = 13.7, 8.1, 6.2 Hz, 1H), 1.17 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 170.6 (C_q), 164.1 (C_q), 161.9 (C_q), 154.0 (C_q), 141.8 (C_q), 129.2 (CH), 127.2 (CH) 122.3 (CH), 120.7 (CH), 78.0 (CH), 71.0 (C_q), 59.1 (CH₂), 45.9 (CH₂), 31.9 (CH₂), 14.5 (CH₃) ppm. HRMS (ESI): *m*/*z* calculated for C₁₅H₁₆BrN₂O₂ [M+H⁺] = 335.0390, found = 335.0388.

Ethyl (Z)-2-((Z)-2-(2-Methoxy-2-oxoethylidene)spiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (23p). Ethyl (Z)-2-((Z)-2-(2methoxy-2-oxoethylidene)spiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure A starting from methyl 2-(3-(2-isocyanoethyl)-1H-indol-2-yl)acetate (121.6 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a white solid (102 mg, 0.31 mmol, 62%). $R_f = 0.28$ (EtOAc:*c*Hex = 1:4); ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3)$: δ 9.66 (s, 1H), 8.06 (s, 1H), 7.20 (t, J = 7.7 Hz, 1H), 7.12 (d, J = 7.4 Hz, 1H), 6.92 (t, J = 7.4 Hz, 1H), 6.85 (d, J = 7.8 Hz, 1H), 4.88 (s, 1H), 4.11 (s, 1H), 4.04 (qd, J = 7.1, 1.1 Hz, 2H), 3.82 (t, J = 6.8 Hz, 2H), 3.70 (s, 3H), 2.46–2.30 (m, 2H), 1.18 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 171.0 (C_a), 170.5 (C_q), $\hat{167.2}$ (C_q), 167.0 (C_q), 143.8 (C_q), 132.6 (C_q), 129.2 (CH), 123.4 (CH), 122.0 (CH), 109.4 (CH), 82.3 (CH), 78.8 (CH), 61.1 (C_a), 59.0 (CH₂), 50.9 (CH₃), 45.4 (CH₂), 38.5 (CH₂), 14.6 (CH₃) ppm. HRMS (ESI): m/z calculated for C₁₈H₂₁N₂O₄ [M+H⁺] = 329.1496, found = 329.1497.

Ethyl (*Z*)-2-(Spiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (25a). Ethyl (Z)-2-(spiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure B starting from 3-(2isocyanoethyl)-1H-indole (85.2 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), Bu₄N[Fe(CO)₃NO] (10.3 mg, 0.025 mmol, 0.05 equiv) and NaBH₄ (20 mg, 0.53 mmol). The title compound was isolated as a yellow solid (99 mg, 0.38 mmol, 77%). R_f = 0.25 (EtOAc:cHex 1:2); ¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.96 (s, 1H), 7.08 (td, J = 7.6, 1.3 Hz, 1H), 7.01 (dd, J = 7.4, 1.3 Hz, 1H), 6.74 (td, J = 7.4, 1.0 Hz, 1H), 6.68 (d, J = 7.9, 1H), 4.44 (s, 1H), 4.07 (qd, J = 7.1, 3.1 Hz, 2H), 3.79 (br, 1H), 3.72-3.48 (m, 4H), 2.29–2.12 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 171.3 (C_q), 170.7 (C_q), 151.2 (C_q), 132.5 (C_a), 128.6 (CH), 123.7 (CH), 119.5 (CH), 110.1 (CH), 77.5 (CH), 59.4 (CH₂), 58.7 (CH₂), 57.3 (C_q), 45.0 (CH₂), 37.2 (CH₂), 14.7 (CH₃) ppm; HRMS (ESI): m/z calculated for C₁₅H₁₉N₂O₂ [M+H⁺] = 259.1441, 259.1441.

Ethyl (Z)-2-(2-methylspiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (25b). To a flame-dried Schlenk flask under N2 atmosphere, charged with a stirring bean, was added $Bu_4N[Fe(CO)_3NO]$ (10.3) mg, 0.025 mmol, 0.05 equiv). Subsequently, 1,2-DCE was added (0.25 M), and the mixture was stirred until the catalyst was dissolved. This was followed by the addition of 3-(2-isocyanoethyl)-2-methyl-1H-indole (92.4 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv). The solution was placed in a preheated oil bath and stirred at 80 °C until full conversion of the isocyanide was observed on TLC. Subsequently, the reaction mixture was cooled to 0 °C and diluted with MeOH to a concentration of 0.125 M, after which NaBH₃CN (32 mg, 0.51 mmol, 1.02 equiv) and a few drops of AcOH were added. The resulting mixture was stirred at 0 °C until full conversion of the spiroindolenine intermediate was observed on TLC. Subsequently, the mixture was neutralized with Na₂CO₃ and diluted with CH_2Cl_2 . The aqueous layer was extracted with CH_2Cl_2 (3 x). The combined organic layers were washed with brine, dried over Na₂SO₄, filtered, and concentrated in vacuo. This was followed by purification via FCC using a gradient of cHex:EtOAc to obtain the title compound as a light-yellow solid (99 mg, 0.36 mmol, 73%). $R_f =$ 0.29 (cHex:EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃): δ 7.96 (s, 1H), 7.08 (td, J = 7.6, 1.3 Hz, 1H), 7.03 (dd, J = 7.4, 1.2 Hz, 1H), 6.76 (td, J = 7.4, 0.8 Hz, 1H), 6.66 (d, J = 7.7 Hz, 1H), 4.25 (s, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.86 (q, J = 6.5 Hz, 1H), 3.65–3.51 (m, 2H), 2.53–2.41 (m, 1H), 2.13 (ddd, J = 13.0, 6.6, 2.2 Hz, 1H).zf), 1.23 (d, J = 6.4 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 171.1 (C_q), 166.6 (C_q), 151.0 (C_q), 132.3 (C_q), 128.6 (CH), 124.0 (CH), 119.6 (CH), 110.1 (CH), 79.5 (CH), 65.5 (CH), 60.0 (C_q), 58.6 (CH₂), 44.7 (CH₂), 36.8 (CH₂), 17.1 (CH₃), 14.6 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{16}H_{21}N_2O_2$ [M+H⁺] = 273.1598, found = 273.1603.

