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Chapter1
General introduction

1.1 Chirality

Chirality is the geometric property of a rigid object describing that the object

cannot be superimposed on its mirror image.1 In essence, the mirror images of

a chiral object possess some dissimilar characteristics and - if they do not freely

interconvert - are regarded as distinct objects. This concept of chirality was

introduced by Lord Kelvin in the late 19th century using the following definition2:

I call any geometrical figure, or group of points, chiral, and say that

it has chirality if its image in a plane mirror, ideally realized, cannot

be brought to coincide with itself.

The word chiral is derived from the Greek word χϵιρ or hand, indicating that

the human hand itself is chiral.3 Indeed, a right hand can only be superimposed

on another right hand. While left and right hands are often seen as identical, they

interact differently with other chiral objects: Two right hands can properly shake

hands, whereas a left and right hand cannot. Likewise, a glove is a perfect fit to

either a left or right hand, but not to both. So, mirror images of a chiral object

can be distinguished within a chiral environment e.g. when interacting with

another chiral object like a glove. Outside of a chiral environment, the properties

of these mirror images objects are practically identical (without considering the

chemically negligible effects of parity violation). Regardless of handedness, both

hands can equally well hold a glass of water, throw a ball and carry a grocery
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bag.

Chirality also plays a role in much smaller objects like molecules. Louis

Pasteur observed this in tartaric acid in the 19th century while continuing the

research of Arago and Biot on optical rotation.4 Crystals of sodium ammonium

tartrate were found to exist in two mirror-image forms, which after dissolving

in water rotated polarised light to equal but opposite extent. Later, Pasteur

discovered that the source of this rotation lies within the chiral arrangement of

the atoms in tartaric acid.

Figure 1.1: Enantiomers of CHClBrI, a molecule with a single chiral center. Wedged
and hashed bonds indicate that the atom is oriented towards and away from the reader
respectively.

In small molecules, chirality is often the result of a stereogenic center such as a

tetrahedral carbon with four different substituents attached, as shown in Figure

1.1. These mirror image structures are referred to as enantiomers and differ-

ent naming conventions have been established to distinguish them. The IUPAC

convention recommends the use of the R/S description, which is most universal

in use.1 The chiral center is given the R or S label according the handedness,

dictated by the Cahn-Ingold-Prelog priority rules5. The spatial arrangement of

these substituents and the appointed label is typically referred to as the Absolute

Configuration (AC). For amino acids and sugars, the D/L convention remains a

commonly used alternative based on the orientation of substituents within the

Fischer projection. Interestingly, most naturally occurring sugars occur as the D-

enantiomer and amino acids are typically found as the L-enantiomer.6,7 Both the

R/S and D/L naming conventions label the molecular chirality using the geomet-

ric arrangement of the substituents. The +/- convention instead relies directly

on an experimental property dependent on the molecular chirality. Enantiomers

typically rotate the plane of incoming polarised light in an equal but opposite

manner.8 So, enantiomers can be distinguished according to the sense of this

rotation, denoting an enantiomer as either (+) or (-). This +/- naming conven-
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tion does not provide any direct insight on the spatial arrangement of the nuclei,

it merely provides a way to distinguish an enantiomer rotating light clockwise

and one rotating it anti-clockwise. Therefore, the R/S convention is typically

preferred if the link between the optical rotation and its AC is unknown.

When multiple stereogenic centers are present in a molecule, enantiomers are

obtained upon inverting the configuration of each chiral element. If between a set

of stereoisomers not all elements are inverted, they are called diastereomers in-

stead. Diastereomers that differ in the configuration of a single stereogenic center

are called epimers. The differences between the types of stereoisomers are illus-

trated in Figure 1.2 for menthol. As enantiomers are perfect mirror images, they

only obtain divergent properties within a chiral environment. Diastereomers and

epimers are not perfect mirror images and, as a result, have different properties

-even- in an achiral environment. For this reason, they can be distinguished with

common techniques like melting point determination, thin-layer chromatography

and nuclear magnetic resonance spectroscopy.9,10

Figure 1.2: Overview of the stereoisomers (epimers, diastereomers and enantiomer) of
(+)-menthol. The R/S labels of inverted chiral centres are highlighted in red.

It is important to note that while many chiral compounds contain one or
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more asymmetric atom(s), it is neither a required nor a sufficient criterion for

chirality. A well-known counterexample is the meso (R,S ) stereoisomer of tartaric

acid, which contains two asymmetric carbon atoms (Figure 1.3). The (R,R)

stereoisomer is chiral as it cannot be superimposed onto the (S,S ) stereoisomer.

However, the (R,S ) stereoisomer is achiral due to the mirror plane found in its

structure. If a compound contains an inversion center or mirror plane, the mirror

image structures of the compound are superimposable. Therefore, the (R,S ) and

(S,R) stereoisomers of tartaric acid are indistinguishable.

Figure 1.3: Stereoisomers of tartaric acid.

Aside from a stereogenic center, chirality of a compound can also arise from

a stereogenic axis, a chiral plane or a helical structure. Examples of compounds

containing such chiral elements are shown in Figure 1.4.5

Figure 1.4: Chiral compounds containing a chiral axis (olean & BINOL), chiral plane
(cyclooctene) and helical structure ([6]-helicene & a boron-chelated BODIPY11).

The enantiospecific interaction between chiral compounds has important im-

plications, even for life itself. Life is built from homochiral (the exclusive presence

of a single enantiomer) building blocks such as amino acids and carbohydrates,

creating a chiral environment.6,7 The link between life and chiral molecules is so

prevalent that homochiral compounds have been used as a biosignature for ancient
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and extraterrestrial life.12,13 So, it is not surprising that enantiomers can provoke

different responses within our own body, influencing how we perceive their smell

and taste. Depending on the absolute configuration, limonene smells either like

lemons ((R)-enantiomer) or oranges ((S )-enantiomer) and carvone like spearmint

((R)-enantiomer) or caraway ((S )-enantiomer).14–16 The perceived taste of amino

acids, in turn, is influenced by the chirality of the α carbon.17,18 The origin for

the chiral recognition is often explained on the basis of a three-point interaction

between the chiral compound and a chiral receptor as illustrated in Figure 1.5.19

Figure 1.5: Different interactions between receptor and mirror image compounds.

Enantiomers of chiral drugs often provoke different pharmacological activ-

ity.20–22 The (S )-enantiomer of atenolol, a well-known β-blocker, is 100 times

more potent than the (R)-enantiomer.23 Similarly, the (S )-enantiomer of ibupro-

fen is 100 times more potent than its mirror image and the enantiomers have

different metabolic profiles.20,24,25 Differences in toxicity are also found in enan-

tiomers as illustrated by the infamous thalidomide crisis. Thalidomide was

commercially distributed as a racemate i.e. a mixture of both enantiomers.26

Whereas the (R)-enantiomer of thalidomide provided the desired activity, the

(S )-enantiomer was in fact teratogenic. Thalidomide had been administered to

many pregnant women in the late 1950s to early 1960s to treat morning sickness,

resulting in many stillborn and physically disabled infants. This tragedy signified

the importance of studying the properties of drug enantiomers and developing

methods that could distinguish them. In the aftermath of the thalidomide cri-

sis, the Food and Drug Administration introduced more strict requirements in

their drug evaluations.27 Eventually in the early 1990s, they included a provi-

sion that both enantiomers need toxicological screening if a drug is administered
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as a racemate and the absolute configuration of enantiopure ingredients has to

be identified.27,28 Two years later the European Medicines Agency introduced a

similar policy.29

Interest in using enantiopure drug compounds has increased in the past two

decades, with racemic drugs being replaced by an enantiopure alternative (a

so-called ‘chiral switch’).20,30–32 Nevertheless, some drug compounds -such as

Ibuprofen- are still manufactured as racemates because of the cost of extra chiral

separation and asymmetric synthesis. Moreover, (R)-Ibuprofen is partially enzy-

matically converted within the body to (S )-Ibuprofen whereas (S )-Ibuprofen does

not undergo chiral inversion, limiting the added value of supplying the enantiop-

ure drug.22,25 New agrochemicals are more and more often chiral and enantiomers

often exhibit different properties.33,34 While most chiral agrochemicals are still

manufactured as racemates to keep manufacturing costs low, enantioselective an-

alytical methods remain in demand for registration and monitoring purpose.

1.2 Determination of molecular chirality

Distinguishing enantiomers is not a straightforward task as most of their chemical

and physical properties are identical. Many analytical structure determination

methods cannot distinguish enantiomers as they rely on properties that are in-

dependent of AC. One way to circumvent this problem is to convert a set of

enantiomers to a set of diastereomers instead, which behave differently in an

achiral environment. Doing so, conventional analytical methods can be used

without directly modifying the instruments involved. Other techniques invoke

chiral sensitivity using an internal chiral reference or by polarising radiation such

that it obtains a specific handedness. This section provides an overview of the

most commonly used chiral determination methods.

X-Ray Diffraction (XRD) has seen wide-spread use in determining molecular

chirality, either in an indirect or direct manner. For the indirect method, other

enantiopure compounds are incorporated in the crystal via co-crystallisation or

reaction with the analyte (forming diastereomers).20,35,36 The resulting crystals

will then scatter the incoming X-rays differently based on the chirality of the

original analyte. The direct method instead relies on the phenomenon of anoma-

lous dispersion. Here, the resonant scattering of X-rays introduces a phase shift,



Determination of molecular chirality 7

resulting in small deviations for the scattering patterns of mirror image crystals

that can be linked back to the molecular chirality.37,38 The resonant scattering

relies on selective excitation of core electrons in heavy atoms, making the direct

approach less accessible to organic compounds containing only first and second

row atoms. XRD applications also require a sufficiently large single crystal of

the analyte. Therefore, alternative tools need to be used when the analyte is

obtained as an oil/liquid or contains impurities preventing crystal growth within

a reasonable time frame.

Nuclear Magnetic Resonance (NMR) is arguably the preferred spectroscopic

method of many organic chemists to study molecular structures. NMR is trans-

parent to molecular chirality and therefore can only distinguish diastereomers.

These diastereomers are typically formed upon reaction of the chiral analyte with

a chiral reagent of known chirality. A well-known chiral reagent is the Mosher’s

acid used for secondary alcohols.39 The process of converting the chiral analyte is

labour-intensive and the success of the method depends heavily on the availabil-

ity of a suitable chiral reagent. Alternatively, chiral solvents and chiral additives

are used to create a chiral environment. This approach introduces peak shifts in

the NMR spectrum whose sign depends on the chirality of the analyte.

Chiroptical techniques do not require chiral molecules as internal references

or derivation of the analyte. These techniques instead rely on the interaction

of chiral compounds with circularly polarised light (CPL). CPL is inherently

chiral, coming in either a left handed (LCPL) or right handed (RCPL) form.

Enantiomers interact differently with these chiral forms, allowing to distinguish

enantiomers. An example of a chiroptical technique is optical rotation, which is

known as the first analytical tool capable of detecting molecular chirality. As

discussed in section 1.1, enantiomers rotate the polarisation plane of linearly

polarised light in opposite directions. The origin of the rotation lies in a slight

variation in the refractive index for the LCPL and RCPL components of the

light beam, resulting in circular birefringence. The chiral compound present in

the analysed fluid is then labelled according to the sign of the optical rotation.

When the optical rotation is recorded for different wavelengths, this technique is

referred to as Optical Rotary Dispersion (ORD). The experimental setup is fairly

simple, making it a cheap tool to monitor the chirality and enantiomeric purity of

the compound. The method sees less use nowadays in establishing the chirality
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of newly discovered or synthesised compounds. Optical rotation experiments do

not reveal direct information on the spatial arrangement of the nuclei, merely on

the rotation sense. A common practice is to compare the rotation to that of other

compounds containing similar structural elements, and when these values match

sufficiently, equate their AC. This practice makes it prone to error accumulation

and less reliable for AC determination. Though, once the link between the optical

rotation and the molecular geometry has been established for the compound,

optical rotation provides a fast way to check the chirality and enantiomeric purity

for other samples. Recent advances show that this link can be established with

quantum chemical computations, improving the reliability of the assignments.40

Nonetheless, ORD experiments only provide a limited amount of information to

establish the molecular chirality and more informative chiroptical techniques are

typically favoured over it nowadays.

Another chiroptical technique is circular dichroism, where the different ab-

sorption of LCPL and RCPL is recorded. Chiral compounds capable of absorbing

light at a specific wavelength, demonstrate a subtle preference to absorb either

LCPL or RCPL. In the case of Electronic Circular Dichroism (ECD), this prefer-

ence is measured for wavelengths in the UV-VIS region. With the requirement of

absorption in the UV-VIS region, chiral compounds lacking chromophores cannot

be studied with ECD. Introducing chromophores into such compounds requires

additional synthetic steps, making the procedure very labour-intensive. A solu-

tion to this problem is to record the CD phenomenon in the infrared (IR) region

instead. This chiroptical technique is known as Vibrational Circular Dichroism

(VCD) and a general description of its applications is given in section 1.3. Further

details on the method are provided in Chapter 2. A chiroptical technique men-

tioned alongside VCD is Raman Optical Activity (ROA). ROA is the chiroptical

version of Raman spectroscopy and has been used to determine the molecular

chirality of pharmaceuticals alongside VCD.41–45

A final technique worth mentioning is rotational spectroscopy (or molecular

rotational resonance). Recent efforts have posed rotational spectroscopy as a

new tool for chiral analysis, along with commercialisation of their experimental

setup. The method relies on the complexation of the chiral analyte with another

enantiopure compound (e.g. propylene oxide or 3-butyn-2-ol), transforming the

enantiomeric forms of the analyte into diastereomeric complexes.46–49. As these
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diastereomeric complexes have very distinct rotational constants, the chirality of

the analyte can be retrieved from the rotational spectrum.

1.3 Vibrational circular dichroism

VCD is a chiroptical technique which measures the preference to absorb LCPL

or RCPL in the IR region. As the name implies, the absorbance is the result of

vibrational transitions, circumpassing the need for UV-VIS chromophores. VCD

is a weak phenomenon that contains a wealth of chiral information due to the

large number of accessible vibrational transitions. As with any circular dichro-

ism technique, the spectra of enantiomers are perfect mirror images. Therefore,

enantiomers can be distinguished fairly easily with VCD, as illustrated in Fig-

ure 1.6. However, the information present in the spectrum cannot be directly

linked back to the AC. Some empirical rules linking spectrum and the chirality

have been established, but they remain limited to small groups of compounds

and thus are not generally applicable.50–55 Instead, the link is established with

the aid of quantum chemical predictions. For fairly rigid compounds of moderate

size, this approach is fairly straightforward. When highly flexible compounds

are involved, the approach becomes more cumbersome and requires substantial

computational resources.56–59

Figure 1.6: Illustration of the VCD phenomenon and the mirror image spectra of
enantiomers.
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Figure 1.7: VCD spectrum of (R)-2-chlorobutane (black) and the contributions of its
three conformers to the molecular spectrum (grey).a

Flexible compounds continuously rotate internally from one 3D orientation

to another without breaking any bonds. These different orientations are called

conformers and each of them contributes to the overall VCD spectrum of the

compound. As illustrated in Figure 1.7, the contributions of these conformers

differ substantially, leading to the high sensitivity of the molecular spectrum. To

arrive at an accurate computed spectrum, one has to properly account for these

individual contributions. A flexible compound favours adopting conformers of

lower energy and their relative populations are shaped by the environment (e.g.

solvent). Therefore, most VCD applications require performing the following

steps:

� Measurement of experimental VCD spectrum.

� Identify all conformers the compound can adopt.

� Determine how abundant each conformer is.

� Compute the VCD spectrum for each conformer.

� Combine the individual contributions of each conformer into a molecular

spectrum.

atechnical details: conformer spectra calculated at B3LYP/aug-cc-pvdz with the CCl4 sol-
vent included as a polarisable continuum. Molecular spectrum obtained as Boltzmann average
weighted according to the ∆H0

298.15 values of each conformer.
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� Compare the obtained spectrum with the experimental one.

For flexible compounds, identifying all relevant conformers can prove challeng-

ing and requires expertise. Furthermore, the need to compute the VCD spec-

trum of each conformer increases the computational cost significantly. Nonethe-

less, this approach has been successfully used for both rigid and flexible com-

pounds.45,58,60–62

VCD has become a well-established method to identify the chirality of or-

ganic compounds like pharmaceuticals.63–100 VCD finds common use in phar-

maceutical companies and institutions such as the U. S. Pharmacopeia, U.S.

Food and Drug Administration and European Medicines Agency, that recog-

nise it as a standard method for distinguishing enantiomers. Aside from AC

determination, VCD is also employed to study the structure of flexible chiral

compounds. The high sensitivity of VCD allows to study the conformational

population of compounds in solution. As a result, the conformational properties

of many pharmaceuticals have been studied with VCD, often in tandem with the

chiral analysis.84–109 The high sensitivity of VCD to the 3D structure is also lever-

aged to study the structural characteristics of substantially larger systems, in-

cluding polypeptides/proteins110–114, polynucleotides111,115–119, polymers120–123,

crystals119,124–130, ionic liquids131,132 and gels133.

1.4 Scope

VCD spectra contain a lot of information on the chirality of organic compounds,

making it a reliable technique in the chiral analysis toolkit. The link between

the patterns within these spectra and the handedness of the compound remains

rather opaque. Traditionally, DFT calculations have been employed to establish

this link. While this methodology has unlocked the potential of VCD for many

applications, these calculations are expensive and require expertise. This work

explores the possibility of establishing this link with Machine Learning (ML)

instead and creating new VCD applications powered by ML. ML has been suc-

cessfully applied in many chemical applications to link experimentally measurable

properties to molecular structures or speed up expensive computer models. This

has resulted in an increasing number of spectroscopic applications powered by ML
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based analysis and allows to predict spectral patterns for much larger systems

than previously thought possible. At the beginning of my research, supervised

ML methods had not yet been applied to VCD spectroscopy and it was unknown

whether they were applicable to VCD workflows. Therefore, many approaches

to include ML within VCD workflows were tested in this thesis and the results

for these approaches could range from very promising to failing immediately. In

the end we chose to initiate three different projects, each covering a different

approach. Each project was designed to yield deeper insight into VCD or the fu-

ture of ML within the field if the obtained results were unilaterally negative. The

first project focuses on the main application of VCD, being AC determination.

We generated a dataset of substituted α-pinene spectra and tasked different ML

methods with extracting the chirality from these spectra. Here, we were espe-

cially interested in the balance between how accurate and interpretable each ML

method was. The second project covers the link between conformers and their

contributions to the molecular spectrum. Deep neural networks were tasked with

predicting conformer spectra from the geometry of these conformers for 6 dif-

ferent compounds. These compounds were chosen such that differences in the

performance of the model could be traced back to chemical influences such as in-

tramolecular interactions or functional groups. The results were then interpreted

within the scope of VCD applications e.g. the speed-up for the computational

VCD workflow and the transferability of the model to other stereoisomers. Fi-

nally, for the third project we pushed the boundaries of VCD applications by

performing ML-aided terpene mixture analysis. The project was instigated by

prof. João Batista Junior from Federal University of Saõ Paulo, who was inter-

ested in detecting individual terpenes within terpene mixtures using the added

discriminatory power of VCD. A significant number of VCD spectra of pure ter-

penes, terpene mixtures and natural oils were recorded and a visual analysis of the

mixtures was performed by the co-authors. Using this dataset, an interpretable

ML model was obtained and tested on different terpene mixtures and natural

oils.

To contextualise the results obtained in these projects, an overview on VCD

and ML is provided in Chapters 2 and 3. Chapter 2 covers the main concepts

behind VCD, its theoretical foundation and the typical workflow employed for

AC determination. In Chapter 3 the fundamentals of ML and the models used
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throughout Chapters 4-6 are explained. The chapter offers the necessary insight

into different ML applications and provides an understanding of the strengths

or weaknesses inherent to different ML models. Next, the design and results for

the three projects are presented in Chapters 4-6. Finally, Chapter 7 provides

concluding remarks on the results of this work.
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[129] S. Jähnigen, A. Scherrer, R. Vuilleumier and D. Sebastiani, Angew. Chem. Int. Ed., 2018,

57, 13344–13348.
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Chapter 2
Vibrational circular dichroism

To follow the results presented in Chapters 4-6, proper understanding of the

physics behind VCD is required. Section 2.1 focuses on the basic theoretical

foundation of VCD. The main references for this section are the books written

by Stephens et al. 1 and Nafie 2, along with the review written by Magyarfalvi

et al. 3. Section 2.3 covers the workflow commonly used for AC determination

along with practical implications.

2.1 Theoretical background

2.1.1 VCD & IR intensities

At the basis of Circular Dichroism (CD) lies the difference in interaction of a

chiral compound with Left Circularly Polarised Light (LCPL) and Right Circu-

larly Polarised Light (RCPL). In Electronic Circular Dichroism (ECD), the most

well-known form of CD, the differential absorption for the circularly polarised

light in electronic transitions is measured. For Vibrational Circular Dichroism

(VCD), the CD phenomenon is instead measured for the vibrational transitions

of a chiral molecule. These vibrational transitions typically occur in the IR re-

gion and, therefore, VCD is often seen as the chiral version of IR spectroscopy.

The absorption A(ν) describes the decrease in intensity of a light beam passing

through a sample:

A(ν) = −log10
(
I(ν)

I0(ν)

)
(2.1)
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where I0(ν) is the incident intensity of the light beam at frequency ν and I(ν)

the transmitted intensity. For an achiral compound, the absorption is identical

for both polarisation types. For chiral compounds, this symmetry is broken and

there is a small difference between these absorbances ∆A(ν):

∆A(ν) = AL(ν)−AR(ν) (2.2)

where AL(ν) and AR(ν) are the absorbance of LCPL and RCPL respectively. The

absorption by the chiral compound is taken as the mean of AL(ν) and AR(ν):

A(ν) =
1

2
(AL(ν) +AR(ν)) (2.3)

Circular dichroism is a notably weak phenomenon, especially so when vibrational

transitions are involved. The ratio between ∆A(ν) and A(ν), known as the

anisotropic ratio, is typically 10−4 or lower. Additionally, the absorption of light

due to vibrational transitions is rather weak compared to electronic transitions.

To extract these weak signals from the noise, VCD experiments require larger

amount of sample and longer measurement times compared to other spectroscopic

techniques.

Within the limit of the Lambert-Beer law, A(ν) can be transformed into a

molar absorbance ε(ν):

ε(ν) =
A(ν)

lC
(2.4)

where l is the cel length and C the molar concentration of the absorbing com-

pound. By combining Eq. 2.2 and 2.4, a molar quantity ∆ε(ν) can be introduced

for VCD, known as the molar absorbance difference:

∆ε(ν) =
∆A(ν)

lC
=
AL(ν)−AR(ν)

lC
(2.5)

The molar absorbances ε(ν) and ∆ε(ν) are less dependent on the exact experi-

mental set-up, compared to A(ν) and ∆A(ν). Therefore, these molar quantities

are the preferred quantities for analysis.
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2.1.2 Dipole and rotational strength

To compute the IR and VCD spectrum, the molar absorbance and molar ab-

sorbance difference of the relevant vibrational transitions have to be determined.

Here, the key properties to determine are the so-called dipole strength and ro-

tational strength. The molar absorbance εif of the vibrational transition from

state |i⟩ to |f⟩, associated with normal mode a, is directly proportional to the

dipole strength Da
if :

1

εif =
8π3NAνif

3.103hc ln 10
Da

if (2.6)

where h is the Planck’s constant, c the speed of light in vacuum, NA Avogadro’s

number, νif the frequency and Da
if the dipole strength of the vibrational transi-

tion. The dipole strength Da
if results from the electric dipole transition moment

⟨i|µ̂|f⟩a:
Da

if = |⟨i|µ̂|f⟩a|
2 (2.7)

An expression similar to Eq. 2.6 can be found for the molar absorbance

difference ∆εif :

∆εif =
32π3NAνif
3.103hc ln 10

Ra
if (2.8)

Here, we have introduced the rotational strength Ra
if of the vibrational transi-

tion. The rotational strength itself depends on both the electric dipole transition

moment and the magnetic dipole transition moment ⟨f |m̂|i⟩a:

Ra
if = Im[⟨i|µ̂|f⟩a · ⟨f |m̂|i⟩a] (2.9)

The molar absorbance εif depends solely on the size of the electric dipole

transition moment. The molar absorbance difference ∆εif , in turn, depends on

the size of the electric and magnetic dipole transition moment, along with the

angle ξaif between these moments. The rotational strength can be both positive

or negative, whereas the dipole strength is strictly positive. The scalar product

of the transition moments changes sign upon reflection or inversion, resulting in

mirror image results for enantiomeric pairs.

To summarise, the IR and VCD intensity for a vibrational transition are

directly proportional to the dipole and rotational strength respectively. This
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entails evaluating the electric and magnetic dipole transition moment for said

vibrational transition, along with the corresponding vibrational frequency.

2.1.3 Evaluation of the dipole transition moments

The dipole transition moments are evaluated with a truncated Taylor expansion

of the dipole moments around the equilibrium geometry R0. Within the Born-

Oppenheimer approximation and the harmonic oscillator approximation, these

dipole transition moments can be formulated in terms of the so-called Atomic

Polar Tensors (APTs) and Atomic Axial Tensors (AATs). Here, greek letters

(α, β, γ) are used to denote Cartesian components of vectors and matrices. The

β’th component of electronic dipole transition moment is equal to:

⟨i|µ̂β|f⟩a =

√
ℏ

4πνa

N∑
J

x,y,z∑
α

SJα,aP
J
αβ (2.10)

where P J
αβ is the APT of nucleus J , N is the number of nuclei in the compound,

νa the vibrational frequency of normal mode a and SJα,a describes the nuclear

displacements along the normal mode coordinate Qa:

SJα,a =

(
∂RJα

∂Qa

)
R=R0

(2.11)

where RJα is the α’th Cartesian coordinate of nucleus J . Here, the notation

R = R0 indicates that the derivative is evaluated at the equilibrium geometry

R0. P J
αβ contains both an electronic contribution EJ

αβ and a nuclear contribution

NJ
αβ:

P J
αβ = EJ

αβ +NJ
αβ (2.12)

The nuclear contribution NJ
αβ to the APT is fairly straightforward, requiring only

the charges ZJ of the nuclei:

NJ
αβ = (ZJe)δαβ (2.13)

where the elements of Kronecker delta δαβ are equal to 1 for identical Cartesian

directions (i.e. α = β) and 0 if the directions are different. The electronic
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contribution to the APT is:

EJ
αβ =

(
∂⟨ψi|µ̂β|ψi⟩
∂RJα

)
R=R0

(2.14)

where |ψi⟩ is the electronic wavefunction.

To evaluate the rotational strength, we also require the magnetic dipole tran-

sition moment. The magnetic dipole transition moment is determined with the

AATs MJ
αβ :4

⟨i|m̂β|f⟩a =
√
4πℏ3νa

N∑
J

x,y,z∑
α

SJα,aM
J
αβ (2.15)

Similar to the APTs, MJ
αβ consists of an electronic and nuclear contribution:

MJ
αβ = IJαβ + JJ

αβ (2.16)

The nuclear contribution JJ
αβ is fairly simple, requiring only the nuclear

charges and their Cartesian coordinates in the equilibrium geometry R0
Jγ :

JJ
αβ =

i

4ℏc

x,y,z∑
γ

(ZJe)R
0
Jγϵαβγ (2.17)

where the elements of the Levi-Civita tensor ϵαβγ are +1 for an even number of

permutations of (x, y, z), -1 for an odd number and 0 otherwise. The electronic

contribution of IJαβ is less straightforward to obtain, as it does not exist within

the Born-Oppenheimer approximation. The vibronic coupling theory5 shows

that the electronic contribution is non-zero when the wavefunctions of excited

electronic states are mixed with the wavefunction of the electronic ground state.

Sadly, the resulting formulation involves a summation over all excited electronic

states, preventing its practical implementation. However, this problem can be

circumvented with the magnetic field perturbation formalism4,6, which effectively

removes the sum over states. Here, the electronic contribution can be rewritten in

terms of the perturbation of the electronic wavefunction by an external magnetic

field H:

IJαβ =

〈(
∂ψ̃i

∂RJα

)
R=R0

∣∣∣∣
(
∂ψ̃i

∂Hβ

)
R=R0

〉
(2.18)

where ψ̃i is the perturbed electronic wavefunction. While there is no external
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magnetic field present in the VCD experiment, the computational trick offers

a convenient alternative to the sum over states formalism. A last hurdle to

evaluating the magnetic dipole transition moment lies in its origin-dependence.

This problem is addressed by switching to gauge-including atomic orbitals7,8,

which yield gauge-invariant magnetic dipole transition moments.

So, calculating the intensities εif and ∆εif requires the APTs and AATs,

along with the nuclear displacements and frequency for each normal mode. To

obtain these properties, the equilibrium geometry R0 of the molecule has to

be known beforehand or through geometry optimisation. At this geometry, the

3N -6 largest eigenvalues λa of the mass-weighted Hessian yield the vibrational

frequencies:

νa =

√
λa

4π2c2
(2.19)

and the eigenvectors define the transformation matrix SJα,a from Cartesian dis-

placement to the normal coordinates.

2.1.4 Molecular VCD spectrum

With the dipole transition moment formulations given in section 2.1.3, the dipole

strength and rotational strength can be determined with Eqs. 2.7 and 2.9. In

turn, this allows to evaluate the values of εif and ∆εif according to Eqs. 2.6

and 2.8. The full IR spectrum ε(ν) and the VCD spectrum ∆ε(ν) consists of

contributions from all accessible vibrational excitations with frequency νif :

ε(ν) =
∑
i,f

εif fif (νif , ν) (2.20)

∆ε(ν) =
∑
i,f

∆εif fif (νif , ν) (2.21)

where fif (νif , ν) is a function describing the band broadening for the i → f

transition. This function is approximated as a Lorentzian with a half-width at

half-max γ:

fif (νif , ν) =
1

π

γ

(νif − ν)2 + γ2
(2.22)

The value of γ is set to an empirical value, typically ranging from 5 to 7.5 cm−1.

Up until now, the implicit assumption was made that the molecule only adopted
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a single geometry R0. This assumption no longer holds for flexible compounds

as they are able to adopt multiple conformers. Each conformer has its own VCD

spectrum and these conformer spectra are distinct as demonstrated previously

in Fig. 1.7. The molecular IR and VCD spectrum consists of contributions

∆εconfc (ν) and εconfc (ν) from each relevant conformer c:

εmol(ν) =
C∑
c

wcε
conf
c (ν) (2.23)

∆εmol(ν) =
C∑
c

wc∆ε
conf
c (ν) (2.24)

where the weight wc describes the relative contribution of conformer c to the

molecular IR spectrum εmol(ν) and VCD spectrum ∆εmol(ν) and C is the num-

ber of conformers for the compound. These weights are taken as the relative

population of the conformers within the Boltzmann distribution:

wc =
e−∆H0

298.15,c/RT

C∑
c
e−∆H0

298.15,c/RT

(2.25)

where R is the universal gas constant and T the temperature. Note that here

conformer enthalpies ∆H0
298.15,c are used instead of the Gibbs free energies. The

entropic contributions to the Gibbs free energies are not straightforward to cal-

culate. These entropic contributions are roughly identical for conformers of the

same compound.9 For this reason, the Gibbs free energy relative to the lowest-

energy conformer can be approximated with the enthalpy.

2.1.5 Solvent effects

In deriving the formulations of εif and ∆εif , any interaction between the chiral

molecule and its environment is neglected. In most applications, the VCD spec-

trum is recorded for solutions or neat liquids of a chiral compound. Here, the

solute is perturbed by the neighbouring solvent molecules. The strength of this

perturbation depends on the chosen solvent and the properties of the chiral com-

pound. The influence of the solvent can have the following effects10–12: change

the conformer population, shift vibrational frequencies, enhance/diminish signal
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intensity or flip its sign, introduce non-zero rotational strength for vibrational

modes of the solvent.

