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Abstract—Tomographic artifacts are unwanted distortions
and/or structures not present in the scanned body that may
appear in the reconstructed images. Recent deep learning-based
methods for suppressing artifacts in tomographic images are
currently not informed by the nature of these artifacts in the
design of their network architectures. In this work, we present
the Deep Steerable Convolutional Framelet Network (DSCFN),
inspired by the theory of deep convolutional framelets, which
exploits the regular pattern of ripple artifacts presented in sparse-
view X-ray tomosynthesis images. Experiments with simulated
data show that the DSCFN outperforms the regular U-net and
its deep convolutional framelet, the tight U-net, in terms of PSNR.

Index Terms—Medical Imaging, Digital Tomosynthesis Imag-
ing, Deep Learning, Deep Convolutional Framelet Networks

I. INTRODUCTION

Both Computed Tomography (CT) and X-ray tomosynthesis

allow reconstructing cross sections of a patient’s body. In

contrast to CT, X-ray Tomosynthesis acquires only a limited

number of X-ray projections. As a result, while tomosynthesis

reconstructions display a high-resolution parallel to the X-ray

detector, the in-depth resolution is much lower compared to

that of CT. On the positive side, due to the reduced number

of X-ray projections, the radiation dose can be 30× lower

than CT [1], and the total examination time much shorter [2].

Moreover, the tomosynthesis average cost per patient is about

2.5× lower compared to CT [3].

To ensure a high quality of tomosynthesis reconstruction

images, there is a minimum number of X-ray projections to

be acquired for a given angular range [4]. Nevertheless, there

is a strive towards reducing the number of projections as much

as possible without significantly compromising image quality.

Indeed, reducing the number of acquired projections lowers

the scanning time as well as the radiation dose. Unfortunately,

with decreasing the number of projections, unwanted ripple

artifacts start to appear. The method proposed in this work

aims at suppressing those ripple artifacts in images obtained

from sparse-view X-ray tomosynthesis by post-processing the

tomographic data in the reconstruction space. In contrast to

recently proposed deep learning solutions, our approach is

artifact-informed as it leverages the directional nature of the

target ripple artifacts to compose the network’s architecture.

Many Deep Learning (DL) methods were proposed in

the literature for suppressing tomographic artifacts [5]–[9].

However, there is a gap of understanding on the reasoning

behind most of those methods. At the same time, the recent

theory on Deep Convolutional Framelet Networks (DCFNs)

[10] describes a DL architecture that can be viewed as an

implementation of convolutional framelets [11] for signal

representation using fixed non-local bases combined with data-

driven local bases. Therefore, DCFNs can be viewed as an

extension of the traditional signal processing theory.

This work proposes a DCFN that incorporates the steerable

wavelet as its fixed non-local basis: the Deep Steerable Con-

volutional Framelet Network (DSCFN). On a steerable basis,

the data is decomposed into scale and orientation subbands.

Steerable wavelets are more flexible than orthogonal separable

wavelets (e.g., Haar, Daubechies, etc) since no orthogonality

constraints are applied to the filters. Furthermore, the filters

are only constrained to be rotated copies of each other and

linear combinations of the basis filters [12], and can hence be

selected according to the image characteristics observed in the

dataset.

In the sparse-view tomosynthesis problem, the artifacts that

emerge in the reconstructed images are mainly ripple effects

that are oriented along multiple directions. To reduce the

ripple artifacts, we propose the use of DSCFN with band-pass

oriented filters, which decompose the image details into four

directional components. Furthermore, our DSCFN ensures that

all steerable wavelet components from the input image are

denoised by independent convolutional layers.

II. BACKGROUND

A. The Deep Convolutional Framelet Network

Ye et al. [13] described the DCFNS - a new class of

deep neural networks - that can be viewed as an imple-

mentation of Convolutional Framelets [14] for representing

signals by convolving with local and non-local basis functions.

The architecture of a regular DCFN based on two levels of



decomposition is illustrated in Fig. 1 where Φ
(l)
high and Φ

(l)
low

refer to high-band and low-band non-local bases, respectively,

and Ψ(l) and Ψ̃(l) are learnable local bases.