Ethyl (*Z*)-2-(5-*methoxyspiro*[*indoline-3*,3'-*pyrrolidin*]-2'-*ylidene*)*acetate* (**25q**). Ethyl (*Z*)-2-(5-methoxyspiro[*indoline-3*,3'-*pyrroli*din]-2'-ylidene)acetate was prepared according to general procedure B starting from 3-(2-isocyanoethyl)-5-methoxy-1H-indole (100.2 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), Bu₄N[Fe(CO)₃NO] (10.3 mg, 0.025 mmol, 0.05 equiv) and NaBH₄ (20 mg, 0.53 mmol). The title compound was isolated as a lightyellow solid (81 mg, 0.28 mmol, 56%). Rf: indoline = 0.16 (*c*Hex:EtOAc = 6:4); ¹H NMR (500 MHz, CDCl₃): δ 7.94 (*s*, 1H), 6.69–6.59 (m, 3H), 4.43 (*s*, 1H), 4.07 (qd, *J* = 7.1, 1.2 Hz, 2H), 3.72 (*s*, 3H), 3.68–3.48 (m, 4H), 3.26 (br, 1H), 2.29–2.11 (m, 2H), 1.21 (*t*, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 71.3 (C_q), 170.4 (C_q), 154.3 (C_q), 144.9 (C_q), 134.2 (C_q), 114.1 (CH), 111.2 (CH), 110.1 (CH), 77.7 (CH), 59.9 (CH₂), 58.8 (CH₂), 58.0 (C_q), 56.0 (CH₃), 45.0 (CH₂), 36.9 (CH₂), 14.7 (CH₃) ppm; HRMS (ESI): *m*/*z* calculated for C₁₆H₂₁N₂O₃ [M+H⁺] = 289.1547, found = 289.1553.

Ethyl (Z)-2-(6-methoxyspiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (25r). Ethyl (Z)-2-(6-methoxyspiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure B starting from 3-(2-isocyanoethyl)-6-methoxy-1H-indole (100.1 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), $Bu_4N[Fe(CO)_3NO]$ (10.3 mg, 0.025 mmol, 0.05 equiv) and NaBH₄ (20 mg, 0.53 mmol). Extra portions of NaBH₄ were added over time until full conversion of the indolenine intermediate was observed. The title compound was isolated as a light-yellow solid (97 mg, 0.34 mmol, 67%). $R_f = 0.24$ (cHex:EtOAc = 6:4); ¹H NMR (500 MHz, $CDCl_3$: δ 7.93 (s, 1H), 6.89 (d, J = 8.1 Hz, 1H), 6.29 (dd, J = 8.2, 2.3Hz, 1H), 6.25 (d, J = 2.3 Hz, 1H), 4.43 (s, 1H), 4.07 (qd, J = 7.2, 2.2 Hz, 2H), 3.78 (s, 1H), 3.75 (s, 3H), 3.67-3.50 (m, 4H), 2.26-2.10 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H{}$ NMR (126 MHz, CDCl₃): δ 171.4 (C_q), 171.0 (C_q), 160.9 (C_q), 152.6 (C_q), 124.9 (C_a), 124.2 (CH), 104.7 (CH), 96.5 (CH), 77.3 (CH), 59.9 (CH₂), 58.8 (CH₂), 56.7 (C_q), 55.5 (CH₃), 45.0 (CH₂), 37.3 (CH₂), 14.7 (CH₂) ppm. HRMS (ESI): m/z calculated for C₁₆H₂₁N₂O₃ [M+H⁺] = 289.1547, found = 289.1554.

Ethyl (Z)-2-(5-methylspiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (25s). Ethyl (Z)-2-(5-methylspiro[indoline-3,3'-pyrrolidin]-2'-ylidene) acetate was prepared according to general procedure B starting from 3-(2-isocyanoethyl)-5-methyl-1H-indole (92.2 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), $Bu_4N[Fe(CO)_3NO]$ (10.3 mg, 0.025 mmol, 0.05 equiv) and NaBH₄ (20 mg, 0.53 mmol). Extra portions of NaBH₄ were added over time until full conversion of the indolenine intermediate was observed. The title compound was isolated as a white solid (100 mg, 0.37 mmol, 74%). $R_f = 0.64$ (*c*Hex:EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃): δ 7.97 (s, 1H), 6.89 (d, J = 7.9 Hz, 1H), 6.83 (s, 1H), 6.61 (d, J = 7.9 Hz, 1H), 4.44 (s, 1H), 4.08 (qd, J = 7.1, 4.0 Hz, 2H), 3.72-3.50 (m, 4H), 3.47 (br, 1H), 2.27-2.12 (m, 5H), 1.22 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 171.4 (C_a), 170.8 (C_q), 148.7 (C_q), 132.9 (C_q), 129.2 (C_q), 129.1 (CH), 124.3 (CH) $c_{12}^{(2)}$ (CH) c_{12 (CH), 110.3 (CH), 77.5 (CH), 59.6 (CH₂), 58.7 (CH₂), 57.5 (C_q), 45.0 (CH₂), 37.1 (CH₂), 21.0 (CH₃), 14.7 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{16}H_{21}N_2O_2$ [M+H⁺] = 273.1598, found = 273.1597.

Ethyl (*Z*)-2-(5-fluorospiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (**25t**). Ethyl (*Z*)-2-(5-fluorospiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure B starting from 5-fluoro-3-(2-isocyanoethyl)-1H-indole (94.4 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), Bu₄N[Fe(CO)₃NO] (10.3 mg, 0.025 mmol, 0.05 equiv) and NaBH₄ (20 mg, 0.53 mmol). The title compound was isolated as a light-brown solid (110 mg, 0.70 mmol, 79%). R_f = 0.25 (*c*Hex:EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃): δ 7.94 (s, 1H), 6.78 (td, *J* = 8.8, 2.7 Hz, 1H), 6.73 (dd, *J* = 8.3, 2.6 Hz, 1H), 6.60 (dd, *J* = 8.5, 4.3 Hz, 1H), 4.42 (s, 1H), 4.08 (q, *J* = 7.0 Hz, 2H), 3.68–3.52 (m, 4H), 3.31 (br, 1H), 2.31–2.10 (m, 2H), 1.22 (t, *J* = 7.2 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 171.3 (C_q), 169.9 (C_q), 157.5 (C_q, d, *J* = 236.6 Hz), 147.1 (C_q, d, *J* = 1.6 Hz), 134.2 (C_q, d, *J* = 7.7 Hz), 115.0 (CH, d, *J* = 23.5 Hz), 111.1 (CH, d, *J* = 24.2 Hz), 110.7 (CH, d, *J* = 8.2 Hz), 77.8 (CH), 59.9 (CH₂), 58.9 (CH₂), 57.7 (C_q), 45.0 (CH₂), 37.0 (CH₂), 14.7 (CH₃) ppm; ¹⁹F{¹H} NMR (470.4 MHz, CDCl₃): δ –124.9 ppm; HRMS (ESI): *m/z* calculated for C₁₅H₁₈FN₂O₂ [M+H⁺] = 277.1347, found = 277.1346.

