
This item is the archived peer-reviewed author-version of:

Computed tomography–based machine learning for donor lung screening before transplantation

Reference:
Ram Sundaresh, Verleden Stijn, Kumar Madhav, Bell Alexander J., Pal Ravi, Ordies Sofie, Vanstapel Arno, Dubbeldam Adriana, Vos Robin, Galban Stefanie,

....- Computed tomography–based machine learning for donor lung screening before transplantation

Journal of heart and lung transplantation - ISSN 1053-2498 - 43:3(2024), p. 394-402 

Full text (Publisher's DOI): https://doi.org/10.1016/J.HEALUN.2023.09.018 

To cite this reference: https://hdl.handle.net/10067/2015150151162165141

Institutional repository IRUA



1 
 

TITLE 1 

CT-based Machine Learning for Donor Lung Screening Prior to Transplantation  2 

 3 

Authorship 4 

Computed tomography-based machine learning for donor lung screening before 5 

transplantation  6 

Sundaresh Ram  1 , Stijn E Verleden  2 , Madhav Kumar  3 , Alexander J Bell  4 , Ravi Pal  4 , Sofie 7 
Ordies  5 , Arno Vanstapel  6 , Adriana Dubbeldam  7 , Robin Vos  5 , Stefanie Galban  4 , Laurens J 8 
Ceulemans  5 , Anna E Frick  5 , Dirk E Van Raemdonck  5 , Johny Verschakelen  7 , Bart M 9 
Vanaudenaerde  5 , Geert M Verleden  5 , Vibha N Lama  8 , Arne P Neyrinck  9 , Craig J Galban  10  10 
Affiliations  11 

• 1 Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of 12 
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan. 13 

• 2 Lung Transplant Unit, Department of Chronic Diseases and Metabolism, Laboratory of 14 
Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; 15 
Department of ASTARC, University of Antwerp, Wilrijk, Belgium. 16 

• 3 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan. 17 
• 4 Department of Radiology, University of Michigan, Ann Arbor, Michigan. 18 
• 5 Lung Transplant Unit, Department of Chronic Diseases and Metabolism, Laboratory of 19 

Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium. 20 
• 6 Lung Transplant Unit, Department of Chronic Diseases and Metabolism, Laboratory of 21 

Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; 22 
Department of Imaging & Pathology, KU Leuven, Leuven, Belgium. 23 

• 7 Department of Imaging & Pathology, KU Leuven, Leuven, Belgium. 24 
• 8 Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan. 25 
• 9 Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium. 26 
• 10 Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of 27 

Biomedical Engineering, University of Michigan, Ann Arbor, Michigan. Electronic 28 
address: cgalban@med.umich.edu. 29 

 30 

Corresponding author 31 

Professor Craig J. Galban, PhD 32 

Department of Radiology 33 

University of Michigan 34 

Biomedical Science Research Building, Room A506 35 

109 Zina Pitcher Place 36 

https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Ram+S&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-1
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Verleden+SE&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-2
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Kumar+M&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-3
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Bell+AJ&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-4
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Pal+R&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-4
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Ordies+S&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Ordies+S&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Vanstapel+A&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-6
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Dubbeldam+A&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-7
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Vos+R&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Galban+S&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-4
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Ceulemans+LJ&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Ceulemans+LJ&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Frick+AE&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Van+Raemdonck+DE&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Verschakelen+J&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-7
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Vanaudenaerde+BM&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Vanaudenaerde+BM&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Verleden+GM&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-5
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Lama+VN&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-8
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Neyrinck+AP&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-9
https://pubmed.ncbi.nlm.nih.gov/?sort=date&term=Galban+CJ&cauthor_id=37778525
https://pubmed.ncbi.nlm.nih.gov/37778525/#full-view-affiliation-10


