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imec-Vision Lab, Department of Physics, and µNEURO Research Centre of Excellence
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ABSTRACT

Current state-of-the-art motion-based dynamic computed

tomography reconstruction techniques estimate the defor-

mation by considering motion models in the entire object

volume although occasionally the proper change is local. In

this article, we address this issue by introducing the region-

based Motion-compensated Iterative Reconstruction Tech-

nique (rMIRT). It aims to accurately reconstruct the object

being locally deformed during the scan, while identifying

the deformed regions consistently with the motion mod-

els. Moreover, the motion parameters that correspond to the

deformation in those areas are also estimated. In order to

achieve these goals, we consider a mathematical optimization

problem whose objective function depends on the recon-

struction, the deformed regions and the motion parameters.

While dynamic CT methods that specifically locate the re-

gional changes in the object volume are not widely found in

the literature, our method exploits the analytical derivative

towards these changing regions, which allows for efficient

reconstruction using gradient-based optimizers.

Index Terms— Dynamic computed tomography, motion

parameter estimation, region estimation.

1. INTRODUCTION

Dynamic computed tomography is a major part of CT imag-

ing that studies the structure of dynamic objects in CT scans.

Typical examples of state-of-the-art dynamic CT reconstruc-

tion techniques can be [1, 2] that jointly reconstruct the

density volume and estimate the deformation vector fields

(DVFs) between successive time frames, or [3, 4, 5] that

estimate the motion parameters that correspond to specific

motion models. A disadvantage of all those methods is they

consider the motion in the entire object volumes, while in

real applications (e.g., lung tissue [6]) only local regions

are deformed. This concern was recently mentioned in [3].

Although several reconstruction methods were designed to

estimate these local deformed regions (e.g., [7, 8]), those

methods do not consider affine motions in those local areas.

In this paper, we address that issue by considering a dy-

namic CT model for which, in the object volume, there are

local regions deformed by affine motion models, while the

complementary regions that remain static during the entire

acquisition scan. We then propose an iterative method that

aims not only to accurately reconstruct the scanned object

that contains these locally deformed regions, but also to iden-

tify them. Furthermore, the motion parameters corresponding

to the deformation are estimated simultaneously with the

reconstruction and region estimation. The contributions are

summarized as follows:

• Formulation of the class of dynamic CT problems that

consider affine motions, which model the deformation

in local areas characterized by binary masks, assuming

the change in the entire object volume is continuous.

• Gradient method that aims to minimize an objective

function that depends on the reconstruction, the mo-

tion parameters and the deformed regions, whose par-

tial derivatives towards all of them are formulated ana-

lytically.

• The biconvexity of the objective function towards the

reconstruction and the locally deformed regions that

supports the convergence of the iterative schemes in the

proposed gradient method.

2. PROPOSED METHOD

A dynamic CT image can be represented as a sequence of

n images x1, x2, ..., xn, each representing the object at a

given point in time. The acquisition can be observed as a

collection of finite subscans, where the object is assumed to

be static during each subscan. Here, a subscan refers to one or

more consecutively acquired projections. This procedure can

be mathematically modelled as n systems of linear equations:

Wixi = bi, for i = 1, ..., n, (1)

where Wi and bi are the projection operator and the pro-

jection data corresponding to the ith subscan, respectively.

These may be interpreted as a single system of the forward



model:
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. (2)

Let αi ∈ {0, 1}
N

be a binary mask, which encodes the lo-

cal region of the unknown original image x ∈ [0, 1]
N

that

appears deformed in the image xi. Assume the local defor-

mation can be modelled by an affine motion model M that

depends on the motion parameter pi ∈ R
M and assume the

deformation in the entire object volume is continuous, the de-

formed object in the ith subscan then can be modelled as fol-

lows:

xi = αi ◦ x+M (pi) (αi ◦ x), (3)

where αi := 1 − αi and ◦ is the commutative Hadamard

product. In this model, the static part αi ◦ x of x remains

conserved in the deformed object xi, while the dynamic part

αi ◦x appears distorted under the motion model M . By sub-

stituting the equation (3) to (2) for all n, the forward model

of the entire projection data then may be interpreted as the

following single system:
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(4)

This can be concisely rewritten as a single system:

W {α[◦]x+M (p) (α[◦]x)} = b. (5)

where

α =








α1

α2

...

αn







,p =








p1

p2
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pn







, b =








b1
b2
...

bn







, (6)

[◦] is the modified version of the penetrating face product [9]

between the two column vectors α ∈ {0, 1}
nN

and x ∈

[0, 1]
N

defined by

α[◦]x =
[

[α1 ◦ x]
T
, [α2 ◦ x]

T
, . . . , [αn ◦ x]

T
]T

, (7)

and

M(p) =








M(p1) 0 0 0
0 M(p2) 0 0

0 0
. . . 0

0 0 0 M(pn)







. (8)

In order to solve the equation (5), let us consider the following

constrained optimization problem as a modified and extended

version of [4, 5, 10]:

[x∗,α∗,p∗] = argmin
x∈[0,1]N ,α∈{0,1}nN ,p∈RnM

f (x,α,p) , (9)

where

f (x,α,p) =
1

2
∥W {α[◦]x+M (p) (α[◦]x)} − b∥

2
2 .