Ethyl (Z)-2-(5-chlorospiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (25u). Ethyl (Z)-2-(5-chlorospiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure B starting from 5-chloro-3-(2-isocyanoethyl)-1H-indole (102.8 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), Bu₄N[Fe(CO)₃NO] (10.3 mg, 0.025 mmol, 0.05 equiv) and NaBH₄ (20 mg, 0.53 mmol). The title compound was isolated as a white solid (96 mg, 0.33 mmol, 66%). $R_f = 0.48$ (cHex:EtOAc = 1:1); ¹H NMR (500 MHz, CDCl₃): δ 7.94 (s, 1H), 7.02 (dd, J = 8.4, 2.1 Hz, 1H), 6.95 (d, J = 2.1 Hz, 1H), 6.57 (d, J = 8.3 Hz, 1H), 4.42 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.79 (br, 1H), 3.69–3.50 (m, 4H), 2.28–2.09 (m, 2H), 1.22 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 171.2 (C_q), 169.9 (C_q), 149.8 (C_q), 134.3 (C_q), 128.5 (CH), 124.0 (CH), 123.9 (C_q), 110.8 (CH), 77.8 (CH), 59.7 (CH₂), 58.9 (CH₂), 57.3 (C_q), 45.0 (CH₂), 37.2 (CH₂), 14.7 (CH₃) ppm. HRMS (ESI): m/z calculated for C₁₅H₁₈ClN₂O₂ [M $+H^+$ = 293.1051, found = 293.1058.

Ethyl (Z)-2-(5-bromospiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (25v). Ethyl (Z)-2-(5-bromospiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate was prepared according to general procedure B starting from 5-bromo-3-(2-isocyanoethyl)-1H-indole (124.4 mg, 0.5 mmol, 1.0 equiv), ethyl diazoacetate (0.6 mmol, 1.2 equiv), Bu₄N[Fe(CO)₃NO] (10.3 mg, 0.025 mmol, 0.05 equiv), and NaBH₄ (20 mg, 0.53 mmol). The title compound was isolated as a light-brown solid (102 mg, 0.30 mmol, 61%). $R_f = 0.27$ (cHex:EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃): δ 7.94 (s, 1H), 7.15 (dd, J = 8.3, 2.0 Hz, 1H), 7.08 (d, J = 2.1 Hz, 1H), 6.54 (d, J = 8.3 Hz, 1H), 4.42 (s, 1H), 4.08 (q, J = 7.1 Hz, 2H), 3.80 (br, 1H), 3.68-3.50 (m, 4H), 2.24 (ddd, J = 12.8, 7.1, 4.1 Hz, 1H), 2.14 (dt, J = 12.7, 7.7 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 171.2 (C_q), 169.9 (C_q), 150.2 (C_q), 134.8 (C_q), 133.4 (CH), 126.8 (CH), 111.4 (CH), 110.8 (C_q), 77.8 (CH), 59.6 (CH₂), 58.9 (CH₂), 57.3 (C_q), 45.0 (CH₂), 37.2 (CH₂), 14.7 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{15}H_{18}BrN_2O_2$ [M+H⁺] = 337.0546, found = 337.0552.

Methyl (3S,Z)-2'-(2-Ethoxy-2-oxoethylidene)spiro[indoline-3,3'pyrrolidine]-5'-carboxylate (25w). To a flame-dried Schlenk flask under N2 atmosphere, charged with a stirring bean, was added Bu₄N[Fe(CO)₃NO] (10.3 mg, 0.025 mmol, 0.05 equiv). Subsequently, 1,2-DCE was added (0.25 M), and the mixture was stirred until the catalyst was dissolved. This was followed by the addition of 3-(1H-indol-3-yl)-2-isocyanopropanoate (114, mg, 0.50 mmol, 1.0 equiv) and ethyl diazoacetate (0.6 mmol, 1.2 equiv). The solution was placed in a preheated oil bath and stirred at 80 °C until full conversion of the isocyanide was observed on TLC. Subsequently, the reaction mixture was cooled to 0 °C and diluted with MeOH to a concentration of 0.125 M, after which NaBH₃CN (33 mg, 0.53 mmol, 1.05 equiv) and a few drops of AcOH were added. The resulting mixture was stirred at 0 °C until full conversion of the spiroindolenine intermediate was observed on TLC. Subsequently, the mixture was neutralized with Na2CO3 and diluted with CH2Cl2. The aqueous layer was extracted with CH_2Cl_2 (3×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. This was followed by purification via FCC using cHex:EtOAc = 6:4 as eluent to obtain the title compound as two diastereomers separately (combined yield: 86 mg, 0.25 mmol, 50%, dr = 2.2:1). dr determined via ¹H NMR of the crude product mixture. D1 (major): yellow oil (62 mg, 0.18 mmol, 36%); $R_f = 0.60$ (*c*Hex:EtOAc = 6:4); ¹H NMR (500 MHz, CDCl₃): δ 8.23 (s, 1H), 7.09 (td, J = 7.7, 1.1 Hz, 1H), 6.99 (dd, J = 7.4, 1.0 Hz, 1H), 6.75 (td, J = 7.5, 0.9 Hz, 1H), 6.68 (d, J = 7.8 Hz, 1H), 4.52 (dd, J = 8.7, 3.8 Hz, 1H), 4.49 (s, 1H), 4.08 (qd, J = 7.1, 2.2 Hz, 2H), 3.78 (s, 3H), 3.71 (d, J = 9.6 Hz, 1H), 3.52 (d, J = 9.5 Hz, 1H), 2.58–2.41 (m, 2H), 1.21 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 172.7 (C_q), 171.0 (C_q), 169.6 (C_q), 151.1 (C_q), 132.3 (C_q), 128.9 (CH), 123.5 (CH), 119.6 (CH), 110.3 (CH), 79.7 (CH), 60.5 (CH₂), 59.0 (CH₂), 58.7 (CH), 56.6 (C_q), 52.7 (CH₃), 40.6 (CH₂), 14.6 (CH₃) ppm. HRMS (ESI): *m/z* calculated for C₁₇H₂₁N₂O₄ [M+H⁺] = 317.1496, found = 317.1497. **D2** (minor): yellow oil (24 mg, 0.07 mmol, 14%); R_f = 0.29 (*c*Hex:EtOAc = 6:4); ¹H NMR (500 MHz, CDCl₃): δ 8.17 (s, 1H), 7.09 (td, *J* = 7.7, 1.2 Hz, 1H), 7.03 (d, *J* = 7.5 Hz, 1H), 6.76 (td, *J* = 7.5, 0.8 Hz, 1H), 6.69 (d, *J* = 7.8 Hz, 1H), 4.48–4.41 (m, 2H), 4.09 (qd, *J* = 7.2, 2.3 Hz, 2H), 3.79 (s, 3H), 3.60 (dd, *J* = 15.9, 9.2 Hz, 2H), 2.62 (dd, *J* = 13.0, 7.0 Hz, 1H), 2.23 (dd, *J* = 13.0, 9.0 Hz, 1H), 1.22 (t, *J* = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 171.8 (C_q), 170.9 (C_q), 169.0 (C_q), 151.3 (C_q), 131.2 (C_q), 129.0 (CH), 124.2 (CH), 120.0 (CH), 110.3 (CH), 79.9 (CH), 60.3 (CH₂), 59.0 (CH₂), 58.5 (CH), 57.4 (C_q), 52.7 (CH₃), 40.7 (CH₂), 14.6 (CH₃) ppm. HRMS (ESI): *m/z* calculated for C₁₇H₂₁N₂O₄ [M +H⁺] = 317.1501, found = 317.1497.