2 
 

Ann Arbor, MI 48109-2200 37 

E-mail: cgalban@med.umich.edu 38 

Phone: 734-764-8726 39 

 40 

Running Title: Machine Leaning for Donor Lung Screening 41 

 42 

Abbreviations 43 

 44 

CLAD Chronic lung allograft dysfunction 

COPD Chronic obstructive pulmonary disease 

CT Computed tomography 

CVA Cerebrovascular accident 

DCD Donation after circulatory death 

FEV1 Forced expiratory volume in 1 second 

FiO2 Fraction of inspired oxygen 

FVC Forced vital capacity 

ICU Intensive care unit 

IPF Idiopathic pulmonary fibrosis 

ISHLT International Society for Heart and Lung Transplantation 

ML Machine learning 

PGD Primary graft dysfunction 

pO2 Partial pressure of oxygen 

 45 

Word Count: 3,532 (Abstract-Conclusions) 46 

  47 



3 
 

ABSTRACT  48 

Background: Assessment and selection of donor lungs remains largely subjective, and experience 49 

based. Criteria to accept or decline lungs are poorly standardized and are not compliant with the 50 

current donor pool. Using ex vivo CT images, we investigated the use of a CT-based machine 51 

learning algorithm for screening donor lungs prior to transplantation. 52 

 53 

Methods: Clinical measures and ex-situ CT scans were collected from 100 cases as part of a 54 

prospective clinical trial. Following procurement, donor lungs were inflated, placed on ice 55 

according to routine clinical practice, and imaged using a clinical CT scanner prior to 56 

transplantation while stored in the icebox. We trained and tested a supervised machine learning 57 

method called dictionary learning, which uses CT scans and learns specific image patterns and 58 

features pertaining to each class for a classification task. The results were evaluated with donor 59 

and recipient clinical measures.  60 

 61 

Results: Of the 100 lung pairs donated, 70 were considered acceptable for transplantation (based 62 

on standard clinical assessment) prior to CT screening and were consequently implanted. The 63 

remaining 30 pairs were screened but not transplanted. Our machine learning algorithm was able 64 

to detect pulmonary abnormalities on the CT scans. Among the patients who received donor 65 

lungs, our algorithm identified recipients who had extended stays in the ICU and were at 19 times 66 

higher risk of developing CLAD within 2 years post-transplant. 67 

 68 

Conclusions: We have created a strategy to ex vivo screen donor lungs using a CT-based 69 

machine learning algorithm. As the use of suboptimal donor lungs rises, it is important to have in 70 

place objective techniques that will assist physicians in accurately screening donor lungs to 71 

identify recipients most at risk of post-transplant complications. 72 

  73 



4 
 

Introduction 74 

Lung transplantation continues to be the only treatment option for many patients with end-75 

stage lung disease. Its success remains limited by the discrepancy between the number of 76 

patients on waiting lists and the availability of donor organs, resulting in significant waitlist 77 

mortality (approximately 10% of lung transplant candidates within the Euro transplant network).1 78 

Therefore, options to increase the donor pool, based on well-implemented extended donor 79 

criteria, are being explored. Nevertheless, the lung recovery rate of a multiorgan donor remains 80 

limited to 20%-30% in most centers.1,2 In order to overcome this shortage, it is crucial that we 81 

critically evaluate our current practices in assessing organs prior to transplantation. At this 82 

moment, there are only moderate evidence-based criteria for donor lung assessment, based on 83 

a combination of donor history, clinical parameters (e.g., gas exchange), chest X-ray, 84 

bronchoscopy findings, and ultimately, in situ visual inspection by the transplant surgeon.3-8 Donor 85 

lung acceptance remains largely subjective and dependent on macroscopic appearance and 86 

expertise of the surgeon.9-11  87 

In 2017 we evaluated the use of high-resolution X-ray computed tomography (CT) to 88 

assess donor lungs, potentially increasing the pool of high-quality lungs for transplantation.12 This 89 

study evaluated the use of CT to radiographically assess the presence of lung abnormalities. We 90 

found that many lungs declined for transplantation showed no obvious signs of disease or injury 91 

based on CT screening, which suggests they were adequate for transplantation. In a subsequent 92 

study, we critically assessed reasons for not using donor organs for transplantation by in-depth 93 

CT and histopathologic assessment and showed significant discrepancy between clinical 94 

indication for not using the organ for transplantation and quality of the lungs as shown on CT. 95 