Mathematically, Ye et al. summarized the dataflow in the

DCFN using the Eqs. (1) and (2). Eqs. (1) refers to the encoder

stage of the DCFN, where f ∈ R
m is the input image, Ψ

(l)

is the l-th matrix of flipped convolutional filters [ψ1 · · ·ψq] ∈
R

d×q composed of q convolutional filters of length d, ⊛ is

the convolutional operator that states that f ⊛ Ψ = Hd(f)Ψ
where Hd is the Hankel operator such that Hd(f) ∈ R

m×d,

Φ
(l)
low/high = [φ1 · · ·φm] ∈ R

n×m is the l-th low-band or high-

band non-local basis matrix for Rn, ρ is the ReLU activation

function, C
(l)
low is the l-th approximate signal, and C

(l)
high is the

l-th detail signal.
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Additionally, the decoder stage of the DCFN is given by:
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where Ĉ
(l)
low is the l-th approximate signal estimation, v(Ψ̃) is

given by
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1

d
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∈ R

dq (3)

and Ĉ(l) is the l-th signal estimation presented in the following

equation

Φ(l)Ĉ(l)Ψ̃(l)T = Φ
(l)
lowĈ

(l)
lowΨ̃

(l)T +Φ
(l)
highĈ

(l)
highΨ̃

(l)T (4)

where Ĉ
(l)
high is the l-th detail signal estimation, Ψ̃(l) =

[ψ̃1 · · · ψ̃q] ∈ R
d×q is the matrix of convolutional filters dual

to Ψ such that ΨΨ̃T = Id×d.

B. The Steerable Wavelet

Steerable Wavelets allow an image to be decomposed

into scale and orientation subbands [12]. A set of filters

{υ1, υ2, · · · , υz} composes a steerable basis Υ if the filters

are (i) rotated copies of each other, and (ii) computed as a

linear combination of basis filters.

The idealized spectral decomposition promoted by the steer-

able wavelet is shown in Fig. 2 for K = 4 orientations,

where {υB0
, υB1

, υB2
, υB3

} are band-pass oriented filters and,

υH0
and υL1

are non-oriented high-pass and narrowband

low-pass filters, respectively. Higher levels of decomposition

are obtained recursively by applying the complete steerable

decomposition to the downsampled image resulting from L1.

Since the Fourier spectrum is translation-invariant, and the

directional derivatives {υB0
, · · · , υBK

} span a rotation equiv-

ariant subspace, the final representation obtained is translation-

invariant and rotation-equivariant. Furthermore, the Steerable

Wavelet is invertible and it forms a tight frame, i.e. there is a

dual basis Υ̃ that satisfies Υ̃Υ
T
= I .

The advantages of the Steerable Wavelet over other separa-

ble orthogonal wavelets (such as Haar, and Daubechies) are at

least threefold: (i) there are no orthogonal constraints applied

to the filters; (ii) any number K of directional derivates can

be used; (iii) new steerable filters with specific characteristics

can be designed [15], [16].

III. PROPOSED METHOD

The Deep Steerable Convolutional Framelet Network

(DSCFN) proposed in this work relies on applying the

steerable wavelet bases as the non-local basis Φ of the

regular DCFN architecture. Furthermore, for learning to-

mosynthesis artifact suppression rules according to the ar-

tifact directional, we introduced new learnable local bases

{Ψ
(l)
H0
,Ψ

(l)
B0
, · · · ,Ψ

(l)
B3

} for processing high-frequency signals

as follows:
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The architecture of the proposed DSCFN is illustrated in

Fig.3.

IV. EXPERIMENTS AND RESULTS

Using the Astra Toolbox [17], we simulated a tomosynthesis

scanning setup in which the X-ray source moves linearly while

the patient and the X-ray detector remain static. Then, sparse-

view projections were acquired at equidistant positions, and

finally, images were reconstructed using SIRT [18].

Experiments were conducted using The Clinical Proteomic

Tumor Analysis Consortium Pancreatic Ductal Adenocarci-

noma (CPTAC-PDA) collection1 that comprises CT, and Mag-

netic Resonance Imaging (MRI) scans from 116 patients. From

these original 512 × 512 × slc, slc > 120 volumes, we

generated tomographic volumes 512 × 100 × slc, slc > 120
by resizing the axial slices. Based on these data, we simulated

sparse-sampled tomosynthesis images using 20 X-ray projec-

tions and full-sampled tomosynthesis images using 100 X-ray

projections.

Then, we trained deep models for mapping sparse-sampled

into full-sampled images in order to suppress ripple artifacts.

For this, slices 512×100 were fed into the networks, and due

to this input image resolution, 2-level decomposition networks

were used.

1https://wiki.cancerimagingarchive.net/display/Public/CPTAC-PDA



Fig. 1. Architecture of the DCFN proposed by Ye et al. [13].

Fig. 2. Idealized spectral decomposition using steerable wavelets within K =
4 orientations, where ωx and ωy denote the axis in the Fourier space.

The performance of our DSCFN was compared with the U-

net [19], and tight U-net [20] (which is a DCFN) in terms of

Peak Signal-to-Noise Ratio (PSNR) [21] that is a commonly

used metric used to quantify the quality of images subject to

noise.