For apolar solvents, the perturbation of the VCD spectrum is relatively lim-

ited. The explicit solvent-solute interactions can be safely ignored for most cases,

with only a handful of exceptions13,14. Implicit solvation models, such as the

Polarisable Continuum Model (PCM)15,16 or COnductor-like Screening MOdel

(COSMO)17, are typically used to account for the electrostatic interaction be-

tween the molecule and the solvent continuum. The lack of strong solvent-solute

interactions can promote the aggregation of the solute. Carboxylic acids are well-

known to form stable dimers within apolar environments and calculations need

to explicitly account for these aggregates.18–20 Recently, the additive 7-Azaindole

was shown to prevent this aggregation and simplify the computational workflow

.21

For more polar solvents, the solvent-solute interactions influence the VCD

spectrum more significantly. Implicit solvation models may not capture all of

these interactions and an atomistic description of these interactions is required

instead. One such approach is to create so-called microclusters and evaluate their

energies, vibrational frequencies and VCD intensities.11,18–20,22–27 These micro-

clusters are complexes consisting of the solute surrounded by a small number (typ-

ically 1-3) of solvent molecules. This approach has been shown to improve upon

the solvent description when implicit solvent models reproduce the experimental

spectrum poorly. However, the need to manually place explicit solvent molecules

makes this approach labour-intensive and prone to user bias, especially if the

compound is flexible and contains multiple moieties favouring hydrogen bonding.

An alternative approach is to simulate the solution using Molecular Dynamics

(MD) and perform VCD calculations on the extracted snapshots, with or without

explicit solvent molecules.28–34 These MD based methods include more complex

solvation configurations, though the required computational power is significantly

larger and might not be accessible to many VCD users. Explicit solvation mod-

els add complexity and computational cost to the workflow. Therefore, they are

chiefly only employed if the AC cannot be determined with an implicit model.
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2.2 VCD instrumentation

VCD instruments are typically built using the setup shown in Figure 2.1, upon

which modifications are added to improve reliability and noise level. Similar

to IR spectrometers, VCD spectrometers operate in a Fourier-Transform (FT)

configuration. Here, the beam generated by the mid-IR source is modulated

using an interferometer with a characteristic Fourier frequency. The modulated

IR beam emerging from the interferometer is linearly polarised under an angle of

45 degrees (respective to the optical axis) and passed to a photoelastic modulator

(PEM). In the PEM, the IR light passes through a ZnSe crystal which is stretched

and compressed in a sinusoidal manner with a characteristic frequency (typically

between 35-60 kHz). The stress on the crystal induces a difference in the velocity

of the linear components, parallel and perpendicular to the PEM’s optical axis,

of the IR light. As a result, the linearly polarised IR light is transformed such

that it continuously alternates between LCPL and RCPL. Next, the IR beam

passes through the sample and the detector records the transmitted IR intensity.

The sample cell should be constructed from material transparent to the IR range

of interest, typically BaF2 or CaF2. Additionally, a detector with an adequate

response time is needed to handle the high-frequency PEM modulation, with the

HgCdTe (CMT) detector being a popular choice.

Figure 2.1: Schematic overview of an FT-VCD spectrometer, inspired by the block
diagram presented by Bogaerts et al. 35.

The signal recorded by the detector is doubly modulated at both the low

Fourier frequency and the high PEM frequency. This signal is separated into a

low frequency path and a high frequency path by passing it through a low-pass

and high-pass filter respectively. The IR transmission spectrum is obtained by



28 2. Vibrational circular dichroism

applying Fourier transformation to the interferogram of the low frequency path,

along with the IR absorbance spectrum using equation 2.1. The high frequency

path contains the differential signal spectrum, which is needed to produce the

VCD spectrum. A lock-in amplifier is used to demodulate the PEM modula-

tion, which provides the interferogram of the high frequency path. The Fourier

transform of this interferogram yields the differential signal spectrum. The VCD

spectrum can then be obtained from the ratio of the differential signal to the

mean signal from the low frequency path. The ChiralIR-2x spectrometer from

Biotools Inc. used in chapter 6 uses a second PEM, placed between the sample

and the MCT detector, to improve the stability of the VCD baseline. Additional

details on the instrumentation can be found in the book written by Nafie 2 and

the review of Keiderling 36.
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2.3 VCD workflow for AC determination

This section covers the workflow used to determine the AC of a compound. The

main steps of the workflow are illustrated in Fig. 2.2. We assume that all aspects

of the 2D molecular structure have been resolved without any information on the

3D structure. Parts of the workflow can be simplified if the details such as the

relative configuration or conformer populations have already been identified with

other analytical tools.

Figure 2.2: Typical workflow for AC determination with VCD. The figure is inspired
by the workflow presented by Bogaerts et al. 35.
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2.3.1 Experimental workflow

To obtain a high-quality experimental VCD spectrum, an appropriate selection of

solvent, sample concentration and cell length is necessary. Ideally, intensities of

the IR bands remain within the range of 0.1-0.9 absorption units. Achieving this

involves optimising the sample concentration and cell length. Also, the chosen

solvent must adequately dissolve the sample to attain the desired concentration.

The optimal concentration and cell length can differ among frequency regions

and, as a result, these regions may require separate measurements. The solvent

has to be transparent in the region of interest to maximise the spectral window.

Therefore, deuterated solvents lacking any C-C bonds (e.g. DMSO-d6, ACN-

d3 or CDCl3) are preferred for measurements in the fingerprint region. The

solvent choice also impacts the computational workflow as discussed in section

2.1.5. For polar solvents, VCD calculations may involve explicit treatment of the

solute-solvent interactions. For this reason, apolar solvents are favoured when

the compound is easily solvated in them and aggregation is not an issue. To

extract the weak VCD signals, longer measurement times are needed to reduce

the noise level. The collection time of a VCD spectrum generally ranges between

4 and 12 hours, though solutions with notably small VCD intensities require

even longer measurement times. Finally, VCD spectra contain a background

dependent on the instrumentation and experimental setting. To correct for this

background, a baseline spectrum is subtracted from each VCD spectrum. The

baseline should contain the VCD spectrum measured under identical conditions,

but without the chiral response of the solute, and substracted from the spectrum

of the chiral sample. The VCD spectrum of the racemate typically provides a

reliable baseline. If the racemate is unavailable, the solvent spectrum can be

used as an approximate baseline. The most accurate method for removing the

backgroud is to record the VCD spectrum of the enantiomer and use the half-sum

spectrum of both enantiomers as the baseline.

2.3.2 Computational workflow

In most cases, extracting the AC directly from the experimental VCD spectrum

is not possible. Instead, quantum chemical predictions of the VCD spectrum
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are performed for each possible AC. Upon comparing these predictions with the

experimental spectrum, the AC of the sample can be identified. The methodology

behind these quantum chemical predictions is discussed here. Details on the

comparison of the predictions with the experiment(s) are provided in section

2.3.3

The VCD patterns of enantiomers are identical expect for their inverted signs.

Therefore, it suffices to compute just the spectrum of one enantiomer and invert

the VCD intensities for the other enantiomer. Furthermore, knowledge of the

relative configuration obtained with other analytical tools (e.g. NMR, XRD)

further reduces the number of stereoisomers to consider. First, a 3D geometry

is generated for each potential stereoisomer or, if available, retrieved from an

external dataset or the results of another analytical procedure. The following

procedure is then repeated for each stereoisomer considered.

A conformational search is performed, using the 3D geometry as starting

point, to identify the different conformers of the compound. This step is non-

trivial for more flexible and complex compounds and many algorithms have been

designed to tackle this issue. For such systems, the individual shortcomings of

a single method can be mitigated by pooling the conformers found by different

algorithms. In most applications, this step is performed through either a sys-

tematic search, Monte Carlo approach or MD simulation with a force field. For

small compounds with limited flexibility, it may be worthwhile to perform the

conformational search using more accurate methods than a force field.

The geometry of each conformer is then further optimised using Density Func-

tional Theory (DFT), followed by frequency calculations for each optimised ge-

ometry. The absence of imaginary frequencies identifies whether the optimised

geometry is in fact a conformer and not a transition state. Then, the dipole

strengths and rotational strengths are determined for the normal modes of each

conformer. A general recommendation by the community is to combine the

B3LYP or B3PW91 hybrid functional with 6-31G(d) as minimal basis set. The

actual basis set is chosen based on the size of the system and the computational

resources available.

Next, the conformer spectra are broadened using a Lorentzian function with

a FWHM between 10 and 15 cm−1. The conformer spectra are then weighted

according to their relative population and combined linearly. The resulting molec-
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ular spectrum is inverted, yielding the spectrum of the other enantiomer. The

relative population of the conformers is determined according to the Boltzmann

distribution using the enthalpies (see section 2.1.4) or, alternatively, the zero-

point corrected energies or Gibbs free energies. Alternatively, the conformer

weights can be taken from extensive MD simulations.

2.3.3 Comparison of the experimental and calculated

spectrum

To establish the chirality of the compound, the predicted VCD spectra of each AC

are compared with the experimental one. The calculated vibrational frequencies

cannot perfectly match the experiment as a result of the harmonic approximation

and the limited basis set. Therefore, the wavenumbers of the calculated spectra

are scaled with either a single scaling factor or one per frequency region. Their

value is either taken from literature or optimised using the IR spectrum, with

values ranging between 0.95-1.05.

The similarity between the calculated and experimental spectrum can be de-

termined either through visual inspection or with quantitative methods. During

visual inspection, the user identifies the main features in each spectrum and com-

pares the computed spectra with the experimental one based on the features they

share. This method is susceptible to user bias and requires an expert eye to as-

sign the AC in a reliable manner. The quantitative methods rely on a similarity

metric to compare computed spectra to the experimental one without introducing

user bias. The cosine similarity (or overlap integral)37,38 quantifies the normalised

overlap between a computed and experimental spectrum, yielding values between

-1 and 1 for VCD spectra due to their signed intensities. A value of 1 indicates

a perfect match, while -1 signifies perfect mirror images. The stereoisomer that

results in the largest similarity is assigned to the experiment. For a robust as-

signment, the similarity values obtained for the other stereoisomers should be

significantly smaller. The Tanimoto similarity39,40 is another frequently used

metric, whose values also range between -1 and 1. Recently, new methods have

been proposed that use sequence alignment procedures41,42 or introduce leniancy

on the exact conformer weights43,44 for the similarity assessment. While impor-

tant, the exact quantitative methods chosen should not impact the AC assigned
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to the compound.

The reliability of the AC determination directly depends on the accuracy of

the DFT predicted spectra. The DFT predictions need to accurately represent

the general spectral pattern for each AC. This is especially important when mul-

tiple enantiomer pairs are considered. If none of the predicted spectra match

the experiment, the computational workflow has to be adjusted. Here, the goal

becomes to improve the accuracy of the computational method. To achieve this,

one may increase the size of the basis set, change the functional or add conformers

generated with another algorithm. At an increased cost, a model-averaged VCD

spectrum can be used instead to account for spectral variations due to the details

of the DFT method used.45 Additionally, the methods discussed in section 2.1.5

can be used to correct for self-aggregation or explicit interaction with the solvent.

However, their inclusion is labour intensive and challenging for non-experts.
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Chapter 3
Machine learning

In the past years, the use of ML in chemistry has grown immensely, tackling a vast

range of chemical problems. The absence of ML applications for VCD indicates

that many researchers within the VCD community are likely less familiar with

the core concepts of ML algorithms. As the focus of this thesis lies heavily

on ML applications, the main part of this chapter will introduce the basis of the

techniques and concepts used in ML.1–7 The wine dataset8 is used throughout this

chapter to improve understanding of the concepts introduced. This toy dataset

consists of 13 attributes of wines coming from three Portuguese cultivators. These

attributes are related to the chemical composition and interaction with light, such

as magnesium content, alcohol percentage and UV-VIS absorbance. The aim of

this chapter is to provide a general understanding of the ML concepts at the basis

of the VCD applications covered in the following chapters. For those interested

in deepening their knowledge beyond this, I suggest Bishop 1 for a deeper dive

into the ML concepts, Géron 2 as starting point for implementation in Python

and Cartwright 4 or Schütt et al. 7 for an overview of chemical applications.

3.1 Fundamental concepts of ML

3.1.1 What is machine learning?

Many people are familiar with the term Artificial Intelligence (AI) either through

its ubiquity in media, fiction or business applications. Recent examples of popu-
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lar AI applications are large language models (GPT-49, GPT-310) and generative

art models (Dall-E11, Midjourney12, Stable Diffusion13). Despite the popular-

ity of the concept, no general definition of AI is widely accepted.14 The field

of AI arose from the 1956 Dartmouth AI conference15 where the concept was

first proposed. Here, a machine capable of performing tasks which are seen as

intelligent by humans, is referred to as AI. This working definition was largely

shaped to combine research lines under a single banner. As such, the perception

of AI is usually guided by the milestones and techniques that arise from it.14

Many researchers will likely not contest its use to describe programs such as Al-

phaGo16 which outperform human professional players in the complex game of

Go. However, the boundaries of when a program can still be seen as intelligent

are murky and can change over time.17,18 AI research is more often categorised

according to the different subdomains of AI, defined by the problems they tackle

or the theoretical foundations/models used. Machine Learning (ML) is one such

subdomain.

ML is primarily concerned with extracting patterns from data using math-

ematical methods.6 The patterns are directly inferred from these data without

explicit instruction on the nature of these patterns. The increasing wealth and

availability of data makes ML a valuable tool for scientists to plough through

the information in datasets and to catch interesting patterns. The resulting pat-

terns are then used to gain a deeper understanding of connections between data

points and features or to replace previously existing workflows. The scope of the

patterns is influenced either directly by the ML method chosen or indirectly by

the application area covered by the data itself. Thus, the success of any ML

application will depend on the following issues: is the ML method suitable for

the task and is the data appropriate for the envisioned application. As a re-

sult, a diverse collection of ML methods have been developed covering a large

range of applications. Deep learning is a subdomain of ML where so-called deep

neural networks (see section 3.4) are used. Deep learning has been extensively

studied for its ability to infer very complex patterns from large amounts of data

by combining different levels of data representations. As a result, it has become

an integral part of many groundbreaking ML applications such as computer vi-

sion19, natural language processing10, art generation11 and prediction of protein

folding20.
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Figure 3.1: Venn diagram of artificial intelligence, machine learning and deep learning.
Figure was inspired by Alzubaidi et al. 21

3.1.2 Types of ML

ML methods can be divided into broad categories based on how they learn pat-

terns from data instances and which problem is being solved. Here, the term

‘data instance’ refers to a single observation (i.e. data point or sample) in a

dataset, like the analytical results for a wine bottle. Two major categories are

supervised and unsupervised learning. For supervised ML methods the goal is

to learn the connection between a set of features describing a data instance and

the label(s) given to that instance. The set of data instances used by the ML

method to establish this connection is referred to as the training set. So, input

data is fed to the ML model and its internal parameters are adjusted to produce

the label as output. The patterns extracted from the input features are tailored

to the label and are used to predict the labels for new unlabelled data instances.

Classification is a form of supervised learning where the labels are categori-

cal and the goal is to assign categorical values based on the input. An example

of a classification problem for the wine dataset would be to identify the wine

cultivator of a wine bottle based on the physicochemical properties of the wine.

When these classes are mutually exclusive, such as identifying the cultivator of a

wine bottle out of three possible cultivators, this problem is known as multi-class

classification. For regression tasks, the label is typically a continuous or numeric

quantity (e.g. predicting the price of the wine bottle). ML methods are specifi-

cally designed for either classification or regression problems and different metrics
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are used to evaluate their performance. These limitations can be circumvented by

transforming the labels, allowing classification models to be used for regression

tasks and vice versa. A classification task can be performed with a regression

model by predicting probabilities for a categorical label, instead of predicting the

label value directly. By converting continuous values into categorical values such

as ‘high’, ‘medium’ or ‘low’, a classification model can be applied to a regression

problem.

Supervised learning can also be performed on data instances with multiple

labels, instead of a single label, which is known as multi-task or multi-output

supervised learning. Here, for each label a separate regression and/or classifica-

tion problem is defined. A common example of multi-task supervised learning is

encountered for classification with labels that are not mutually exclusive, known

as multi-label classification, such as identifying whether a wine bottle is expired

and/or is of Portuguese origin. Only a limited selection of ML methods (e.g.

decision trees, neural networks) can be trained directly on multi-task problems.

For methods that do not support multi-task learning, a separate model needs to

be trained for each single problem individually.

In unsupervised learning, ML methods are tasked with extracting the under-

lying structure present in unlabelled data. Only input data is provided to the

ML method and the goal is to discover the connections between data instances or

features. In the absence of an output, the ML method is not given a ‘correct‘ solu-

tion for this task and the nature of the patterns discovered will depend on the ML

method chosen. Clustering and dimensionality reduction are typical applications

of unsupervised learning. Clustering ML methods group data points together

based on their relative similarity. Doing so, distinct clusters and patterns in the

dataset can be identified. In dimensionality reduction, an ML method is used to

project the data into a lower-dimensional representation, reducing the number of

features in the dataset, while preserving most of the information present in the

data. Another application of unsupervised learning is found in so-called genera-

tive methods. Here, an ML model learns the underlying distribution of the data

and generates new data instances from this distribution. These generative meth-

ods have been used to, among others, generate new molecules in drug design22–27

and pictures or 3D meshes of human faces28,29.

Aside from supervision, ML methods are categorised on how interpretable the
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extracted patterns and decision making are to a human. White box ML methods

are transparent and the patterns they extract are more easily understood. Black

box ML methods, on the other hand, can extract much more complex patterns

but are more difficult to interpret. White box ML methods are favoured for appli-

cations that require transparent decision-making such as high-stakes scenarios in

healthcare or the justice system.30–39 Linear ML methods (see section 3.3) and de-

cision trees (see section 3.2.1) are examples of such white box methods. Concerns

around the use of black box ML models in automated decision-making processes

have brought the European union to implement a ‘right to explanation’ provision,

requiring organisations to provide explanations for decision making involving a

person.40 With the increasing demand to make ML methods more interpretable,

researchers have devoted significant effort to developing model-agnostic analysis

methods and modifying black box ML methods to enhance their interpretabil-

ity.41–48 However, current white box models are not able to tackle all ML tasks.

For complex problems, black box models like neural networks remain highly used.

Black box models can extract more complex patterns from the data, resulting in

improved accuracy for these problems. The choice for either white or black box

ML methods depends on the required accuracy and level of explainability.

3.1.3 Model training and hyperparameter tuning

To reiterate, ML methods directly infer patterns from a dataset without explicit

instruction on their exact nature. In supervised learning, the data is labelled and

the ML model learns to reproduce these labels by adjusting its internal parame-

ters. The process of adjusting the internal parameters of an ML model is known

as ML model training. The dataset used for the model training is known as the

training set. It is important to keep in mind that any ML method can only be

taught to reproduce the patterns already present within the dataset provided.

So, if the training set does not cover the future application area of the model, the

accuracy of its predictions will likely be lacking. An ML model trained on Por-

tuguese wines will provide more accurate predictions for other Portuguese wines

than for e.g. German wines. If the training set contains significant unintended

biases, the ML model will be biased likewise. A highly debated issue regarding

model bias is the presence of racial bias in the algorithms used in applications
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Figure 3.2: Illustration of under- and overfitting for a regression problem with a single
feature. The training set (blue) and test set (orange) data instances are generated using
a third degree polynomial and Gaussian noise.

such as health systems and computer vision.49–56 Even if the dataset is unbi-

ased and properly reflects the application area, the patterns extracted from this

dataset might not necessarily result in accurate predictions.

Underfitting occurs when the ML method fails to replicate the data labels in

the training set. The underfitting results from a mismatch between the complex-

ity of the problem and either the size of the dataset, the flexibility of the ML

method or procedure for the model training. The ML model can also fit the train-

ing set too closely to the point that it has memorised the entire dataset including

noise, resulting in the overfitting of an ML model.57,58 The patterns extracted

by the model perform very well on the training set but are hardly transferable to

new data instances. Overfitting can be caused by an excess of flexibility in the

ML method, training the model on too many features or letting model training

continue for too long. As underfitting results in low accuracy of the model it is

easier to spot than overfitting, which requires predictions on new unseen data.

An optimal balance between under- and overfitting is necessary to obtain an ac-

curate ML model, as illustrated in Figure 3.2. To detect overfitting and evaluate

generalisability, a subset of the dataset is kept aside and is not involved in the

training process. This subset is known as a holdout set or test set, and is only

used after all aspects of the model are finetuned. Doing so, the test set provides

a final evaluation of the ML model’s capabilities.

Many ML models have so-called hyperparameters that control the details

of the model’s structure and the training process. In contrast to the internal
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parameters learned during training, the values of these hyperparameters must be

set prior to the model training. The hyperparameters can significantly impact the

accuracy and generalisability of a model, along with the cost of the model training

step. The process of finding the optimal hyperparameters for an ML model, also

known as ML model optimization, is not a trivial task. During optimisation, a

large range of values have to be considered for each hyperparameter. Typically,

there is no one-size-fits-all approach to determining the optimal values for the

hyperparameters.59 Instead, the ML model is trained multiple times with different

hyperparameter values, and the values that produce the most accurate model

are ultimately chosen. The hyperparameter optimisation can be performed in

one of the following ways: manual tuning based on trial and error, grid search,

random search or Bayesian optimisation. In Bayesian optimisation, probabilistic

models are used to map the values for each hyperparameter to the accuracy of

the model.60 As a result, a distribution of the accuracy in the hyperparameter

space is obtained. In a next step, the learned distribution is used to suggest a

new set of hyperparameter values. For models with many hyperparameters that

can adopt a large range of values, random search and Bayesian optimisation are

typically preferred.

To detect whether a set of hyperparameters results in overfitting of the model,

the accuracy of the model during optimisation needs to be evaluated on ‘unseen’

data. One common method is to split another subset from the dataset, the

validation set, which is exclusively used to evaluate the accuracy of each trained

model during optimisation. So, the training set is used to establish the internal

parameters, the validation set to optimise the hyperparameters and the test set

as a final evaluation tool. Alternatively, the performance can be established

with cross-validation. Here, the dataset is split into k subsets, referred to as

‘folds’. One of the folds is used as the validation set while the remaining folds

make up the training set. This procedure is then repeated using another fold as

validation set, up until each fold has been used as validation set exactly once. The

accuracy of the model is then averaged across all folds. Cross-validation helps

reduce the influence of random variations between a training and validation set

and provides an estimate for the uncertainty upon the model’s accuracy. One

of the main drawbacks of cross-validation lies in its increased cost for training

and optimising the model. The training step is repeated k times for every set of
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hyperparameters, increasing the cost by a factor k. For ML applications involving

large datasets or computationally expensive models, the use of a single validation

set is therefore be preferred.

3.2 Decision trees and ensemble methods

3.2.1 Decision tree

Decision trees are white-box models that are suited for simple classification tasks.

Their inner workings resemble how humans make decisions and intuitively iden-

tify patterns, making these models transparent and easy to interpret. For this

reason, it sees common use in decision making and workflows in companies or

governments. The model uses a tree-like structure to isolate the dataset into

smaller populations that share the same label.61 A decision tree is constructed

with three types of nodes: a root node, branch nodes and leaf nodes. The root

node is supplied with the entire dataset and splits the data into two subsets. The

node finds the decision rule that isolates data instances with a different label as

best as possible. The exact nature of these decision rules and isolation metric

will be discussed later. A branch node is then generated for each of the two split

subsets. The branch node is then tasked with splitting these subsets further with

new decision rules. This branching of decision rules results in a tree-like structure

with an exponentially increasing number of decision rules along the depth of the

tree. When the tree reaches a prespecified depth or a certain criterion is met for

a node, it will not split the data any further and the nodes are turned into leaf

nodes. The samples found in each leaf node are given the same predicted label.

Figure 3.3 shows a decision tree trained on a binary classification task on the

wine dataset.

The success of a branch node in isolating data instances with M different

labels in node a is expressed with the gini index Ga:
62

Ga = 1−
M∑
k=1

P 2
a,k (3.1)

where Pa,k is the relative population of data instances with label k in node a. The
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Figure 3.3: A decision tree of depth 3 trained to distinguish the wines of two cultiva-
tors A and B from the alcohol content and color intensity. For each node, the relative
population of wines coming from cultivator A (blue) and B (red) is illustrated with a pie
chart. The decision border in feature space is shown for each new layer of branch nodes,
with the areas coloured according to the predicted cultivator (blue=A, red=B).

decision rule is of the form ‘if the value of feature X is above/below a threshold

value Y’. This means that a branch node will always split the dataset along one

of feature axes in feature space. Such decision rules see frequent use in chemistry,

such as ‘if pH > 7 the solution is basic’ or ‘if the IR spectrum has a intense band

around 1700 cm−1 suspect a carbonyl moiety’ However, the decision rules can be

too limiting for certain ML tasks. For instance, if the actual decision border is a

linear combination of 2 features, decision trees have limited success and, at best,

form a rough stair-like decision border. Also, decision trees are very susceptible

to overfitting. Each new layer of branch nodes increases the number of trainable

parameters exponentially. To limit overfitting, methods are used to regularise the

growth of new branches. This is achieved by transforming nodes into leaf nodes,

known as tree trimming, when prespecified criteria are not met. Examples of

such regularisation methods are imposing a minimum number of samples in a
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branch node or leaf node.

3.2.2 Random forest

To tackle the shortcomings of overfitting, multiple decision trees are combined

into a single ensemble model. Ensemble models combine multiple ML models

and the predictions of these ensemble models are more powerful. In bagging

algorithms, the predicted labels of each model are used as votes.63 These votes

are then combined into a single label using a voting procedure. In hard-voting

algorithms, the label predicted by the ensemble model is the majority vote. This

is similar to voting systems in democratic processes, where each vote is given

the same importance. In soft-voting, the uncertainty of each vote is taking into

account into the vote averaging, where more importance is given to votes with

high certainty. For decision trees, the uncertainty is based on the gini index of

the leaf node.

The predictions coming from the ensemble model are more accurate than

the individual models it contains. This makes ensemble models a great choice

to compensate for the overfitting tendencies of decision trees. A bagging model

constructed with only decision trees is referred to as a Random Forest64 (RF).

If the same training procedure is performed for each model in the ensemble, we

simply obtain an ensemble of identical copies. To prevent this, the RF algorithm

introduces randomness in the training of the decision trees. Each decision tree

is trained on a random subset of the data instances and a random selection of

features. Doing so, the individual trees are less accurate, but the predictions

of the ensemble model become more reliable and generalisable. However, the

increase in accuracy is accompanied by a loss in interpretability. These ensemble

models are constructed with hundred or thousands of decision trees. Therefore,

identifying the exact pattern used by the model becomes too time consuming for

most applications. However, the relative importance of each feature in its decision

making is relatively easy to extract. The importance of a feature is determined

as the average increase in gini index when said feature is used for the decision

rule.
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Figure 3.4: A random forest constructed with 3 independent decision trees. Each
decision tree is trained separately on 3-4 randomly selected features of the wine dataset
and a random subset of the samples in the dataset. The label predicted by the random
forest is the majority vote of the 3 decision trees.

3.3 Linear methods and extensions

3.3.1 Linear regression

Linear regression is one of the simplest ML models used for regression tasks. In

linear regression, the label of a sample i, denoted yi, is assumed to be the result

of a linear combination of the values of the feature vector xi of said sample:

ypredi = w⊤xi + b

= b+
D∑
j=1

wj · xij
(3.2)

where D is the total number of features, j is the feature index, w is the weight

vector of length D containing the weights for each feature, b is the intercept or

bias, xi is a vector of length D containing the features’ values for sample i and

ypredi is the label predicted by the regression model. An overview of the notation

used in this section is provided in Table 3.1.

The linear model receives a feature vector xi as input, and produces a pre-

dicted label ypredi as output for a given w and b. For the model to be accurate,

ypredi needs to approximate the real label yi as close as possible. During training,

w and b are tuned to minimise the so-called loss L using a set of N samples. For

a linear regression model, the loss is typically determined as the mean squared
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symbol description

j feature index
D number of features
i sample index
N number of samples

xi vector of length D containing the
features’ values for sample i

w vector of length D containing the
weights for all D features

b intercept value
yi label value for sample i

ypredi predicted label value for sample i

Table 3.1: Overview of the variables involved with a linear regression model.

error on the training set.

L =
1

N

N∑
i=1

(
ypredi − yi

)2
(3.3)

Linear models fail in situations where the link between the features and the

label is non-linear or where features interact with each other. Here, it can help

to transform the features or the label in a non-linear manner e.g. replacing

a feature by the square or logarithm of its value. For instance, linear models

in drug discovery often include the logarithm of the n-octanol:water partition

coefficient as a feature.

3.3.2 Logistic regression

Linear models can also be used for binary classification tasks with some modifica-

tion. In binary classification, a model learns to predict whether a data instance i

belongs to a certain class (yi=1) or not (yi=0). In logistic regression, a weighted

average of the input features w⊤xi + b is passed to a sigmoid function σ(z):

σ(z) =
1

1 + e−z
(3.4)

The output from the sigmoid function is interpreted as the probability of the data

instance belonging to the class, given the values of the features and a given set



Linear methods and extensions 49

of weights:

p(yi = 1|xi,w, b) = σ(w⊤xi + b) (3.5)

Once the probability for a data instance is predicted, a decision border for the

probability has to be chosen. By default, a probability of 50% is used as a

threshold:

ypredi =

{
1 if p(yi = 1|xi,w, b) ≥ .5

0 if p(yi = 1|xi,w, b) < .5
(3.6)

This threshold value can be changed to balance the relative importance of false

positives and false negatives. Increasing the probability threshold results in less

false positives at the cost of more false negatives. The primary limitation of logis-

tic regression is the assumption that the data is linearly separable. Nonetheless,

logistic regression can be sufficient for simple classification tasks. Furthermore,

the decision making of the model is transparent and, therefore, easy to interpret.

3.3.3 Regularisation

Linear models are susceptible to fitting the training set too strongly, especially

when the number of features is significant or the features are only partially in-

dependent. Models that are overfitted typically have large weights for many

features. The large weights make the model overly sensitive to low information

features and less stable. Regularisation limits overfitting by introducing a penalty

term to the loss function. During training, the model balances the accuracy of

the prediction and the size of feature weights. As the model is punished for hav-

ing large weights, the obtained solution after training is often simpler, i.e. the

predictions of the model are mainly based on a handful of features. For this rea-

son, regularisation is also used as a tool for feature selection. Aside from linear

models, regularisation is also used to limit overfitting in other ML methods such

as neural networks (see section 3.4.3). There are two commonly used types of

regularisation, namely L2- and L1-regularisation. Both regularisation types are

frequently used for linear and logistic regression models.
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L2-regularisation

In L2-regularisation, the penalty term is the L2-norm of the model’s weight vec-

tor. The penalty term is then added to the loss function:

L =
1

N

N∑
i=1

(ypredi − yi)
2 + αL2

D∑
j=1

w2
j (3.7)

Here, the hyperparameter αL2 governs the importance of the penalty term and is

called the L2 regularisation strength. Choosing a proper αL2 value is not trivial

and often different values need to be considered. To illustrate the optimisation of

αL2, let us consider two cases where a very large and a very small αL2 value are

used. A large αL2 will focus the model training on minimising only the weights,

resulting in a large difference between the predicted and real labels and thus an

underfitted model. For a small αL2 the resulting model is indistinguishable from

a non-regularised linear regression model. If the absence of the regularisation

results in overfitting, there is typically an optimum αL2 which balances under-

fitting and overfitting. Finding this optimum requires training the model with

different values for the hyperparameter and evaluate the resulting models on the

validation set.

L1-regularisation

In L1-regularisation, the sum of the absolute values of the weights is chosen as

penalty term:

L =
1

N

N∑
i=1

(ypredi − yi)
2 + αL1

D∑
j=1

|wj | (3.8)

The L1-regularisation strength αL1 controls the importance of the regularisation.

The value of αL1 is tuned as a hyperparameter of the model during optimisation.