This clearly illustrates the need for another tool to critically assess donor organ quality before 96 

transplantation.13 Other groups have also investigated the potential utility of CT assessment of 97 

donor organs. Gauthier et al. leveraged in vivo chest CT scanning by demonstrating its value for 98 

determining the presence of structural lung injury such as emphysema as a tool for screening a 99 
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large group of potential donors.14 Bozovic et al. also compared information derived from standard 100 

lung X-ray screening to chest CT imaging and found that a targeted imaging review of 101 

abnormalities affecting the decision to use donor lungs may be useful in the preoperative stage.15 102 

In a separate study, Sage et al., using real time CT imaging, was able to monitor improvements 103 

in lung parenchyma during ex vivo lung perfusion, a tool that assesses and potentially 104 

reconditions donor organs prior to transplantation.16 While this experimental data demonstrates 105 

an added value of chest CT scanning in donor assessment and selection, adopting CT for 106 

screening may be hindered by availability of trained thoracic radiologists and increased wait times 107 

during assessment of the donor lungs in a process that is critically time-dependent.  108 

Machine learning (ML) is a branch of artificial intelligence where a computer algorithm 109 

learns from examples to generate reproducible predictions and classifications of previously 110 

unseen data. Once trained, this computational technique can be automated to analyze large 111 

amounts of data in a relatively short period of time. ML continues to be extensively investigated 112 

for tissue/organ segmentation, prediction, and classification in a wide array of medical imaging 113 

applications including transplant medicine.17,18 Specifically, supervised ML in the context of CT 114 

lung imaging has been used to detect and quantify airway patterns in pediatric patients with cystic 115 

fibrosis,19 as well as classify COPD patients based on the Fleischner Score.20 These ML models, 116 

referred to as “deep learning,” require large data sets for training and testing. When training data 117 

is limited and/or noisy, as is often the case in medical imaging, these methods tend to show a 118 

performance degradation.21 In contrast, ML models known as “dictionary learning” are based on 119 

the concept of sparse representation-based classification. The benefit of this ML model is that it 120 

assumes each region of the lung in the CT scan, i.e., patch, can be accurately represented as a 121 

linear combination of very few elements of the dictionary.22 This allows dictionary learning-based 122 

models to perform with high accuracy from relatively small datasets. 123 

Incorporating the precision of an ML model into donor lung assessment may have 124 

significant clinical impact by preventing the rejection of viable lungs. Potentially improving the 125 
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accuracy of decisions made by clinicians, moreover, may result in life-saving consequences for 126 

patients. We hypothesize that a supervised “dictionary-learning” ML model, applied to ex-situ CT 127 

scans of freshly procured human donor lungs, can provide meaningful results that aid in donor 128 

lung screening. We developed and investigated an ML algorithm for classifying donor lungs for 129 

transplantation that learns to associate unique CT image features that are specific to “accepted” 130 

or “declined” lungs as described by thoracic surgeons, without any prior knowledge of the donor 131 

or recipient.   132 

  133 



7 
 

Materials and Methods 134 

 135 

Ethics statement 136 

This study was carried out in 100 subjects enrolled as part of a single-center prospective trial from 137 

2016 to 2018 and was approved by the Institutional Review Board of KU Leuven and University 138 

Hospital Leuven (S59648 / B322201630218). It adheres to the principles of the World Medical 139 

Association Statement on Organ and Tissue Donation, the Declaration of Helsinki, and the 140 

Declaration of Istanbul. Study participation required legal consent to explant declined lungs. 141 

 142 

Design 143 

All potential donor lungs during this period were reviewed on chart by our experienced transplant 144 

team for suitability following our routine clinical practice. An initial assessment, based on donor 145 

age, clinical history, partial arterial oxygen pressure at 100% fraction of inspired oxygen (FiO2) 146 

and 5 cm H2O positive end expiratory pressure, chest X-ray scans, and logistic availability, 147 

determined whether a procurement team would be sent to the donor hospital. A donor was 148 

considered only when legal criteria of brain death, donation after circulatory death (DCD) III or 149 

euthanasia (DCD V) were met, as required by Belgian law. Existing allocation rules were followed. 150 