Ethyl (Z)-2-((3S,4'R)-4'-(3-Methoxyphenyl)spiro[indoline-3,3'pyrrolidin]-2'-ylidene) (25x). To a flame-dried Schlenk flask under N2 atmosphere, charged with a stirring bean, was added Bu4N[Fe-(CO)₃NO] (10.3 mg, 0.025 mmol, 0.06 equiv). Subsequently, 1,2-DCE was added (0.25 M), and the mixture was stirred until the catalyst was dissolved. This was followed by the addition of 3-(2isocyano-1-(3-methoxyphenyl)ethyl)-1H-indole (112 mg, 0.41 mmol, 1.0 equiv) and ethyl diazoacetate (0.6 mmol,1.5 equiv). The solution was placed in a preheated oil bath and stirred at 80 $^\circ C$ until full conversion of the isocyanide was observed on TLC. Subsequently, the reaction mixture was cooled to 0 °C and diluted with MeOH to a concentration of 0.125 M, after which NaBH₃CN (33 mg, 0.53 mmol, 1.05 equiv) was added. After 30 min, NaBH₃CN (31 mg, 0.50 mmol, 1.0 equiv) and a few drops of AcOH were added. The resulting mixture was stirred at 0 °C until full conversion of the spiroindolenine intermediate was observed on TLC. Subsequently, the mixture was neutralized with Na₂CO₃ and diluted with CH₂Cl₂. The aqueous layer was extracted with CH_2Cl_2 (3×). The combined organic layers were washed with brine, dried over Na2SO4, filtered, and concentrated in vacuo. This was followed by purification via FCC using cHex:EtOAc = 2:1 as eluent to obtain both diastereomers separately (combined yield: 81 mg, 0.22 mmol, 54%, dr = 3:1). dr determined via ¹H NMR of the crude product mixture. D1 (major): white solid (61 mg, 0.17 mmol, 41%); $R_f = 0.44$ (*c*Hex:EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₃): δ 8.09 (s, 1H), 7.20–7.13 (m, 2H), 7.10 (td, J = 7.7, 1.2 Hz, 1H), 6.84-6.75 (m, 2H), 6.66 (d, I = 7.6 Hz, 1H), 6.60 (d, I = 7.8 Hz, 1H), 6.51 (t, J = 1.8 Hz, 1H), 4.53 (s, 1H), 4.09 (q, J = 6.9 Hz, 2H), 4.00 (dd, J = 10.0, 7.3 Hz, 1H), 3.83 (dd, J = 10.3, 6.7 Hz, 1H), 3.65 (s, 3H), 3.57 (t, J = 6.9 Hz, 1H), 3.46–3.32 (m, 2H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 171.4 (C_q), 170.7 (C_q) , 159.6 (C_q) , 151.4 (C_q) , 140.4 (C_q) , 132.3 (C_q) , 129.6 (CH), 128.9 (CH), 123.7 (CH), 119.9 (CH), 119.6 (CH), 113.6 (CH), 112.9 (CH), 110.4 (CH), 78.1 (CH), 61.5 (C_q), 58.8 (CH₂), 55.1 (CH), 53.9 (CH₂), 52.6 (CH₃), 49.8 (CH₂), 14.7 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{22}H_{25}N_2O_3$ [M+H⁺] = 365.1860, found = 365.1868. D2 (minor): yellow oil (20 mg, 0.06 mmol, 13%); $R_{f} = 0.26$ (cHex: EtOAc = 2:1); ¹H NMR (500 MHz, CDCl₂): δ 8.11 (s, 1H), 7.04 (t, J = 7.9 Hz, 1H), 6.95 (td, J = 7.7, 1.1 Hz, 1H), 6.67 (ddd, J = 8.2, 2.6, 0.9 Hz, 1H), 6.58 (d, J = 7.7 Hz, 2H), 6.43 (td, J = 7.5, 0.7 Hz, 1H), 6.36 (t, J = 1.9 Hz, 1H), 6.29 (d, J = 7.5 Hz, 1H), 4.49 (s, 1H), 4.18-4.04 (m, 2H), 4.00-3.88 (m, 2H), 3.72 (br, 1H), 3.66 (s, 2H), 3.58 (s, 3H), 3.49 (dd, J = 6.5, 3.7 Hz, 1H), 1.23 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 171.3 (C₀), 169.2 (C_q), 159.3 (C_q), 151.8 (C_q), 141.0 (C_q), 129.1 (CH), 128.5 (CH), 128.2 (C_q), 126.3 (CH), 120.5 (CH), 118.7 (CH), 113.7 (CH), 112.9 (CH), 109.9 (CH), 79.0 (CH), 63.0 (C_q), 59.7 (CH₂), 58.9 (CH₂), 55.2 (CH), 51.6 (CH₃), 50.9 (CH₂), 14.7 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{22}H_{25}N_2O_3$ [M+H⁺] = 365.1860, found = 365.1867.

Dimethyl (R,Z)-2-(Spiro[indole-3,3'-pyrrolidin]-2'-ylidene)succinate (**23ab**). Dimethyl (R,Z)-2-(spiro[indole-3,3'-pyrrolidin]-2'-ylidene)succinate was prepared according to general procedure C starting from 3-(2-isocyanoethyl)-1*H*-indole (85.1 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a white solid (50 mg, 0.16 mmol, 33%). $R_f = 0.22$ (*c*Hex:EtOAc = 1:1); ¹H NMR (600 MHz, CDCl₃): δ 8.90 (s, 1H), 8.12 (s, 1H), 7.67 (d, *J* = 7.7 Hz, 1H), 7.40

Н

(td, J = 7.6, 1.3 Hz, 1H), 7.31 (d, J = 7.4 Hz, 1H), 7.27 (td, J = 7.4, 1.1 Hz, 1H), 3.84 (dddd, J = 10.1, 7.2, 6.1, 0.9 Hz, 1H), 3.77 (dddd, J = 10.1, 7.7, 5.8, 1.0 Hz, 1H), 3.60 (s, 3H), 3.43 (s, 3H), 2.47 (ddd, J = 12.8, 7.6, 6.1 Hz, 1H), 2.36–2.16 (m, 2H), 2.14 (ddd, J = 13.0, 7.5, 5.8 Hz, 1H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 173.0 (C_q), 172.7 (CH), 170.5 (C_q), 160.3 (C_q), 154.6 (C_q), 140.3 (C_q), 129.1 (CH), 127.3 (CH), 122.5 (CH), 122.1 (CH), 85.4 (C_q), 67.2 (C_q), 51.6 (CH₃), 51.1 (CH₃), 45.4 (CH₂), 32.7 (CH₂), 30.7 (CH₂) ppm. HRMS (ESI): m/z calculated for C₁₇H₁₉N₂O₄ [M+H⁺] = 315.1339, found = 315.1338.