L1-regularisation favours solutions where many weights are equal to zero, induc-

ing more sparsity in the ML model upon increasing αL1. Sparse models predict

labels using only the most important features. Therefore, L1-regularised models

have feature selection included as a part of the training process. L2-regularisation

also reduces the size of the weights, but does not set them to zero.65
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Combining L1- and L2-regularisation

If the intended regularisation lies in between L1- and L2-regularisation, both

terms can be added to the loss function:

L =
1

N

N∑
i=1

(ypredi − yi)
2 + αL1

D∑
j=1

|wj |+ αL2

D∑
j=1

w2
j (3.9)

Here, changing αL1 and αL2 allows to tune and balance the importance of each

regularisation type. A downside of including both is the increased complexity of

the optimisation with the additional hyperparameter.

Influence of scaling

For both L1- and L2-regularisation, the penalty terms are a non-weighted sum.

The implicit assumption is made that the weights, and thus the features, are

provided in the same unit of measurement. In many applications, the features

are provided in different units. The features of the wine dataset are expressed in

different units and cover different ranges as shown in Table 3.2. If these features

are not standardised, regularisation will result in a model that focuses on the

proline content and ignores the non-flavanoid phenols. Even if these features

are expressed using the same physical units, a difference of 0.5 mg/mL in the

concentration of non-flavanoid phenols or proline are not directly comparable.

Therefore, it is common practice to standardise each feature by subtracting the

mean and scaling to unit variance. Doing so, the features are expressed in similar

units.

feature range of values

proline (mg/L) 280-1680
alcohol (%v/v) 11.0-14.8
OD280/OD315 1.3-4.0

non-flavanoid phenols (mg/L) 0.13-0.66

Table 3.2: Different scales of some features in the wine dataset.
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3.4 Feedforward neural networks

Neural networks are a family of ML algorithms that draw inspiration from how

the brain operates. In the brain, pattern recognition results from the connec-

tions between neurons. Signals are passed between connected neurons and these

information flows are combined in a non-linear manner. Neural networks mimic

this architecture, with interconnected artificial neurons that transform incoming

signals using a non-linear function. The number of neurons in neural networks

can be immense, such as the 100 billion neurons in ChatGPT, to extract very

complex patterns. This structure enables neural networks to extract complex

patterns from data and makes them the most flexible models in the ML toolbox.

As a result, neural networks are effectively seen as universal function approxima-

tors.66 Neural networks come in many forms, each optimised for tackling different

tasks. This section will mainly tackle Feedforward Neural Networks (FNNs) with

fully-connected layers. The emphasis will lie on introducing the concepts needed

to interpret the results presented in Chapters 4-5.

3.4.1 Basic architecture

The simplest unit in the FNN’s architecture is the perceptron, which takes in

information from multiple input neurons and generates a non-linear response.

This is done by taking a weighted average of the input xi containing the feature

values. The weighted average is then transformed with a non-linear function g(·)
into a scalar output ypti :

ypti = g(w⊤xi + b) (3.10)

where the vector w contains the weights and b is the bias. Training a perceptron

essentially involves finding the optimal values of the weights and the bias. These

weights represent the different connections between the input neurons containing

the values of each feature and the output neuron, as shown in Figure 3.5. The

non-linear function g(·) is referred to as the activation function. The exact nature

of the activation function will be discussed later. Interestingly, the logistic regres-

sion covered in section 3.3.2 can be interpreted as a perceptron with a sigmoid

activation function.

The predictive power of a single perceptron is limited and the model can only



Feedforward neural networks 53

Figure 3.5: Structure of a single perceptron. The model takes in the feature vector xi

(with D features) of a sample i and generates a non-linear response ypti .

produce a scalar output. By introducing multiple output nodes and connecting

them to the input neurons, the model outputs a vector instead (see Figure 3.6).

This model is a multi-output perceptron, where each input neuron is connected

to each output neuron. These connections are determined for each output neuron

separately with different weights and values of b. For a multi-output perceptron

with D input neurons (i.e. features) and M output neurons, a weight matrix W

of dimensions D ×M and bias vector b of length M are defined. The output

vector ysl
i for a given input vector xi then becomes:

ysl
i = g(W⊤xi + b) (3.11)

The model can be seen as consisting of two layers, namely an input layer and

output layer. The multi-output perceptron is still limited in which patterns it

can learn, as it consists of M distinct perceptrons.

Figure 3.6: Structure of a multi-output perceptron. The model takes in the feature
vector xi (with D features) of a sample i and generates a vector ysl

i of length M .
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To improve the predictive power of the model, one or multiple layers of fully-

connected neurons are inserted between the input and output layer. These layers

are referred to as hidden layers and enable the model to learn more complex

patterns. A shallow FNN contains a single hidden layer, whereas a deep FNN

involves multiple hidden layers. By stacking the hidden layers, each additional

hidden layer extracts more general patterns from the previous layer. The struc-

ture of an FNN with two hidden layers is illustrated in Figure 3.7.

The number of hidden layers and the number of neurons in each layer are

hyperparameters of the model. As the hidden layers are fully-connected, a weight

matrix W (l) and bias vector b(l) is defined for each layer (l). The output of layer

(l), denoted h
(l)
i , results from the activation function g(l)(·) and the output of the

previous layer h
(l−1)
i :

h
(l)
i = g(l)(W (l)⊤h

(l−1)
i + b(l)) (3.12)

where h
(0)
i = xi and yi = h

(L)
i for an FNN consisting of L layers.

Figure 3.7: Structure of an FNN with two hidden layers. A and B are the number of
neurons in hidden layer (1) and (2) respectively. The first hidden layer uses the matrix

W (1) and vector b(1) to convert xi into a vector h
(1)
i of length A. The second hidden

layer converts h
(1)
i into a vector h

(2)
i of length B with the weight matrix W (2) and bias

vector b(1). The output of the final layer yi, a vector of length M , is obtained with the
weight matrix W (3) and bias vector b(3).

To illustrate this concept, consider the FNN with two hidden layers in Figure

3.7, which has A neurons in the first hidden layer and B neurons in the second

hidden layer. For a given feature vector xi of sample i the first hidden layer
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creates a vector h
(1)
i of length A:

h
(1)
i = g(1)(W (1)⊤xi + b(1)) (3.13)

For the first layer, the bias vector b(1) has a length of A and W (1) is a (D × A)

matrix. The second layer uses the vector h
(1)
i as input, creating a new vector

h
(2)
i of length B:

h
(2)
i = g(2)(W (2)⊤h

(1)
i + b(2)) (3.14)

where the vector b(2) has a length of B and W (2) is a (A×B) matrix. The final

layer of the FNN uses h
(2)
i to generate an output vector yi of length M :

yi = g(3)(W (3)⊤h
(2)
i + b(3)) (3.15)

where the vector b(3) has a length of M and W (3) is a (B ×M) matrix. The

components of W (1),W (2),W (3), b(1),b(2) and b(3) are obtained through training.

An example of the FNN applied to the wine dataset can be found in the appendix.

symbol description
i sample index
N number of samples
D number of features
A number of neurons in layer (1)
B number of neurons in layer (2)
M number of output neurons
xi the feature vector of length D for sample

i, input for layer (1)
W (1) (D ×A) weight matrix of layer (1)
b(1) bias vector of layer (1) of length A

h
(1)
i output vector of layer (1) of length A for

sample i, input for layer (2)

W (2) (A×B) weight matrix of layer (2)
b(2) bias vector of layer (2) of length B

h
(2)
i output vector of layer (2) of length B for

sample i, input for layer (3)

W (3) (B ×M) weight matrix of layer (3)
b(3) bias vector of layer (2) of length M
yi output vector of layer (3) of lengthM for

sample i

Table 3.3: Overview of the variables involved with an FNN with two hidden layers.
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3.4.2 Activation functions

At the heart of the FNN architecture lies the activation function. In the case of

a linear activation function, the model would only create linear combinations of

other linear combinations. By adding a non-linear activation function, the FNN

can be taught complex patterns. An overview of the most popular activation

functions is given in Figure 3.8. In the 1990s, the tanh and sigmoid function

were typically chosen as activation functions. However, training deep neural net-

works using these activation functions proved problematic.67 For most modern

applications, the Rectified Linear Unit (ReLU) has become the default activa-

tion function.68,69 Its success largely comes from its simplicity and its low-cost

derivative. One problem encountered during FNN training is that neurons with

ReLU activation can end up in a dead state. The dead neurons only generate

‘0’ as output and their weights are no longer updated during training. To ad-

dress this problem, alternative activation functions have been developed such as

LeakyReLU70, PReLU71, ELU72 and SELU73. While these activation functions

can improve performance and model training, they are slower to compute or in-

troduce an additional hyperparameter. Therefore, it can prove more beneficial to

increase the number of neurons to compensate for the dead neuron problem. The

output layer typically does not contain any activation function for a regression

task. For classification tasks, the output layer uses an activation function such

as the sigmoid function to limit the output values between 0 and 1.

3.4.3 Training & regularisation

During training, the weights and biases of the model are tuned to improve the

accuracy of the predicted labels. After initialising the model weights71, the model

is trained by minimising the loss with an optimisation algorithm such as Adam74.

The optimisation algorithm requires the gradient of the loss with regards to the

FNN’s parameters (weights and biases), which is obtained through backpropaga-

tion.75 Optimisation algorithms typically contain 1-3 hyperparameters (e.g. the

learning rate) to tune the learning process.

The large number of weights and biases make FNNs notably susceptible to

overfitting. The flexibility of an FNN to fit to almost any pattern, allows it to
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Figure 3.8: Overview of common activation functions used in FNNs. The hyperparam-
eter a for LeakyReLU and ELU is set to 0.5.

learn spurious correlations, resulting in poor performance outside of the training

set. When the network has too many parameters for the size of the dataset,

the model starts learning the data instances by heart, instead of extracting a

generalisable pattern.76 To prevent this overfitting, the model has to be con-

strained during training. In most applications, the L1- or L2-norm of the weights

is added to the loss as a penalty term, similar to the regularisation found in lin-

ear models (see section 3.3.3). The L1/L2-regularisation is combined with other

regularisation methods, such as early stopping and dropout. In early stopping,

the validation set is used to monitor overfitting. During each step of the training

process, the performance of the model on the validation set is evaluated. When

the validation loss has reached a minimum (i.e. does not improve), the model no

longer learns generalisable patterns and the training process is stopped.

Another popular regularisation technique is Dropout77,78. Here, a randomly

chosen subset of the neurons is temporarily made inactive, or ‘dropped out’, at

every training step. The output of these neurons is set to zero and their weights
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are frozen, as illustrated in Figure 3.9. The neurons in the FNN learn to be less

dependent on individual neurons and are less inclined to over-specialise. This

results in a more robust FNN with improved performance on new data instances.

The probability of a neuron to be dropped out is referred to as the dropout rate.

Increasing this value makes the model less dependent on individual neurons, but

also slows down the training process. Typical values for the hyperparameter

range between 0.2 and 0.5.

Figure 3.9: Regularisation of an FNN with two hidden layers with dropout.

3.5 ML applications for VCD

The research presented in this work explores the capacity of ML techniques to

extract patterns in VCD spectra. In this context, the following three ML tasks

are considered:

1. predicting the AC of a compound from their VCD spectrum
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2. predicting the VCD spectrum of a conformer from its geometry

3. predicting the components present in mixtures from the VCD and/or IR

spectrum.

In the first project, classification models are trained to predict the AC from

a VCD spectrum. These models are trained on the VCD spectral dataset of dec-

orated α-pinene structures. The application domain of these models is limited to

the molecular motifs found in the dataset. Therefore, we are especially interested

in the accuracy of these models achieved with smaller training set sizes. The cost

of training the ML models for this project proves to be negligible compared to

the cost of recording or computing a single VCD spectrum. As a result of the low

cost, cross-validation can be incorporated in this project without any significant

drawbacks. As a first step, we explore the dataset with unsupervised ML meth-

ods and simple white-box models, such as decision trees and linear models. This

initial step allows us to gain a deeper understanding of the underlying VCD pat-

terns in the data and assess the complexity of the ML task. Additionally, these

white box-models enable us to identify the VCD patterns that are characteristic

for the AC. As we lack prior knowledge on which classification models are most

suitable for this task, a substantial number of ML methods are evaluated on the

spectral dataset. The best performing models are selected for further investiga-

tion on smaller training sets and on lower-dimensional representations, obtained

with unsupervised ML methods or RF feature ranking, of the VCD spectra. The

resulting models are also tested for any bias towards certain molecular struc-

tures. Finally, the robustness of the proposed method is evaluated by assessing

its performance -after retraining the models- on spectra obtained with different

computational settings.

The second project involves a multi-output regression task: predicting the

VCD intensities at multiple wavenumbers for conformers of the same compound.

The molecular geometries are represented as a set of intramolecular coordinates

describing the molecular flexibility and the intramolecular interactions in the

compound. The application domain of a trained model is the set of conformers

that the molecule can adapt. Given the complexity of predicting VCD spectra of

conformers, multi-output FNNs are chosen as model for their ability to identify

and learn complex patterns. Given the black-box nature of the FNN, extracting
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any chemically meaningful information from a model is challenging, if not impos-

sible. To learn more about the shortcomings of the suggested approach, the FNN

is trained on six different compounds. These model compounds are chosen such

that lower performance of the model can be traced back to characteristics of the

compound, such as intramolecular interactions. The speed-up achievable with

the FNN depends strongly on the fraction of conformers present in the training

set. Therefore, the accuracy of the FNN predicted spectra is evaluated for differ-

ent training set sizes. The FNN’s hyperparameters are optimised with Bayesian

optimisation. Doing so, the model optimisation is automated and can be easily

accounted for in the reported speed-up. Additionally, restarting the optimisa-

tion of each model from scratch prevents information leaking between different

optimisation runs. To limit the cost of training and optimising the FNNs, cross-

validation is not used in this project. The resulting FNNs are checked for any

bias towards the presence/absence of intramolecular interactions in conformers or

their relative energy. The performance of the approach is then evaluated within

the context of the AC determination workflow. Here, the accuracy of the Boltz-

mann weighted molecular VCD spectrum obtained with the FNN is compared

to the one consisting of only DFT computed spectra. Finally, the possibility of

applying these FNN outside of their original application domain is explored by

predicting spectra for different AC’s.

In the final project, we test whether supervised ML models can help determine

the composition of monoterpene mixtures. The IR/VCD spectrum of such a

mixture can be seen as, approximately, a linear combination of the monoterpene

spectra. Therefore, the use of linear ML models is an obvious choice for this ML

task. Given the low cost of these models, cross-validation can be implemented in

the workflow without any substantial drawbacks. Ideally, the Ml model is trained

on an extensive set of mixture spectra. However, constructing such a dataset of

sufficient size costs an enormous amount of effort. Therefore, the ML model is

trained instead on a set of in-silico mixture spectra - noisy linear combinations

of the monoterpene spectra. As a result, we can explore this ML application

with only having to record the pure monoterpene spectra. After training, the

performance of the model is evaluated on a small set of monoterpene mixtures

of known composition. In a final stage, the resulting model is used to detect the

monoterpenes in essential oils.
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Chapter 4
Exploring machine learning methods

for absolute configuration

determination with vibrational

circular dichroism

4.1 Introduction

Plenty of natural chemical compounds are chiral and their stereoisomers tend

to interact differently with other chiral compounds. This is of great importance

in for instance medicinal chemistry, where stereoisomers produce different ther-

apeutic effects when engaging their chiral biological target. As a consequence,

methods capable of reliably identifying the absolute configuration (AC) of these

compounds are of high interest.1,2 Probably the best known method is X-ray

diffraction. This method, however, requires single crystals which are not always

easily available or require additional manipulations. NMR does not distinguish

enantiomers and so its use requires derivatisation of the compounds.3–5

Stereoisomers do not only interact differently with other chiral compounds but

with chiral fields in general. This difference in interaction is exploited in so-called

Circular Dichroism (CD) methods. There the difference is measured between the

interaction of a specific compound with left- and right-circularly polarised ra-
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diation.6 Probably the best-known CD method is electronic circular dichroism

(ECD). This is the chiral counterpart of UV-VIS spectroscopy and hence relies on

transitions in electronic state and requires the presence of chromophores. Infrared

spectroscopy also has a chiral counterpart, known as Vibrational Circular Dichro-

ism (VCD). As there are many more and better resolved vibrational transitions

than there are electronic transitions in VCD and ECD respectively, VCD spec-

tra usually offer much richer information to extract the AC from experimental

spectra.7,8 Moreover, VCD has the important advantage that it does not require

single crystals, elaborate derivatisation or the presence of chromophores.

CD methods encapsulate the difference between enantiomers in a very sim-

ple way: the CD spectra of enantiomers are each other’s mirror image. If one

enantiomer slightly prefers to absorb left circularly polarised light at a specific

wavelength, the other enantiomer will show the same size preference for right cir-

cularly polarised light at that same specific wavelength. Unfortunately, there is no

easy way to link a spectrum to an AC using e.g. tabulated characteristics or em-

pirical rules.9 Methods such as VCD therefore benefited greatly from the advent

of efficient algorithms to quantum chemically reliably compute VCD spectra for

a chosen AC of a compound.10 If the computed spectrum matches to sufficiently

large extent the experimental spectrum, a confident assignment can be made.8

Experience shows that Density Functional Theory (DFT) calculations with a

well-chosen functional and basis set often give satisfactory agreement between

theory and experiment. Where needed, many extensions to these calculations,

such as proper solvent handling or ways to concentrate on the essential parts of

a molecule may help make calculations better or even simply affordable.11–16

As mentioned, empirical rules for AC assignment from an experimental spec-

trum remain unknown. The current alternative is to compute spectra which must

be done for every molecule and even conformer thereof separately. This requires

much extra expertise and is both time and resource consuming.

This paper therefore explores a third way. Our research hypothesis is that

Machine Learning (ML) techniques can extract yet unknown spectral features

from VCD spectra and in this way allow determining the AC of new compounds.

As the main strength of VCD lies in its ability to identify enantiomers, the study

focuses on distinguishing enantiomers. Machine Learning (ML) methods have

already been applied successfully in different areas in chemistry, including spec-
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troscopy,17–35 but not VCD spectroscopy. What follows is, to the best of our

knowledge, the first critical and elaborate investigation of the performance of ML

methods to extract AC from VCD spectra.

4.2 Methodology

4.2.1 Database design

Our research methodology is based on the following observation: the AC of a

compound is encapsulated in its VCD spectrum although in a rather opaque

way. On the other hand, it is not unlikely that similar molecules with the same

AC would also encapsulate this information on the AC in a similar way. We

propose to use ML techniques to establish whether these techniques actually show

that the AC is encoded in VCD spectra in a tractable way for ML techniques.

Beyond establishing this, we wish to examine whether ML can learn enough from

a sufficiently large dataset to allow determining the AC for new similar molecules.

In the following sections, we present in detail the methodology on how we prove

that our central hypothesis actually holds.

As first step, we compose a database of spectral data. This dataset should

contain sufficient information to allow ML techniques to extract the necessary

knowledge to be able to assign the AC. Ideally, one would have access to a wealth

of experimental spectra and use these as input. However, there are some problems

with this approach. On the one hand, there is simply not enough data available

and measuring more spectra comes at too high a cost. Second, for each spectrum

one needs rock solid proof that the AC is known. This requires cross checking

this information with at least another method, such as another spectroscopic

method, or through the synthesis pathway. Both reasons entail that working

with experimental spectra is not an option.

Theoretically computed spectra do not suffer these problems. One has with-

out any doubt certainty of the absolute configuration chosen. Therefore, we

here use, instead of experimental spectra, DFT computed spectra for a set of

rigid compounds where solvent effects are expected to play a minor role. By

only considering rigid compounds, any accumulation of errors from the confor-

mational VCD spectra, along with the corresponding Boltzmann weights, can
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be prevented. Such an accumulation may in an unpredictable fashion impact

on the conclusions on the performance of ML methods. One would obviously

also want to include all possible elements, functional groups, etc. However, we

largely exclude functional groups that can interact strongly with their environ-

ment. Even though DFT calculations on molecules with such functional groups

pose no problem and the spectra could technically be used, the chemical value of

the spectra is limited so we chose not to use them. Obviously, once experimental

spectra become available in sufficient numbers, the dataset could be extended to

also include flexible molecules, molecules that interact strongly with the environ-

ment etc. albeit that then the challenge is to have absolute certainty on the AC

of the experimental sample. As will be discussed in section 4.3.1, the potential

lower chemical diversity introduced by using computed spectra does not impact

the diversity of the spectra themselves. We stress that the only role played by

DFT calculations here is to generate the database and it is in no way used in

the spectral analysis, as only ML techniques are considered there. So, the DFT

calculations are used as generators of data and not as analysers of data.

α-pinene is a well-known standard reference compound in the VCD and ROA

community. Due to its rigidity and minor solvent dependence of its spectra, the

VCD spectrum can be calculated reliably using DFT methods.36–38 In this work,

we have chosen to use the skeleton of α-pinene as a scaffold to generate a very

large number of other compounds by introducing a wide diversity of side chains.

These side chains, shown in Figure 4.1, were substituted on six different carbon

atoms in the scaffold, generating all possible substitution pattern combinations.

�

�
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�
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Figure 4.1: Decoration of the core structure of (–)-α-pinene. The carbon atoms involved
are similarly to R1−6 defined as C1−6.

Some restrictions were then applied. First, to avoid the creation of additional

chiral centers, both C4 and C6 were always substituted twofold with the same
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substituent. Additionally, hydrogen was not used as substituent at C6, to prevent

rendering the compound achiral. Thirdly, structures with strong steric repulsion

were excluded from the database. As such, structures that contained interatomic

distances between their side chains smaller than 0.75 Å were omitted. This re-

sulted in 3945 molecules sharing the (–)-α-pinene core, for which the VCD spectra

were calculated. The spectra of the molecules sharing the (+)-α-pinene core were

obtained by mirroring the calculated spectra of the corresponding enantiomers.

The label used to identify the AC of the molecule was whether the molecule was

based on the (–)- or the (+)-α-pinene core structure. CIP-rules were not used

as the molecule contains two asymmetric carbons, labelled as (S,S) and (R,R)

respectively for α-pinene, whose labelling can change for different decorations.

It should be noted that an imbalance in the dataset with respect to the relative

presence of certain substituents has been introduced due to the abovementioned

omission of certain structures based on steric clashes, as illustrated in Figure

4.2. This can leave certain structures underrepresented and more difficult to

accurately classify with ML models. The relative presence of t-butyl is influenced

the most, as it is the bulkiest substituent. Its complete absence at C4 and C6 will

not impact the performance measure, as the model is not validated on structures

decorated by t-butyl on these positions. However, its strong underrepresentation

at C1 might not provide enough samples in order for the ML model to process the

influence that it can have on the VCD spectrum. An analysis of this is provided

in the Supporting Information�.

4.2.2 Computational DFT settings

For the 3945 decorated (–)-α-pinene structures, geometry optimisation and sub-

sequent gas phase VCD calculations were performed at B3PW91/6-31++G(d,p)

level using Gaussian1639. Lorentz broadening was performed on the resulting

line spectra, using a Full Width at Half Maximum (FWHM) of 10 cm−1, ranging

from 800 cm−1 to 1800 cm−1 with a sampling interval (SI) of 0.5 cm−1.

4.2.3 ML methods

To fully gauge the capabilities of ML methods for VCD spectroscopy, multiple

supervised and unsupervised methods were considered. These are introduced



70 4. Exploring ML methods for AC determination with VCD

C1 C2 C3 C4 C5 C6
0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e 
Po

pu
la

tio
n

H
Me
t-Bu
Cl
Ethynyl

Figure 4.2: Relative representation of the substituents on the six different sites C1−6.

succinctly below with their main features and, where applicable, the so-called

hyperparameters that were optimised. For a more detailed description, we refer

to the documentation of scikit-learn40.

Principal component analysis (PCA)41

Principle: PCA is a linear method of dimensionality reduction that finds projec-

tions into lower-dimensional subspaces, such that the variance captured in these

spaces is maximised. After this, dimensional reduction can be performed by only

using the first n orthogonal components, which would capture the largest section

of the variation of the data.

Hyperparameters: Not applicable.

t-Stochastic neighbour embedding (t-SNE)42

Principle: t-SNE is a method for visualisation of high-dimensional data that can

model complex, non-linear dependencies. A distribution over pairs of samples is

constructed both in the original and an embedding space. Divergence between

the two distributions is minimised such that samples similar in the original space

are placed close together in the embedding space with a high probability.
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Hyperparameters: measure of perplexity, exaggeration.

Decision tree

Principle: A tree-structured model with class labels in leaves and descriptive

features in branches. Trees are induced by recursively splitting the dataset in

smaller subsets in each branch, such that the purity of the data (i.e. homogeneity

of labels) in the leaves is maximised.

Hyperparameters: Tree depth.

Logistic regression (LogReg)

Principle: The method applies the techniques of linear regression to classification

problems. A logistic function is fitted to rep-resent the probability of the sample

belonging to a certain class. The predictive capabilities are typically improved

by employing a regularisation method, such as lasso (l1)43 and ridge (l2)44 reg-

ularisation, to penalise large weights in regression.

Hyperparameters: Regularisation method and strength.

Naive Bayes (NB)45

Principle: A probabilistic method that uses Bayes’ theorem to estimate the prob-

ability of a sample belonging to a certain class. The approach relies on a strong

assumption that the attributes are conditionally independent.

Hyperparameters: Not applicable.

Support vector machines (SVM)46

Principle: A class of linear algorithms that finds a hyperplane separating two

classes of data with as wide a margin as possible. Non-linear classification can be

performed efficiently by mapping the inputs into high-dimensional feature spaces

through invertible mathematical operations.

Hyperparameters: Kernel employed for mapping, cost, soft or hard margin.
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k-Nearest neighbours (kNN)47

Principle: Each sample is classified to the class, most common among the k

training points that are the closest to the sample according to a distance measure,

such as the euclidean distance.

Hyperparameters: Number of neighbours, distance metric and weight.

Random forest (RF)48

Principle: An ensemble learning technique that constructs a large number of

decision tree classifiers. Each tree is trained on a limited bootstrap sample from

the original dataset. Furthermore, at each branch of the tree, only a restricted

and random subset of features is considered. Each sample is classified according

to a majority vote among the classifications of the individual trees. The relative

importance of each feature for the model can be evaluated as the total increase

in purity brought by that feature.

Hyperparameters: Number of trees, maximal tree depth.

Feedforward neural network (FNN)49

Principle: The data is classified by using a large network of interconnected ar-

tificial neurons, whose outputs are a non-linear function of the weighted sum of

their inputs. The first layer of this network is the input layer, containing the

input spectral data, and the final layer of this network is the output layer, giving

the probability of belonging to a certain class. The inner layers, the so-called

deep layers, construct complex features as every neuron combines the outputs of

all the neurons in the previous layer in a non-linear manner.

Hyperparameters: Number of layers, number of neurons in each layer, optimiser,

regularisation strength.

4.2.4 Model training

Each model was trained to classify the AC of the decorated molecules. As input

the VCD intensity at every wavenumber is used and the output of the model is

the AC label of the decorated molecule. The performance of the ML method

is assessed based on the AC predicted versus the (known) true AC. For each
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model, the hyperparameters were optimised. To even out the probability that

by chance a validation set would be used that is in any respect an outlier, 10

training and validation sets were used. In each case, 90% of the molecules were

randomly included in the training set and the remaining 10% in the validation

set. Equal representation of both enantiomers was imposed in each set. This will

be referred to as a 9:1 training-validation split. The performance of each model

was evaluated using the Classification Accuracy (CA) of the validation data. The

CA is defined as the fraction of molecules with correctly determined AC. In the

case of evaluation with multiple training-validation splits, the CA is taken as the

mean accuracy on the validation set over the 10 iterations of the splits.

In case of RF and FNN, if an increase in the number of internal parameters

of the model did not significantly increase its performance, the method with

the lower number of internal parameters was retained. After optimisation of the

hyperparameters for each ML model based solely on the B3PW91/6-31++G(d,p)

spectra of sampling interval (SI) 0.5 cm−1, the hyperparameters were frozen for

the remainder of this study. These final hyperparameters are listed in Table 4.1�.

To investigate the number of spectra that need to be included to have decent

classification accuracy, the procedure was repeated for various training-validation

splits. In this study we considered the 9:1, 2:1, 1:1, 1:2, 1:4, 1:9, and 19:1 splits,

which correspond to using 90%, 66%, 50%, 33%, 20%, 10%, and 5% of the total

amount of data respectively as training set, and the remaining data as validation

set. The models were built, trained, and validated using Orange350, a scikit-

learn40 based GUI. Using a desktop computer equipped with an Intel i5-8400 2.8

GHz processor and 32 GB of memory, all optimised models, except SVM, were

trained in less than 1 minute on a single training set.

4.3 Results and discussion

Prior to deploying all of the aforementioned ML methods to conduct AC deter-

mination on the VCD spectral database, we checked whether no simple rules can

be derived that would already allow a high CA. If such would be the case, the

law of parsimony would already refute the use of ML methods. Due to the size of

the database, finding characteristic bands or empirical patterns cannot be done

by visual inspection.
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Figure 4.3: Visualisation of the spectra after dimensionality reduction with (left) 2D-
PCA and (right) 2D-t-SNE, with yellow and red dots corresponding to the VCD spectra
of decorated (+)- and (–)-α-pinene structures respectively.

To establish a baseline performance we rely on PCA and t-SNE, in combina-

tion with linear separation, and shallow decision trees, to possibly identify simple

empirical patterns. The CA results of these methods are then used to gauge the

performance of more advanced ML methods against.

4.3.1 Baseline performance with shallow decision

trees, PCA and t-SNE

When a decision tree was trained on the entire dataset and using the entire

spectra, a fraction of 0.766 was classified as the correct enantiomer for both tree

depth 1 and 2. If instead of using the entire spectra, one uses the three most

characteristic bands (provided they were separated by 8 cm−1; 1184, 1424 and

1496 cm−1), as identified by the decision tree, the decision tree classified a fraction

of 0.785 properly, hence only a minor improvement.

For PCA, at least 62 components were needed to explain 95% of the total

variance and >100 for 99%, which is indicative of the spectral complexity in the

database. Furthermore, straightforward classification by linear separation using

the first 2-3 principal components (logistic regression 9:1 split; CA 0.631-0.703)

was not possible (see Figure 4.10�).
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Finally, the use of t-SNE similarly showed that lower dimensional represen-

tations would not allow performant classification by linear separation (logistic

regression 9:1 split on 2D-t-SNE; CA 0.791). The reason for the limited per-

formance of linear separation on lower dimensional representations lies in the

relatively large overlap of the (+)- and (–)-α-pinene populations, as illustrated

in Figure 4.3 for both 2D-PCA and 2D-t-SNE, due to the absence of bands or

patterns strongly characteristic for the AC. Keeping in mind that spectra of enan-

tiomers are centrosymmetric in Figure 4.3 (see Supporting Information�), only

a small part of the 2D-PCA plot remains characteristic for the (+)- and (–)-

α-pinene based compounds. For 2D-t-SNE, the populations overlap to a lesser

extent, creating larger regions dominated by a specific enantiomer. However,

regions of strong overlap still occur which hamper proper discrimination of the

ACs.

Altogether, some spectral patterns seem to be present in the data which

can aid AC determination, but the resulting accuracy from these methods is

far from convincing. One cannot conclude that there are empirical patterns or

characteristic bands that allow a reliable AC determination. The information on

the AC is buried within the VCD spectra in a complex manner. Therefore, more

complex supervised ML methods are required.

4.3.2 Identification of best performing ML models

Each of the methods summarised in section 4.2.3 is trained and optimised to

generate the AC label of the compound as output from the VCD spectrum input.