 151 

Ex-situ Lung Preparation and CT Scanning 152 

In this study, an ex-situ CT scan was taken of every pair of donor lungs after standard 153 

procurement. First, the final decision for suitability for transplantation was made by 6 experienced 154 

senior thoracic surgeons after in-situ inspection at the donor hospital according to routine clinical 155 

practice. Lungs were then flushed (4°C) with cold Perfadex® (XVIVO Perfusion, Gothenburg, 156 

Sweden) and inflated with 50% FiO2 at 25 cm H2O. Lungs were packed in cold Perfadex® and 157 

stored on ice in a transportation box. Upon arrival at the transplant center, every pair of lungs was 158 

CT scanned (Siemens Somatom scanner, Erlangen, Germany) at 120 kV and 110 mAs within the 159 



8 
 

transportation box (static cold storage). The transplant team was blinded from CT information and 160 

therefore, any abnormal finding on CT did not influence the decision to proceed with lung 161 

transplantation. Inclusion criteria for the study were first single-organ transplantation, successful 162 

procurement and legal consent to explant declined organs. Illustration of the workflow and 163 

representative CT slice orientations for a donor lung are provided in Figure 1. 164 

 165 

Clinical variables 166 

In all recipients who eventually received the CT-scanned grafts, primary graft dysfunction (PGD) 167 

was defined according to the latest ISHLT guidelines.23 Clinically relevant parameters were 168 

collected from both donors and recipients including age, sex, height, weight, pO2, ventilation time, 169 

pulmonary function measurements, PGD, hospital stay, ICU stay and chronic lung allograft 170 

dysfunction (CLAD)-free over 2 years. Information on one recipient was not available. The donor 171 

lung for this recipient was randomly selected as a test case for evaluation of our ML algorithm. 172 

 173 

Machine Learning Analysis 174 

Using a bespoke automated segmentation algorithm, lungs were segmented to remove the 175 

influence of ambient air, ice, and the box on the ML model. Our ML model is a dictionary learning 176 

algorithm that classifies CT features from lung tissue as “normal” or “abnormal.” For training of 177 

our ML model, “ground truth” was set to the final decision by 6 experienced senior thoracic 178 

surgeons as part of routine clinical practice. Training was performed on a randomly selected 179 

subset of 14 cases, split evenly between accepted (N=7) and declined (N=7) for transplantation. 180 

The remaining 66 cases were used for testing. This subset consisted of 52 accepted and 14 181 

declined donor lungs. In brief, our ML model is designed to associate unique CT features that are 182 

specific to “accepted” and “declined” lungs. This is achieved by randomly selecting subsets of CT 183 

data (i.e., patches) and comparing the underlying patch features with the compiled class 184 

dictionaries of features, which were determined during training. It is important to note that no prior 185 
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knowledge about the donor, recipient, and lung tissue features, such as emphysema, 186 

honeycombing, ground glass opacities or consolidation, were provided for the algorithm to 187 

delineate “normal” from “abnormal” lung tissue. Details on model design and methods for training 188 

and testing are provided in the Supplement (Supplemental Figure 1, Methods, and Results). 189 

All processing and analyses were performed using in-house algorithms developed in MATLAB 190 

version 2020a (MathWorks, Natick, MA). 191 

 192 

Statistics 193 

Continuous and categorical variables were expressed as mean ± standard deviation and total 194 

number and percentage, respectively. For transplanted lungs identified by ML as “Declined” 195 

(N=13) and “Accepted” (N=39), differences in continuous and ordinal variables were analyzed for 196 

statistical significance using a Mann-Whitney U test. Categorical variables were analyzed using 197 

Pearson chi-square test. Separate analyses were performed for the highest PGD score. PGD 198 

score was used to stratify cases by values <3, classified as 1, and equal to 3, classified as 0. The 199 

risk assessment of a donor lung transplant identified by ML as “declined,” resulting in a PGD score 200 

of 3, was determined by calculating the odds ratio. Same risk analysis was performed for CLAD-201 

free at 2 years. The extent of ICU stays for donor lung recipients was evaluated using a Kaplan-202 