Dimethyl (*R*,*Z*)-2-(2-Methylspiro[indole-3,3'-pyrrolidin]-2'ylidene)succinate (**23bb**). Dimethyl (*R*,*Z*)-2-(2-methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)succinate was prepared according to general procedure C starting from 2-(methyl)-3-(2-isocyanoethyl)-1*H*-indole (92.1 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a white solid (84 mg, 0.26 mmol, 51%). *R*_f = 0.68 (EtOAc); ¹H NMR (600 MHz, CDCl₃): 8.95 (s, 1H), 7.53 (d, *J* = 7.7 Hz, 1H), 7.34 (td, *J* = 7.6, 1.3 Hz, 1H), 7.24 (d, *J* = 7.4 Hz, 1H), 7.18 (td, *J* = 7.5, 1.0 Hz, 1H), 3.86–3.75 (m, 2H), 3.60 (s, 3H), 3.37 (s, 3H), 2.31 (s, 3H), 2.30–2.19 (m, 4H). δ ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ ¹³C NMR (150 MHz, CDCl₃) δ 182.4 (C_q), 172.6 (C_q), 170.7 (C_q), 161.9 (C_q), 154.6 (C_q), 142.1 (C_q), 128.9 (CH), 126.3 (CH), 122.5 (CH), 120.8 (CH), 85.3 (C_q), 67.9 (C_q), 51.4 (CH₃), 51.0 (CH₃), 45.2 (CH₂), 34.3 (CH₂), 30.4 (CH₂), 16.8 (CH₃) ppm. HRMS (ESI): *m*/z calculated for C₁₈H₂₁N₂O₄ [M+H⁺] = 329.1496, found = 329.1495.

Benzyl (R,Z)-2-(2-Methylspiro[indole-3,3'-pyrrolidin]-2'-ylidene)-3-oxobutanoate (**23be**). Benzyl (R,Z)-2-(2-methylspiro[indole-3,3'pyrrolidin]-2'-ylidene)-3-oxobutanoate was prepared according to general procedure C starting from 2-(methyl)-3-(2-isocyanoethyl)-1H-indole (92.1 mg, 0.5 mmol, 1.0 equiv). The title compound was isolated as a white solid (17 mg, 0.05 mmol, 9%). $R_f = 0.16$ (cHex:EtOAc = 3:7); ¹H NMR (500 MHz, CDCl₃): δ 12.02 (s, 1H), 7.53 (d, J = 7.7 Hz, 1H), 7.34 (td, J = 7.7, 7.2, 2.1 Hz, 1H), 7.25–7.16 (m, 5H), 7.08–7.01 (m, 2H), 4.45 (s, 2H), 3.97–3.80 (m, 2H), 2.37 (ddd, J = 13.1, 7.6, 5.9 Hz, 1H), 2.31 (s, 3H), 2.26–2.16 (m, 4H) pm; ¹³C{¹H} NMR (126 MHz, CDCl₃): δ 196.7 (C_q), 181.5 (C_q), 168.6 (C_q), 167.0 (C_q), 155.0 (C_q), 141.7 (C_q), 136.3 (C_q), 128.8 (CH), 128.4 (CH), 128.3 (CH), 127.9 (CH), 126.0 (CH), 121.2 (CH), 120.5 (CH), 100.7 (C_q), 69.5 (C_q), 64.8 (CH₂), 45.6 (CH₂), 35.6 (CH₂), 29.5 (CH₃), 17.0 (CH₃) ppm. HRMS (ESI): m/zcalculated for C₂₃H₂₃N₂O₃ [M+H⁺] = 375.1703, found = 375.1702.

Ethyl (Z)-2-(2-(2-Hydroxyethyl)spiro[indoline-3,3'-pyrrolidin]-2'ylidene)acetate (25y). 2-(3-(2-Isocyanoethyl)-1H-indol-2-yl)ethan-1-ol (1.35 g, 6.33 mmol, 1.0 equiv) was added to a solution of Bu₄[Fe(CO)₃NO] (260 mg, 0.63 mmol, 0.10 equiv) in anhydrous 1,2-DCE (25 mL). Ethyl 2-diazoacetate (0.94 mL, 7.60 mmol, 1.2 equiv) was added, and the mixture was heated to 80 °C for 1.5 h and then allowed to cool to room temperature. The reaction was placed in an ice bath, and MeOH (10 mL) and NaBH₄ (251 mg, 6.65 mmol, 1.05 equiv) were added. After complete conversion of the spiroindolenine was observed on TLC, the reaction was quenched with a saturated NH₄Cl solution and extracted with CH_2Cl_2 (3×). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. FCC (gradient: 20% \rightarrow 80% EtOAc in cyclohexane) yielded the product as a light-brown solid as a single diastereomer (1.12 g, 3.70 mmol, 59%). R_f = 0.28 (EtOAc/ cyclohexane 4:1); ¹H NMR (500 MHz, CDCl₃): δ 7.97 (s, 1H), 7.08 (t, J = 7.7 Hz, 1H), 7.03 (d, J = 7.4 Hz, 1H), 6.76 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 7.8 Hz, 1H), 4.30 (s, 1H), 4.04 (q, J = 7.1 Hz, 2H), 3.94-3.76 (m, 3H), 3.69-3.52 (m, 2H), 2.49 (dt, J = 13.1, 8.8 Hz, 1H), 2.17 (ddd, J = 13.1, 7.0, 2.8 Hz, 1H), 2.03-1.87 (m, 1H), 1.84-1.49 (m, 3H), 1.20 (t, J = 7.1 Hz, 3H) ppm; ${}^{13}C{}^{1}H$ NMR (126 MHz, CDCl₃): δ 171.2 (C_q), 167.0 (C_q), 150.9 (C_q), 132.3 (C_q), 128.7 (CH), 123.8 (CH), 119.6 (CH), 110.3 (CH), 79.5 (CH), 68.6 (CH), 61.9 (CH₂), 60.1 (C_q), 58.7 (CH₂), 44.9 (CH₂), 37.0 (CH₂), 33.8 (CH₂), 14.7 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{17}H_{23}N_2O_3$ [M+H⁺] = 303.1703, found = 303.1705.

