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Super-Resolution Reconstruction of Multi-Slice T2-W FLAIR MRI

Improves Multiple Sclerosis Lesion Segmentation

Diana L. Giraldo1,2, Quinten Beirinckx1,2, Arnold J. Den Dekker1,2, Ben Jeurissen1,2,3, Jan Sijbers1,2

Abstract— Due to acquisition time constraints, T2-w FLAIR
MRI of Multiple Sclerosis (MS) patients is often acquired
with multi-slice 2D protocols with a low through-plane
resolution rather than with high-resolution 3D protocols.
Automated lesion segmentation on such low-resolution (LR)
images, however, performs poorly and leads to inaccurate
lesion volume estimates. Super-resolution reconstruction
(SRR) methods can then be used to obtain a high-resolution
(HR) image from multiple LR images to serve as input for
lesion segmentation. In this work, we evaluate the effect
on MS lesion segmentation of three SRR approaches: one
based on interpolation, a state-of-the-art self-supervised
CNN-based strategy, and a recently proposed model-based
SRR method. These SRR strategies were applied to LR
acquisitions simulated from 3D T2-w FLAIR MRI of MS
patients. Each SRR method was evaluated in terms of image
reconstruction quality and subsequent lesion segmentation
performance. When compared to segmentation on LR images,
the three considered SRR strategies demonstrate improved
lesion segmentation. Furthermore, in some scenarios, SRR
achieves a similar segmentation performance compared to
segmentation of HR images.

Clinical relevance— This study demonstrates the positive
impact of super-resolution reconstruction from T2-w FLAIR
multi-slice MRI acquisitions on segmentation performance of
MS lesions.

I. INTRODUCTION

Multiple sclerosis (MS) is a chronic autoimmune dis-

ease characterized by inflammation and demyelination in

the central nervous system leading to progressive disability.

Diagnosis of MS patients relies on the detection of lesions

in the brain or spinal cord, which are visible in T2-weighted

(T2-w) magnetic resonance images (MRI). Particularly, T2-

w fluid-attenuated inversion recovery (FLAIR) is the core

sequence for MS diagnosis and monitoring [1], when it

comes to assessing the number, volume, and location of

lesions.

The gold standard for lesion segmentation is still the

manual delineation by trained specialists, a task that is time-

consuming and prone to inter-operator variability [2]. Al-

though several automated techniques for lesion segmentation

have been proposed, with some showing promising results

[3], none of them is yet recommended to be used in clinical

practice [1]. One reason is that most automated tools for

MRI analysis have been designed for and evaluated with

acquisition protocols that are common in research but not
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in clinical scenarios [4]. Due to acquisition time constraints

in the clinics, multi-slice 2D T2-w FLAIR images with

orthogonal slice orientations are often acquired, which are

faster than 3D acquisitions and provide sufficient in-plane

resolution for visual assessment by radiologists. However,

these 2D acquisitions use a low through-plane resolution,

introducing partial volume effects and leading to poor results

from automated segmentation tools. Moreover, when multi-

ple images are acquired, these are not necessarily aligned

due to involuntary patient motion. In this scenario, super-

resolution reconstruction (SRR) methods can be applied to

obtain a high-resolution (HR) image from multiple low-

resolution (LR) images, likely improving the outcomes of

automated lesion segmentation. However, SRR methods can

also affect the extraction of pathology-related features by

blurring tissue boundaries or by introducing false structures

[5], therefore they need to be carefully evaluated when

applied to MS patients’ images.

In this work, we evaluate the impact on automated lesion

segmentation and image reconstruction quality of three SRR

methods that do not depend on additional sequences nor are

required to be trained with external data: the first one based

on iterative rigid registration, interpolation, and averaging;

the second one is based on self-supervised training of a

convolutional neural network [6]; and the third one is a

model-based SRR method with joint motion estimation [7].

The three SRR methods considered were applied to LR

images simulated from HR T2-w FLAIR images of MS

patients; then, reconstructed images were used as inputs

for automated lesion segmentation of lesions [8], [9], and

segmentation performance was evaluated with respect to a

consensus of manual delineations of lesions.

II. METHODS

The methodology for this evaluation consists of the follow-

ing steps: first, we simulated LR images from HR images fol-

lowing two commonly used multi-slice 2D acquisition proto-

cols; second, we applied SRR to obtain HR reconstructions

from simulated LR acquisitions; third, we segmented lesions

on the reconstructed HR images using two automated tools;

and finally, we assessed lesion segmentation performance and

compared it against lesion segmentations on simulated LR

and ground truth HR images.