The CA for the various ML methods is summarised in Figure 4.5 for all differ-

ent train-validation splits. All methods were able to learn from the data and

yielded better classification than obtained with shallow decision trees, with a CA

of 0.766. NB was with an CA around 0.840 the least adequate for reliable AC

determination. At first sight, LogReg showed promising accuracy. However, due

to the very weak regularisation after optimisation it contained large coefficients

for wavenumbers where only very faint intensities (tails from faraway bands) are

present, as shown in Figure 4.14�. These coefficients would make the accuracy

extremely unstable in the presence of any small deviations such as spectral noise

(as expected in experimental spectra). When this overfitting was penalised with
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Figure 4.4: Classification accuracy of the spectra for several supervised ML models.
The different train-validation split ratios are coloured as described in the legend.

stronger regularisation, the accuracy dropped significantly (see Figure 4.14�). Al-

though SVM already showed promising improvement in performance, it remains

the most computationally demanding method by far, requiring at least an order

of magnitude more training time at the 9:1 split than the other methods. More-

over, its performance was noticeably dependent on the theoretical level used to

perform the DFT calculations, making it less reliable in a general setting (see

Figure 4.18�). kNN displayed a fairly high performance when using a large train-

ing set, but performed poorly in extracting the information connected to the AC

when using a smaller training set.

RF and FNN are overall the best performing models for identifying the ACs.

In particular, FNN showed outstanding accuracy using larger training sets, with

e.g. a CA of 0.995 for the 9:1 split, but still performed adequately when less

training data was provided. RF did not outperform FNN, but still had fairly

high accuracy across the various splits. The major advantage RF holds over

FNN, is that the information extracted from the spectra and used in the algorithm

to identify the AC is readily available, while this remains highly challenging to

impossible for FNN and consequently limits it to remaining a black box model. As

both methods clearly have their advantages, the remainder of this study focuses

on RF and FNN.



Results and discussion 77

4.3.3 Influence of spectral sampling interval

Thus far, all different models were trained on spectral data with a sampling in-

terval (SI) of 0.5 cm−1, providing them as much information as possible to train

on in order to evaluate their maximal learning capabilities. However, considering

that VCD spectrometers often record spectra at resolutions around 4-8 cm−1,

these models should additionally be evaluated at more representative SIs. Fur-

thermore, models trained on data of larger SIs will more strongly repress possible

overfitting tendencies, due to the lower dimensionality of the spectra. Therefore,

the CA of both RF and FNN is evaluated for several SIs by subsampling the

dimensions of the original spectral data.

Evaluating the differences between the SIs, shown in Figure 4.5, it becomes

apparent that the performance of the models does not decrease significantly as

long as the SI does not drop below 16 cm−1. Changing the starting point of the

spectra with an SI of 24 cm−1 influences the CA (see Figure 4.16�) but to a lesser

extent than the SI itself. The absence of a specific wavenumber thus is not the

main origin of the drop in the performance of the models. Instead, increasing the

SI beyond 16 cm−1 causes loss of information in the VCD spectra, and prevents

the models to identify the most AC representative patterns. Lowering the SI

below 8 cm−1 does not improve model performance, which indicates that no new

information is present in these representations. The strong correlation between

adjacent wavenumbers for 0.5 cm−1 SI is reflected in only needing 62 PCs to

explain 95% and more than 100 PCs to explain 99% of the total variance.

The origin for this exact density of the spectral information can be found in the

Lorentzian broadening of the line spectra. Due to this broadening, bands are

only indistinguishable when their maxima are separated by more than 10 cm−1

(the FWHM value) and wavenumbers separated by a smaller distance become

strongly correlated. When the FWHM is increased to 15 cm−1 the performance

remains more stable for spectra with a larger SI and the small CA drop for the 16

cm−1 SI disappears, as shown in Figure 4.17� and Figure 4.6. Thus, subsampling

can be employed to such a degree that the spectral SI resembles the widths of

the bands without experiencing any significant loss in accuracy.
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Figure 4.5: Classification accuracy of the spectra for different sampling intervals for
(a) random forest and (b) forward neural network. The different train-validation split
ratios are coloured as described in the legend.
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Figure 4.6: Difference in classification accuracy obtained between the spectra with
bandwidth 15 cm−1 and 10 cm−1, for (a) random forest and (b) feedforward neural
network. The different train-validation split ratios are coloured as described in the legend.
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4.3.4 Absolute configuration extraction with random

forest

As mentioned earlier, the pattern that RFs employ to identify the AC can, in

stark contrast with FNNs, to a certain extent be extracted using feature ranking

and the scores associated with it. In Figure 4.7, the ranking score of all the

spectral peaks in the entire dataset are illustrated for the different SIs. The

larger the ranking score, the more important this specific wavenumber is for the

AC determination.

The main spectral areas of interest remain similar across the different SIs,

with the bands around 1180 cm−1 and between 1300 cm−1 and 1500 cm−1 dom-

inating the AC determination. When comparing the median differential molar

absorptivity ∆ϵ for each wavenumber with the corresponding ranking values (Fig-

ure 4.8), we observe that the RF mainly focuses on the areas in which the median

deviates from the zero line the strongest instead of focusing on areas containing

the strongest intensities. This can be observed for instance in the area around 950

cm−1, where despite both the central 50% and 95% quantiles containing strong

intensities, the RF still considers it an area of low importance. However, the area

around 1350 cm−1 appears, despite its near-zero median value, to be of significant

importance to the AC determination. This is likely due to the central 95% quan-

tile for decorated (+)-α-pinene structures containing strong positive intensities

to weak negative intensities, making it easier to identify the AC using this band.

It should be noted that these highly ranked areas are not the same as marker

bands. Namely, the latter would imply that around a certain or several wavenum-

bers a specific VCD intensity and sign is directly indicative for the chirality of

the compound, whereas in the former case the ranking indicates how important

each wavenumber was during the identification of very complex patterns by the

RF model to assign the AC.
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Figure 4.7: Random forest ranking score of the spectral features for the prediction of
the chirality of the compounds for the different sampling intervals.
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VCD spectra sharing the core structure of (+)-α-pinene, Middle: The absolute value of
the median. Bottom: Random forest based ranking score for spectra with a sampling
interval of 8 cm−1.
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4.3.5 Dimensionality reduction with PCA and RF fea-

ture ranking

Up until now, only changing the SI was considered for reduction of the dimen-

sionality of the input data for RF and FNN. However, both PCA and the RF

based rankings discussed in the previous section can also be employed for this,

using only the n most important components and wavenumbers, respectively.

Comparing the performance of the dimensionality reduction methods, depicted

in Figure 4.9, shows that the unbiased subsampling achieved by increasing the SI

remains the better method. The biased subsampling based on RF ranking focuses

on the most important spectral regions but does not take the high correlation

between adjacent features into account. While increasing the SI still includes

less important wavenumbers, the redundancy of the information is significantly

lower. When this redundancy is removed with PCA, the CA still remains worse

than obtained with unbiased subsampling. PCA includes most information in

the spectra by focusing on the areas with the largest variance. However, as dis-

cussed in section 4.3.4 these areas do not necessarily contain the information

most characteristic for the AC. Furthermore, this characteristic information will

be encoded in a complex manner in the principal components.

4.3.6 Robustness and external validation of ML per-

formance

Robustness of the results is an important issue. In the context of the present

paper, robustness reflects the stability of the performance of ML methods with

respect to changes in the spectra used as input. It is therefore not the same as

robustness in the sense of peaks in a VCD spectrum being less or more affected

by a change in a (DFT) computational parameter.51,52 To gauge the robustness,

we computed all VCD spectra for the entire database at other levels of the-

ory, namely all remaining combinations of the B3LYP and B3PW91 functionals,

with the 6-31G(d)/6-31++G(d,p)/ 6-311++G(2d,2p) basis sets, and trained ML

models within each combination of functional and basis set in the same way as

elaborately described above with the default functional and basis set. To retain

a fair comparison of the performance, the hyperparameters of the ML models
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were not re-optimised (using the hyperparameters in Table 4.1�), while training

the models on each combination of functional and basis set separately. Note that

due to this workflow the data excluded from the training set becomes a test set,

providing an even more reliable estimate of the performance.

The resulting similar performances (see Supporting Information�) demon-

strate that using a different level of theory to generate input spectra has no

significant influence on the ability of RF or FNN to establish the AC. Despite

the similar performance, the ML models themselves are not internally the same.

The models extract AC related information in a different manner for the different

levels of theory (illustrated in the Supporting Information�). So, it is not due to

a lack of influence of the functional and basis set that these ML methods perform

equally well, but rather due to the robustness of the ML approach presented in

this paper.
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(b) Feedforward neural network

Figure 4.9: Comparison of subsampling techniques with Principal Component Analysis
and only using the highest random forest ranked wavenumbers, for (a) random forest and
(b) feedforward neural network. The different train-validation split ratios are coloured
as described in the legend.
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4.4 Conclusions

The value of Machine Learning (ML) methods for assigning the Absolute Config-

uration (AC) based on Vibrational Circular Dichroism (VCD) spectra has been

demonstrated using a dataset of substituted α-pinene structure spectra. Random

Forest (RF) and Feedforward Neural Networks (FNN) have proven to be the most

performant among various ML methods for conducting the AC determination. At

its best, a predictive accuracy up to 0.940 and 0.995 can be reached with RF and

a shallow FNN, respectively. In stark contrast to the black box nature of FNN,

the RF model allows the extraction of the spectral areas important for AC deter-

mination. Furthermore, the quality of AC determination remained unchanged,

as long as the spectral sampling interval was comparable to or smaller than the

width of the bands. Setting the sampling interval to a value comparable to the

bandwidth, so-called subsampling, also proved to be the best dimensionality re-

duction method, outperforming PCA or methods exploiting supervised ranking.

All conclusions made were validated by external validation.

This contribution emphasises the yet untapped potential of ML methods and

deep learning in VCD spectroscopic application areas, as well as the added value

that the creation of large experimental VCD databases in tandem with ML meth-

ods can provide in the future. Most importantly, once more databases are es-

tablished, it becomes possible to speed up the AC determinations of particular

molecular classes by not having to tackle every single compound in a case-by-case

manner.
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Supporting information

3D principal component analysis on VCD spectra

Figure 4.10: Comparison of the enantiomers’ PCA transformed spectra, from top
to bottom B3LYP/6-31G(d), B3PW91/6-31G(d), B3LYP/6-31++G(d,p), B3PW91/6-
31++G(d,p), B3LYP/6-311++G(2d,2p), B3PW91/6-311++G(2d,2p).
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Symmetry of PCA transformed enantiomer spectra

The VCD spectra of enantiomers are identical except for the inverted sign of the

VCD intensity ∆ε(ν̃) at each wavenumber ν̃. This implies that inverting all VCD

intensities for a set of compounds sharing the (+)-scaffold ((+)-α-pinene) yields

the spectra of the (–)-scaffold compounds. A VCD spectral dataset containing

both enantiomers of each compound, such as the α-pinene dataset employed in

this paper, holds for each unique VCD spectrum also the one with inverted sign,

making the dataset centrosymmetric. This property of the dataset is illustrated

in Figure 4.11 for the most characteristic wavenumbers (according to shallow

decision tree; 1184 and 1352 cm−1).

Figure 4.11: Symmetry of the pinene spectral data within the space defined by the
VCD intensities for wavenumbers 1184 and 1352 cm−1. The contour plots (right panels)
show the distribution of the (–)-scaffold spectra with inverted sign and the (+)-scaffold
spectra respectively.
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The PCA technique rotates the axes within the space defined by the differ-

ent wavenumbers, transforming the dataset into principal component space. The

relationship between the spectral intensities of enantiomeric pairs remains un-

affected by this PCA transformation. As illustrated in Figure 4.12, the dataset

remains centrosymmetric within principal component space. Additionally, Figure

4.13 shows that the VCD intensities of enantiomers are identical but of opposite

sign for the most relevant principal components.

Figure 4.12: Symmetry of the pinene spectral dataset in 2D-PCA space. The inverted
(–)-scaffold spectra are the (–)-scaffold spectra with inverted sign for both PC1 and PC2.
The contour plots (right panels) show the distribution of the (+)-scaffold spectra and of
the (-)-scaffold spectra with inverted sign respectively.

Figure 4.13: Relationship of VCD intensities for the principal components PC1-3. The
intensity corresponding to a specific PC component for the (-)-enantiomer (PC(−)) is
compared with the value for the (+)-enantiomer (PC(−)). R

2 is the pearson correlation
between PC(+) and (−1) · PC(−) averaged over all pairs of enantiomers.
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Hyperparameters of the optimised models

LogReg L2 regularisation, C 1000
NB N.A.

SVM Linear Kernel, tolerance 0.001, C 0.1
kNN Neighbours 3, weighted Manhattan distance
RF Trees 200, max tree depth 20

FNN Hidden layers 2, neurons 100 and 20 respectively, optimiser
Adam, L2 regularisation alpha 0.001, maximal iterations 500

Table 4.1: Optimised hyperparameter for the supervised machine learning models.
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Logistic regression weights for weak & strong regular-

isation

(a) Influence regularisation strength
on CA

(b) Coefficients for l1 regularisation

(c) Coefficients for l2 regularisation

Figure 4.14: Influence of regularisation strength and method for logistic regression on
the classification accuracy and the coefficients.

Influence of database imbalance w.r.t substitutional

populations

At this stage, it is interesting to see to what extent the predictive power is de-

pendent on the exact substituents. The misclassified molecules of 10 separate

RF training cycles using the same training method as before (9:1 split, 8 cm−1

sampling interval) were identified and the average misclassification for every sub-

stituent at every position was determined. This procedure was repeated for FNN

(9:1 split, 8 cm−1 step size), but with 100 separate training cycles instead, in
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order to guarantee the values’ statistical significance (as the misclassification is

about 10 times smaller than that of RF). Through comparison of these mis-

classifications, depicted in Figure 4.15, a noticeable difference in predictability

is manifested for the different substituents and positions; the general trend ap-

pears similar for both RF and FNN, which can be attributed to the difficult

non-characteristic influences these substitutions have on the VCD spectrum and

structural underrepresentation of certain groups/combinations in the dataset (de-

picted in Figure 4.2). However, it remains difficult to clearly reveal the extent to

which one dominates over the other.
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Figure 4.15: Relative misclassification of the spectra for a certain substituent at each
position 1-6 separately for feedforward neural network(top) and fandom forest(bottom).

Influence of starting point on CA for 24 cm−1 sampling

interval (B3PW91/ 6-31++G(d,p))

A different starting point or SI can lead to exclusion of a wavenumber character-

istic for the AC. The drop in accuracy observed from an SI of 24 cm−1could be

caused by missing a specific wavenumber which was present in the spectra with

an SI of 8 cm−1, instead of a loss in information. We investigated this by train-

ing and evaluating on spectra of SI 24 cm−1 with three different starting point

separately, after which their performances were compared to those obtained for

SIs of 16 cm−1 and 32 cm−1. As can be observed in Figure 4.16, the CA does
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depend on the exact starting point. However, the influence of changing the SI to

16 cm−1 or 32 cm−1 still remains larger than the starting point.
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(b) Forward neural network

Figure 4.16: Influence of starting point (SP) on the classification accuracy for the
24 cm−1sampling interval for (a) random forest and (b) feedforward neural network.
Starting point A, B and C are 800, 808 and 816 cm−1 respectively. The different train-
validation split ratios are coloured as described in the legend.
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CA for spectra with bandwidth of 15 cm−1
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Figure 4.17: Classification accuracy of the spectra with bandwidth 15 cm−1, for (a)
random forest and (b) feedforward neural network. The different train-validation split
ratios are coloured as described in the legend.
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External validation of all ML models with other func-

tional/basis set for 0.5 cm−1 sampling interval

In order to evaluate the stability of the performance of the different ML models

originally considered are with regards to the choice of functional and basis set,

the mean CA and corresponding standard deviation over the different levels of

theory are illustrated in Figure 4.18. We observe that the performance of LogReg,

NB and, in particular, SVM is noticeably dependant on the level of theory, even

when a large majority of the data is provided for training.
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Figure 4.18: Mean Classification accuracy of the spectra for the different ML mod-
els over all combinations of the B3LYP and B3PW91 functionals, with the 6-31G(d)6-
31++G(d,p)/ 6-311++G(2d,2p) basis sets. The different data split ratios are coloured
as described in the legend.
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External validation of performance for RF and FNN

with other functional/basis set

To investigate to which degree the choice in functional and basis set will impact

the performance of both RF and FNN, each model (with the same hyperparam-

eters as described in Table 4.1) is trained on the spectra of the different levels of

theory separately. This procedure is repeated for all the different SIs and data

splits. Their mean performance and corresponding standard deviation over the

six different levels of theory are determined and illustrated in Figure 4.19. As

long as the SI remains similar or smaller than the FWHM and the majority of the

data is provided for training, the standard deviation is negligible. As an example,

the standard deviations for an SI of 8 cm−1 and a data split of 9:1, are 0.003 and

0.0004 for RF and FNN respectively. For an SI value of 24 cm−1 and 32 cm−1,

the standard deviation clearly increases, which strengthens our suggestion to keep

the SI value similar to the FWHM. The standard deviation also increases when

a smaller number of spectra is present in the training set. This is likely caused

by the smaller reliability of the CA values for the individual levels of theory, as

less training data with the same model complexity allows for more overfitting.
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Figure 4.19: Mean Classification accuracy of the spectra for (a) random forest and (b)
feedforward neural network over all combinations of the B3LYP and B3PW91 functionals,
with the 6-31G(d)6-31++G(d,p)/ 6-311++G(2d,2p) basis sets.
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Feature ranking for RF trained on various functional

& basis set combinations

The question arises whether the similar performances discussed in previous two

sections are due to the robustness of the ML methods or the ML models them-

selves are identical. In this section, the workflow described in section 4.3.4 is

repeated for the aforementioned remaining combinations of functional and basis

set. The resulting ranking scores of the spectral features (depicted in Figure 4.20)

do differ for the different levels of theory, even when accounting for the horizon-

tal shift of the vibrations’ frequencies. Hence, the RF models extract AC related

information in a different manner.
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Figure 4.20: Random forest ranking score of the spectral features for the prediction of
the chirality of the compounds for the different sampling intervals and combinations of
functional and basis set. From top to bottom the sampling interval equals 0.5, 4, 8, 16,
24, 32 cm−1.
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Performance and structure of shallow decision trees

trained on various functional & basis set combinations

To further exemplify the influence of the level of theory on how ML models extract

AC related information from the spectra, shallow decision trees (depth 2) were

trained on all spectra (SI 8 cm−1) for a specific level of theory. As illustrated

in Figure 4.21, the criteria (i.e. wavenumber and corresponding intensity) used

for the criterion in each decision node vary, especially so for the second layer of

decision nodes.

B3LYP/6-31G(d) B3PW91/6-31G(d)

B3LYP/6-31++G(d,p) B3PW91/6-31++G(d,p)

B3LYP/6-311++G(2d,2p) B3PW91/6-311++G(2d,2p)

Figure 4.21: Shallow decision trees trained on VCD spectra (SI 8 cm−1) of different
levels of theory as denoted in the figure. The nodes are coloured according to their purity,
with a blue-white-red gradient, with the dominant chirality class present in each node
denoted as 1 ((+)-α-pinene) or 2 ((–)-α-pinene). For each node the absolute and relative
population of the dominant class is given, along with the corresponding wavenumber and
intensity criterion used in each decision node.
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lajnar, M. Toplak, A. Staric, M. Stajdohar, L. Umek, L. Žagar, J. Žbontar, M. Žitnik and
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Chapter 5
Impact of conformation and

intramolecular interactions on

vibrational circular dichroism spectra

identified with machine learning

5.1 Introduction

Chiroptical spectroscopic methods measure the difference in interaction between

an optically active compound and left- or right-circularly polarized radiation.1–4

The best known chiroptical method is Electronic Circular Dichroism (ECD),

where one measures the difference in absorption of left- and right-handed cir-

cularly polarized visible and ultraviolet radiation by an optically active molecule.

Vibrational Circular Dichroism (VCD) is an infrared chiroptical method where

vibrational transitions are responsible for the difference in absorption. The main

advantage of VCD compared to ECD is the richer information obtained from

the former due to the much larger number of vibrational transitions compared

to the number of accessible electronic transitions. Chiroptical methods find

their main area of application in establishing the absolute configuration (AC)

of molecules.4–25 However, it also reveals a significant amount of information on

the conformational properties of a molecule.26–39 The link between conformation
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in the sense of its molecular geometry and its VCD spectrum is not easily es-

tablished on the basis of e.g., some rules of thumb and one usually relies on the

quantum chemically computed spectrum. The usual approach to establishing the

AC of a compound is to choose a specific AC of the molecule, find all its conform-

ers on the potential energy hypersurface and their energies and then combine all

computed spectra using Boltzmann weighting in a simulated molecular spectrum

for the chosen AC1. By repeating all these steps for each possible AC and com-

paring all computed spectra to the experimental one, one concludes what AC the

experimental sample corresponded to. Said computed spectra are usually gen-

erated using Density Functional Theory (DFT) calculations requiring sufficient

expertise and computational resources. Experience shows that the VCD spectra

of individual conformers of the same molecule may differ significantly even if they

belong to the same AC (see Supplementary Discussion 1), explaining why rules

of thumb cannot be established.26–34 The first hypothesis tested in this paper

is that machine learning (ML) can be used to predict the VCD spectrum for a

specific conformer using only its geometry, in this sense providing an alternative

to the DFT procedure. The second hypothesis of this paper is that ML may help

reduce significantly the total time cost needed to obtain a molecular spectrum.

This entails that ML should allow skipping enough time normally spent in DFT

calculations to more than compensate for the time it takes to establish the ML

model. The third and final issue examined is the extent to which a ML model

is transferable from one AC to another. Does it suffice to learn from one AC

and use this for all other possible AC’s? For instance, in a molecule with two

stereocenters, does it suffice to establish a ML model for RR and to then use it

also for RS, SR and SS?

ML methods are powerful methods for the extraction of complex patterns

hidden in spectral data, speeding up conventional workflows, and accelerating

computational methods.40–51 We have recently shown that there is hope that ML

can play a role in VCD spectroscopy52. More specifically, we have shown that

for a large set of congeneric molecules adopting a single conformer, we can use

ML to reveal to what AC a VCD spectrum of an unknown molecule corresponds.

Now the ambitions are higher. We want to extract a VCD spectrum solely from a

conformer geometry. Figure 5.1 contrasts the current work against our previous

work52 and other recent works53–55 that address the link between an AC and an
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experimental spectrum or property. The present paper concentrates on the link

between the structure of a conformer and its VCD spectrum within a given AC

of a molecule. Success in establishing this link will then also strongly benefit the

usual approach to VCD based AC assignments as it will allow circumpassing the

quantum chemical calculation of all conformer VCD spectra.

Figure 5.1: Scope of the current paper: can ML extract the link between the structure
of a conformer for a specific AC of a compound and its corresponding DFT computed
VCD spectrum? Note the difference with our previous ML work (in Chapter 4).

To prove or disprove the hypotheses set, a test bench of compounds must

be established. Somewhat naively, one could think of any set of compounds

for which VCD has been computed and/or measured but this is not useful. We

namely wish to be able to control ourselves the degree of conformational flexibility

of the molecules and the nature of their intramolecular interactions by changing a

number of substituents. At the same time, both effects should not intercorrelate

too much. This entails the use of admittedly somewhat peculiar molecules but the

priority is given to stepwise understand and prove the hypotheses. This would not

be possible using too diverse compounds while at the same time, error cancellation

could play a much larger role there. We use a tetra-substituted naphthalene

framework whose conformational flexibility and intramolecular interactions (such

as hydrogen bonding) we can control by judicious selection of substituents. This

allows us to test whether ML is sufficiently reliable over a range of chemical

situations.

To be able to impact the conformational flexibility and the degree to which

intramolecular interactions play a role without changing too many features si-

multaneously, we have chosen compounds that have the same backbone. A tetra-

substituted naphthalene framework is chosen as backbone. To this substituents
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Figure 5.2: Overview of compounds for which the link between conformer and VCD
spectrum is extracted with the ML workflow.

containing a chiral center in the R-configuration are added. Changing the sub-

stitution pattern enables to control the intramolecular interaction between the

substituents. An overview of the compounds considered in this work is provided

in Figure 5.2. In compounds 1a and 2a, the sidechains and their conforma-

tional properties can be expected to be largely independent from each other. For

example, steric hindrance is limited thanks to the large distance between the

sidechains. Vibrational mode coupling between the sidechain vibrations may still

impact the vibrational frequencies and corresponding VCD intensities though.By

changing the substitution pattern we impact the conformational freedom through

specific intramolecular interactions. Hence, we may introduce steric interactions

between the side chains when going from 1a to 1b and hydrogen bonding in going
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from 2a to 2b. Differences in the performance of the ML procedure can then be

attributed to the interactions introduced. The influence of a wider variety in the

functional groups present in the side chains, yielding more feature-rich spectra, is

examined using compounds 3 and 4. The absence of a C2 axis in addition reveals

the impact of the associated symmetry operation.

The obtained excellent quality of the spectral prediction suggests that ML

can link the geometry of a conformation to its VCD spectrum. As such, ML

can strongly reduce the effort spent in quantum chemically obtaining all VCD

spectra provided the ML step has a much lower computational cost. This is

indeed shown to be the case. On the other hand, unfortunately, the ML models

are not transferable, not even within the same molecule but with different AC.

ML as well as DFT based prediction of VCD spectra are quite technical fields

and every step needs to be very well thought of. Because of the highly technical

nature, the precise methodology including all error checks and balances used are

given in the methods section and supplementary material. The main lines of the

approach taken are:

� Generate minimum energy conformations using a force field for all com-

pounds in Figure 5.2 with chosen AC equal to RRRR

� Compute DFT geometries and VCD spectra using the B3PW91 functional

and 6-31G(d) basis set

� Establish a training, validation and test set per compound to train an ML

model to extract from solely a conformational geometry the VCD spectrum

and test hypothesis 1 (see above)

� Repeat this for all conformations of a molecule in the chosen AC and es-

tablish the time gained by using ML (hypothesis 2)

� Test the ML model for a different AC of the same molecule or even a

different molecule in the same AC or different (hypothesis 3)

Admittedly, in this study the entire usual approach involving elaborate DFT

calculations is also still performed to serve as a comparison basis but the end

goal is to strongly reduce the number of these calculations although some will

always remain required to train the model.
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5.2 Methodology

5.2.1 Conformational analysis and VCD DFT calcu-

lations

VCD spectra are very conformation dependent and so a molecular VCD spectrum

for a chosen AC is composed of a set of conformer VCD spectra each weighted

with their Boltzmann weight. Hence, to compute a proper VCD spectrum that

takes into account all conformers and their Boltzmann weights, it is necessary to

thoroughly sample the conformer ensemble within the chosen AC. The conformer

geometries and VCD spectra also constitute the input for an ML model. In order

to provide the model with an as diverse input as possible both low-energy and a

substantial number of higher energy conformers are generated using a force-field

based conformer generation algorithm. The geometry of the conformers is then

optimized further using DFT and VCD spectra are calculated for each conformer.

The details of each step are provided below.

� Conformer generation: A set of conformers is generated using the GMMX

routine,56 which implements a stochastic search mechanism. Conforma-

tional energies are computed with the MMFF9457 force field as implemented

in PcModel1058. During the stochastic search, a cut-off on the energy of the

conformers equal to 40 kcal mol−1 is used. In practice, the generated con-

formers spread over a smaller range of force field energies. The high cut-off

does not mean that we expect the high energy conformers to significantly

impact the Boltzmann averaged spectrum but it may add to the diversity

of the input for the ML stage. Second, experience shows that some inter-

actions are not well handled at the force field stage and conformer energies

may change significantly when moving to the DFT level.

� Geometry optimization and VCD spectrum generation: For each conformer,

the geometry is optimized further and the VCD line spectrum is computed

with the B3PW9159 functional, the 6-31G(d) basis set and assuming the

rigid rotor, ideal gas and harmonic approximation. These calculations are

performed using Gaussian1660.
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� Spectrum broadening and representation: The computed conformer spec-

tra are broadened using a Lorentzian band shape with a full width at half

maximum (FWHM) of 10 cm−1. The spectra were represented as vec-

tors containing the molar absorbance difference ∆ε(ν̃) = ϵL(ν̃)− ϵR(ν̃) for

wavenumbers ν̃ ranging from 800 cm−1 to 1800 cm−1 using a sampling

interval equal to the FWHM (10 cm−1), so a 101-dimensional vector.

The distribution of the conformer DFT energies is discussed in Supplementary

Methods 3.

5.2.2 ML model architecture, training and optimisa-

tion

A fully connected Feedforward Neural Network (FNN) is used in this work to

extract the link between conformer geometries and their corresponding VCD

spectra. The input is a vector containing molecular features describing the ge-

ometry of the conformer (for full description see section 5.2.3) and the output is

the 101-dimensional vector representing its VCD spectrum. Layers of artificial

neurons, so-called hidden layers, are inserted between the input and output layer.

During training, the connections between the neurons establish the link between

the VCD spectrum and the conformer geometry. An illustration of a FNN with

two hidden layers is shown in Figure 5.3. Training a single FNN to predict VCD

intensities for multiple ν̃ simultaneously, improves the generalizability61,62 of the

connections between the layers.

The set of conformers for a specific AC of a single molecule is split randomly

into three sets: a training, validation and test set. As mentioned earlier, the

connections between the neurons are extracted from the training set. The vali-

dation set is used to optimize the so-called hyperparameters of the FNN such as

its size and the algorithm used for training. The test set provides a final test of

how well the FNN can predict the spectra of new conformers. Initially a default

80%:10%:10% (training:validation:test) split is used. Results of the ML approach

for different splits are reported in Supplementary Discussion 5.

More technical details of the model are:

� Hyperparameter Optimization: for every application of the model the hy-
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feature 1
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feature k
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hidden
layer 1
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Figure 5.3: Illustration of a FNN with two hidden layers. Molecular features such as
dihedral angles are provided to the input neurons (red) and VCD intensities emerge from
the output neurons (green).

perparameters are optimized using Bayesian optimization. Here, a tree-

structured parzen estimator optimizes the hyperparameters within the search

space shown in Table 5.1.63 By reoptimizing the model for every applica-

tion (such as compound, representation or training set size) we prevent data

leaking from previous applications to the current model. The Bayesian op-

timization was implemented with Hyperopt 0.2.564.

� Dropout/Batch Normalization: during the Bayesian optimization the tree-

structured parzen estimator can choose to introduce Dropout65 for the hid-

den layers or batch normalization66 layers to reduce overfitting.

� Loss function: the model is trained with the mean squared error as loss

function. The exact implementation of the metric is explained in Supple-

mentary Methods 1 and 2.

All models are built and trained on a Xeon E5-2680v4 processor using Tensorflow

2.2.067.

5.2.3 Molecular representation

The ML model is trained to predict the VCD conformer spectra from the con-

former geometries of each molecule in turn and for a chosen AC. Ideally, a minimal

set of intramolecular coordinates that fully describes the conformation is chosen



Methodology 111

hyperparameter values

number of hidden layers {1, 2, 3, ..., 8}
number of neurons per hidden layer {50, 60, 70, ..., 500}

dropout rate {0, 0.05, 0.10, 0.15, 0.20}
activation function {tanh, elu, relu, selu}

optimizer {adam,nadam, rmsprop,
nesterov momentum}

learning rate
[
10−5, 10−2

]
use of batch normalization {True, False}

regularization type {Lasso L1,Ridge L2}
regularization strength

[
10−9, 10−4

]
early stopping patience 5 epochs

Table 5.1: Hyperparameter space considered for Bayesian optimization of the FNN.
For a more detailed description of the individual concepts we refer to the documentation
of Tensorflow.67

as input for the model. For each of the six compounds, the major differences

between conformers of the same compound lie in the geometrical arrangement of

the sidechains. Therefore, the conformer geometry is presented to the ML model

as the set of dihedral angles in the sidechains shown in Figure 5.4. Throughout

this work we will refer to this set of dihedral angles as representation A. We

expect this representation to capture most of the conformational flexibility. If

the model cannot fully capture the link between conformer and spectrum with

representation A, other geometric parameters are added to the representation

and their influence is discussed.