Ethyl 2,3,5,6,6a,7-Hexahydro-1H-pyrrolo[2,3-d]carbazole-4-carboxylate (26). To a mixture of imidazole (0.31 g, 4.6 mmol, 1.35

equiv), PPh₃ (1.15 g, 4.4 mmol 1.30 equiv), and iodine (1.12 g, 4.4 mmol, 1.30 equiv) in CH₂Cl₂ (35 mL) was added ethyl (Z)-2-(2-(2hydroxyethyl)spiro[indoline-3,3'-pyrrolidin]-2'-ylidene)acetate (1.02 g, 3.4 mmol, 1.0 equiv). After heating for an hour at reflux, the reaction mixture was allowed to cool to room temperature, after which MeOH (5 mL) was added causing the reaction mixture to turn to a clear solution. This solution was washed with a saturated Na₂SO₃ solution and subsequently extracted with CH_2Cl_2 (3×). The combined organic layer was dried over Na2SO4, filtered, and concentrated in vacuo. FCC (gradient: 5% \rightarrow 40% EtOAc in cyclohexane) yielded the product as a light yellow solid and as a single diastereomer (858 mg, 3.0 mmol, 88%). R_f = 0.30 (EtOAc:cHex = 1:4); ¹H NMR (500 MHz, CDCl₃): δ 7.53 (s, 1H), 7.03 (t, J = 7.8 Hz, 1H), 6.97 (d, J = 7.5 Hz, 1H), 6.65 (t, J = 7.5 Hz, 1H), 6.61 (d, J = 7.8 Hz, 2H), 4.11 (q, J = 7.1 Hz, 2H), 3.94 (dd, J = 5.3, 2.9 Hz, 1H), 3.76 (td, J = 10.4, 6.1 Hz, 1H), 3.59 (ddd, J = 10.8, 9.2, 2.2 Hz, 1H), 2.42 (dt, J = 15.1, 4.5 Hz, 1H), 2.29 (dd, J = 12.0, 6.0 Hz, 1H), 2.14-2.05 (m,1H), 1.89 (ddd, J = 14.8, 10.9, 3.5 Hz, 1H), 1.75-1.59 (m, 2H), 1.24 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): δ 169.4 (C_q), 162.8 (C_q), 150.2 (C_q), 132.8 (C_q), 128.6 (CH), 123.2 (CH), 118.8 (CH), 109.0 (CH), 89.6 (C_q), 63.7 (CH), 59.0 (CH₂), 55.4 (C_a), 44.2 (CH₂), 39.4 (CH₂), 33.5 (CH₂), 18.5 (CH₂), 14.8 (CH₃) ppm; HRMS (ESI): m/z calculated for $C_{17}H_{21}N_2O_2$ [M+H⁺] = 285.1597, found = 285.1598.

7-(tert-Butyl) 4-Ethyl 1,2,3,5,6,6a-Hexahydro-7H-pyrrolo[2,3-d]carbazole-4,7-dicarboxylate (20).39 Ethyl 2,3,5,6,6a,7-hexahydro-1H-pyrrolo[2,3-d]carbazole-4-carboxylate (142 mg, 0.5 mmol, 1.0 equiv) was dissolved in anhydrous CH₂Cl₂ (0.5 M), followed by the addition of DMAP (12 mg, 0.1 mmol, 0.2 equiv) and Boc₂O (372 mg, 1.5 mmol, 3.0 equiv). No full conversion was observed on TLC after 24 h, and an additional portion of Boc₂O (164 mg, 0.75 mmol, 1.5 equiv) was added. After 48 h no full conversion was observed and additional amounts of Boc2O (372 mg, 1.5 mmol, 1.5 equiv) and DMAP (12 mg, 0.1 mmol, 0.2 equiv) were added. Additional portions of Boc₂O (372 mg, 1.5 mmol, 1.5 equiv) and DMAP (12 mg, 0.1 mmol, 0.2 equiv) were added after 72 h and stirred until full conversion was observed. After completion of the reaction, the reaction was diluted with CH2Cl2, washed with H2O and brine, and dried over Na₂SO₄, followed by filtration and concentration in vacuo. The crude reaction mixture was then purified by FCC using EtOAc:cHex = 1:9 as eluent to obtain the product as a white foam (136 mg, 0.35 mmol, 71%). Characterization data is accordance with that reported in the literature.^{3g} $R_f = 0.26$ EtOAc:cHex = 1:9); ¹H NMR (600 MHz, CDCl₃): δ 7.97–7.34 (m, 1H), 7.18 (s, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.90 (td, J = 7.5, 1.1 Hz, 1H), 4.46 (m, 1H), 4.11 (qd, J = 7.1, 1.3 Hz, 1H), 3.74 (td, J = 10.3, 6.3 Hz, 1H), 3.61 (t, J = 9.5 Hz, 1H), 2.48-2.38 (m, 1H), 2.26 (dd, I = 12.1, 6.1 Hz, 1H), 2.22-2.05 (m, 2H), 1.73-1.52 (m, 12H), 1.24 (t, J = 7.1 Hz, 3H) ppm; ¹³C{¹H} NMR (150 MHz, CDCl₃): (presence of rotameric signals) δ 169.3 (C_q), 162.2 (C_q), 152.0 (C_q), 142.3 (C_q), 134.4 (C_q), 128.7 (CH), 123.0 (CH), 122.7 (CH), 114.7 (CH), 89.9 (C_a), 81.1 (C_q) , 66.2 (CH), 59.1 (CH₂), 53.8 (C_q), 44.0 (CH₂), 39.3 (CH₂), 31.4 (CH₂), 28.6 (CH₃), 18.4 (CH₂), 14.8 (CH₃) ppm. HRMS (ESI): m/z calculated for $C_{22}H_{29}N_2O_4$ [M+H⁺] = 385.2122, found = 385.2127.

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

G Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.3c02160.

Experimental procedures, characterization data, and ${}^{1}H$ and ${}^{13}C$ NMR spectra for new compounds (PDF)

FAIR data, including the primary NMR FID files, for compounds 1g, 1h, 1i, 1k-1n, 1p, 1x, 1y, 20, 23a, 23ab, 23b, 23bb, 23be, 23c-23g, 23i, 23j-23o, 25a,

pubs.acs.org/joc

25b, 25q, 25r-25v, 25w_D1, 25w_D2, 25x_D1, 25x_D2, 25y, and 26 (ZIP)

AUTHOR INFORMATION

Corresponding Authors

- Bert U. W. Maes Organic Synthesis Division, Department of Chemistry, University of Antwerp, B-2020 Antwerp, Belgium; Occid.org/0000-0003-0431-7606; Email: bert.maes@uantwerpen.be
- Romano V. A. Orrù Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167 KD Geleen, Netherlands; Ocid.org/ 0000-0003-1142-6798; Email: r.orru@ maastrichtuniversity.nl
- Eelco Ruijter Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; orcid.org/0000-0002-1105-3947; Email: e.ruijter@vu.nl

Authors

- Thomas R. Roose Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Finn McSorley Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Bryan Groenhuijzen Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecular & Life Science (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Jordy M. Saya Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, 6167 KD Geleen, Netherlands

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.3c02160

Author Contributions

The manuscript was written through contributions of all authors.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was financially supported by The Netherlands Organisation for Scientific Research (NWO, ECHO) and the Fund for Scientific Research – Flanders (FWO, G0D1921N). B.U.W.M. thanks the Francqui Foundation for an appointment as Collen-Francqui professor. We also kindly thank Elwin Janssen for NMR support and H. Daniel Preschel for HRMS measurements (both VU Amsterdam).