(10)

The problem (9) can be solved by the iterative schemes

presented in the Algorithm 1 with the intermediate esti-

mated value of α is projected onto the non-convex set

S := {0, 1}
nN

by the following projector to obtain the

intermediate deformed regions, with τ is a suitable threshold:

ProjS,τ (α) [i] :=

{

0 if α[i] < τ

1 otherwise
, for i = 1, nN. (11)

Algorithm 1: rMIRT

Input: Projection b, projector W , motion model M ,

p0 ≡ motion parameters in the static case,

x0 ≡ motion-uncompensated reconstruction,

α0 ≡ observed dynamic region encoder,

number of iterations niter.

Output: Reconstruction with region-based motion

compensation, locally deformed regions,

motion parameters.

1 for i = 0 : niter − 1
2 xi+1 = xi − γi

x
∇xf

(
xi,αi,pi

)

3 pi+1 = pi − γi
p
∇pf

(
xi,αi,pi

)

4 αi+1 = αi − γi
α
∇αf

(
xi,αi,pi

)

5 Update the center of motion from ProjS
(
αi+1

)

The gradient of the objective function is analytically given by

∇f =
[

[∇xf ]
T
, [∇αf ]

T
, [∇pf ]

T
]T

, with

∇xf =







[(M(p)− I) diag {α}+ I]
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I
...

I








︸︷︷︸

n blocks I







T

W Tr,

(12)

∇αf =







[M(p)− I]






diag {x} 0 0

0
. . . 0

0 0 diag {x}






︸ ︷︷ ︸

n blocks diag {x}







T

W Tr,

(13)

∇pf = [∇M(p) (α[◦]x)]
T
W Tr, (14)



where r is the residual of the system (5), computed as the

follows:

r = W {α[◦]x+M (p) (α[◦]x)} − b. (15)

The operators M (p), M (p)
T

and ∇M (p) are all provided

by a matrix-free and GPU-accelerated implementation of

cubic image warping, its adjoint and its derivatives [11] de-

signed to study continuous and differentiable affine motions.

The operators W and W T of the CT system are provided by

the ASTRA Toolbox [12].

The objective function of the proposed method is non-convex

towards the motion parameters p. Nonetheless, the simulta-

neous convergence of the reconstruction and the parameter

estimation schemes was empirically validated in [5]. The fol-

lowing property does not prove but supports the convergence

of the region encoder estimation scheme when it is addi-

tionally combined with the reconstruction and the motion

parameter estimation schemes, which shows the biconvexity

of the objective function towards the reconstruction x and the

region encoder α.

Theorem 1. Let us assume the region encoder domain of the

objective function f is extended to [0, 1]
nN

, f is then biconvex

towards the reconstruction x and the region encoder α.

Proof. The objective function (10) can be written as a

quadratic form towards either the reconstruction variable

x in the convex domain [0, 1]
n

when α and p are fixed:

f
∣
∣
α,p

(x) =
1

2
∥WP (α,p)x− b∥

2
2 , (16)

with

P (α,p) = [(M(p)− I) diag {α}+ I]








I
I
...

I








︸︷︷︸

n blocks I

. (17)

Similarly, in the extended convex domain [0, 1]
nN

of α when

x and p are fixed, it yields:

f
∣
∣
x,p

(α) =
1

2
∥WQ (x,p)α− b∥

2
2 , (18)

with

Q (x,p) = [M(p)− I]






diag {x} 0 0

0
. . . 0

0 0 diag {x}






︸ ︷︷ ︸

n blocks diag {x}

.

(19)

Consequently, it is biconvex towards x and α by [13].

Fig. 1: The cylindrical bone scaffold.

3. EXPERIMENT AND RESULTS

We used a cylindrical bone scaffold of volume size 235 ×
280 × 280 (voxel) reconstructed from a real scan as the

reference object (Fig. 1). Projection data was simulated by

generating 720 uniformly-sampled cone beam projections

spread over a full-rotation angular range. Gaussian noise

with standard deviation of 1% of the peak gray value of the

projection data was added to the sinogram. We assumed the

object region from the top to the 50th horizontal cross-section

slice to be static in all angular projections. The projections

were captured at discrete angular time points and the motion

was simulated as continuous constant scaling in all three di-

mensions y-z, x-z and x-y respectively with the scaling factors

range from 1 to 0.99, 0.99 and 1.25 in the deformed area. The

experiment was considered in 5 subscans. The initial guess of

the deformed region was the upper part of the object whose

bottom z-coordinate is 55. At the ith iteration, the step-

sizes γi
x

and γi
p

were chosen following the Barzilai-Borwein

formula [14] and the stepsize γi
α

was chosen constantly pro-

portional to the quantity 1/i. The z-coordinate of the center

of motion was updated to be the z-coordinate of the bottom

non-zero voxel of the intermediate estimated region encoder,

when the x- and y- coordinates were in the center of the vol-

ume geometry. The chosen threshold value τ = 10−5 and the

estimation of the deformed region was reduced to the estima-

tion of the boundary between the static and deformed regions.

Convergence of the boundary estimation is achieved after

around 15 iterations with a computation time of approxi-

mately 10 seconds per iteration. The reconstruction results

are presented in Fig. 2, which shows a clear improvement

over the reconstruction without motion compensation and the

reconstruction wherein the deformation is supposed to appear

in the entire volume of the object [5].



(a) Ground truth (b) without motion compensation (c) without region-based motion

compensation [5]

(d) with region-based motion

compensation

Fig. 2: x-z cross-section of the reconstructions of the bone scaffold.

4. CONCLUSION AND FUTURE WORK

We have presented a reconstruction algorithm that combines

accurate reconstruction, locally affine-deformed region iden-

tification and motion parameter estimation. Our method re-

sulted in higher image quality compared to reconstruction that

accounts for motion in the entire volume [5].
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