Conformers of compounds 1a/1b/2a/2b lacking a C2 axis can arise in two

different ways by rotating the sidechains internally, resulting in degenerate con-

formations which share the same VCD spectrum but are presented to the ML

model as different conformations with this representation. Hence, we will teach

the model that the predicted spectra need to be the same for both by explicitly

including both members of such pairs.
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Figure 5.4: The set of dihedral angles used to describe the conformer geometries for
each compound (representation A). The orientation of the NH2 group of compound 3 was
encoded as the bisector between the dihedral angles C-C-N(HB)-HA and C-C-N(HA)-HB

to remove the influence of the numeric labels assigned to HA and HB .

5.3 Results and discussion

5.3.1 Hypothesis 1: Machine learning can predict con-

former spectra solely from molecular geometry

The first hypothesis is that ML can learn from a dataset of conformer geometries

and their VCD spectra the intricate link between both. To this end, for every

compound, a training set of conformers and spectra is established so that an

ML model can be obtained. This does -admittedly- mean that it is impossible

to completely bypass all DFT calculations but the aim is to be able to limit the

number to just enough to train a proper model (see supplementary material). For

all compounds in Figure 5.2, an ML model was trained using different ratios of

training, test and validation set and the hypothesis is examined by looking at the

similarity between a DFT predicted conformer spectrum and one obtained using
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the trained ML model. The results are presented in Figure 5.5. For all appli-

cations, the molecular geometry is represented using only the sidechain dihedral

angles.

Figure 5.5: Performance of the ML approach. For each conformer of each compound,
the similarity between the ML predicted spectrum and the DFT computed spectrum in
the test set is shown. Separate plots are used per class of compounds in Figure 5.2.

As a similarity measure we use the cosine similarity measure Spred which is

the normalized overlap between the ML predicted and DFT computed spectrum

(see Supplementary Methods 1 and 2 for details on the similarity measures). If

it equals 1, the spectra are exactly the same. It can turn negative, meaning

that the ML predicted spectrum would rather agree with the enantiomer of the

DFT computed spectrum. This would be detrimental for the use of ML in VCD

based AC assignment and it is gratifying that no conformers appear with negative

similarities. Figure 5.5 are so-called violin plots. The width of the “blob” at every

value of Spred reflects how many conformers are binned within a small interval

around that value. How wider the “blob” the more conformers have an Spred in

that bin.

Clearly, the procedure works very well in case of compound 1a. The far

majority of conformers comes with values around 0.99 and only a very small
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tail descends towards circa 0.96. To put this in perspective, the loss in exact

similarity is of the order of or even better than the variation in spectrum if one

compared DFT spectra for the same conformer obtained using a different basis

set or functional. This shows that the ML procedure works very well. Compound

1b is a structural isomer and there the results are somewhat less impressive. A

vertically more spread out “blob” is obtained but the far majority of points still

has an impressive similarity above 0.9. Two sets of conformers appear and one

might be tempted to interpret this in terms of one collection of conformers with

stronger steric hindrance and one with less, but no such connection is found (see

Supplementary Discussion 2). Compound 2a again shows that the majority of

conformers exhibits very good agreement between the ML predicted and actual

DFT computed spectrum although the similarities do go down to roughly 0.75.

This is still more than sufficient in the context of AC determination.68 One could

suggest that conformers with higher energy lay lower in similarity, but this is

not the case (see Supplementary Discussion 3). For compound 2b, two plots are

shown. The first is the result using ML training with only the sidechain dihedral

angles as input. Hydrogen bonding is not well represented in this encapsulation

of molecular geometry. When additional parameters are included (denoted as

hbond, see bottom right panel and supplementary material), the violin plot shifts

massively to higher similarities (see Supplementary Discussion 4). This means

that sufficient attention must be paid to what is a proper representation of a

conformer geometry. Compounds 3 and 4 introduce a wider range of substituents

and it is clear that the agreement between DFT and ML predicted spectra is very

good.

These results reveal that ML does allow to partially replace DFT calculations.

Still, for many conformations the VCD spectrum needs to be calculated using

DFT as one needs a training set for each compound but once an ML model is

available, the spectra of all conformations for which no DFT calculation of the

VCD spectrum was performed can be computed from the ML model. A detailed

study of what fraction of conformers is required for DFT VCD calculations is

given in the Supplementary Discussions 5 and 6.
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5.3.2 Hypothesis 2: Machine learning can significantly

reduce the computational cost for AC assign-

ment

From a practical perspective, the scientifically already valuable results above,

suggest that one could significantly reduce the effort to assign an AC to an exper-

imental sample. In practice, assigning the AC of an experimental sample requires

elaborate DFT calculations for all conformers in each possible AC, composing a

Boltzmann averaged VCD spectrum and comparing it to an experimental mea-

surement. Even if for the moment, we assume that a separate ML model needs

to be trained for every assumed AC, there may be a significant time gain due to

the use of ML. The most time consuming part in the usual approach lies in com-

puting the VCD spectra, much less in the geometry optimization so for now we

take for granted that the geometries and Boltzmann weights are DFT computed.

One could envision to also skip the step of geometry optimization and use only

geometries and energies from a force field calculation but this is subject of future

work. At this exploratory stage, it is important not to reach too far in ambitions

to avoid that conclusions could be based on partial error cancellation.

DFT cost DFT cost ML- Cost generation Time savings ML-
Compound classical approach aided approach ML model aided approach

1a 7140 hours 5707 hours 7 hours 1426 hours
1b 5507 hours 4406 hours 4 hours 1097 hours
2a 2691 hours 2153 hours 6 hours 532 hours
2b 2025 hours 1619 hours 5 hours 401 hours
3 7293 hours 5828 hours 11 hours 1454 hours
4 4771 hours 3811 hours 6 hours 954 hours

Table 5.2: Comparison of the cost for the Boltzmann weighted spectrum with the
classical approach (using the DFT computed spectra for all conformers) and the ML-
aided approach where 80% of all conformer spectra come from DFT calculations and the
remaining 20% are predicted with the ML model. Cost is reported in cpu time for a Intel
Xeon E5-2680v4 processor.

Table 5.2 shows the total time cost for all compounds to compute a Boltzmann

weighted VCD spectrum using the classical approach and using one where part

of the DFT VCD calculations are replaced by the ML based prediction. To allow

for a fair comparison, the time spent to train the ML model is also reported. The

data in Table 5.2 is obtained using a very large fraction of DFT conformer VCD
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spectra (DFT spectra computed for 80% of all conformers). As the ML training

step can be done quite efficiently, the relative time savings are mostly limited

by the spectra generated to establish the ML model. Nonetheless, significant

computer time is already being saved compared to the classical approach.

Figure 5.6: The relative speedup with the ML-aided approach (blue) using different
percentages of DFT conformer spectra is shown for compound 4. The similarity of
the Boltzmann weighted spectrum obtained with the ML-aided approach and the one
composed with all DFT conformer spectra (green) is determined for each percentage of
DFT conformer spectra using the cosine similarity Θ (see Supplementary Methods 1 for
details).

Computing DFT spectra for 80% of all conformers of course limits the possible

time gain with ML. Hence, we also investigate the additional time savings possi-

ble if the ML model is generated using a smaller percentage of DFT computed

spectra. Using fewer DFT spectra may adversely affect the similarity between

the Boltzmann weighted spectrum composed with the DFT spectra of all con-

formers and one based on a combination of DFT spectra and ML predictions.

Figure 5.6 shows the relative speedup for the Boltzmann weighted spectrum as a

function of the percentage of DFT computed spectra, along with the similarity

of the Boltzmann weighted spectrum and the one based on the DFT spectra of

all conformers, for compound 4. It is found that one can strongly reduce the

percentage of DFT computed spectra without significantly affecting the result-

ing spectrum in the sense that the similarity to the spectrum composed with all

DFT conformer spectra remains very high. At a similarity of 0.95, all details of

the spectrum are still reproduced. With roughly 15% of the conformer spectra
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computed with DFT and used to generate the ML model, the ML-aided approach

allows to retain a similarity above the threshold of 0.95 while providing a speedup

with a factor of 6.6.

Similar speedup values as reported for compound 4 are also found for the

other model compounds. The Boltzmann weighted spectra obtained for each

compound with this approach, along with the associated speedup and similarity,

are given in Supplementary Discussions 7 and 8.

5.3.3 Hypothesis 3: Machine learning can generate

transferable models

Figure 5.7: Transferability of the ML model to different stereoisomers. Left panel:
similarity of the predictions for the epimer and enantiomer with the ML model trained
on only compound 4 . Right panel: similarity of the predictions from the ML model
trained on a combination of the conformers of compound 4 and the conformers of either
the epimer or enantiomer.

All of the above is based on individually training an ML model for a specific

AC of a specific molecule. The gratifying time savings reported above could be

very strongly boosted if learning an ML model for a single AC would lead to a

model that can also be used for a different stereoisomer. To test this we took

compound 4 where ML works excellently for a single AC (see hypothesis 1 and

Figure 5.5). We then switched the AC of compound 4 to both an epimer and

the enantiomer, and used the ML model generated for compound 4 to predict

conformer spectra for both. The results are presented in the left panel of Figure



118 5. Impact of conformations on VCD spectra identified with ML

5.7. The predictions for the new stereoisomers unfortunately do not resemble the

DFT conformer spectra. The ML model is far from transferable to other AC’s,

especially if the conformer spectra differ significantly from the original AC. In

an attempt to remedy this, one could suggest to train for multiple stereoisomers

in one run. With this approach the conformer spectra of each stereoisomer are

obtained with the same accuracy as for a single AC (right panel of Figure 5.7).

With the current approach, the ML model can only faithfully reproduce spectra

for stereoisomers it has been trained on.

Figure 5.8: ML model predictions for enantiomeric conformer pairs. Left panel: predic-
tion for a selected conformer of the test set of 4 (red) and its mirror image (blue) when
the ML model is trained on conformers of 4. Right panel: prediction for the conformer
and its mirror image when the ML model is trained on conformers of both 4 and the
enantiomer.

Figure 5.7 also reveals a particular feature. DFT spectra are always only

computed for one enantiomer of the set of enantiomers as spectra of enantiomers

are mirror images. It is clear that this was not picked up when training on only

one of both enantiomers. When training on both enantiomers, the question is

whether enough information was sourced such that for the two mirror images of

the same conformation also a mirror image spectrum is obtained from the ML

model. This is indeed the case as is shown in Figure 5.8 where in the left panel

the spectra of an enantiomeric pair of conformers is compared when only one AC

was used in training. In the right panel, the result is shown when both AC are

included in training.
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5.4 Conclusions

The potential of ML in VCD spectroscopy to (partially) replace DFT calculations

was examined. Three hypotheses have been put forward, leading to the following

conclusions:

� Hypothesis 1: Machine Learning can predict conformer spectra solely from

molecular geometries.

The similarity between the DFT computed spectrum of a conformer and the

spectrum predicted with ML from its geometry is very high. ML can indeed

learn the intricate and hidden connection between a conformer geometry

and its VCD spectrum. Though, it is up to the user to make sure that

the representation of the geometry in a practical form encapsulates all the

necessary input to cover intramolecular interactions.

� Hypothesis 2: Machine Learning can significantly reduce the computational

cost for AC assignment.

The present results show that the ML training step may be done quite

efficiently and as a result significant time savings are possible. Obviously,

it remains up to the user to determine whether the time savings compensate

for the learning curve associated with proper training in ML methods.

� Hypothesis 3: Machine Learning can generate transferable models.

The current design architecture does not result in transferable ML models,

neither between molecules nor among different AC’s of the same molecule.

The current ML approach already satisfies 2 out of 3 hypotheses. Clearly, more

development on the ML methodology is still needed to satisfy hypothesis 3.

Nonetheless, ML shows promise as a tool for extracting the link between con-

formations and VCD spectra.
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Supplementary discussions

1 Sconf distribution of IR & VCD spectra

Prior to deploying an ML model to predict conformer spectra, we need to estab-

lish the variability of spectra between conformers of the same compound. If the

conformer spectra within the same AC of a single compound are all very similar,

high Spred values can be obtained without the ML model extracting a meaningful

pattern between geometry and spectrum. If Spred outclasses the mean similarity

between DFT conformer spectra themselves, the model has successfully estab-

lished a link between the geometry of a conformer and its spectrum. For each

compound, the cosine similarity between all unique pairs of conformer spectra

(Sconf ; see equation 5.3) is determined. This analysis is performed for both the

IR and VCD conformer spectra separately. Note that for the IR spectra Sconf

can have values between 0 and 1 while for VCD spectra Sconf can have values

between -1 and 1. The distribution of Sconf is depicted in Figure 5.9 for the

IR conformer spectra and Figure 5.10 for the VCD conformer spectra. A violin

plot is used to describe the distribution of Sconf for each compound. The width

of the “blob” reflects the number of conformer pairs found within a small inter-

val around that Sconf value and the added boxplot shows the median value and

interquartile range.
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Figure 5.9: Similarity of conformer IR spectra. The cosine similarity between IR
spectra corresponding to unique conformer pairs are reported for each compound. For
the different compounds following Sconf values are obtained: 0.942 (1a), 0.919 (1b),
0.818 (2a), 0.744 (2b), 0.773 (3), 0.703 (4).

Figure 5.10: Similarity of conformer VCD spectra. The cosine similarity between VCD
spectra corresponding to unique conformer pairs are reported for each compound. For
the different compounds following Sconf values are obtained: 0.556 (1a), 0.418 (1b),
0.182 (2a), 0.170 (2b), 0.097 (3), 0.150 (4).
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Figure 5.11: Number of conformer spectra for each compound.

The variability between IR conformer spectra is rather weak: For compound

1a and 1b, Sconf exceeds 0.9 and for compound 2a Sconf is larger than 0.8. For

these compounds any differences between the conformer IR spectra are subtle at

best. For compounds 2b, 3 and 4 lower Sconf values are obtained, though the

overall sensitivity of the IR spectra to conformational differences remains limited.

The VCD conformer spectra are more sensitive to conformational differences

than the IR conformer spectra. For each compound, the Sconf obtained for the

VCD spectra is significantly lower than the Sconf for the corresponding IR spec-

tra. For the VCD spectra, the largest Sconf is obtained for 1a with a mean value

of 0.556. Introduction of steric interactions increases the variability between con-

former VCD spectra resulting in a lower Sconf of 0.418 (1b). When hydrogen

bonding interactions are introduced, Sconf drops slightly from 0.182 (2a) to 0.170

(2b). The largest variability between conformer spectra is observed for the com-

pounds with increased chemical diversity with Sconf values of 0.097 (3) and 0.150

(4). Interestingly, the lowest Sconf is obtained for 3 which has the largest number

of possible conformers (Figure 5.11).

Altogether, the VCD spectra are clearly sensitive to conformational differ-

ences. The IR spectra are less sensitive to these conformational differences which

limits the added value of the ML approach compared to VCD. The focus in this

paper will therefore lie on assessing the ML approach for VCD.
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2 Impact of steric interactions on Spred for 1b

The steric interactions between adjacent sec-butyl side chains for compound 1b

decreases the Spred compared to compound 1a. One could, naively, expect that

this results from lower Spred values for conformers with larger steric hindrance.

We test this notion using the lowest H..H distance between the CH2 and the

(CH2)CH3 groups of adjacent sidechains within each individual conformer (see

Figure 5.12) as a metric for steric interaction. Figure 5.13 shows that the Spred

value obtained for a conformer is not linked to the steric hindrance within said

conformer.

Figure 5.12: Minimum H..H distance used to describe steric interactions between the
sidechains. The H..H distance shown in the left panel is calculated for each pair of
adjacent sidechains (s1-s2, s2-s1, s3-s4, s4-s3; see right panel) and the minimum value of
these H..H distances is determined for each individual conformer.

Figure 5.13: Influence of minimum H..H distance on Spred for each conformer in the
test set of 1b.
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3 Comparison of conformer ∆H0
298.15 and Spred

In Figures 5.14-5.19 ∆H0
298.15 and S

pred are compared for every test set conformer

of a compound. Figure dimensions were adapted for Figure 5.15 and 5.17 to

accommodate for the larger range of ∆H0
298.15 for 1b and of Spred for 2b. In

general, there is no pattern showing that lower Spred values are obtained for

conformers with larger ∆H0
298.15. Thus, the accuracy of the ML model predictions

is not biased towards conformers with lower ∆H0
298.15.

Figure 5.14: Comparison of ∆H0
298.15 and Spred for the test set of compound 1a.

Figure 5.15: Comparison of ∆H0
298.15 and Spred for the test set of compound 1b.
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Figure 5.16: Comparison of ∆H0
298.15 and Spred for the test set of compound 2a.

Figure 5.17: Comparison of ∆H0
298.15 and Spred for the test set of compound 2b.
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Figure 5.18: Comparison of ∆H0
298.15 and Spred for the test set of compound 3.

Figure 5.19: Comparison of ∆H0
298.15 and Spred for the test set of compound 4.
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4 Influence of representation on performance for in-

dividual conformers of 2b

For compound 2b lower Spred values are obtained with representation A compared

to the other compounds. Representation A might not sufficiently capture the

hydrogen bonding in a way understandable to the ML model. To improve the

accuracy of the ML predicted spectra, the additional parameters shown in Figure

5.5 are used to describe the geometry of the conformers. Doing so, the Spred

shifts to higher values as a result (see Figure 5.20). For a large majority of

the conformers in the test set Spred increases with the additional parameters

(see Figure 5.21), though for a handful of conformers lower Spred values are

obtained with the new representation. Including these hbond parameters does

not negatively impact generalization as indicated by the generalization factor

reported in Supplementary Discussion 6. To summarize: including the hydrogen

bond angles and distances allows the ML model to extract a more detailed link

between the conformer and its VCD spectrum though a small fraction of the

conformers do not fit in the pattern obtained with this new representation.

Figure 5.20: Distribution of the Spred values for conformers in the test set of compound
2b with (red) and without (white) intramolecular hydrogen bonds for both representa-
tions. Individual Spred values are shown as horizontal bars within the violin plots.
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Figure 5.21: Spred values obtained with representation A and A+hbond for each con-
former in the test set of compound 2b. Presence of an intramolecular hydrogen bond
within a conformer is denoted by colour. Conformers lying above the diagonal have in-
creased Spred values upon adding the hbond parameters.

5 Spred on VCD conformer spectra with different data

splits

As demonstrated in the section covering hypothesis 1 (see Figure 5.5), excellent

performance can be obtained for the different compounds with the default data

split of 80:10:10 (training:validation:test). The ML model can clearly establish

the link between conformer and spectrum. As the cost of the entire ML workflow

is equal to computing 1-3 DFT spectra for this data split, the test set spectra

are obtained at a fraction of the computational cost of the conventional DFT

procedure. With a large majority of the conformers used as training samples, the

relative speed-up for obtaining all DFT conformer spectra for a single compound

remains rather limited. To establish the relative speed-up obtainable whilst main-

taining good predictive quality, the performance of the ML approach is examined

for different data splits in this section.

The training and optimization procedure used in the previous sections, is

repeated for all compounds while incrementally relocating conformers from the

training set to the validation set. Repeating the optimization of the ML model

ensures that no data leakage occurs (i.e. all information from the original training

set is erased) and allows to decrease model complexity to accommodate for smaller

training sets. The same test set is used across the different splits. Doing so, Spred

is established in a consistent manner and the influence of the training set size is
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isolated. Representation A+hbond is used for compound 2b and representation

A for the other compounds. The Spred values obtained for the different splits and

compounds are shown in Figure 5.22.

Figure 5.22: Performance of the ML approach for different training set sizes. For each
compound and data split, Spred is shown. Training set size is denoted by colour.

For 1a excellent Spred is retained across the different splits. Even when only

10% of the conformers is used for training, the test set spectra are reproduced

with a Spred of 0.918. For 1b the conformer spectra are predicted with excellent

Spred when at least 45% of the conformers reside in the training set. For 2a and,

to a larger extent, 2b Spred drops quickly when less training samples are provided.

While a training set size of 60% still yields excellent Spred for 2a, with the same

training set size a Spred of 0.848 is obtained for 2b. For 3 and 4, the decrease

in Spred with smaller training sets is less steep: both compounds retain excellent

Spred if at least 30% of the spectra are included in the training set. These Spred

values are very impressive as for 3 and 4 the conformer spectra varied the most

(see Supplementary Discussion 1).

The influence of vibrational mode delocalization provides an explanation for

the steeper performance drop for 2a compared to 3 and 4. Whereas the majority

of the vibrational modes within the considered wavenumber range involve only

a single sidechain (along with the naphthalene moiety) for 3 and 4, for 2a the

vibrational modes are delocalized over the entire compound. As discussed in the

main paper, the sidechains are largely independent from each other in conformer

space. However, they do correlate through the delocalized vibrational modes,

along with the corresponding vibrational frequencies and VCD intensities. Pro-

viding a large majority of the spectra for training, this complex pattern can still
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be extracted by the ML model. With a small training set, too few examples are

provided to the ML model to properly learn these correlations. While the same

degree of delocalization is expected for 1a, the conformer VCD spectra are more

similar (see Supplementary Discussion 1). Thus, obtaining good performance

with a smaller training set is relatively less challenging.

The influence of intramolecular interactions is more pronounced for smaller

training sets. Correlation between sidechains in conformer space complicates

the spectral prediction problem. In case of hydrogen bonding Spred drops more

sharply. As intramolecular hydrogen bonding has a strong influence on the vibra-

tional modes, this correlation is even stronger and more complex in 2b. Thus,

when less examples of these correlations are provided, properly accounting for

the different correlations becomes more challenging for the ML model.
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6 Training, validation and test set MSE for different

data splits

In this section the MSE metrics are reported for the training (MSEtrain), val-

idation (MSEval) and test set (MSEtest). While the performance on the test

set is the ultimate test of the ML approach, the ratios between the MSE metrics

(see equation 5.1 and 5.2) can also be of interest for future reference. The use

of these ratios was inspired on the work of Röbel69,70. The ratios are shown in

Figure 5.23 and the values of the MSE metrics are reported in Table 5.3.

ρtrain =
MSEtest

MSEtrain
(5.1)

ρval =
MSEtest

MSEval
(5.2)

Figure 5.23: Bar plot of ρtrain (top) and ρval (bottom) for each compound and training
set size (denoted by colour). Representation A+hbond was used for compound 2b and
representation A for the other compounds.
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com- represen- training set ρtrain ρval MSEtrain MSEval MSEtest Spred

pound tation size (%)
1a A 80 6.4 1.07 0.002 0.011 0.012 0.994
1a A 75 6.9 1.08 0.002 0.015 0.016 0.992
1a A 60 6.0 1.01 0.003 0.020 0.020 0.990
1a A 45 2.6 0.99 0.014 0.038 0.037 0.981
1a A 30 2.1 0.95 0.027 0.060 0.057 0.971
1a A 15 5.5 0.95 0.019 0.113 0.107 0.946
1a A 10 2.1 0.97 0.077 0.164 0.160 0.918
1b A 80 4.1 1.07 0.017 0.065 0.070 0.964
1b A 75 2.6 1.07 0.027 0.067 0.072 0.964
1b A 60 3.2 1.06 0.029 0.088 0.093 0.953
1b A 45 5.1 1.05 0.021 0.103 0.108 0.943
1b A 30 3.9 1.08 0.054 0.194 0.210 0.891
1b A 15 3.5 1.07 0.104 0.339 0.364 0.808
1b A 10 4.7 1.10 0.086 0.368 0.405 0.780
2a A 80 2.9 1.01 0.033 0.095 0.096 0.939
2a A 75 2.4 1.05 0.036 0.081 0.085 0.950
2a A 60 3.5 0.93 0.036 0.134 0.125 0.922
2a A 45 4.1 0.96 0.047 0.201 0.192 0.885
2a A 30 5.6 0.99 0.054 0.307 0.303 0.819
2a A 15 4.8 0.94 0.103 0.521 0.490 0.685
2a A 10 6.0 0.93 0.094 0.599 0.559 0.631
2b A+hbond 80 17.8 1.01 0.006 0.106 0.107 0.945
2b A+hbond 75 37.8 0.96 0.004 0.158 0.151 0.919
2b A+hbond 60 6.2 0.92 0.042 0.282 0.260 0.848
2b A+hbond 45 3.7 0.99 0.112 0.419 0.413 0.751
2b A+hbond 30 4.5 0.95 0.106 0.499 0.472 0.709
2b A+hbond 15 7.0 0.88 0.076 0.605 0.534 0.655
2b A+hbond 10 2.1 0.91 0.302 0.701 0.635 0.578
3 A 80 2.0 1.03 0.032 0.065 0.067 0.966
3 A 75 2.5 1.00 0.029 0.070 0.070 0.964
3 A 60 3.5 0.99 0.026 0.091 0.090 0.954
3 A 45 2.7 1.01 0.043 0.113 0.114 0.940
3 A 30 3.4 1.00 0.054 0.182 0.182 0.904
3 A 15 3.5 0.99 0.086 0.302 0.300 0.836
3 A 10 2.9 1.01 0.136 0.389 0.393 0.774
4 A 80 6.3 0.85 0.007 0.056 0.048 0.975
4 A 75 2.4 0.95 0.024 0.059 0.057 0.970
4 A 60 3.4 0.87 0.025 0.098 0.084 0.953
4 A 45 7.6 0.93 0.014 0.111 0.103 0.945
4 A 30 3.9 0.93 0.041 0.172 0.159 0.913
4 A 15 3.1 0.95 0.093 0.304 0.288 0.835
4 A 10 2.5 0.92 0.139 0.379 0.347 0.798

Table 5.3: Mean squared errors on the train, validation and test set (standard scaled)
spectra for the different compounds and splits.
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7 Construction of Boltzmann weighted spectrum with

ML predictions

In the section covering hypothesis 1 we have established that VCD conformer

spectra can be accurately predicted with an ML model. A remaining question is

the extent to which the Boltzmann weighted spectrum obtained with the classi-

cal approach used in most applications of VCD, can be approximated using the

predictions of the ML model. We address this question for each compound by con-

structing a Boltzmann weighted spectrum ∆εML(ν̃) that uses all DFT enthalpies

along with the DFT spectra of the training set and ML predicted spectra for the

validation and test sets. The Boltzmann weighted spectrum obtained with the

classical approach i.e. using DFT enthalpies and DFT spectra for all conformers,

is referred to as ∆εDFT (ν̃). The similarity of ∆εDFT (ν̃) and ∆εML(ν̃), referred

to as Θ, is determined for each compound (using equation 5.8) and shown in

Figure 5.24. For the 80:10:10 split, ∆εML(ν̃) and ∆εDFT (ν̃) are completely in-

distinguishable (Θ > 0.999). So, by replacing 20% of the conformer DFT spectra

with ML predictions, we introduce the significant time savings reported in Table

5.2 without losing even the tiniest details of ∆εDFT (ν̃).

The results in Supplementary Discussion 5 indicate that with fewer conform-

ers in the training set the accuracy of the ML predicted conformer spectra does

decrease. By constructing ∆εML(ν̃) with a larger fraction of ML predicted spec-

tra, we test whether a similar drop is observed for Θ. Note that ∆εML(ν̃) is

constructed for each of the smaller training sets using the ML model obtained

with said training set. Again, ∆εML(ν̃) reproduces ∆εDFT (ν̃) with excellent ac-

curacy across all different splits. When at least 30% of all conformers (or 45% for

2b) are included in the training set, ∆εML(ν̃) replicates even the tiniest details

of ∆εDFT (ν̃) (Θ ≥ 0.99). A slight decrease in Θ is noted for even smaller training

sets but Figure 5.25 shows that ∆εDFT (ν̃) and ∆εML(ν̃) remain very similar. So,

for these compounds ∆εDFT (ν̃) is approximated very well by leveraging the ML

predicted conformer spectra.

Curiously, Θ decreases more steeply for 4 compared to 3 despite the larger

Sconf and larger/similar Spred for 4. A possible explanation for this lies in the

cancellation of VCD intensities during Boltzmann averaging of conformer spectra.

VCD intensities of opposite sign for different conformers can partially cancel each
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other. Errors in the predicted VCD intensities can be averaged out in a similar

manner. The degree of error compensation will depend on the sign and (Boltz-

mann weighted) magnitude of the errors and thus differ between compounds.

Figure 5.24: Similarity Θ of the Boltzmann weighted spectra ∆εDFT (ν̃) and ∆εML(ν̃)
for each compound and split. Training set size is denoted by colour.

Figure 5.25: Comparison of ∆εDFT (ν̃) (blue) and ∆εML(ν̃) (orange) for the different
compounds (as denoted) and smaller training set sizes. For each compound ∆εML(ν̃) is
shown as obtained for the following training set sizes (from top to bottom): 45%, 30%,
15% and 10%. Values of Θ are reported for each split and compound in the corresponding
figures.



136 5. Impact of conformations on VCD spectra identified with ML

Figure 5.25: Comparison of ∆εDFT (ν̃) (blue) and ∆εML(ν̃) (orange) for the different
compounds (as denoted) and smaller training set sizes. For each compound ∆εML(ν̃) is
shown as obtained for the following training set sizes (from top to bottom): 45%, 30%,
15% and 10%. Values of Θ are reported for each split and compound in the corresponding
figures.(cont.)
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8 Relative speedup for Boltzmann weighted spectrum

The ratio in the cost of the classical approach (using only DFT spectra) and the

ML-aided approach (including time spent in the ML model generation), referred

to as the relative speedup, is determined for each compound and split. The result

is shown in Figure 5.26 for all compounds along with the corresponding similarity

Θ previously reported in Figure 5.24. As the ML training step can be done very

efficiently, the speedup is inversely proportional to the training set size. Very

significant speedup may be obtained by limiting the percentage of conformations

for which the spectrum is computed by DFT and used for training the ML model.

As this percentage grows smaller, some similarity loss is found but putting the

limit at 0.95, it is clear that one may strongly lower this percentage before the

spectrum starts to deviate substantially from the spectrum obtained using only

DFT conformer spectra (see Figure 5.25).
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Figure 5.26: Comparison of the relative speedup obtained with the ML-aided approach
(blue) and Θ (green) for each compound and training set size.
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Supplementary methods

1 Spectral similarity and model performance

In this paper we probe the ability of ML to predict conformer spectra directly

from the geometry of the conformers. The metrics used to express the similarity

of different spectra and to train the ML model play a pivotal role and hence a

more detailed discussion on these metrics is warranted. The cosine similarity

(also known as the overlap integral or Carbó index) is often used within the VCD

community to define the relative similarity of two spectra.68 The similarity metric

adopts values between -1 and 1, where 1 indicates the spectra to be identical and

-1 identifies the spectra as perfect mirror images. The similarity metrics used

within this paper are detailed below and a summary is provided in Table 5.4 for

future reference. Their use will become clear in later sections.

� A first similarity measure reflects the relative similarity of DFT calculated

conformer spectra. Here, the cosine similarity Sconf
ij of two calculated spec-

tra ∆εcalci (ν̃) and ∆εcalcj (ν̃) is determined for a pair of conformers i and j

(equation 5.3). The mean value of Sconf over all unique pairs of the M

conformers is denoted Sconf (equation 5.4).

Sconf
ij =

1800∑
ν̃=800

(
∆εcalci (ν̃) ·∆εcalcj (ν̃)

)
√

1800∑
ν̃=800

(
∆εcalci (ν̃)

)2√ 1800∑
ν̃=800

(
∆εcalcj (ν̃)

)2 (5.3)

Sconf =
2

M(M − 1)

M−1∑
i

M∑
j>i

Sconf
ij (5.4)

� The ML model is trained using the mean squared error (MSE) between the

scaled DFT conformer spectra ∆εcalc,sc(ν̃) and the predictions for the scaled

spectra ∆εpred,sc(ν̃) (equation 5.5) for all N conformers in a set (training,

validation or test). A detailed explanation of the scaling methodology is

provided in Supplementary Methods 2. After training and optimization,

the predictions for the scaled spectra are transformed to the same scale as

∆εcalc(ν̃), resulting in ∆εpred(ν̃).
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MSE =
1

101 ·N

N∑
i

1800∑
ν̃=800

(
∆εcalc,sci (ν̃)−∆εpred,sci (ν̃)

)2
(5.5)

We do not train the ML model using a cosine similarity as it is a relative

similarity metric. If trained with a cosine similarity, the ML model only

learns to recreate the shape of a conformer spectrum but not the overall

VCD intensity
∑1800

ν̃=800(∆ε
calc
i (ν̃))2 for each conformer i. The mismatch in

this intensity between the DFT and ML predicted spectra will be different

for each conformer. As a result, the ML predictions can no longer be used

to build a Boltzmann weighted spectrum.