REFERENCES

 (a) Giustiniano, M.; Basso, A.; Mercalli, V.; Massarotti, A.; Novellino, E.; Tron, G. C.; Zhu, J. To each his own: Isonitriles for all flavors. Functionalized isocyanides as valuable tools in organic synthesis. *Chem. Soc. Rev.* 2017, 46, 1295–1357. (b) Kaur, T.; Wadhwa, P.; Sharma, A. Arylsulfonylmethyl isocyanides: a novel paradigm in organic synthesis. *RSC Adv.* 2015, 5, 52769–52787.
 (c) Gulevich, A. V.; Zhdanko, A. G.; Orru, R. V. A.; Nenajdenko, V. G. Isocyanoacetate derivatives: synthesis, reactivity, and application. *Chem. Rev.* **2010**, *110*, 5235–5331. (d) Wang, J.; Li, D.; Li, J.; Zhu, Q. Advances in palladium-catalysed imidoylative cyclization of functionalized isocyanides for the construction of N-heterocycles. *Org. Biomol. Chem.* **2021**, *19*, 6730–6745.

(2) Chen, G. S.; Lin, X. T.; Liu, Y. L. 3-(2-isocyanoethyl) indole: a versatile reagent for polycyclic spiroindoline synthesis. *Synlett* **2020**, *31*, 1033–1039.

(3) Dearomatization of 3-(2-isocyanoethyl)indoles via nitrillium intermediate: (a) Wang, X.; Wang, S. Y.; Ji, S. J. Isocyanide-based multicomponent reactions: catalyst-free stereoselective construction of polycyclic spiroindolines. Org. Lett. 2013, 15, 1954-1957. (b) Wang, X.; Wang, S. Y.; Ji, S. J. Chemoselective synthesis of polycyclic spiroindolines and polysubstituted pyrroles via the domino reaction of 2-isocyanoethylindoles. J. Org. Chem. 2014, 79, 8577-8583. (c) Zhao, X.; Liu, X.; Xiong, Q.; Mei, H.; Ma, B.; Lin, L.; Feng, X. The asymmetric synthesis of polycyclic 3-spirooxindole alkaloids via the cascade reaction of 2-isocyanoethylindoles. Chem. Commun. 2015, 51, 16076-16079. (d) Zhao, X.; Liu, X.; Mei, H.; Guo, J.; Lin, L.; Feng, X. Asymmetric Dearomatization of Indoles through a Michael/Friedel-Crafts-Type Cascade To Construct Polycyclic Spiroindolines. Angew. Chem., Int. Ed. 2015, 54, 4032-4035. (e) Saya, J. M.; Oppelaar, B.; Cioc, R. C.; Van Der Heijden, G.; Vande Velde, C. M. L.; Orru, R. V. A.; Ruijter, E. Synthesis of polycyclic spiroindolines by highly diastereoselective interrupted Ugi cascade reactions of 3-(2-isocyanoethyl) indoles. Chem. Commun. 2016, 52, 12482-12485. (f) Li, L.; Liu, J.; Shi, M. A highly regio-and diastereoselective four-component reaction to construct polycyclic bispiroindolines from 2-isocyanoethylindoles and isocyanates. Org. Lett. 2018, 20, 7076-7079. (g) Saya, J. M.; Roose, T. R.; Peek, J. J.; Weijers, B.; de Waal, T. J. S.; Vande Velde, C. M. L.; Orru, R. V. A.; Ruijter, E. Iodospirocyclization of Tryptamine-Derived Isocyanides: Formal Total Synthesis of Aspidofractinine. Angew. Chem., Int. Ed. 2018, 57, 15232-15236. (h) Liu, Y. L.; Mao, X. Y.; Lin, X. T.; Chen, G. S. A $Zn(OTf)_2$ catalyzed Ugi-type reaction of 3-(2-isocyanoethyl) indoles with indole-derived ketimines: rapid access to hexacyclic spiroindolines. Org. Chem. Front. 2018, 5, 2303-2307. (i) Li, X.; Xiong, Q.; Guan, M.; Dong, S.; Liu, X.; Feng, X. Divergent Synthesis of Enantioenriched β -Functional Amines via Desymmetrization of meso-Aziridines with Isocyanides. Org. Lett. 2019, 21, 6096-6101. (j) Cao, W.-B.; Li, S.; Xu, M.-M.; Li, H.; Xu, X.-P.; Lan, Y.; Ji, S.-J. Hydrogen-Bonding-Promoted Cascade Rearrangement Involving the Enlargement of Two Rings: Efficient Access to Polycyclic Quinoline Derivatives. Angew. Chem., Int. Ed. 2020, 59, 21425-21430. (k) Li, H.; Wu, J.; Zheng, J.; Li, W.-D. Z. Synthesis of polycyclic spiroindolines via the cascade reaction of 3-(2-isocyanoethyl) indoles. Chem. Commun. 2021, 57, 11092-11095.

(4) Dearomatization of 3-(2-isocyanoethyl)indoles via heteroallene intermediate: (a) Chen, G. S.; Chen, S. J.; Luo, J.; Mao, X. Y.; Chan, A. S. C.; Sun, R. W. Y.; Liu, Y. L. Tandem cross-coupling/ spirocyclization/Mannich-type reactions of 3-(2-isocyanoethyl) indoles with diazo compounds toward polycyclic spiroindolines. *Angew. Chem., Int. Ed.* **2020**, *59*, 614–621. (b) Jiang, S.; Cao, W.-B.; Li, H.-Y.; Xu, X.-P.; Ji, S.-J. Convenient synthesis of spiroindolenines from tryptamine-derived isocyanides and organic azides by cobalt catalysis in pure water. *Green Chem.* **2021**, *23*, 2619–2623. (c) Gu, M. Z.; Deng, Y. Q.; Zhang, X. T.; Lin, X. T.; Xu, Y. B.; Hu, X. W.; Liu, X. N.; Zheng, Y. L.; Chen, G. S.; Liu, Y. L. Cascade Cross-Coupling/ Spirocyclization/Formal [4 + 2] Cycloaddition Reactions of 3-(2-Isocyanoethyl) Indoles with Aromatic Azides: Access to Polycyclic Spiroindolines Bearing A Pentasubstituted Guanidine Moiety. *Adv. Synth. Catal.* **2022**, *364*, 4427–4432.

(5) Tang, S.; Ding, S.; Li, D.; Li, L.; Zhao, H.; Chai, M.; Wang, J. Palladium-catalysed imidoylative spirocyclization of 3-(2-isocyanoeth-yl) indoles. *Chem. Commun.* **2021**, *57*, 10576–10579.