Meier plot and a long-rank test. Statistical work was undertaken using MATLAB R2019a, and IBM 203 

SPSS Statistics v27 (SPSS Software Products). In all tests significance was defined by p < 0.05. 204 

For clinically declined lungs (N=14), reason for decline was evaluated in lungs identified by ML 205 

as “Declined” (N=9) and “Accepted” (N=5). 206 

  207 
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Results 208 

Subject Characteristics 209 

Of the 100 donors identified between 2016 and 2018, we were able to generate adequate lung 210 

segmentation from 80 cases, of which 59 were accepted and 21 were declined for transplantation. 211 

Provided in Table 1 are donor characteristics and relevant metrics for transplantation. Donor 212 

lungs used for transplantation originated more often from males.  213 

 214 

Representative Cases 215 

Presented in Figure 2 are representative CT slices with the corresponding patch probabilities 216 

overlay for two cases: one accepted (Figure 2 top row) and one declined (Figure 2 bottom row) 217 

for transplantation. The patch probabilities represent the likelihood that the lung tissue within the 218 

patch is “normal” (red with probability of 1) or “abnormal” (blue with probability of 0). The donor 219 

lung used for transplantation, obtained from a 47-year-old male non-smoker, was found to consist 220 

primarily of patches with high probabilities of normal lung tissue (Figure 2B). In contrast, the 221 

donor lung declined for transplantation, obtained from a 62-year-old male with over 20 pack years 222 

smoking history, was found to have extensive emphysema (Figure 2C) associated with low 223 

probabilities of normal lung tissue (Figure 2D).  224 

 225 

Accepted for Transplantation 226 

Although our model was trained on the final decision for transplantation, we observed a high 227 

number of false positives and negatives (Supplemental Figure 3). Of the 52 donor lungs found 228 

to be acceptable for transplantation, around 20% were predicted to be unacceptable (i.e., declined 229 

by the model; hereafter “ML Declined”). As shown in Table 2, ML Declined donor lungs had 230 

feature probabilities significantly lower (0.205 +/- 0.042) than those accepted by the model (“ML 231 

Accepted”) for transplant (0.637+/-0.134, p <0.0001). Stratifying the donors based on our model’s 232 

predictions, we found no significant differences in donor or recipient characteristics (Table 2). 233 
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Nevertheless, post-transplant outcomes of recipients were found to differ between model 234 

predicted groups of transplanted lungs. Hospital and ICU stay post-transplant were both found to 235 

be significant (p = 0.039 and 0.0004, respectively), whereas days until extubation and serial FEV1 236 

and FVC (Supplemental Table 1) were not. Kaplan Meier plot (Figure 3) showed that recipients 237 

that received an ML Accepted donor lung had a median ICU stay of 9 days, compared to 14 days 238 

for ML Declined donor lungs (transplanted). Dichotomizing recipients based on PGD = 3 and PGD 239 

< 3 generated a p value of 0.034 and an odds ratio of 5.23 (95% confidence intervals of 1.02 to 240 

26.73). This implies that a recipient with an ML Declined donor lung is 5.23 times more likely to 241 

have a PGD score of 3 than if that recipient had an ML Accepted lung. In addition, recipients that 242 

received a ML Declined donor lung were 19.13 (95% confidence intervals of 3.98 to 91.80) times 243 

more likely to develop CLAD within two years than their ML Accepted counterparts. 244 

 245 

Declined for Transplantation 246 

Of the 14 donor lungs not transplanted, our model demonstrated an agreement of 64% 247 

(Supplement Figure 3). Feature probabilities between model-identified groups were found to be 248 

significantly different (p=0.0005; agreement N=9; 0.205+/-0.027 and disagreement N=5; 0.340+/-249 

0.04). Eight of the nine cases were found to have pulmonary complications ranging from 250 

emphysema to pneumonia (Table 3). Only Case 7 was declined due to non-pulmonary 251 

complications (lymphoma in the liver) and was found to have low probabilities. Cases 10 – 14 in 252 