� Once the ML model is trained and optimized, the relative similarity of

a DFT calculated spectrum ∆εcalci (ν̃) of conformer i and the spectrum

predicted by the ML model for said conformer ∆εpredi (ν̃) is expressed using

the cosine similarity Spred
i (equation 5.6). The mean value of Spred over all

N conformers within the test set is denoted Spred (equation 5.7).

Spred
i =

1800∑
ν̃=800

(
∆εcalci (ν̃) ·∆εpredi (ν̃)

)
√

1800∑
ν̃=800

(
∆εcalci (ν̃)

)2√ 1800∑
ν̃=800

(
∆εpredi (ν̃)

)2 (5.6)

Spred =
1

N

N∑
i

Spred
i (5.7)

In the context of this paper we see the ML prediction as excellent for Spred

values exceeding 0.9 as any remaining errors in the spectrum are hardly

visible to the human eye. In Figure 5.27 we show this using some examples

for different Spred values.

� Eventually, the Boltzmann weighted spectrum ∆εDFT (ν̃) computed entirely

from DFT spectra is compared with the Boltzmann weighted spectrum

∆εML(ν̃) where DFT spectra of the training set are combined with the

ML predicted spectra for the remaining conformers. The similarity of both
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Figure 5.27: Comparison of DFT conformer spectra (orange) and corresponding ML
predicted spectra (blue) for different Spred values. The DFT spectra and ML predictions
are taken from Supplementary Discussion 4.

Boltzmann weighted spectra is determined with Θ (equation 5.8).

Θ =

1800∑
ν̃=800

(
∆εDFT (ν̃) ·∆εML(ν̃)

)
√

1800∑
ν̃=800

(
∆εDFT (ν̃)

)2√ 1800∑
ν̃=800

(
∆εML(ν̃)

)2 (5.8)

2 Data scaling and influence on MSE

It is common practice in ML applications to standardize the features in the

dataset such that each feature (e.g. a dihedral angle of a compound) has a mean

value of 0 and a standard deviation of 1. This feature scaling typically improves

the training of the ML model and is even required for many ML algorithms.66,71,72

To prevent issues during training as a result of the low intensity of the VCD con-

former spectra, we also scale the conformer spectra ∆εcalc(ν̃) for each compound

during the training of the ML model. Using the scaling methodology detailed be-

low we ensure that the MSE obtained for the scaled conformer spectra ∆εcalc,sc(ν̃)

(see equation 5.5) remains proportional to the mean squared error if conformer

spectra of original scale ∆εcalc(ν̃) were used instead. The scaling methodology is

applied to each compound separately.

First, we determine the mean value of ∆εcalc(ν̃) over all M conformers of a
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metric description use

Sconf similarity of DFT conformer spectra
for all unique conformer pairs of a
single compound.

conformational sensitivity
of VCD.

Sconf mean value of Sconf .

MSE mean squared error for the ML pre-
dicted spectra for the conformers in
a set.

training and optimization
of the ML model.

Spred similarity of DFT conformer spectra
and corresponding ML predictions
for each conformer in the test set.

describes ML model per-
formance for new con-
formers.

Spred mean value of Spred.

Θ similarity of the Boltzmann
weighted spectrum obtained with
only DFT conformer spectra and the
one obtained with DFT conformer
spectra for the training set and ML
predicted spectra for the validation
and test set.

describes the accuracy of
the Boltzmann weighted
spectrum when a portion
of the conformer spectra
are replaced with ML pre-
dictions.

Table 5.4: Overview of similarity metrics used throughout this paper.

compound for each ν̃ separately and refer to it as µ(ν̃) (equation 5.9).

µ(ν̃) =
1

M

M∑
i

∆εcalci (ν̃) (5.9)

Next, we define s as the standard deviation of ∆εcalci (ν̃) over all conformers and

all ν̃ (equation 5.10), with ω as the mean value of ∆εcalci (ν̃) over all conformers

and all ν̃ (equation 5.11).

s =

√√√√ 1

101 ·M − 1

1800∑
ν̃=800

M∑
i

(
ω −∆εcalci (ν̃)

)2
(5.10)

ω =
1

101 ·M

1800∑
ν̃=800

M∑
i

∆εcalci (ν̃) (5.11)
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The scaled DFT spectrum for a conformer i, denoted as ∆εcalc,sci (ν̃), is obtained

by subtracting µ(ν̃) from ∆εcalci (ν̃) and dividing the result by s.

∆εcalc,sci (ν̃) =
∆εcalci (ν̃)− µ(ν̃)

s
(5.12)

During training, the ML model learns to predict ∆εcalc,sc(ν̃) from the con-

former geometries, so the predictions made by the MLmodel (denoted ∆εpred,sc(ν̃))

will be of similar scale as ∆εcalc,sc(ν̃). These predictions are brought back to the

same scale as ∆εcalc(ν̃) using equation 5.13 and the resulting ∆εpred(ν̃) are the

ML predicted spectra used in equation 5.6 and in Supplementary Discussion 7 to

construct a Boltzmann weighted spectrum.

∆εpredi (ν̃) = s ·∆εpred,sci (ν̃) + µ(ν̃) (5.13)

3 Energy distribution of conformers

As discussed in section 5.2.1, the conformers are generated for each compound

with a force field using a maximum energy window of 40 kcal mol−1. This does

not necessarily mean that the conformer energies actually span such a range.

Additionally, the relative energies obtained for the conformers with a force field

or using DFT (after geometry optimization) are likely different. As the final

Boltzmann weighted spectrum discussed in later sections will be based on the

DFT enthalpies, we are mainly interested in the range of DFT-based enthalpies

that the conformers occupy. For each compound, the enthalpy values discussed

are relative to the lowest-enthalpy conformer of said compound. The enthalpy

distributions in Figure 5.28 show that nearly all conformers are found within

a 10 kcal mol−1 window for all compounds but 1b and the distributions are

centered around 5 kcal mol−1. For 1b half of the conformers are found within a

10 kcal mol−1 window and most of the remaining conformers lie between between

10 and 20 kcal mol−1. The broader enthalpy distribution for the conformers of

1b, compared to 1a, can be attributed to the steric interactions between the

sidechains. The influence of the steric interactions on the performance of the ML

approach is discussed in Supplementary Discussion 2.
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Figure 5.28: Distribution of the enthalpy, relative to the lowest conformer enthalpy
for each compound, for the different conformers of the same compound. For each 10
kcal mol−1 bin (i.e. 0-10, 10-20, 20-30 and 30-40 kcal mol−1), the fraction of conformers
present within this bin is reported.
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Chapter6
Pushing the boundaries of VCD

spectroscopy in natural product

chemistry

The results of the paper ‘Pushing the boundaries of VCD spectroscopy in natural

product chemistry’ have been recreated in this chapter. This project is the re-

sult of a collaboration with the Federal University of São Paulo and Fluminense

Federal University. Visual inspection of the mixture spectra was performed by

Andrea N. L. and Batista Junior, João M., while the ML-based analysis of the

mixture spectra was performed by the author of this thesis.

6.1 Introduction

Natural product molecules from land, marine and/or microbial sources continue

to play a crucial role in drug discovery and development.1 The biological potential

of natural small molecules, known as secondary (or special) metabolites, stems

from the fact that they are designed to interact with biological chiral targets,

such as proteins, either inside or outside of the producing organisms. These com-

pounds are commonly involved in chemically mediated defence, growth in com-

petitive environments, signalling, and reproduction. These functions are closely

correlated to their structural and stereochemical diversity, which are made pos-
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sible by intricate biosynthetic machinery.2 Natural products are produced from

a variety of building blocks and are subjected to several post-biosynthetic modi-

fications. These molecules commonly incorporate distinct chiral elements (point

and axial chirality) within a single chemical structure and are found in complex

mixtures. The combination of the structural and stereochemical features of nat-

ural compounds provides the physicochemical and topological requirements for

proper membrane permeation and selective receptor interactions.3 Despite the

potential biological applications of natural products, their efficient incorporation

into the drug discovery pipeline has a high price tag. Current regulatory af-

fairs require full pharmacological and toxicological characterisation of each enan-

tiomer for approval of chiral drugs,4 which makes the determination of the exact

three-dimensional arrangement of the atoms in isolated compounds an impor-

tant bottleneck. Additionally, the enantiomeric purity of secondary metabolites

adds another layer of complexity to natural product chemistry. Although natu-

ral products are commonly believed to be enantiomerically pure or enriched, a

great number of enantiomeric mixtures or even racemates have been described

for secondary metabolites.5–8 Based on the challenges described above, it is not

uncommon to find in the literature incorrect assignments of both structure and

stereochemistry of natural compounds. This is particularly worrisome since the

use of empirical correlations of spectral data for structurally related compounds

is a common practice in natural product chemistry, which increases the risks of

error amplifications. A recent survey has demonstrated an increase in the num-

ber of stereochemical reassignments of natural products over the last decade.9

The most used methods to reassign absolute configuration were organic synthe-

sis, followed by chiroptical methods, mainly associated with DFT calculations,

and NMR. Chiroptical methods, especially optical rotation (OR) and electronic

circular dichroism (ECD), have a longstanding history of successful applications

to secondary metabolites.10 Vibrational methods, such as vibrational circular

dichroism (VCD) and Raman optical activity (ROA), on the other hand, under-

went a growth in their use by natural product chemists only over the last two

decades.11,12 Historically, the application of the classic chiroptical spectroscopic

methods OR and ECD has been based on empirical correlations of structurally-

related molecules for which the absolute configuration was known. Unfortunately,

empirical rules commonly present exceptions leading to frequent misassignments.
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Current best practice guidelines recommend the comparison of observed ECD

spectra with quantum chemically simulated data.13 In the case of VCD for small

molecule stereochemical investigations, widespread empirical correlations were

not observed, and the technique came of age after the development of the mag-

netic field perturbation method by Stephens et al. that allowed the calculation

of VCD intensities at DFT level to be incorporated into commercial software.14

Due to the more complex spectral patterns in the IR fingerprint region and higher

sensitivity to structural features, finding VCD spectral markers for similar struc-

tures was more challenging than for ECD and a greater dependence on DFT

calculations soon followed. Although the development of accurate quantum chem-

ical calculations has led to the renaissance15 of chiroptical spectroscopy with a

great increase in the number of natural product molecules being investigated,

unfortunately, it has not been translated into a similar expansion on the num-

ber of research groups using the techniques. Most of the VCD assignments of

absolute configuration of natural products published in the literature come from

just a handful of research groups, which are commonly specialised in chiroptical

spectroscopy but not necessarily in natural product chemistry. This situation

indicates that VCD has not yet been included in the natural product chemist

toolbox. We believe that one of the main difficulties in attracting more natural

product chemists to use chiroptical spectroscopy for stereochemical elucidation

is the aforementioned need for DFT calculations to interpret experimental spec-

tra.6,8 Therefore, herein, we propose the search and validation of IR and VCD

spectral markers to circumvent the requirement of DFT calculations allowing for

absolute configuration assignments even in complex mixtures. To that end, a com-

bination of visual inspection and machine-learning based methods will be used.

Monoterpenes, either isolated or in mixtures, are selected as target molecules for

this proof-of-concept study.

6.1.1 Vibrational circular dichroism

VCD arises from the differential absorption for left- and right-circularly polarised

infrared (IR) radiation by a chiral (non-racemic) molecule during a vibrational

transition. It is the expansion of the electronic CD phenomenon into the IR

spectral region where vibrational transitions occur. One of the main advantages
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of VCD over other techniques is the possibility of analysis directly in the solution-

state, without requiring either single-crystals or suitable UV-vis chromophores.

Since it is based on IR spectroscopy, a large number of transitions is commonly

available that are sensitive to both structure (functional groups/connectivity)

and stereochemistry. Additionally, like for other chiroptical methods, the final

VCD spectrum reflects quantitively the conformational population of the target

chiral molecule in a given solvent. Therefore, IR/VCD represents an ideal tool

to simultaneously study composition and stereochemistry of chiral molecules in

complex mixtures. Deep discussions on VCD history, theory, instrumentation,

and applications are beyond the scope of this manuscript. Further information

can be found elsewhere.15–20

6.1.2 Monoterpenes

Monoterpenes (C10) are members of the large and structurally diverse natural

product family of terpenoids. Monoterpenes derive from the condensation of

two C5 isoprene units, joined in a head-to-tail fashion.21 Based on the domi-

nance of carbocation chemistry for the formation of terpenoids in general, which

commonly involves rearrangements, monoterpenes are found in nature in a huge

variety of structures (strained/unstrained cyclic, bicyclic, and linear forms) and

stereochemical outcomes. Most monoterpenes are optically active, with enan-

tiomers of a given compound being produced either by the same or different

organisms. These compounds are also commonly found in complex mixtures

i.e., essential oils. Due to the chiral nature, availability in suitable enantiomeric

purity, and conformational rigidity of some bicyclic monoterpenes, which result

in high-quality vibrational spectra in the mid-IR region, compounds such as α-

pinene and camphor have been used as standards for VCD intensity calibration.16

Historically, monoterpenes have also been used in important VCD technological

advancements, both in theory22–25 and instrumentation.26–31 Regarding appli-

cations, VCD has been used to assign the absolute configuration of a series of

isolated monoterpenes,32–36 with a single study attempting to establish VCD chi-

ral signatures of essential oils.37 A compilation of IR/VCD spectral standards for

terpenes was published in 2006.38
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6.1.3 Spectral markers

In order to facilitate the application of VCD for stereochemical assignments of

complex chiral molecules, some efforts have been made to reduce the depen-

dency on DFT calculations. One of the most used approaches involve molecule

rigidification and/or the search for spectral markers. Some examples of rigidifica-

tion include the derivatisation of endo-borneol,39 the acetonisation of 1,3-diols,40

the derivatisation of sphingosine with glutaraldehyde,41 and the preparation of

conformationally restrained cyclic carbodiimides.42 Non-covalent derivatisation

methods to simplify calculations of carboxylic acids have been recently devised,43

along with the covalent introduction of a suitable deuterated VCD chromophore

with absorption removed from the IR fingerprint region for the C-1 configura-

tion of sugar molecules.44 Our group has been particularly interested in finding

IR/VCD spectral signatures for conformation and configuration of chiral natu-

ral products. Examples include VCD markers for the configuration of esterified

chromane and monoterpene moieties,45 for the configuration of the hexahydrox-

ydiphenoyl group in ellagitannins,46 for the configuration of the 2(5H)-furanone

moiety in acetogenins,47 for the configuration at C-9 of both strepchazolin A

and B,48 as well as the IR marker for the E/Z double bond configuration of

spongosoritins49 and the VCD marker for the stacking of the pyrrolidine ring

of proline and the aromatic ring of tyrosine in pohlianin A.50 These searches

of spectral markers are related to the concept of inherently dissymmetric VCD

chromophores.51 Finally, following important historical developments,52–54 a non-

empirical VCD method that does not require DFT calculations was proposed

in 2012 for absolute configuration assignments.55 The VCD exciton chirality

method, however, requires the presence of two infrared chromophores (e.g. car-

bonyl groups) close in space, to allow for their coupling, and chirally disposed.

The existence of further carbonyl groups on the other hand, complicates the

exciton coupling analysis, hampering its application without the aid of DFT cal-

culations.56
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6.1.4 Proposed approach

As discussed above, one of the main reasons why few natural product chemists

use VCD as a standard method to assign the absolute configurations of chiral

secondary metabolites is the requirement of quantum chemical calculations to

interpret experimental data. Since the search and validation of IR/VCD spec-

tral markers have proven to be a viable approach for a series of structurally

diverse molecules, herein, we decided to investigate monoterpene molecules (37

+ 2 sesquiterpenes) both isolated and in mixtures in a search for spectral signa-

tures that can be used to both identify and assign their stereochemistry directly

in mixtures and without requiring further DFT calculations. Visual comparison

will be explored in a search of either similar or discriminative vibrational bands

for individual molecules. Then, inspired by a recent proof-of-concept study us-

ing machine learning (ML) to extract absolute configurations from VCD spectra

of decorated α-pinene derivatives,57 we will extend the application of the ML

methodology to identify monoterpenes in complex mixtures, such as essential oils

which, to the best of our best knowledge, has not been tested for VCD. In this

way, we will assess the feasibility of such an approach and identify possible pitfalls

for its future development. This concept, if successful, will allow the determina-

tion of composition, stereochemistry, and enantiomeric excesses of essential oil

components from IR/VCD spectra not only without requiring DFT calculations,

but also bypassing the need for chiral GC analysis. The main methodology to

study terpene mixtures has been chiral GC, however, it commonly requires the

availability of both enantiomers of a given target for identification purposes.

6.2 Results and discussion

IR and VCD spectra of commercially available individual monoterpenes were

recorded in CDCl3 solution in the region of 950-1800 cm−1 and compared vi-

sually. They were grouped first based on their cyclic skeleton types,21 namely,

menthane, pinane, bornane and fenchane types. The isocamphane type had no

representative, while carene and thujane types had a single representative each.

The linear compounds were grouped as geraniol derivatives. Achiral compounds,

such as cineole, as well as some racemic monoterpenes (isoborneol and isobornyl
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acetate) were also included for the IR analysis. After the spectra of individual

molecules were obtained (Figs. 6.4-6.10�), artificial mixtures of monoterpenes of

each type were prepared and subjected to IR/VCD analysis (Figs. 6.11-6.16�).

These mixtures were used to investigate possible band overlaps and cancelations

from similar structures thus aiding the spectral marker validation procedure.

Other mixtures with increasing complexity were then prepared and subjected to

the same type of analysis (A-J, Table 6.1�). These procedures allowed us to iden-

tify the most discriminative spectral regions for each molecule type. Once the

visual inspection on mixtures of know composition was finished, the accuracy of

the spectral markers identified was tested on natural mixtures of unknown com-

position. To that end, tea tree, rosemary, lavender, and ylang-ylang essential oils

were employed. The compounds identified in the essential oils by the IR/VCD

analysis were then confronted with GC-MS results on the same samples. Fol-

lowing the visual inspection approach, ML methods were applied. The following

sections will present the specific results of both approaches with their potential

and limitations.

6.2.1 Visual inspection

The monoterpenes investigated at this stage included the pinane type (1R)-(–)-

myrtenol, (1R)-(–)-myrtenal, (1R)-(–)-myrtenyl acetate, (S )-(–)-β-pinene, (R)-

(+)-α-pinene, (1R,2R,3S,5R)-(–)-pinanediol, (1S )-(–)-verbenone, (1S,2S,5S )-(–)-

2-hydroxy-3-pinanone, and (1R,2R,3R,5S )-(–)-isopinocampheol; the menthane

type 1 (R)-(–)-terpinen-4-ol, (S )-(–)-perillaldehyde, (S )-(–)-α-terpineol, (S )-(–)-

perillyl alcohol, (R)-(–)-carvone, and (R)-(+)-limonene; the menthane type 2

(1S,2S,5R)-(+)-neomenthol, (1R,2S,5R)-(–)-isopulegol, (1R,2S,5R)-(–)-menthol,

(1S,2R,5R)-(+)-isomenthol, and (R)-(+)-pulegone; the bornane type (1R)-(+)-

camphor, (1S )-(–)-camphor, (S )-(–)-endo-borneol, (S )-(–)-endo-bornyl acetate,

(±)-isobornyl acetate, (±)-isoborneol, the fenchane type (S )-(+)-fenchone, and

(1R)-(+)-endo-fenchyl alcohol; the geraniol type (S )-(–)-β-citronellol, (R)-(–)-

linalool, (R)-(–)-linalyl acetate, (R)-(–)-linalool, (S )-(+)-β-citronellene, and (S )-

(–)-citronellal. Cineole, (1S )-(+)-3-carene, and (1S,4R)-(–)-α-thujone were also

included in more complex mixtures. Inspections were first carried out on IR

spectra in a search for either similar or discriminatory bands. Both frequency
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Figure 6.1: Monoterpene identified from an artificial mixture (J) of known composition
by means of visual IR/VCD spectral markers. See ESI� for detailed analysis of spectral
markers and their vibrational origin

shifts and relative intensities were used to cluster different monoterpenes. Then,

VCD spectra were analysed which, due to their bisignated nature, provide bet-

ter resolution and discriminatory power. On the other hand, having bisignated

bands may lead to attenuation or even cancellation of oppositely signed bands

of particular monoterpenes when present in mixtures. Detailed analyses of indi-

vidual terpene types are provided in the ESI. Once the markers for each class of

monoterpenes were identified visually for individual compounds, their utility was

tested in complex mixtures. Analyses of mixtures of compounds belonging to the

same molecule type are presented in the ESI (Figs. 6.11-6.16�). This approach

allowed us to verify possible intermolecular interactions, spectral correlations and

VCD band cancellations. Then, the visual IR and VCD spectral markers were
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tested on an artificial mixture (mixture J) containing molecules of different types,

which included (1R)-(–)-myrtenal, (S )-(–)-β-pinene, (R)-(+)-α-pinene, (S )-(–)-

perillaldehyde, (S )-(–)-α-terpineol, (S )-(–)-perillyl alcohol, (R)-(–)-carvone, (R)-

(+)-limonene, (1S,2S,5R)-(+)-neomenthol, (1R,2S,5R)-(–)-isopulegol, (1S,2R,5R)

-(+)-isomenthol, (R)-(+)-pulegone, (S )-(+)-fenchone, (S )-(–)-endo-borneol, (S )-

(–)-endo-bornyl acetate, and cineole. These results are presented in Figure 6.1.

As can be seen in Figure 6.1, even in such a complex mixture, a combination of IR

and VCD visual spectral markers was able to tell apart most of the compounds.

Please refer to ESI� for specific vibrational frequencies as well as molecular origin

of the selected bands.

Following the analysis of the artificial complex mixture of known composition,

natural mixtures (essential oils) were analysed. Figure 6.2 presents the IR and

VCD spectra of tea tree, rosemary, lavender, and ylang-ylang essential oils from

which the main components were identified by means of the spectral markers

described above. The presence of the monoterpenes in question was confirmed

by GC-MS analysis (Figs. 6.17-6.20�). It is important to emphasise that not

only were monoterpene identities secured but also their absolute configuration,

simultaneously. Regarding tea tree oil, the IR band at 1066 cm−1 and the cor-

responding positive VCD bands indicated the presence of (S )-(+)-terpinen-4-ol,

which was confirmed by GC-MS with abundance of 57.88 (area%). The broad

positive VCD band at around 1250 cm−1 confirmed the presence of the men-

thane type skeleton. As for rosemary oil, the IR band 1639 cm−1 indicated the

presence of β-pinene, while those at 1214, 1079 and 977 cm−1 were markers for

the presence of the achiral monoterpene cineole. Additionally, the IR band at

1415 cm−1 indicated the presence of camphor. Regarding VCD, the (+)-1469 and

(–)-1195 cm−1 bands led to the identification of (S )-(–)-β-pinene, while the pos-

itive bands at 1450/1126 cm−1 indicated the presence of (R)-(+)-α-pinene. The

positive VCD band at 1166 cm−1 showed the occurrence of (1R)-(+)-camphor.

The GC-MS analysis (see ESI�) confirmed the presence of β-pinene (5.21 area%),

α-pinene (7.28 area%), camphor (7.18 area%), and cineole (70,9 area%). It is

noteworthy that in the case of rigid bicyclic monoterpenes with large VCD in-

tensities, the present approach is capable of detecting them and assigning their

absolute configurations when present in abundances as low as 5%. Analysis of the

IR spectrum of lavender oil showed bands at 1640 and 1412 cm−1, which indicated
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Figure 6.2: Monoterpene identified from natural mixtures of unknown composition
(essential oils) by means of visual IR/VCD spectral markers. See text for discussion of
individual bands. Identities of monoterpenes confirmed by GC-MS analysis.
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the presence of compounds with terminal double bonds that, combined with the

band at 1672, led to the identification of acyclic monoterpenes. The presence of

the band at 1106 cm−1 confirmed the presence of linalool, while the bands 1720,

1259 and 1020 cm−1 confirmed the presence of linalyl acetate. VCD investiga-

tion indicated their assignment as (S )-(+)-linalool (positive band at 1106 cm−1)

and (S )-(+)-linalyl acetate (negative bands at 1259 and 1020 cm−1). GC-MS

spectra confirmed these monoterpenes as the most abundant in the essential oil:

44.6 area% for linalool and 42.66 area% for linalyl acetate (see ESI�). Finally, for

ylang-ylang oil, the same IR/VCD bands described for lavender oil were identi-

fied, with the main difference being the sign of the 1106 cm−1 VCD band, which

indicated the presence of (R)-(–)-linalool. GC-MS analysis, on the other hand,

confirmed the linalool (19.48 area%), but did not confirm linalyl acetate.

Despite successful, the use of visually identified spectral markers requires

painstaking analysis which may be subjected to user bias. Additionally, many

IR/VCD bands remained unassigned. In order to circumvent such drawbacks

and expedite analysis, an ML protocol was idealised, developed and tested as

described in the following section.

6.2.2 Machine learning

As mentioned in the previous section, the use of visually identified spectral mark-

ers is laborious. Additionally, marker bands in VCD can be attenuated or even

cancelled in a mixture due to opposite intensities arising from other components.

An ML model can leverage the intensities in other spectral regions to detect com-

ponents even if their marker bands are cancelled. Therefore, we were interested in

testing whether an ML model could identify the monoterpenes present in different

mixtures. If successful, one would no longer need to manually identify spectral

markers and the accuracy of the detection would be improved. In the absence of a

large monoterpene and mixture spectral dataset, the ML model was trained on a

set of in silico mixtures (noisy linear combinations of monoterpenes), yielding an

IR- and a VCD-based model. The VCD-based model generates the monoterpene

composition as output using the VCD spectrum of the mixture as input, whereas

the IR-based model predicts the composition with the IR spectrum as input. A

detailed description of the ML model and the training procedure is presented in
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the ESI�.

A set of six artificial mixtures containing each up to 8 monoterpenes of differ-

ent types was prepared (Table 6.1�, mixtures A-F) to evaluate and finetune the

monoterpene detection. The current dataset covers representative compounds

for most of the common monoterpene types. An essential oil, on the other hand,

likely contains one or more compounds that are still absent from the present

dataset. We mimic such a situation by excluding myrtenyl acetate from the in

silico training mixtures, while actually including it in the artificial mixture A.

By doing so, we test the stability of the model in the presence of a ‘new’ com-

ponent. The predicted relative concentrations obtained for mixtures A-F are

shown in Figure 6.3. As the decision boundary still needed to be fine-tuned,

we were mainly interested in whether the largest predicted concentrations were

obtained for mixtures containing each said monoterpene. A detailed analysis of

the predictions and the patterns leveraged by the models is provided in the ESI�.

The VCD based model successfully extracted the presence of 26 out of the

30 chiral monoterpenes present throughout mixtures A-F. The VCD model also

demonstrated chiral sensitivity: while (1R)-(+)-camphor in mixture C was not

detected, a strong negative (1R)-(+)-camphor concentration was obtained for

mixture A that contains (1S )-(–)-camphor. The IR based model properly classi-

fied 29 of the 31 monoterpenes present in mixtures A-F. The patterns learned from

the in silico mixtures (Figs. 6.24-6.25�) clearly performed well on these mixtures.

As the presence of myrtenyl acetate in mixture A did not hamper the accuracy,

the patterns showed robustness to small external influences. These patterns also

translated well to other mixtures of similar complexity. When the models were

applied to artificial mixtures of monoterpenes of a single type (Figs. 6.11-6.16�),

a similar number of monoterpenes were correctly classified by the models (Figs.

6.26-6.29�). For each of these mixtures, the VCD model correctly classified on

average 25 chiral monoterpenes and the IR model did so for 29 monoterpenes.

Thus, even if a mixture contained structurally similar compounds, its composi-

tion can still be extracted. The ML methodology provides a viable new approach

for determining the composition of monoterpene mixtures.

Next, we tested the model on the artificial mixtures containing a larger num-

ber of monoterpenes (mixtures H-J, Table 6.1� and Figs. 6.30-6.31�). When the

models were applied to mixture J, the VCD model correctly identified the pres-
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Figure 6.3: Predicted concentrations (in %) relative to the original concentrations of
individual monoterpenes for mixtures A-F by the VCD based (top) and IR based model
(bottom). The predicted concentration for each monoterpene is shown for each of the
six mixtures and is colored according to whether the monoterpene is present (green)
or absent (red) for a given mixture. The predicted concentrations are highlighted for
a monoterpene when no correct decision boundary can be drawn for this monoterpene
(for a correct decision boundary, all mixtures that contain said monoterpene need to lie
above it and all mixtures that do not contain said monoterpene below it). The error
margin (bars) is the standard deviation upon the predicted value during cross-validation
(see ESI� for more details). Some regions are zoomed in for clarity.
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ence or absence of 24 chiral monoterpenes and the IR model correctly classified

28 monoterpenes (true positives and true negatives; see ESI� for methodology

details). Compared to the visual inspection (Fig. 6.1), the ML model enabled

to extract more information from the marker and non-marker bands in the spec-

trum. As a result, a larger number of the monoterpenes present in the mixture

was detectable. The VCD model correctly classified 22 chiral monoterpenes for

mixture H and 20 for mixture I. With the IR model, 22 monoterpenes from mix-

ture H and 23 monoterpenes from mixture I were correctly identified as either

present or absent. With the lower individual contributions of each single terpene

in more complex mixtures, extracting their composition was more challenging.

Nonetheless, the models could still perform well depending on the exact mixture

composition, as demonstrated for mixture J.

Subsequently, the models were asked to predict the terpenes present in the

4 essential oils and the results are reported in Tables 6.2-6.3�. The content of

the essential oils was unknown prior to these predictions, removing any potential

user bias. Lavender oil is largely made up of linalool and linalyl acetate which

were both detected by the IR model, whereas the VCD model mainly detected

(R)-(–)-linalool. In ylang-ylang oil both models confirmed the presence of (R)-

(–)-linalool. The major component of rosemary oil, cineole, was clearly detected

by the IR model. The presence of (R)-(+)-α-pinene and (S )-(–)-β-pinene was

additionally detected by both models. For the final extract, tea tree oil, the IR

model correctly detected terpinen-4-ol and the tiny fraction of limonene; neither

of which was detected by the VCD model. Even so, the IR model succeeded

in correctly detecting these terpenes. It is important to note that for each of

these oils a non-negligible number of false positives (terpenes absent from the

oil which are detected by the model) was obtained. When only a small number

of components in the oil is included in the dataset, the mixture spectra contain

contributions which the model has not been taught to handle, resulting in an

increased number of false positives. The transparency of VCD to achiral com-

pounds, on the other hand, limits the number of new components capable of

contributing to the mixture spectrum, which could result in fewer false positives.

To summarise, with the dataset of terpenes presented in this article, we could

build ML models to determine the terpene composition of mixtures with mod-

erate complexity. For mixtures of high complexity, the models begin to struggle
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to accurately predict the presence of the terpenes, especially if the major contri-

butions are not accounted for in the dataset. The current models are not ready

yet to tackle analysis of essential oils in general due to the limited number of

compounds in the spectral database. The approach, however, shows promise in

its ability to detect those compounds indeed represented. We believe that con-

tinuing to build this dataset, with spectra of either pure compounds or mixtures,

will enable researchers to push the boundaries of VCD applications to secondary

metabolites.