(6) Reviews on indole dearomatization: (a) Roche, S. P.; Youte Tendoung, J. J.; Tréguier, B. Advances in dearomatization strategies of indoles. *Tetrahedron* **2015**, *71*, 3549–3591. (b) Zhuo, C. X.; Zhang, W.; You, S. L. Catalytic asymmetric dearomatization reactions. *Angew. Chem., Int. Ed.* **2012**, *51*, 12662–12686. (c) Bariwal, J.;

Voskressensky, L. G.; Van Der Eycken, E. V. Recent advances in spirocyclization of indole derivatives. *Chem. Soc. Rev.* **2018**, 47, 3831–3848. (d) James, M. J.; O'Brien, P.; Taylor, R. J. K.; Unsworth, W. P. Synthesis of spirocyclic indolenines. *Chem.—Eur. J.* **2016**, *22*, 2856–2881. (e) Roche, S. P.; Porco, J. A. Dearomatization strategies in the synthesis of complex natural products. *Angew. Chem., Int. Ed.* **2011**, *50*, 4068–4093.

(7) (a) Powell, N. A.; Kohrt, J. T.; Filipski, K. J.; Kaufman, M.; Sheehan, D.; Edmunds, J. E.; Delaney, A.; Wang, Y.; Bourbonais, F.; Lee, D. Y.; Schwende, F.; Sun, F.; McConnel, P.; Catana, C.; Chen, H.; Ohren, J.; Perrin, L. A. Novel and selective spiroindoline-based inhibitors of sky kinase. *Bioorg. Med. Chem. Lett.* 2012, *22*, 190–193.
(b) Zhao, Y.; Yu, S.; Sun, W.; Liu, L.; Lu, J.; McEachern, D.; Shargary, S.; Bernard, D.; Li, X.; Zhao, T.; Zou, P.; Sun, D.; Wang, S. A potent small-molecule inhibitor of the MDM2-p53 interaction (MI-888) achieved complete and durable tumor regression in mice. *J. Med. Chem.* 2013, *56*, 5553–5561. (c) Kumar, N.; Hati, S.; Munshi, P.; Sen, S.; Sehrawat, S.; Singh, S. A novel spiroindoline targets cell cycle and migration via modulation of microtubule cytoskeleton. *Mol. Cell. Biochem.* 2017, *429*, 11–21.

(8) (a) O'Connor, S. E.; Maresh, J. J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. *Nat. Prod. Rep.* **2006**, *23*, 532–547. (b) Mohammed, A. E.; Abdul-Hameed, Z. H.; Alotaibi, M. O.; Bawakid, N. O.; Sobahi, T. R.; Abdel-Lateff, A.; Alarif, W. M. Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera. *Molecules* **2021**, *26*, 488.

(9) Saya, J. M.; Ruijter, E.; Orru, R. V. A. Total Synthesis of Aspidosperma and Strychnos Alkaloids through Indole Dearomatization. *Chem.—Eur. J.* 2019, 25, 8916–8935.

(10) Reviews on imidoylative cross-coupling: (a) Vlaar, T.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Palladium-catalyzed migratory insertion of isocyanides: an emerging platform in cross-coupling chemistry. *Angew. Chem., Int. Ed.* **2013**, *52*, 7084–7097. (b) Collet, J. W.; Roose, T. R.; Weijers, B.; Maes, B. U. W.; Ruijter, E.; Orru, R. V. A. Recent advances in palladium-catalyzed isocyanide insertions. *Molecules* **2020**, *25*, 4906. (c) Collet, J. W.; Roose, T. R.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Base metal catalyzed isocyanide insertions. *Angew. Chem., Int. Ed.* **2020**, *59*, 540–558.

(11) Roose, T. R.; Verdoorn, D. S.; Mampuys, P.; Ruijter, E.; Maes, B. U. W.; Orru, R. V. A. Transition metal-catalysed carbene-and nitrene transfer to carbon monoxide and isocyanides. *Chem. Soc. Rev.* **2022**, *51*, 5842–5877.

(12) Roose, T. R.; Preschel, H. D.; Mayo Tejedor, H.; Roozee, J. C.; Hamlin, T. A.; Maes, B. U. W.; Ruijter, E.; Orru, R. V. A. Iron-Catalysed Carbene Transfer to Isocyanides as a Platform for Heterocycle Synthesis. *Chem.—Eur. J.* **2023**, *29*, No. e202203074.

(13) (a) Klein, J. E. M. N. The Hieber Anion $[Fe(CO)_3 (NO)]^-$. Synlett **2011**, 2757–2758. (b) Klein, J. E. M. N.; Miehlich, B.; Holzwarth, M. S.; Bauer, M.; Milek, M.; Khusniyarov, M. M.; Knizia, G.; Werner, H. J.; Plietker, B. The Electronic Ground State of $[Fe(CO)_3 (NO)]^-$: A Spectroscopic and Theoretical Study. Angew. Chem., Int. Ed. **2014**, 53, 1790–1794. (c) Lin, C.-H.; Plietker, B. The Evolution of Fe-catalyzed Nucleophilic Activation of Acceptorsubstituted Vinyl-and Arylcyclopropanes. Isr. J. Chem. **2016**, 56, 409–416.

(14) Application of the Hieber anion in carbene transfer reactions: (a) Holzwarth, M. S.; Alt, I.; Plietker, B. Catalytic Activation of Diazo Compounds Using Electron-Rich, Defined Iron Complexes for Carbene-Transfer Reactions. *Angew. Chem., Int. Ed.* **2012**, *51*, 5351–5354. (b) Röske, A.; Alt, I.; Plietker, B. Scope and Limitations of TBA[Fe]-Catalyzed Carbene Transfer to X?H-bonds - Indication of a MechanisticDichotomy. *ChemCatChem.* **2019**, *11*, 5260–5263. (c) Picher, M. I.; Plietker, B. Fe-Catalyzed Selective Cyclopropanation of Enynes under Photochemical or Thermal Conditions. *Org. Lett.* **2020**, *22*, 340–344.

(15) Liddon, J. T. R.; Clarke, A. K.; Taylor, R. J. K.; Unsworth, W. P. Preparation and reactions of indoleninyl halides: scaffolds for the synthesis of spirocyclic indole derivatives. *Org. Lett.* **2016**, *18*, 6328–6331.

(16) Liddon, J. T. R.; Rossi-Ashton, J. A.; Taylor, R. J. K.; Unsworth, W. P. Dearomatizing spiroannulation reagents: direct access to spirocycles from indoles and dihalides. *Org. Lett.* **2018**, *20*, 3349–3353.

(17) Dufour, M.; Gramain, J. C.; Sinibaldi, M. E.; Troin, Y.; Husson, H. P. Total synthesis of indole alkaloids. A new strategy for (\pm) -19-oxoaspidospermidine and (\pm) -19-oxoaspidofractinine. *J. Org. Chem.* **1990**, 55, 5483–5490.

(18) Martin, G.; Angyal, P.; Egyed, O.; Varga, S.; Soós, T. Total Syntheses of Dihydroindole Aspidosperma Alkaloids: Reductive Interrupted Fischer Indolization Followed by Redox Diversification. *Org. Lett.* **2020**, *22*, 4675–4679.