A. MRI data

In this work, we used data from 15 MS patients from

the MICCAI 2016 challenge dataset [2]. This dataset con-

tains, for each patient, a HR T2-w FLAIR MRI and a



consensus lesion segmentation computed from seven man-

ual delineations. Images were acquired in three different

centers following a 3D protocol, resulting in three differ-

ent voxel sizes: 1.1×0.5×0.5 mm3, 1.25×1.04×1.04 mm3,

and 0.7×0.74×0.74 mm3. Detailed information about data

acquisition and compliance with ethical standards can be

found in the dataset publication [2]. Raw T2-w FLAIR

images from the dataset were denoised with adaptive non-

local means [10], and bias-field corrected with N4 algorithm

[11]. We adjusted both T2-w FLAIR and lesion masks to

have isotropic voxels of 1 mm3.

B. Simulation of multi-slice LR images

Simulation of LR images consisted of applying a sequence

of operators to the HR ground truth that model the multi-

slice acquisition process [12]: unintended motion, image

warping by a known geometric transformation, spatially

invariant blurring with a point spread function that models

the slice selection and in-plane sampling, downsampling, and

corruption by Rician noise. We performed the simulations

according to two different acquisition protocols that have

been commonly used in the clinics:

• Protocol A: two 2D images acquired with axial and

sagittal slice orientations, slice thickness = 5 mm, slice

spacing = 6 mm, and in-plane resolution of 1×1 mm2.

• Protocol B: three 2D images acquired with axial,

sagittal, and coronal slice orientations, slice thickness

= 3 mm, slice spacing = 3 mm, in-plane resolution of

1×1 mm2.

It should be noted that both protocols thatconstitute different

levels of difficulty for the reconstruction task, with Protocol

A a more challenging protocol than Protocol B due to thicker

slices, fewer orthogonal acquisitions, and the presence of

slice gaps. An example of simulated LR T2-w FLAIR images

is shown in Fig. 1.

Fig. 1. Example of simulated LR acquisition protocols from one HR T2-w
FLAIR (left).

C. Super-resolution reconstruction

The three strategies considered for this evaluation have

two advantages: they do not require additional sequences or

external data to be trained, and either can deal with or are

not affected by unintended rigid motion between LR images.

These are:

• Interpolation: An iterative approach in which LR im-

ages are rigidly registered to a reference image and

interpolated to match the desired resolution, then the

average across interpolated images becomes the refer-

ence image for the next iteration. We implemented this

strategy with cubic interpolation, 3 iterations, and we

selected the LR image with axial slice orientation as

the reference for the first iteration.

• SMORE: ”Synthetic Multi-Orientation Resolution En-

hancement” [6], it is an anti-aliasing and super-

resolution algorithm based on self-trained convolutional

neural networks to increase the through-plane resolution

of multi-slice images. Since the method is devised to

do the self-training and prediction by extracting small

patches from only one LR image, we adapted the

implementation by sequentially training the networks

with the multiple LR images available per patient and

protocol, and then reconstructing the HR image by

applying the trained networks to the axial LR image.

This method focuses on learning local structures rather

than global structures, therefore it should not be affected

by rigid motion between LR images.

• Model-based SRR: A recent, model-based super-

resolution reconstruction method with joint inter-image

motion estimation developed for improving quantitative

MRI mapping [7]. This method uses a Bayesian Max-

imum a Posteriori (MAP) estimation framework with

a total variation prithator for the HR image. Motion

parameters and HR image are jointly estimated using a

cyclic block-coordinate descent approach.

Implementation of these methods can be shared by the

authors upon request.

D. Automated lesion segmentation

To evaluate the impact of SRR on subsequent MS lesion

segmentation, we applied two automated lesion segmentation

algorithms to the HR outcomes of SRR methods, the simu-

lated LR, and the HR ground truth images. To the best of

our knowledge, there exist two lesion segmentation methods,

with publicly available implementations, that accept T2-w

FLAIR as the only input:

• LST-lpa [8]: the lesion prediction algorithm (lpa) in

the Lesion Segmentation Toolbox (LST) for SPM. This

algorithm is based on a logistic regression model that

includes a lesion belief map and a spatial covariate

that takes into account voxel-specific changes in lesion

probability.

• SAMSEG [9]: a recently published lesion segmentation

add-on to SAMSEG routine in Freesurfer, which allows

the simultaneous segmentation of white matter lesions

and 41 structures by decoupling computational models

of anatomy from models of the imaging process.

E. Evaluation

For each SRR strategy, we evaluated the image recon-

struction quality with respect to the HR ground truth image

using the peak signal-to-noise ratio (PSNR) and the struc-

tural similarity index measure (SSIM) calculated within a

brain mask. We assessed lesion segmentation performance



with respect to the consensus mask by computing the Dice

score, sensitivity, precision, and the error of lesion volume

(LV) estimation. The latter was calculated as the difference

between the voxel count in the predicted lesion mask and in

the consensus mask, because both masks have 1 mm3 voxels.

Evaluation metrics were compared using paired Wilcoxon

signed rank tests.