6.3 Conclusions

Despite advances over the last decade, VCD spectroscopy remains an untapped

resource for the determination of the absolute configuration by the natural prod-

uct community. One of the reasons is the requirement of quantum chemical

calculations to interpret experimental data. In this perspective, we present an

approach to simultaneously detect and assign absolute configuration of natural

products even in mixtures, and without the need of DFT calculations. The pro-

posed approach focuses on the search of IR and VCD spectral markers/regions of

individual molecules to be applied in complex mixtures. As a proof-of-concept,

monoterpenes were chosen as target molecules. The spectral marker/regions

searches were undertaken both by visual inspection and by means of machine

learning. Visual inspection is a viable procedure for monoterpenes; however, it

is time-consuming and prone to user bias. Machine learning methods, on the

other hand, renders itself as a promising tool for detection and stereochemical

analysis of complex mixtures. Due to the number of false positives for natu-

ral mixtures, the suggested approach is not yet competitive with other classical

methods such as GC-MS. Although the results obtained for natural mixtures

could have been better, the good performance for artificial mixtures indicates

that ML is a promising tool provided the number of molecules/spectra included

in the dataset is expanded. Consequently, further IR/VCD spectra need to be

recorded for structurally diverse molecules, both aquiral/racemic and chiral, that

commonly compose essential oils and other important mixtures. Once the num-

ber of IR/VCD spectra available is increased, we expect ML-based methods to

be able to tackle mixtures of increasing complexity, such as essential oils, crude
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extracts, as well as reaction media of stereoselective chemical transformations.



Supporting information 165

Supporting information

Experimental details

All monoterpenes and essential oils used were purchased from Sigma-Aldrich

and used without further purification. The artificial mixtures were prepared by

mixing equal amounts of each compound. IR and VCD spectra were recorded

simultaneously with a BioTools ChiralIR-2x FT-VCD spectrometer with either

single or dual-PEM setups using a resolution of 4 cm−1 and a collection time of

10-12 hours. The optimum retardation of the ZnSe photoelastic modulator(S )

(PEM) was(ere) set at 1400 cm−1 . The IR and VCD spectra were recorded in

CDCl3 solutions (0.2-0.8M) in a BaF2 cell with a 100 μm path length. Minor

instrumental baseline offsets were eliminated from the final VCD spectrum by

subtracting the VCD spectrum each compound from that obtained for the solvent

under the same conditions. The database of VCD and IR spectra is publicly

available and can be retrieved using the following DOI [10.5281/zenodo.7875469].

The absolute configuration of each monoterpene when applicable was secured

by DFT calculations at the B3PW91/PCM(CHCl3)/6-311G(d,p) level (data not

shown). These calculations also allowed the assignment of the vibrational origin

of specific bands.

Results of IR/VCD visual inspection

Figures 6.4-6.10 present the superposition of the IR/VCD spectra of individual

monoterpenes within a given molecule type, namely, pinane, menthane 1 and 2,

bornane, fenchane and geraniol type as well as the spectra of the single represen-

tatives of carene and thujane types along with cineole. Then, IR/VCD spectra

of the mixtures of compounds of each type are presented in Figures 6.11-6.16.

The following discussions about spectral markers are focused on transitions able

to tell apart compounds within the same molecule type.

Regarding pinane type monoterpenes, the main discriminatory IR bands ob-

served (Fig. 6.11) were those at 1639 cm−1 present in (S )-(–)-β-pinene (exo-

cyclic double bond stretching); 1616 cm−1 present in (R)-(–)-myrtenal and (1S )-

(–)-verbenone (α,β-unsaturated double bond stretching); 1250 cm−1 present in
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(1R)-(–)-myrtenol and (1R,2R,3S,5R)-(–)-pinanediol (C-O stretching); and 1035

cm−1 present in (1R,2R,3R,5S )-(–)-isopinocampheol (C-O stretching coupled to

C-H bendings of the whole molecular framework). The VCD marker bands

included those at (–)-1195 cm−1 present in (S )-(–)-β-pinene (C-H bendings of

the whole molecular framework); (+)-1126 cm−1 present in (R)-(+)-α-pinene

(C-H bendings of the whole molecular framework); (+)-1035 cm−1 present in

(1R,2R,3R,5S )-(–)-isopinocampheol (C-O stretching coupled to C-H bendings of

the whole molecular framework); and (–)-967 cm−1 present in (1R)-(–)-myrtenal

(C-sp3-C-sp2stretching coupled to C-H bendings of the whole molecular frame-

work).

For menthane type 1 molecules (Fig. 6.12), the IR discriminative bands were

those at 1643 cm−1 present in (S )-(–)-perillaldehyde, (S )-(–)-perillyl alcohol, (R)-

(–)-carvone (broader shoulder) and (R)-(+)-limonene (stretching terminal dou-

ble bond); 1415 cm−1 present in (S )-(–)-perillaldehyde (CH2 scissoring), 1045

cm−1 present in (S )-(–)-α-terpineol (C-sp3-C-sp2stretching coupled to C-H bend-

ings of the whole molecular framework); and 975 cm−1 present in (S )-(–)-perillyl

alcohol (Coupled C-C stretchings and C-H bending of the whole molecular frame-

work). As for VCD marker bands, the band at (–)-1434 cm−1 (asymmetric CH3

bending and C-H2 scissoring modes) was present in all molecules, except (R)-(–)-

terpinen-4-ol, while that at (–)-1250 cm−1 (C-H bendings of the whole molecular

framework and C-H2 twisting modes) was present in all molecules, except (S )-(–)-

perillaldehyde. The band (–)-1045 cm−1 was present only in (S )-(–)-α-terpineol

(C-sp3-C-sp2stretching coupled to C-H bendings of the whole molecular frame-

work).

For the menthane type 2 monoterpenes (Fig. 6.13) important IR bands in-

clude those at 1677, 1614 (broad) (α,β-unsaturated carbonyl stretchings), and

1286 cm−1 (C-sp2-C-sp2stretch) present in (R)-(+)-pulegone; 1642 (terminal dou-

ble bond stretch), 1394 (double bond scissoring), and 1286 cm−1 (coupled O-H

and C-H bending modes) present in (1R,2S,5R)-(–)-isopulegol. As for VCD, at

around 1286 cm−1, both (R)-(+)-pulegone and (1R,2S,5R)-(–)-isopulegol pre-

sented a positive band, however, in contrast to IR, these bands were better re-

solved due to their different vibrational origins. At 1103 cm−1 (C-CH3 and C-O

stretchings) a positive VCD band was characteristic of (1R,2S,5R)-(–)-menthol,

while a +,–band (low to high wavenumbers) centered at 1070 cm−1 (same C-C
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strecthings coupled to bendings of the whole molecular framework) was observed

for (1S,2R,5R)-(+)-isomenthol. A negative 1012 cm−1 band (C-C stretchings

and C-H isopropyl bending) was observed for both (1R,2S,5R)-(–)-isopulegol and

(1S,2S,5R)-(+)-neomenthol, while a positive band at 962 cm−1 was present in the

spectra of (1R,2S,5R)-(–)-isopulegol, (1S,2R,5R)-(+)-isomenthol, and (1S,2S,5R)-

(+)-neomenthol. While the band at (–)-1012 cm−1 band seems to be selective

of menthane molecules with trans relationship between the isopropyl and methyl

groups, the (+)-962 cm−1 band arise from C-C stretchings and C-H bendings

of the whole molecular framework, being representative of the menthane type 2

scaffold.

Considering bornane type molecules (Fig. 6.14) the IR marker bands identi-

fied include that at 1415 cm−1 observed for (1R)-(+)-camphor (CH2 scissoring

in the vicinity of carbonyl group); those at 998 and 1068 cm−1 present in (±)-

isoborneol (C-C-O stretching coupled to CH2 rocking vibrations), and those at

1012, 1229 and 1253 characteristic of (S )-(–)-endo-borneol (C-C-O stretching

coupled to CH2 rocking vibrations). These latter vibrations reflect the endo and

exo orientations of the OH group in these stereoisomers. Distinctive VCD bands

in bornane type molecules were observed at (+)-1320 and (+)-1166 cm−1 for

(1R)-(+)-camphor (C-C stretch of quaternary bridgehead carbon coupled to CH2

wagging and C-C stretch of quaternary bridge carbon coupled to methyne bend-

ing, respectively); at 1259 cm−1 a negative couplet-like band (from low to high

wavenumbers) was observed for (S )-(–)-endo-borny acetate (C-sp2-O stretching

coupled to CH2 wagging and methyne bending modes); centered at 1125 cm−1 a

negative couplet-like band (from low to high wavenumbers) was observed for

(S )-(–)-endo-borneol and (S )-(–)-endo-borny acetate (C-O stretching coupled to

C-C stretches of the whole molecular framework and methyne bending modes);

at 1070 and 981 cm−1 two positive VCD bands were observed for (S )-(–)-endo-

borny acetate (C-C stretching coupled to C-H bendings involving the whole

molecular framework), while positive VCD bands at 1053 and 981 cm−1 were

present for (S )-(–)-endo-borneol. Interestingly, the bands at 1135, 1070 and 981

cm−1 (fundamentals 124, 116, and 101, respectively in the original publication)

could have been used to assign the absolute configuration of the monoterpenic

portion of the monoterpene chromane esters isolated from Peperomia obtusifo-

lia in 201158. At that time, the stereochemistry of the bornyl moieties teth-
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ered to the 3,4-dihydro-5-hydroxy-2,7-dimeth-yl-8-(3”-methyl-2”-butenyl)-2-(4’-

methyl-1’,3’-pentadienyl)-2H-1-benzopyran-6-carboxylic acid were determined us-

ing arithmetic operations on experimental and calculated spectra for diastere-

omeric compounds.

In the case of fenchane type molecules (Fig. 6.15), the IR bands at 1080, 1064

and 1010 cm−1 (C-C stretchings coupled to C-H bendings involving the whole

molecular framework) were present in (1R)-(+)-endo-fenchyl alcohol, while the

band at 1023 cm−1 (C-sp3-C-sp2stretching coupled to C-H bendings involving

the whole molecular framework) was characteristic of (S )-(+)-fenchone in this

region. In the VCD spectra, the positive band at 1080 cm−1 was observed for

(1R)-(+)-endo-fenchyl alcohol, while the (+)-1023 cm−1 and (–)-996 cm−1 (C-H

bendings involving the whole molecular framework), were characteristic of (S )-

(+)-fenchone.

Finally, considering the linear terpenes (geraniol type) (Fig. 6.16), the IR

band at 1672 cm−1 was observed for all molecules since it involved the stretching

of the trisubstituted double bound from the terminal isoprene unit. Bands at

1637 and 1412 cm−1 were observed for (R)-(–)-linalyl acetate, (R)-(–)-linalool

and (S )-(+)-β-citronellene and involved stretching and scissoring modes of their

terminal double bond; at 1477 cm−1 a shoulder band was present only in the

spectrum of (S )-(–)-β-citronellol (scissoring of CH2-OH); at 1106 cm−1 a band

was observed for (R)-(–)-linalool arising C-O stretching and O-H bending of the

tertiary alcohol, while the same vibration modes were observed at 1054 cm−1 for

the primary alcohol (S )-(–)-β-citronellol. Despite the lower intensities and noisier

VCD spectra observed for linear monoterpenes, some discriminatory VCD bands

were identified, such as the (+)-1089 cm−1 observed for (S )-(+)-β-citronellene (C-

H bendings involving the whole molecular framework); the (–)-1075 cm−1 band

(C-C stretches coupled to C-H and O-H bending modes) observed for (R)-(–)-

linalool, and the (+)-1054 cm−1 observed for (S )-(–)-β-citronellol.
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Figure 6.4: Superposition of IR/VCD experimental spectra in CDCl3 of pinane type
monoterpenes. (Black) (1R)-(–)-myrtenol; (Green) (1R)-(–)-myrtenal; (Red) (1R)-
(–)-myrtenyl acetate; (Blue) (S )-(–)-β-pinene; (Cyan) (R)-(+)-α-pinene; (Magenta)
(1R,2R,3S,5R)-(–)-pinanediol; (Yellow) (1S )-(–)-verbenone; (Navy) (1S,2S,5S )-(–)-2-
hydroxy-3-pinanone; (Dark Yellow) (1R,2R,3R,5S )-(–)-isopinocampheol
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Figure 6.5: Superposition of IR/VCD experimental spectra in CDCl3 of menthane type
1 monoterpenes. (Black) (S )-(–)-α-terpineol; (Green) (S )-(–)-perillyl alcohol; (Red) (R)-
(–)-terpinen-4-ol; (Blue) (R)-(+)-limonene; (Cyan) (S )-(–)-perillaldehyde; (Magenta)
(R)-(–)-carvone.
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Figure 6.6: Superposition of IR/VCD experimental spectra in CDCl3 of menthane type
2 monoterpenes. (Black) (1R,2S,5R)-(–)-menthol; (Green) (1R,2S,5R)-(–)-isopulegol;
(Red) (1S,2S,5R)-(+)-neomenthol; (Blue) (1S,2R,5R)-(+)-isomenthol; (Cyan) (R)-(+)-
pulegone.
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Figure 6.7: Superposition of IR/VCD experimental spectra in CDCl3 of bornane type
monoterpenes. (Black) (1R)-(+)-camphor; (Green) (S )-(–)-endo-borneol; (red) (S )-(–)-
endo-borny acetate; (Blue) (±)-isobornyl acetate (IR only); (Cyan) (±)-isoborneol (IR
only). Gap in the carbonyl region due to high noise level.
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Figure 6.8: Superposition of IR/VCD experimental spectra in CDCl3 of fenchane type
monoterpenes. (Black) (S )-(+)-fenchone; (Red) 1R)-(+)-endo-fenchyl alcohol.
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Figure 6.9: Superposition of IR/VCD experimental spectra in CDCl3 of geraniol type
monoterpenes. (Black) (S )-(–)-β-citronellol; (Green) (R)-(–)-linalool; (Red) (R)-(–)-
linalyl acetate; (Blue) (S )-(+)-β-citronellene; (Cyan) (S )-(–)-β-citronellal. Gap in the
carbonyl region due to high noise level.
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Figure 6.10: Superposition of IR/VCD experimental spectra in CDCl3 of: (Black)
(1S )-(+)-3-carene; (Red) ((1S,4R)-(–)-α-thujone; (Blue) cineole (IR only). Gap in the
carbonyl region due to high noise level.
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Figure 6.11: Monoterpenes identified from the artificial mixture of pinane type
molecules by means of visual IR/VCD spectral markers. Selected vibrational frequencies
and molecular origin also provided.

Figure 6.12: Monoterpenes identified from the artificial mixture of menthane type 1
molecules by means of visual IR/VCD spectral markers. Selected vibrational frequencies
and molecular origin also provided. Shaded areas represent common bands.
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Figure 6.13: Monoterpenes identified from the artificial mixture of menthane type 2
molecules by means of visual IR/VCD spectral markers. Selected vibrational frequencies
and molecular origin also provided.

Figure 6.14: Monoterpenes identified from the artificial mixture of bornane type
molecules by means of visual IR/VCD spectral markers. Selected vibrational frequencies
and molecular origin also provided. Shaded areas indicate couplet signals.
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Figure 6.15: Monoterpenes identified from the artificial mixture of fenchane type
molecules by means of visual IR/VCD spectral markers. Selected vibrational frequencies
and molecular origin also provided.

Figure 6.16: Monoterpenes identified from the artificial mixture of geraniol type
molecules by means of visual IR/VCD spectral markers. Selected vibrational frequencies
and molecular origin also provided. Shaded areas represent common bands.
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Figure 6.17: GC-MS analysis of tea tree oil.

Figure 6.18: GC-MS analysis of rosemary oil.
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Figure 6.19: GC-MS analysis of lavender oil.

Figure 6.20: GC-MS analysis of ylang ylang oil.
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Machine learning model structure and development

Due to the absence of a large monoterpene mixture dataset, a set of in silico

mixture IR and VCD spectra was generated. These spectra were constructed as

random linear combinations of the monoterpene spectra, upon which gaussian

noise is added. As the in silico mixture spectra are linear combinations, a (L2-

regularised) linear model was chosen as the basis for the ML model. The model

was trained on the VCD and IR in silico mixture spectra separately to predict the

concentration of each monoterpene. During training, the model teaches itself the

marker bands for each terpene, identifies which compounds can attenuate their

intensity and from which areas of the spectrum non-marker bands can improve

detection. The added noise guided the model to ignore spectral features with

intensities close to the noise level and the regularisation implored the model to

focus on the wavenumber most important for detecting the specified terpene. By

doing so, we limited the overfitting of the model to the in silico spectra. The

noise level was based on the noise level found in the experimental IR and VCD

spectra. The strength of regularisation was increased as much as possible without

significantly decreasing the accuracy of the in silico concentration predictions

(R2 of approximately 0.98 for unseen in silico spectra). Technical details on the

training and optimisation procedure are provided in the next section.

Prior to evaluating the obtained results on the experimental mixtures, we

discuss the differences in diversity of the IR and VCD spectra for the monoter-

penes. As shown in Figure 6.21, the IR spectra are less diverse and grouped into

3 clusters: compounds containing a non-conjugated carbonyl group, a conjugated

carbonyl group or lacking any carbonyl group moiety. The spectra within each

cluster are strongly similar, increasing the difficulty in separating the contribu-

tions of individual terpenes. The low noise level of IR can compensate for the

lower diversity, as small contributions can be more easily discerned. In contrast

to IR, the VCD spectra are much less correlated as shown in Figure 6.22. The

individual contributions of different chiral terpenes are, therefore, expected to

be more easily separated from each other. The higher noise level of VCD and

baseline uncertainties could increase the difficulty of detecting all contributions,

though. The VCD-based model holds two additional advantages for analysis of

complex mixtures. The transparency of VCD to achiral compounds improves the
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stability of the model towards the presence of achiral compounds absent from the

dataset. Also, the high sensitivity of VCD to molecular chirality introduces said

sensitivity in the model, enabling future use of the model for determination of

stereochemistry of essential oil components.

Figure 6.21: Similarity of IR spectra for each pair of monoterpenes. Similarity is
expressed as the absolute cosine similarity. The order of the monoterpenes is based on
hierarchical clustering on the IR similarity values.
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Figure 6.22: Similarity of VCD spectra for each pair of chiral monoterpenes. Similarity
is expressed as the absolute cosine similarity. The order of the monoterpenes is based on
hierarchical clustering on the VCD similarity values.
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Technical details of machine learning model and hyper-

parameter optimisation

As mentioned in the previous section, the basis of the ML model is a L2-regular-

ised linear regression (also known as Ridge regression) and the model is trained

to predict the concentrations of each terpene from the noisy in silico mixture

spectra. The output of the VCD model is a 33-dimensional vector containing

the concentration of each chiral terpene. For the IR model the output is a 36-

dimensional vector containing the concentrations of all chiral and achiral terpenes.

The spectral intensities (IR or VCD) for each of the 441 wavenumbers between

950 and 1800 cm−1 constitute the input of the model. The model was built and

trained using the scikit-learn library (version 0.24.2)59 and default settings were

used unless specified otherwise. For the model, the strength of the regularisation,

referred to as α, is an important hyperparameter requiring optimisation. Both

the VCD and IR model were trained with a range of α values using 10-fold cross

validation. The resulting performance for the in silico training and validation

sets are shown in Fig 6.23. For smaller α values the VCD model is overfitted

to the training set and larger α values result in underfitting. By setting α to

1.10−9, both influences are balanced and the resulting model predicts the terpene

concentrations with a R2 of ± 0.98 for in silico mixtures. For the IR model, we

chose the largest αvalue (1.10−1) that resulted in a similar accuracy (R2 of± 0.98).

By doing so, we keep the relative level of regularisation consistent for the VCD

and IR models.

After the hyperparameter optimisation of the VCD model, the VCD models

arising from each fold are combined into an ensemble where the predicted con-

centration for a single terpene is the mean value of the predicted concentrations

of each model and the standard deviation is used to quantify the error upon the

mean value. This approach is known as bagging60 and can improve the robust-

ness of the predictions while providing a notion for the uncertainty upon the

predicted values. The approach is repeated for the IR model using the IR models

of each fold.
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Figure 6.23: Optimisation of regularisation strength α for the VCD (left panel) and IR
(right panel) in silico mixture spectra. The reported R2 values are the averages of R2 for
each cross-validation fold and the error on this average is the standard deviation for the
R2 values.

Predictions by machine learning model on mixtures of

known composition

The contents of the different experimental mixtures are provided in Table 6.1

and the predicted relative concentrations for the IR and VCD models are shown

in Figure 6.3 and Figures 6.26-6.31. Performance of the L2-regularised model

on the VCD spectra of mixtures A-F is very promising. For most terpenes, the

presence of a specific terpene in a mixture was linked with a higher predicted

concentration for that terpene. The VCD-based model could not properly detect

the presence/absence of (S )-(–)-perillyl alcohol, (1S )-(+)-carene, (1S,2R,5R)-

(+)-isomenthol and camphor in mixtures A-F (see Figure 6.3). Camphor was

the only terpene for which both enantiomers are present in a mixture: (1S )-(–)-

camphor in mixture A and (1R)-(+)-camphor in mixture C. The camphor con-

centration was expressed in terms of (1R)-(+)-camphor for the VCD model so the

strong negative prediction should indicate the presence of (1S )-(–)-camphor, as

enantiomers have mirror image VCD spectra. So the large negative concentration

predicted for mixture A shows that the model has identified (1S )-(–)-camphor.

However, no clear detection of (1R)-(+)-camphor was obtained for mixture C.

For (R)-(–)-linalyl acetate, the largest predicted concentration out of the mix-

tures corresponds to mixture E. For two other mixtures void of (R)-(–)-linalyl

acetate, however, rather large concentrations were predicted. This is likely a con-
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sequence of its low VCD intensity. Detecting such low contributions in a mixture

spectrum will require large coefficients and the prediction quality will be more

easily affected by noise. If training is performed with L1-regularisation instead

of L2, invoking sparsity in the model, the main difference on model performance

lies in that the largest predicted (1S )-(+)-3-carene concentration is obtained for

mixture D, while the presence of trans-caryophyllene cannot be detected reliably.

While the largest predicted concentrations for each terpene correctly reflects its

presence in a mixture, the gap between predicted concentrations when the ter-

pene is present or absent was small for (S )-(–)-citronellal, (S )-(+)-β-citronellene,

(1S )-(+)-3-carene (for L1) and (R)-(–)-linalyl acetate. The VCD patterns arising

from the carbonyl vibration are particularly sensitive to the molecular environ-

ment. In complex mixtures, a mixture spectrum could therefore deviate from the

linear approximation for the mixture spectra. We trained the linear model again

while omitting signals above 1500 cm−1, but performance did not improve.

The IR spectra contain less noise and intensities cannot partially cancel each

other, but they are more strongly correlated. The balance between these dif-

ferences determines the performance of an IR-based model. We trained a L2-

regularised model trained on in silico IR mixture spectra and assessed its perfor-

mance on the IR spectra of mixtures A-F. The model was trained and validated

on detecting the presence of chiral and achiral/racemic terpenes (i.e. cineole,

isoborneol and isobornyl acetate). The model could not detect the presence of

two terpenes: isomenthol and trans-caryophyllene (sesquiterpene). Also the gap

between predicted concentrations for when a terpene is present or absent was

small for α-pinene, 3-carene and β-citronellene (see Figure 6.3). The linear ap-

proach suggested in this work worked slightly better for IR than for VCD. A

combination of the higher noise level, higher uncertainty on the baseline or the

possibility of cancelling intensities is likely the reason for this.

The question now remained whether the linear model for a single terpene

used only the marker bands or also leveraged the other regions in the spectra

to improve its predictions. The coefficients of the L2 linear model are plotted

for each terpene in Figures 6.24-6.25. To address this question, we investigated

the coefficients from the linear model for a few selected terpenes. For VCD,

the model clearly used marker bands to detect some terpenes: e.g. the positive

band at 1290 cm−1 for (R)-(+)-pulegone, the positive band at 1149 cm−1 for
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(S )-(–)-α-terpineol, the positive band at 1052 cm−1 for (S )-(–)-endo-borneol, the

negative band at 1718 cm−1 for (S )-(–)-citronellal, and the negative band at 1738

cm−1 for (1R)-(+)-camphor were all heavily used by the respective linear models.

The linear model used these marker bands but did not completely rely on them;

for many terpenes, numerous non-zero coefficients were found to contribute to

their detection. In IR, the model weighed the carbonyl region as important for

more terpenes compared to VCD. The coefficients of the IR-based model for car-

vone provided a clear example of how non-marker bands supplement the marker

bands for its detection. For carvone, a strong positive and negative coefficient

was observed at 1660 and 1620 cm−1, respectively. Carvone has a strong marker

IR band at 1660 cm−1, however so do myrtenal and verbenone. The IR spectra

of myrtenal and verbenone both contain a smaller IR band at 1620 cm−1, while

carvone does not absorb at this frequency. Thus, the model leveraged the IR in-

tensities at 1620 cm−1 that detected the false positives of myrtenal and verbenone

for detecting carvone with the 1660 cm−1 marker band. For pulegone, the most

intense IR band at 1677 cm−1 was mainly ignored as multiple terpenes absorb at

a similar frequency. The 1614 cm−1 band is notably broad, with the 1610-1560

cm−1 section of the band overlapping only partially with fenchone. The model

leveraged all intensities between 1610 and 1560 cm−1 to detect pulegone along

with the 1210 and relatively isolated 1288 cm−1 bands.

Next, we tested the performance of the models on the mixtures of pinane type,

menthane type 1, menthane type 2, bornane type and fenchane type (Figures

6.26-6.29). For each of these mixtures, we bundled its predictions with those for

mixtures A-F and observed whether the presence of a specific terpene was still

linked with a higher predicted concentration. The terpenes for which mismatches

between predicted concentrations and their presence were already obtained with

A-F will not be discussed, but will still be highlighted in the figures.
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Figure 6.24: Coefficients for the L2-regularised VCD model for each chiral monoterpene
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Figure 6.25: Coefficients for the L2-regularised IR model for each monoterpene.
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Mixture Terpene content
A (1S,4R)-(–)-α-thujone, (1R,2R,3R,5S )-(–)-isopinocampheol, (R)-

(+)-α-pinene, (1R)-(+)-endo-fenchyl alcohol, (1S,2S,5R)-(+)-
neomenthol, (1S )-(–)-camphor, (1R)-(–)-myrtenyl acetate (not
present in in silico mixtures)

B (S )-(–)-β-pinene, (S )-(–)-endo-borneol, (1R,2S,5R)-(–)-
isopulegol, (R)-(+)-α-pinene, (S )-(+)-fenchone, (R)-(+)-
limonene, (R)-(+)-pulegone

C (1S,2S,5S )-(–)-2-hydroxy-3-pinanone, (1R,2S,5R)-(–)-isopulegol,
(1R,2S,5R)-(–)-menthol, (1R)-(–)-myrtenal, (S )-(–)-perillyl alco-
hol, (1R,2R,3S,5R)-(–)-pinanediol, (1R)-(+)-camphor, (R)-(–)-
carvone

D Cineole, (S )-(–)-α-terpineol, (1R)-(–)-myrtenol, (S )-(–)-perill-
aldehyde, (1S )-(–)-verbenone, (1S )-(+)-3-carene, (1S,2R,5R)-
(+)-isomenthol

E (R)-(–)-linalyl-acetate, (S )-(–)-β-citronellol, (S )-(–)-citronellal,
(R)-(–)-linalool, (S )-(+)-β-citronellene

F (1S,2S,5S )-(–)-2-hydroxy-3-pinanone, (S )-(–)-citronellal,
(1R,2S,5R)-(–)-isopulegol, (S )-(–)-perillyl-alcohol, (–)-trans-
caryophyllene, (1S )-(–)-verbenone, (1S )-(+)-3-carene, (R)-(–)-
carvone

H (1S,2S,5S )-(–)-2-hydroxy-3-pinanone, (S )-(–)-α-terpineol, (S )-
(–)-β-citronellol, (S )-(–)-β-pinene, (R)-(–)-linalool, (1R)-(–)-
myrtenal, (1R)-(–)-myrtenol, (S )-(–)-perillaldehyde, (S )-(–)-
perillyl-alcohol, (R)-(+)-α-pinene, (S )-(+)-β-citronellene, (1S )-
(+)-carene, (S )-(+)-fenchone, (1S,2S,5R)-(+)-neomenthol, (R)-
(–)-carvone, (R)-(+)-limonene, (R)-(+)-pulegone, cineole

I (±)-isobornyl-acetate, (R)-(–)-linalyl-acetate, (1S,2S,5S )-
(–)-2-hydroxy-3-pinanone, (S )-(–)-α-terpineol, (S )-(–)-β-
citronellol, (S )-(–)-β-pinene, (S )-(–)-endo-bornyl acetate,
(R)-(–)-linalool, (1R)-(–)-myrtenal, (1R)-(–)-myrtenol, (S )-
(–)-perillaldehyde, (S )-(–)-perillyl-alcohol, (R)-(+)-α-pinene,
(S )-(+)-β-citronellene, (1S )-(+)-3-carene, (S )-(+)-fenchone,
(1S,2S,5R)-(+)-neomenthol, (R)-(–)-carvone, (R)-(+)-limonene,
(R)-(+)-pulegone, (R)-(–)-terpinen-4-ol, cineole

J Cineole, (S )-(–)-α-terpineol, (S )-(–)-β-pinene, (S )-(–)-endo-
borneol, (S )-(–)-bornyl acetate, (1R,2S,5R)-(–)-isopulegol, (1R)-
(–)-myrtenal, (S )-(–)-perillaldehyde, (S )-(–)-perillyl alcohol,
(R)-(+)-α-pinene, (S )-(+)-fenchone, (1S,2R,5R)-(+)-isomenthol,
(1S,2S,5R)-(+)-neomenthol, (R)-(–)-carvone, (R)-(+)-limonene,
(R)-(+)-pulegone

Table 6.1: Content of the experimental mixtures added for evaluation of the linear
models.
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For the mixture of pinane derivatives, the presence of (S )-(–)-citronellal and

(–)-trans-caryophyllene was wrongly predicted with the VCD model. The IR

model wrongly detected pinanediol and limonene. For the menthane 1 mixture,

both models could not properly detect (R)-(–)-terpinen-4-ol. The IR spectrum of

the menthane 2 mixture allowed to identify all terpenes. The VCD spectrum iden-

tified all terpenes present, but a mismatch was obtained for (R)-(–)-carvone and

(S )-(–)-citronellal. Interestingly, large positive concentrations were predicted on

both spectra for (1S,2R,5R)-(+)-isomenthol for which mismatches were obtained

on A-F. On the bornane type mixture no additional mismatches were noted for

IR and a single wrong detection for (R)-(–)-linalyl acetate in VCD was noted.

For the mixture of fenchone and fenchol, a single wrong prediction was obtained

for citronellal on the IR spectrum. The VCD-based model wrongly detected the

presence of (R)-(–)-linalyl acetate, (S )-(–)-citronellal and (S )-(+)-β-citronellene.

For this set of mixtures, each composed of structurally similar terpenes, the ac-

curacy of the ML approach remained similar to the accuracy obtained for A-F,

with on average 1 and 2 additional wrong detections for IR and VCD respectively.

The models show clear potential for the analysis of terpene mixtures. Now the

question remained how far the application area can be pushed. Therefore, we

increased the complexity of the mixtures even further and tested whether the

models could still identify the terpenes present.