Table 3 were identified by our model as acceptable for transplantation. Three of the five cases 253 

were rejected due to absence of a matching recipient, one case due to pulmonary contusion and 254 

age (74 years old), and one case due to pulmonary edema.  255 

  256 
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Discussion 257 

Lung transplantation is presently the only viable cure for end-stage lung diseases such as COPD 258 

(Chronic Obstructive Pulmonary Disease) and IPF (Idiopathic Pulmonary Fibrosis). In this proof-259 

of-concept study, we demonstrated a strategy to screen donor lungs ex-situ using computed 260 

tomography and machine learning. By leveraging the high resolution and air-tissue contrast of CT 261 

and enhanced feature-based detection of a machine learning algorithm, we demonstrated the 262 

benefits of this unique strategy for lung screening. In our single center study, we found that our 263 

method predicted ICU stay and the odds of a PGD score of 3 in transplant recipients. Our results 264 

suggest that this CT-ML strategy, which on average takes only 5 minutes, may serve as a 265 

complementary step in the screening process of donor lungs for transplantation. 266 

 267 

It is important to note that while CT is not the only tool that can assist with transplantation 268 

decisions, it has potential as an accessible, valuable method for selecting viable donor lungs. 269 

Donor history, blood gases of the pulmonary veins and in situ inspection remain critical factors in 270 

clinical decision making; however, in cases where there is uncertainty about the quality of a donor 271 

lung, CT scans may reveal insights that facilitate this process.24,25 To the best of our knowledge, 272 

this is the first study to evaluate the use of CT in conjunction with machine learning to assess 273 

donor lungs used for transplantation. This provided a unique opportunity to test the potential of 274 

our approach for predicting post-transplant outcomes. In our previous work, we obtained CT 275 

scans from declined donor lungs and found that CT examination of these specimens by a trained 276 

thoracic radiologist provided detailed information of interstitial changes otherwise obscured during 277 

routine donor lung assessment.12,13 However, manual screening of CT scans is hampered by 278 

interobserver variability, as well as delays due to accessibility to radiologists. Importantly, time 279 

constraints must be minimized to effectively incorporate our strategy of applying CT scanning to 280 

donor lung screening. For the present study, we therefore developed a fully automated process 281 

to screen CT scans of donor lungs. 282 
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 283 

An important attribute of our ML screening method is its ability to focus exclusively on the features 284 

presented in CT scans without requiring additional information such as donor or recipient 285 

characteristics or clinical data. Due to the novelty of our method, i.e., using clinical CT scans to 286 

screen donor lungs, our data came only from this single center study. While our dictionary learning 287 

model was trained only on 14 cases (7 accepted and 7 declined), it still provided associations with 288 

clinically meaningful measures. In fact, our model predicted ICU stay in lung transplant recipients 289 

(Figure 3). Further, we observed significant differences in hospital stay between transplant 290 

recipients with donor lungs classified as “accepted” and “declined” (p = 0.039; Table 2). PGD 291 

scores are used in the early post-lung transplant period (immediately post-transplant to 72 hours 292 

post-transplant) to predict early outcomes. Through our strategy of screening donor lungs using 293 

CT and ML, we not only demonstrated that recipients who received a “ML Declined” donor lung, 294 

as classified by our approach, were 5.25 times more likely to generate a PGD score of 3 but were 295 

19.12 times more likely to develop CLAD in 2 years. It is important to reiterate that no prior 296 

knowledge of the donor or recipient, other than the ex-situ CT scan, was used to train our ML 297 

model. It is also important to note that the training set, whether accepted or declined, consists 298 

primarily of healthy lung tissue. To account for this bias, we developed our algorithm to detect 299 

and remove redundancies between dictionaries, such that patches in class 1 comprise of normal 300 

lung and class 2 abnormal lung. We identified one case in our training set declined due to logistics, 301 

though it was a healthy lung. However, this would not affect our ML algorithm as it would 302 

automatically associate normal patches with class 1 irrespective of the case delineation. 303 