III. RESULTS

A. Reconstruction image quathatthatlity

A summary of reconstruction image quality measures,

PSNR and SSIM, is presented in Table I. Reconstruction

quality from Protocol B is superior to that from Protocol A

for all three SRR methods. This is expected because the LR

images in Protocol B have a higher through-plane resolution

and this protocol also includes an image with coronal slice

orientation. When images are reconstructed from Protocol A,

the three SRR methods result in similar mean PSNR (≈ 24

dB) with SSIM being slightly (but significantly) higher for

model-based SRR compared to interpolation and SMORE.

Results for reconstructions from Protocol B also show that

model-based SRR outperforms Interpolation and SMORE in

terms of PSNR and SSIM.

TABLE I

MEAN AND STANDARD DEVIATION OF PSNR AND SSIM FOR EACH

SRR METHOD.

LR Super-resolution
PSNR (dB) SSIM

protocol method

A
Interpolation 24.1± 1.8 0.66± 0.02
SMORE 24.0± 1.8 0.66± 0.02
Model-based SRR 24.0± 2.0 0.69± 0.06⋆

B
Interpolation 29.4± 1.5 0.89± 0.02
SMORE 28.2± 2.2 0.84± 0.05
Model-based SRR 33.5± 4.0⋆ 0.91± 0.11⋆

⋆ Significantly better than the other two methods (p < 0.01).

B. Automated lesion segmentation performance

The distributions of Dice scores, sensitivity, precision, and

errors of LV estimates for both automated lesion segmenta-

tion methods are shown in Fig. 2. Examples of resulting

lesion segmentation masks over reconstructed T2-w FLAIR

images are shown in Figure 3.

When applying LST-lpa, the three SRR strategies lead to

higher Dice scores (p ≤ 0.0001), higher precision (p ≤

0.0001), and smaller absolute errors in LV estimates (p ≤

0.0001) compared to segmentations using LR images, with

almost no significant differences in sensitivity except for the

case when interpolation is used to reconstruct images from

Protocol A. In the case of reconstructions from protocol A,

model-based SRR leads to significantly higher Dice scores

(p ≤ 0.004), higher sensitivity (p ≤ 0.0002), and smaller

absolute error of LV (p ≤ 0.05) than interpolation, with

interpolation leading to higher precision (p ≤ 0.0004) than

SMORE and model-based SRR, indicating more conservative

lesion segmentations. If reconstructed images from Protocol

B are given as inputs to LST-lpa, interpolation also produces

Fig. 2. Box plots of Dice scores, sensitivity, precision, and lesion volume
(LV) estimation error of automated lesion segmentation on simulated low-
resolution (LR), super-resolution reconstructions (SRR), and high-resolution
(HR) ground truth T2-w FLAIR images.

segmentations with lower sensitivity (p ≤ 0.04) and higher

precision (p ≤ 0.0001) than SMORE and model-based SRR.

For Protocol B, none of the three SRR methods results on

Dice scores or LV estimates significantly different from what

is obtained if the segmentation method is applied to the

ground truth image.

In the case of SAMSEG, all three SRR methods improve

the Dice score (p ≤ 0.03) and sensitivity (p ≤ 0.02) of

lesion segmentation compared to segmentations using LR

images with sagittal orientation. For reconstructions from

Protocol A, there are no significant differences in segmen-

tation performance metrics between SRR strategies, with all

of them underperforming segmentation using the HR ground

truth image in terms of Dice score and sensitivity. When

images are reconstructed form Protocol B, interpolation and

model-based SRR lead to segmentations with significantly

better Dice scores (p ≤ 0.04) and sensitivity (p ≤ 0.05)

than SMORE, with SAMSEG segmentation on SMORE re-

constructions still underperforming segmentation on the HR

image in terms of LV estimation, Dice score, and sensitivity.

This evaluation also shows that, when applied to T2-w

FLAIR MRI, SAMSEG tends to produce more conserva-

tive lesion masks than LST-lpa. Furthermore, the difference

between applying SAMSEG to LR images and applying it

to HR images is not as large as with LST-lpa, suggesting

some robustness to resolution and blurring but little refine-



Fig. 3. Example of automated lesion segmentation methods applied to reconstructions from both simulated LR protocols with the three SRR strategies
considered.

ment when lesion boundaries are sharp (See bottom row in

Fig. 3), mitigating the positive effect of SRR before lesion

segmentation.
IV. CONCLUSION

The three SRR strategies evaluated in this work, namely,

interpolation, SMORE, and model-based SRR, improve the

automated segmentation of MS lesions from LR multi-slice

T2-w FLAIR MR images by reconstructing a HR image

before lesion segmentation. Acquisitions with little spatial

information like Protocol A benefit more from model-based

SRR or SMORE than from interpolation, and acquisitions

with Protocol B benefit from the three methods to a similar

extent. The integration of SRR in automated processing

pipelines would facilitate the use of data acquired in the

clinics in the investigation of MRI-based markers of disease

outcomes.
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