The three mixtures of increased complexity (H-J) are composed of 16-22 ter-

penes each. The same methodology was repeated, combining the A-F predictions

along with each of these three mixtures separately, and the obtained results are

shown in Figures 6.30-6.31. The predictions for J remained fairly accurate, with

3 additional mismatches for (S )-(–)-endo-bornyl acetate, (S )-(–)-perillaldehyde

and (R)-(+)-pulegone on the VCD spectrum and two mismatches for borneol

and limonene on the IR spectrum. For mixture H, the accuracy of the model

decreased with 7 additional mismatches for the IR and 4 for VCD. Similarly, a

lower accuracy was obtained for mixture I with 9 additional mismatches for IR

and 8 for VCD. For mixtures of such complexity, where each terpene provides only

a tiny contribution to the mixture spectrum, accurately detecting the terpenes

present becomes more challenging. Depending on the exact mixture composition,

the models can still extract the presence of the monoterpenes as demonstrated

with mixture J.
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Figure 6.26: Predicted concentrations for the chiral terpenes by the VCD-based model
on the combination of mixtures A-F with, from top to bottom, pinane type, menthane
1 type, menthane 2 type respectively. The predicted concentration is colored according
to whether the terpene is present (green) or absent (red) for a mixture. The predicted
concentrations are highlighted for terpenes when no correct decision boundary can be
drawn.
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Figure 6.27: Predicted concentrations for the chiral terpenes by the VCD-based model
on the combination of mixtures A-F with, from top to bottom, bornane type, fenchane
type, respectively. The predicted concentration is colored according to whether the
terpene is present (green) or absent (red) for a mixture. The predicted concentrations
are highlighted for terpenes when no correct decision boundary can be drawn.
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Figure 6.28: Predicted concentrations for the chiral terpenes by the IR-based model
on the combination of mixtures A-F with, from top to bottom, pinane type, menthane
1 type, menthane 2 type respectively. The predicted concentration is colored according
to whether the terpene is present (green) or absent (red) for a mixture. The predicted
concentrations are highlighted for terpenes when no correct decision boundary can be
drawn.
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Figure 6.29: Predicted concentrations for the chiral terpenes by the IR-based model
on the combination of mixtures A-F with, from top to bottom, bornane type, fenchane
type, respectively. The predicted concentration is colored according to whether the
terpene is present (green) or absent (red) for a mixture. The predicted concentrations
are highlighted for terpenes when no correct decision boundary can be drawn.
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Figure 6.30: Predicted concentrations for the chiral terpenes on the combination of
mixtures A-F with mixtures H (top), I (middle) and J (bottom) by the VCD-based
model. The predicted concentration is colored according to whether the terpene is present
(green) or absent (red) for a mixture. The predicted concentrations are highlighted for
terpenes when no correct decision boundary can be drawn.
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Figure 6.31: Predicted concentrations for the chiral terpenes on the combination of
mixtures A-F with mixtures H (top), I (middle) and J (bottom) by the IR-based model.
The predicted concentration is colored according to whether the terpene is present (green)
or absent (red) for a mixture. The predicted concentrations are highlighted for terpenes
when no correct decision boundary can be drawn.
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Predictions by machine learning model on oils

Both models were then applied to the 4 essential oils using the decision boundaries

fine-tuned with mixtures A-F. Predictions for the terpenes for which each model

yielded unreliable predictions on the mixtures A-F were omitted. An overview of

the true positives, false positives and false negatives is provided in Table 6.2 for

the VCD model and Table 6.3 for the IR model.

For tea tree oil, the VCD model wrongly detected the presence of 3 terpenes

(S )-(–)-citronellal, (1R,2R,3S,5R)-(–)-pinanediol and (R)-(+)-α-pinene and did

not detect (S )-(+)-terpinen-4-ol or the tiny fraction of limonene and β-pinene.

The IR model clearly detected terpinen-4-ol, along with limonene. However,

the model detected the absent compounds β-citronellol, menthol, α-pinene and

3-carene. In rosemary oil the VCD model correctly identified the presence of

(R)-(+)-α-pinene and (S )-(–)-β-pinene present in the oil, whereas the IR model

detected α-pinene, β-pinene and α-terpineol present in the oil. Both models re-

mained undecisive concerning the tiny fraction of (1R)-(+)-camphor present. Re-

garding lavender oil, the VCD model detected the presence of (R)-(–)-linalool,

along with the tiny fraction of (R)-(+)-α-pinene, and the IR model identified both

linalool and linalyl acetate. The VCD model also predicted the presence of (S )-

(–)-citronellal, (1R,2R,3S,5R)-(–)-pinanediol, (R)-(–)-carvone and (1S,2S,5R)-

(+)-neomenthol. The IR model generated a false positive for limonene, and

isopinocampheol (and remains indecisive for menthol). Neither model detected

the ±1% of terpinen-4-ol present in the oil. The tiny fraction of β-pinene was

not detected by either model. The tiny fraction of α-pinene was barely detected

by the VCD model but not by the IR model. The IR model also potentially de-

tected the presence of isoborneol as the predicted concentration exceeds those for

mixtures A-F (in which it was absent). For ylang-ylang oil, (R)-(–)-linalool was

detected by both models. False positives were obtained for (S )-(–)-β-citronellal

and (R)-(–)-carvone with the VCD model. The IR model wrongly predicted the

presence of following compounds: borneol, isopinocampheol, isopulegol, carene,

limonene, pulegone. A large concentration was also predicted for isomenthol, for

which the presence could not be properly detected for mixtures A-F. While no

decision boundaries could be drawn for isoborneol and isobornyl acetate (due to

their absence from A-F), large relative concentrations were obtained for them.
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Essential
oil

True positives False positives False negatives

Tea tree oil \ (S )-(–)-citronellal,
(1R,2R,3S,5R)-(–)-
pinanediol, (R)-(+)-α-
pinene

(S )-(+)-terpinen-4-
ol. Tiny fractions:
limonene and β-
pinene

Rosemary
oil

(R)-(+)-α-pinene,
(S )-(–)-β-pinene

(R)-(–)-linalyl acetate,
(1R,2R,3S,5R)-(–)-
pinanediol, (1S )-(+)-
3-carene and (R)-(–)-
carvone

Tiny fractions: α-
terpineol

Lavender
oil

(R)-(–)-linalool*
Tiny fractions:
(R)-(+)-α-pinene

(S )-(–)-β-citronellal,
(1R,2R,3S,5R)-(–)-
pinanediol, (R)-(–)-
carvone, (1S,2S,5R)-
(+)-neomenthol

terpinen-4-ol, (S )-
(+)-linalyl acetate.
Tiny fractions: β-
pinene

Ylang-
ylang oil

(R)-(–)-linalool (S )-(–)-citronellal and
(R)-(–)-carvone

\

Table 6.2: Accuracy of the predictions on the essential oils by the VCD model. Results
conflicting in the chirality of terpene with visual inspection are indicated with an asterisk.

Essential
oil

True positives False positives False negatives

Tea tree oil terpinen-4-ol. Tiny
fractions: limonene

β-citronellol, menthol, α-
pinene, carene

Tiny fractions: β-
pinene

Rosemary
oil

α-pinene, cineole, β-
pinene.

α-thujone, perillyl alcohol,
β-citronellol, camphor.

Isoborneol.
Tiny fractions:
α-terpineol.

Lavender
oil

linalool, linalyl ac-
etate.

limonene, isopinocam-
pheol

terpinen-4-ol. Tiny
fractions: α-pinene
and β-pinene.

Ylang-
ylang oil

linalool borneol, isopinocam-
pheol, isopulegol, carene,
limonene, pulegone

\

Table 6.3: Accuracy of the predictions on the essential oils by the IR model.
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Chapter 7
Summary

Many natural products and pharmaceutical compounds are chiral and hence their

mirror images (enantiomers) interact differently with a chiral environment. In or-

ganisms, important chemical receptors built from amino acids and sugars are also

chiral and, as a result, enantiomers of the aforementioned compounds can lead to

different biological activities in the human body. Thus, determining the so-called

Absolute Configuration (AC) of a compound is important for research areas like

drug development and agrochemistry. The AC of a chiral compound can be iden-

tified by its interaction with chiral fields, including circularly polarized light. A

chiral compound will interact differently with left- and right- handed circularly

polarized light. In Vibrational Circular Dichroism (VCD), the difference in ab-

sorption of both forms of circularly polarized Infrared Radiation (IR) by a chiral

compound is recorded. With the molecular vibrations as chromophores, VCD

combines chiral sensitivity with the wealth of conformational information of IR

spectroscopy. VCD has established itself as a reliable tool to distinguish enan-

tiomers and other stereoisomers. Unfortunately, there are no general empirical

rules to link a VCD spectrum to a specific AC. Typically, Density Functional

Theory (DFT) is used to predict the VCD spectrum for each possible relative

configuration after which comparing the DFT spectra with the experimental spec-

trum allows to establish the AC of a compound. As DFT calculations need to

be performed for each conformer of a specific relative configuration, the compu-

tational cost of AC determination increases with the compound’s conformational

flexibility. The work presented in this thesis explores the added value of super-
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vised Machine Learning (ML) for the existing AC determination workflow.

As the combination of supervised ML methods with VCD has not yet been

explored, their compatibility is completely unknown. The potential of this com-

bination is investigated by addressing the following questions: Are ML models

able to extract the AC from a spectrum directly? Is it possible for an ML model

to predict DFT conformer spectra? Can an ML model retrieve the composition

of mixtures from their VCD spectra?

The first question focuses on the central application of VCD applications on

small molecules: AC determination. The chirality of a compound is encapsulated

in its VCD spectrum in a rather opaque way. An ML model could extract the

chirality from its VCD spectrum when trained on a series of structurally similar

compounds. To answer the first question, a VCD dataset of ± 4k enantiomer

pairs sharing an α-pinene core structure is generated. A researcher could extract

the AC from this dataset without ML techniques with an accuracy up to 75-80%

using optimised empirical rules, whereas a Feedforward Neural Network (FNN)

can do so up to 99.5% accuracy. While AC extraction is more difficult for a

Random Forest (RF) model (up to 94.5% accuracy) than an FNN, RF enables

to identify the spectral areas containing the crucial chiral information. Thus,

ML models are clearly able to extract the AC directly from the VCD spectrum.

Once more spectral databases are established, AC determination of particular

molecular classes could be performed without DFT.

The second question relates to the high sensitivity of VCD towards the con-

formations a single compound can adapt. This sensitivity enables researchers to

study the conformational population of chiral compounds in solution. The impact

of the conformation on the VCD spectrum is, however, not easily established for

small flexible molecules. The VCD spectra of conformers are therefore computed

with DFT and averaged according to their Boltzmann weights. For compounds

with a high degree of conformational flexibility, the computational cost of VCD

applications increases significantly. This computational cost could be decreased

if the link between conformer and spectrum can be extracted with an ML model.

For a set of congener compounds, an FNN is trained on a subset of conformers

and its ability to predict the spectra of the remaining conformers is gauged. The

FNN predicted spectra match the DFT conformer spectra to a very high extent

when ample conformers are provided to train on. When stronger intramolecular
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interactions occur, such as intramolecular hydrogen bonds, the FNN predicted

spectra are less accurate, especially if the molecular representation used to en-

code the conformations fails to reflect them properly. Nonetheless, with the FNN

workflow the molecular VCD spectrum is obtained at a fraction of the cost with-

out sacrificing its accuracy.

With both questions answered, a final question is raised: Can an ML model

discern the different compounds present in a mixture based on its VCD and/or

IR spectrum? This question does not tackle an existing application area of VCD

like the previous two, instead, it introduces a previously unexplored application.

As a proof of concept, a linear ML model was trained using a dataset of monoter-

penes to detect their presence in mixtures. For the monoterpenes mixtures, the

model successfully identifies the monoterpenes present. Predicting the content of

more complex mixtures does become more challenging for the model. For natural

oils, the model is able to detect from the IR spectrum most of the monoterpenes

present. Nonetheless, the current method results in too many false positives,

hindering its practical applications for natural oils.

In summary, this thesis demonstrates the value of combining VCD spec-

troscopy with ML methods. By tackling these questions, a foundation is provided

to the community to build future applications of ML in VCD. Finally, it is the

hope of the author that this work will motivate the construction of a general VCD

database by the community. Increased availability of spectral data will increase

the scope and possibilities of ML applications within the field likewise.





Chapter 8
Samenvatting

Veel natuurlijke producten en farmaceutische verbindingen zijn chiraal en hun

spiegelbeelden (enantiomeren) interageren bijgevolg anders met een chirale omgev-

ing. Belangrijke chemische bouwstenen van receptoren in organismen - aminozuren

en suikers - zijn ook chiraal en als gevolg daarvan kunnen enantiomeren een ver-

schillende biologische activiteit vertonen in het menselijk lichaam. Daarom is

het bepalen van de zogenaamde Absolute Configuratie (AC) van een verbinding

belangrijk voor onderzoeksgebieden zoals geneesmiddelen en agrochemie. De AC

van een verbinding kan worden gëıdentificeerd op basis van de interactie met chi-

rale velden zoals circulair gepolariseerde licht. Een chirale verbinding zal anders

interageren met de links- en rechtshandige vormen van het circulair gepolariseerde

licht. Bij Vibrationeel Circulair Dichröısme (VCD) wordt het verschil in absorp-

tie van InfraRood (IR) straling tussen beide vormen van polarisatie door een

chirale verbinding geregistreerd. Met de moleculaire vibraties als chromoforen,

combineert VCD de chirale gevoeligheid met de overvloed aan conformationele

informatie van IR-spectroscopie. VCD is uitgegroeid tot een betrouwbare analy-

setechniek om enantiomeren (en andere stereoisomeren) te onderscheiden. Helaas

zijn er geen algemene empirische regels om een VCD-spectrum te koppelen aan

een specifieke AC. Doorgaans wordt de DensiteitsFunctionaalTheorie (DFT) ge-

bruikt om het VCD-spectrum te voorspellen voor elke mogelijke relatieve configu-

ratie. Door deze DFT-spectra te vergelijken met het experimentele spectrum kan

de AC van een verbinding correct worden bepaald. Aangezien DFT-berekeningen

moeten worden uitgevoerd voor elk conformeer van een specifieke relatieve con-
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figuratie, neemt de benodigde computerkracht voor AC-bepaling toe met de con-

formationele flexibiliteit van de verbinding. Het werk dat in deze thesis wordt

gepresenteerd, onderzoekt de toegevoegde waarde van Machine Learning (ML)

voor de bestaande workflow voor AC-bepaling.

Voor het begin van dit onderzoek was er nog geen onderzoek gepubliceerd over

het gebruik van ML voor VCD, waardoor hun compatibiliteit volledig onbekend

was. Het potentieel van deze combinatie wordt onderzocht met behulp van de

volgende vragen: Zijn ML-modellen in staat om de AC uit een VCD spectrum

te halen? Is een ML-model in staat om DFT-spectra van conformeren te voor-

spellen? Kan een ML-model de samenstelling van mengsels vaststellen op basis

van hun VCD-spectra?

De eerste vraag richt zich op de hoofdtoepassing van VCD voor kleine molecu-

len: de bepaling van de Absolute Configuratie (AC). De chiraliteit van een

verbinding zit vervat in het VCD-spectrum, maar deze informatie kan alleen

via complementaire kwantumchemische berekeningen geëxtraheerd worden. Een

ML-model zou de chiraliteit uit het VCD-spectrum kunnen halen na training op

een reeks structureel vergelijkbare verbindingen. Om de eerste vraag te beantwo-

orden, wordt een VCD-dataset van ongeveer vierduizend enantiomeerparen met

eenzelfde kernstructuur gegenereerd. Een onderzoeker zou de AC uit deze dataset

kunnen halen, zonder gebruik van ML-technieken, met een nauwkeurigheid van

maximaal 75-80% met behulp van geoptimaliseerde empirische regels. Echter,

een Feedforward Neural Network (FNN) kan de AC uit het spectrum halen met

een nauwkeurigheid van maximaal 99,5%. Hoewel AC-extractie moeilijker is voor

een Random Forest (RF) model (tot 94,5% nauwkeurigheid) dan voor een FNN,

laat een RF toe om de spectrale gebieden te identificeren die de meest karak-

teristieke chirale informatie bevatten. Deze resultaten bevestigen dat de ML-

modellen de AC direct uit een VCD spectrum kunnen halen. Zodra er meer

spectrale databases zijn opgebouwd, zou de bepaling van de AC van specifieke

moleculaire klassen kunnen worden uitgevoerd zonder DFT.

De tweede vraag richt zich op de hoge gevoeligheid van VCD voor de con-

formeren die een molecule kan aannemen. Deze gevoeligheid stelt onderzoekers in

staat om de conformationele eigenschappen van chirale verbindingen in oplossing

te bestuderen. De invloed van de conformatie op het VCD-spectrum is echter

niet gemakkelijk vast te stellen voor kleine flexibele moleculen. De VCD-spectra
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van conformeren worden daarom doorgaans berekend met behulp van DFT en

het moleculair spectrum is dan het gewogen gemiddelde van de conformeer spec-

tra (met de Boltzmannfactoren als gewicht). Voor verbindingen met een hoge

flexibiliteit nemen de rekenkosten van VCD-toepassingen aanzienlijk toe. Deze

rekenkosten verminderen indien een ML-model de link tussen conformeer en spec-

trum kan leren. Om dit te testen, wordt een FNN getraind op een deel van de

conformeren en wordt beoordeeld in hoeverre het model in staat is om de spec-

tra van de overige conformeren te voorspellen. De voorspelde spectra komen

in zeer grote mate overeen met de DFT-conformeerspectra wanneer voldoende

conformeren worden aangeboden om het model te trainen. Wanneer sterkere

intramoleculaire interacties (bv. intramoleculaire waterstofbruggen) optreden,

zijn de voorspelde spectra minder accuraat, vooral als de gekozen moleculaire

representatie deze interacties onvoldoende beschrijft. Niettemin kan men met

de huidige FNN-workflow het moleculaire VCD-spectrum verkrijgen tegen een

fractie van de oorspronkelijke rekenkosten, zonder de nauwkeurigheid negatief te

bëınvloeden.

Tenslotte, wordt er nog laatste vraag gesteld die, in tegenstelling tot de vorige

twee vragen, zich niet richt op een bestaand toepassingsgebied van VCD. In plaats

daarvan behandelt het een toepassing die totnogtoe niet verkend is: Kunnen

ML-modellen de moleculen aanwezig in een mengsel detecteren via het VCD-

en/of IR-spectrum van het mengsel? Als proof-of-concept werd een ML-model

getraind met behulp van een dataset van monoterpenen om hun aanwezigheid

in mengsels te detecteren. Het model identificeert succesvol welke monoterpenen

aanwezig zijn in de monoterpeenmengsels. Echter, bij complexere mengsels wordt

het moeilijker voor het model om alle bestanddelen te identificeren. Voor natu-

urlijke oliën kan het model de meeste monoterpenen detecteren op basis van het

IR-spectrum. Desondanks leidt de huidige methode tot te veel valse positieven,

wat de praktische toepassingen ervan voor natuurlijke oliën belemmert.

Samengevat toont deze scriptie de meerwaarde van ML-methoden voor VCD-

spectroscopie. Door deze vragen te beantwoorden, wordt een basis gelegd voor

de wetenschappelijke gemeenschap om toekomstige toepassingen van ML in VCD

te ontwikkelen. Tenslotte hoop ik dat dit werk de aanmaak van een algemene

VCD-database door de gemeenschap zal stimuleren. Een grotere beschikbaarheid

van spectrale gegevens zal de reikwijdte en mogelijkheden van ML-toepassingen
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binnen het vakgebied vergroten.



Chapter 9
Future perspectives

9.1 AC determination with supervised mod-

els

With the main application of VCD being AC determination, our first chosen

project was to extract the AC from VCD spectra with ML methods. Here, we

chose a well-defined application domain, being the substituted pinene structures,

and tested the capabilities of the ML methods within this domain. Doing so, it

was clear that ML methods identified the molecular chirality with impressive ac-

curacy. The chirality of structurally similar compounds can clearly be extracted

from VCD spectra much better with ML than with chiral fingerprints. The mod-

els barely needed optimization, no deep learning techniques were needed and the

models did not require 2D structural data of the compounds. A possible av-

enue to explore is to test the current methodology on compounds with flexible

structures and of increased diversity. Here, the generation of more VCD data for

training ML models is essential. Doing so would broaden the application domain,

encompassing more of the commonly found structural motifs in molecules. How-

ever, given the absence of a VCD dataset of considerable size covering chemically

diverse compounds, developing a ‘general AC determination’ model is not pos-

sible at the moment. To develop such a model, a significant effort into sharing

spectral data and assembling them into a coherent dataset is highly needed.

Another possible avenue to explore would be to adjust the current methodol-
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ogy to include predicting the AC of compounds with multiple chiral centres from

a single 2D structure. Of course, given the dataset size requirement, a compound

with a large number of stereoisomers is needed to generate enough training data.

For this reason, we propose to test this idea on cholic acid. Cholic acid contains

11 chiral centers, as shown in Figure 9.1, which results in 2048 (211) possible

stereoisomers. The compound is also rather flexible thanks to the hydroxyl moi-

eties, acidic sidechain and possible ring flips. As a result, the computational cost

of computing all DFT spectra is significant (the spectra were only obtained after

running calculations half a year on the VSC infrastructure).

Figure 9.1: Cholic acid with chiral carbon atoms highlighted in red.

Figure 9.2: Influence of chiral centers’ configurations on VCD spectrum.a
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As part of a master thesis project, simple ML methods (excluding neural

networks) were tested to predict the configuration of each of the chiral centers

from the VCD spectrum. As expected, the ML task proved more complex than

the pinene AC prediction. The spectra are very sensitive to the inversion of a

single center (Figure 9.2), with epimer spectra having an median similarity of

+- 0.33. These models could identify the AC of an individual chiral center with

an accuracy of ± 90%, indicating the potential of this approach. However, the

resulting full AC (i.e. the 11 chiral labels) of the compound was only correct

for a third of the stereoisomers. For the full AC label, a single-label accuracy of

90% results in a full AC accuracy of (90%)11 (± 31 %) if the label predictions of

different centers are assumed to be independent. The problem with this approach

for many chiral centers lies in balancing the need to create sufficient data and

the increasing complexity of AC determination with the number of chiral centers.

Therefore, other models should be chosen where the predictions of different chiral

centers are not independent of each other. In other words, the patterns learned by

the model should include information on multiple chiral centers or model chains

have to be used where the predicted AC of one chiral center is included as a feature

for AC prediction for other chiral centers. Efforts to solve this problem with these

ML methods with such a model chain, illustrated in Figure 9.3, did not improve

the full AC accuracy. The introduction of multioutput neural networks would

be a next step in solving this issue. The patterns extracted from the spectrum

with these networks can be geared towards multiple chiral centers. Adding the

IR spectra alongside the VCD spectra may also improve the ability of the models

to discern epimers and diastereomers.

Figure 9.3: Illustration of a model chain for AC determination for 3 chiral centers.

aFigure taken from master thesis “Putting Machine Learning Applications for Vibrational
Circular Dichroism to the Test.”, J. Vanhove, University of Antwerp, 2022-2023.
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9.2 Predicting conformer spectra

The aim of this project was to identify whether an FNN could learn the link

between conformers and their VCD spectra. The choice of the six model com-

pounds allowed to identify which sources may hinder such a workflow. From this,

it was clear that the ML task became more difficult when the dihedral angles of

neighbouring sidechains started interacting (i.e. become correlated). Therefore,

it would be interesting to see how the workflow performs on macrocycles or lin-

ear molecules. For such compounds, the rotation of a dihedral angle influences

the values the other dihedral angles can adopt. Preliminary results for the com-

pounds in Figure 9.4, show that the differences between conformer spectra are

even stronger here (lower Sconf ). This reinforces the proposed idea that the con-

former spectra differ more strongly when the dihedral angles are less independent

from each other. For (S )-3-ethoxynonane, the predicted conformer spectra are

less accurate, though the resulting Boltzmann spectrum remains accurate (Fig-

ure 9.5). For (S,S )-1,2-dichlorocyclotetradecane, the ML model fails to learn the

link between conformation and VCD spectrum. Therefore, more sophisticated

models and molecular representations, describing their 3D geometries, have to

be tested. Here, more attention should be paid to properly describing the weak

intramolecular interactions that influence the molecular flexibility.

Figure 9.4: Flexible compounds of interest. Red arrows indicate the dihedral angles
describing the molecular flexibility.

As demonstrated in Chapter 5, the influence of sidechains on the molecular

VCD spectrum can clearly be predicted with neural networks. Sidechains sub-

stantially increase the flexibility of a compound, resulting in an increase of the

number of conformers. For this reason, VCD applications on very flexible com-
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Figure 9.5: Boltzmann weighted spectrum of (S )-3-ethoxynonane and ML predicted
one with the 30% of the conformers in the training set. The cosine similarity Θ of the
spectra is equal to 0.90.

pounds may require ignoring these sidechains, resulting in lower quality computed

spectra. Compounds with both flexible sidechains and a flexible core structure

will have an even larger number of conformers, making calculating VCD spectra

for such compounds impractical. Therefore, another avenue for further research

is to replace the rigid naphthalene core by a flexible core structure. Recent work

in our group by Dr. Aerts showed that the VCD conformer spectra of a macro-

cyclic glycopeptide are very sensitive towards the conformational changes. Here,

the molecular spectrum could not be recreated with a representative subset of

conformers, indicating that many more conformers need to be included for the

Boltzmann weighted spectrum. It would be interesting to see if a similar ML

workflow could be used to account for the influence of the sidechains. However,

the current challenges with macrocyclic compounds have to be tackled first.

The current workflow still uses the DFT geometries as input for the FNN

and the energies for the Boltzmann weighting. One way to alleviate this problem

is to replace the quantitative conformer representation into a qualitative one

e.g. discretising the input features. Each dihedral angle is then bagged under

g/G/T or c/t and the model is trained to predict conformer spectra from this

qualitative representation. As a result, the exact dihedral angles of a conformer

are no longer needed for prediction. Tests on compounds 1a, 2a and 3 show

that an FNN trained on a qualitative representation predicts conformer VCD

spectra with the same accuracy. Hence, a qualitative representation provides

sufficient information to learn VCD conformer spectra. Nonetheless, we could

not generate qualitative representations for 1b and 2b, so more research into

designing alternative qualitative representations is needed. The current workflow
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still relies on the DFT energies for the Boltzmann weighting of the conformer

spectra. In future applications, the conformer energies could be predicted from

these approximate inputs with the same model or transfer learning with pre-

trained models. Alternatively, models from literature could be used to generate

conformers and predict the energies.

Figure 9.6: The conformer spectra of compound 4, the epimer and enantiomer (see
Chapter 5) projected into 2D space with t-SNE.

Of course, the next step would be to further mature the workflow to make it

transferable towards different stereoisomers. Figure 9.6 identifies a pitfall for this

further development: the application domain for the conformer does not include

conformer spectra of the enantiomer. Therefore, it is unlikely that a model can

automatically learn conformer spectra of enantiomers unless specifically trained

to do so. One way to counter this issue, is to use transfer learning and hope that

the chemical patterns within it include chirality. However, few models with large

application domains use representations that discriminate between enantiomers. I

believe that a more fruitful avenue lies in predicting the molecular VCD spectra of

stereoisomers (with the same 2D structure). For example, the workflow suggested

for multi-center AC determination in the previous section could be flipped around.

In this, cholic acid would be a nice case study to try this idea on, as it has 11

chiral centres which results in 2048 possible ACs.
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9.3 Natural oil extracts

The main goal for furthering the monoterpene project is to broaden the scope

of the dataset. The model worked perfectly on the in-silico mixtures and the

extracted patterns seemed to work decently on monoterpene mixtures. Some mi-

nor tweaking of the in-silico mixture generation and the feature engineering part

might be beneficial, but is not expected to substantially influence model perfor-

mance at this point. The largest shortcoming of the model lies in the transference

to mixtures containing samples absent from the dataset. Here, I believe including

more monoterpenes and other compounds commonly found in natural oils can

push the applicability of the workflow. Again, here the importance of furthering

the general VCD database shines through. The crux of the issues regarding ML

applications lies in the general lack of availability of VCD spectral data.
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Appendix

A.1 Example of FNN prediction for wine

dataset

The purpose of this section is to illustrate how a neural network predicts a label

for a given sample. Here, we consider a neural network which accepts a wine

sample i and predicts whether the sample belongs to a specific cultivator (yi = 1

if True, else yi = 0) using 3 features (proline content, flavanoids content and

color intensity). The neural network has 2 hidden layers, each with 2 hidden

neurons using the ReLu activation. The output layer has a single neuron using

the Sigmoid activation. Figure A.1 shows the current structure of the FNN.

Figure A.1: General structure of the FNN for the wine classification example.

With the current structure, each of the 3 non-input layers will have a weight

matrix and a bias vector associated with them. As the output layer contains a

single neuron, the output vector is of length 1 and, therefore, the bias vector b(3)
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is of length 1 and W (3) is a (2× 1) matrix.

After training the model on multiple wine samples, the following weight ma-

trices and bias vectors are obtained:

W (1) =


0.092 2.690

0.170 1.237

−0.440 0.420

 b(1) =

[
−1.340

4.371

]

W (2) =

[
0.132 0.363

−1.349 1.640

]
b(2) =

[
−0.763

0.968

]

W (3) =

[
−0.427

−1.116

]
b(3) =

[
11.08

]
To more easily differentiate the trained parameters from the numbers that depend

on the chosen sample, the latter ones will be highlighted in red. Consider sample

a, which has the following input vector:

xa =


−0.802

−0.431

−1.344


The first hidden layer takes a weighted average of this input:

z(1)
a = W (1)⊤xa + b(1)

=

[
0.092 0.170 −0.440

2.690 1.237 0.420

]
−0.802

−0.431

−1.344

+

[
−1.340

4.371

]

=

[
0.444

−3.255

]
+

[
−1.340

4.371

]

=

[
−0.896

1.116

]

which is then passed along to the ReLU activation function:

h(1)
a =

[
ReLU(−0.896)

ReLU(1.116)

]
=

[
0

1.116

]
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The second hidden layer uses the vector h
(1)
a as input and takes a weighted average

of its components:

z(2)
a = W (2)⊤h(1)

a + b(2)

=

[
0.132 −1.349

0.363 1.640

][
0

1.116

]
+

[
−0.763

0.968

]

=

[
−1.505

1.830

]
+

[
−0.763

0.968

]

=

[
−2.268

2.798

]

which is then passed along to the ReLU activation function:

h(2)
a =

[
ReLU(−2.268)

ReLU(2.798)

]
=

[
0

2.798

]

Finally, the output layer uses h
(2)
a as input and takes a weighted average of its

components. As the output layer only contains a single neuron, zpreda and the

intercept b(3) are scalars:

zpreda = W (3)⊤h(1)
a + b(3)

=
[
−0.427 −1.116

] [ 0

2.798

]
+ 11.08

= −3.123 + 11.08

= 7.957

The sigmoid activation function is then given zpreda to produce the output:

ypreda = σ(7.957) = 1.000

So, the model predicts that wine sample a originates from the cultivator. An

overview of these calculations, along with the matrix and vectors involved, is

provided in Figure A.2.
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A.2 Violin plots

Violin plots provide an easy-to-read visualisation of the data distribution and

the key statistical descriptors. As they are not commonly used outside of the

data science field, a more detailed description of their makeup is warranted and

is provided in this section.

Figure A.3: Makeup of a violin plot. For a set of data instances, both a kernel density
and a boxplot are combined into a single violin plot. The kernel density part of the violin
plot can be split using a boolean criterion (orange = True, yellow = False), where each
side of the violin plot shows the kernel density of one of the two subsets.

A violin plot consists of 2 overlapping plots. The first part is a box plot, which

contains the key statistical descriptors of the data. The line in the box shows

the mean value, whereas the box edges indicate the values of Q25 and Q75. The

whiskers indicate the full range of the distribution (excluding the points deemed

to be outliers). The second part of the violin plot is a kernel density plot rotated

90 degrees, with the density in the horizontal direction and the data values in

the vertical one. This kernel density is then mirrored along the vertical axis.

The width of the violin represents the density of the data instances around that

value. For split violin plots, the data is split using a boolean condition and the

two kernel density distributions are shown at either side of the box plot. Such

violin plots are used in the supplementary information of Chapter 5 to compare

values for conformers with (left) and conformers without (right) a hydrogen bond.

Within this work, the Seaborn library is used to create the violin plots.
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This library can plot violin plots upon pre-existing matplotlib objects via the

ax = matplotlib.axes.Axes option. Additional details on violin, kernel den-

sity and box plots can be found in the documentation provided by Seaborn.
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