The PSNR metrics in Table I show the strength of our

method in relation to both U-net and tight U-net in the vast

majority of the scans tested in the CPTAC dataset. In fact,

paired samples t-tests resulted in p-values 7 × 10−10 and

4 × 10−6 when comparing the results of the DSCFN with

those from U-net and tight U-net. Such p-values rejects the

hypothesis that the mean of PSNR distribution are the same

for DSCFN and U-net or tight U-net.

To evaluate the generalization capabilities of the models

trained in the CPTAC dataset, we performed tests using sparse-

view tomosynthesis simulated from CT images of the Visible

Human (VH) Project dataset2. Table II shows the PSNR met-

rics related to the images generated from the VH dataset, and

Fig. 4 shows the error maps (i.e., the difference between the

reconstructions and the ground truths) of SIRT tomosynthesis

processed by U-net, tight U-net, and the proposed DSCFN. A

closer look at the DSCFN error map reveals thinner horizontal

strips in red.

2https://mri.radiology.uiowa.edu/visible human datasets.html

TABLE I
AVERAGE AND STANDARD ERROR OF THE PSNR VALUES FOR ALL THE

SLICES FROM TWENTY SCANS WITHIN CPTAC DATASET. THE HIGHEST

AVERAGE VALUES ARE HIGHLIGHTED IN BOLD.

U-net tight U-net DSCFN
scan#1 51.38(±0.27) 51.56(±0.27) 51.95(±0.25)
scan#2 48.44(±0.26) 48.58(±0.27) 49.02(±0.24)
scan#3 48.55(±0.26) 48.70(±0.27) 49.14(±0.24)
scan#4 48.63(±0.25) 48.93(±0.27) 49.24(±0.25)
scan#5 48.64(±0.34) 49.15(±0.37) 49.22(±0.37)
scan#6 43.36(±0.42) 43.79(±0.45) 44.14(±0.48)
scan#7 43.28(±0.41) 43.69(±0.45) 44.04(±0.48)
scan#8 45.59(±0.36) 46.14(±0.41) 46.38(±0.44)
scan#9 45.71(±0.35) 46.30(±0.40) 46.48(±0.42)
scan#10 38.03(±0.71) 38.47(±0.76) 38.72(±0.79)
scan#11 44.88(±0.45) 45.33(±0.49) 45.57(±0.52)
scan#12 42.90(±0.25) 43.28(±0.21) 43.15(±0.23)
scan#13 44.80(±0.95) 44.76(±0.08) 45.09(±0.88)
scan#14 42.49(±0.20) 42.81(±0.19) 42.82(±0.20)
scan#15 44.19(±0.23) 44.81(±0.20) 44.81(±0.23)
scan#16 48.06(±0.34) 48.18(±0.35) 48.45(±0.34)
scan#17 47.10(±0.11) 47.16(±0.11) 47.49(±0.11)
scan#18 51.42(±0.30) 51.94(±0.31) 52.29(±0.31)
scan#19 43.90(±0.13) 43.96(±0.15) 44.00(±0.17)
scan#20 50.72(±0.28) 51.17(±0.29) 51.75(±0.32)

TABLE II
AVERAGE AND STANDARD ERROR OF THE PSNR VALUES FOR ALL THE

SLICES FROM FOUR SCANS WITHIN VH DATASET. THE HIGHEST AVERAGE

VALUES ARE HIGHLIGHTED IN BOLD.

U-net tight U-net DSCFN
scan#1 53.60(±0.35) 54.05(±0.41) 54.54(±0.41)
scan#2 57.43(±0.30) 57.59(±0.31) 57.91(±0.33)
scan#3 53.14(±0.20) 53.61(±0.22) 54.02(±0.21)
scan#4 54.08(±0.25) 54.36(±0.25) 54.71(±0.25)

V. CONCLUSION

We proposed the DSCFN for suppressing directional ar-

tifacts from tomographic data. The proposed network is a

DCFN-like architecture with steerable wavelet bases as non-

local bases Φ for decomposing the signal into directional

components. Furthermore, to ensure specialized artifact sup-

pression rules for each directional component, we introduced

convolutional local bases Ψ for individually processing all the

high-frequency signals.

The DSCFN results were superior to those obtained with

state-of-the-art networks in terms of PSNR as indicated by



Fig. 3. Architecture of the proposed DSCFN. Notice that each steerable wavelet component C
(n)
K

is individually processed by its respective convolutional

basis Ψ
(n+1)
K

.

SIRT U-net tight U-net DSCFN

Fig. 4. Top row: SIRT tomosynthesis slice without postprocessing, and
processed by U-net, tight U-net, and DSCFN. Second row: Zoom in the ROIs
indicated in the first row. Bottom row: error maps of the ROIs.

paired samples t-tests. Furthermore, by assessing reconstruc-

tion error maps, we could also confirm the reduction of

directional artifacts along a reconstruction.
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