Limitations 304 

There are limitations to the study worth discussing. This study was performed as part of a single 305 

center trial. Consequently, CT scans were procured from a relatively small cohort of donor lungs, 306 

affecting our statistical power. Additionally, with the inhouse lung segmentation algorithm the 307 
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amount of data that could be used for training and testing our machine learning model was further 308 

reduced. Nevertheless, we were able to overcome this limitation using a “dictionary learning” 309 

algorithm based on the concept of sparse representation-based classification. Even with a limited 310 

number of cases—N=52 donor lungs accepted and N=14 declined—we were able to demonstrate 311 

clinically meaningful results, such as ICU stay in lung transplant recipients (Figure 3) and CLAD-312 

free over 2 years. Although our model classifies individual image patches using discrete feature 313 

libraries, final classification is performed using all patches and a feature threshold of 0.272 314 

(determined using the ROC plot in Supplemental Results). Presented in Figure 4 is a clinically 315 

declined lung identified by our algorithm as acceptable for transplantation (Case 10 in Table 3). 316 

This donor lung was declined due to edema, clearly seen in the right portion of the image. 317 

Evaluation of the patch feature probabilities show that this region of the lung contained 318 

abnormalities, but overall, the lung cleared the final classification step with a value of 0.296. In 319 

this instance, a trained thoracic radiologist may conclude that the donor lung is acceptable for 320 

transplantation. Like all models, there will always be false positives and negatives. Ultimately, our 321 

strategy is not meant to replace the current system but to provide additional support to clinicians 322 

during the donor screening process that will help them improve patient care and outcome.  323 

Inclusion of a map in a final report, like those presented in Figures 2 and 4, would assist clinicians 324 

in the decision-making process. For this screening strategy to gain acceptance in routine clinical 325 

care, we will propose a multi-center prospective trial to evaluate the effect of CT scanner type on 326 

ML model performance, which will provide data for improving the lung segmentation algorithm to 327 

maintain a fully automated process. Ultimately, we aim to incorporate CT derived information with 328 

clinical data from the donor and recipient to assess the overall transplant risk of this donor-329 

recipient combination. 330 

 331 
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Conclusions 332 

In conclusion, this study shows the feasibility and potential to support clinicians and improve 333 

patient outcomes using this combined CT and ML strategy for donor lung screening. Results from 334 

our single center trial found that our technique was able to identify extended ICU stay and 335 

increased risk of PGD score of 3 in lung transplant recipients. In addition, we also identified donor 336 

lungs that were clinically declined but could in fact—based on our calculations—be used for 337 

transplantation, indicating a strategy  to increase  the lungs used for transplantation.  338 

  339 
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Figures 359 

 360 

 361 

Figure 1: Illustration of donor lung screening with computed tomography workflow. (A) Provided 362 

is an illustration of the inclusion of CT in routine donor lung screening process. Blue boxes 363 

represent standard-of-care, and red box represents CT-ML procedures. The approximate time for 364 

donor lung preparation and CT imaging is 5-10 minutes. (B) Corresponding axial, sagittal and 365 

coronal views of a CT scan from a declined donor lung (Figure 3C-D and Case 4 in Table 3). 366 

  367 

      

      

    

                                              

  

  



18 
 

 368 

 369 

 370 

Figure 2: Representative CT scans with corresponding ML patch probability maps for (A and B) 371 

accepted and (C and D) declined donor lungs. The patch probabilities represent the likelihood 372 

that the lung tissue within the patch is “good” (red with probability of 1) or “bad” (blue with 373 

probability of 0). The accepted donor lung was obtained from a male, non-smoker, 47 years of 374 

age. The declined donor lung was obtained from a male, over 20 pack years, 62 years of age, 375 

found to have extensive emphysema. 376 

  377 
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 378 

Figure 3: Kaplan-Meier plot showing potential of CT-ML strategy  to predict ICU stay in lung 379 

transplant recipients (N=52). Green line and red line represent agreement and disagreement, 380 

respectively, ML model to clinical decision. Lines correspond to color in confusion matrix 381 

(Supplement Figure 3). Statistical significance was determined using a log-rank test. 382 

  383 
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 384 

Figure 4: Representative CT scan with corresponding ML patch probability map from a declined 385 

donor lung identified by ML as acceptable for transplantation (False Negative). These images are 386 

from Case 10 in Table 3. 387 

 388 
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