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ABSTRACT

Since many materials behave as heterogeneous intimate mix-

tures with which each photon interacts differently, the rela-

tionship between spectral reflectance and material compo-

sition is very complex. Quantitative validation of spectral

unmixing algorithms requires high-quality ground truth frac-

tional abundance data, which are very difficult to obtain.

In this work, we generated a comprehensive hyperspec-

tral dataset of intimate mineral powder mixtures by homo-

geneously mixing five different clay powders (Kaolin, Roof

clay, Red clay, mixed clay, and Calcium hydroxide). In to-

tal 325 samples were prepared. Among the 325 samples,

60 mixtures were binary, 150 were ternary, 100 were qua-

ternary, and 15 were quinary. For each mixture (and pure

clay powder), reflectance spectra are acquired by 13 dif-

ferent sensors, with a broad wavelength range between the

visible and the long-wavelength infrared regions (i.e., be-

tween 350 nm and 15385 nm) and with a large variation

in sensor types, platforms, and acquisition conditions. We

will make this dataset public, to be used by the commu-

nity for the validation of nonlinear unmixing methodologies

(https://github.com/VisionlabUA/Multisensor datasets)

Index Terms— Hyperspectral, intimate mixtures, multi-

sensor dataset, benchmark, unmixing

1. INTRODUCTION

Because each material interacts differently with incident light,

it can be uniquely characterized by its reflectance spectrum.

In remote sensing, hyperspectral cameras are employed to de-

tect the reflected sunlight into hundreds of consecutive small

wavelength bands in the visible and near-infrared (VNIR,

400-1000 nm) and the shortwave infrared (SWIR, 1000-2500

The research presented in this paper is funded by the Research

Foundation-Flanders - project G031921N.

nm) regions, to produce landcover maps [1]. Due to lim-

itations of the spatial resolution of the sensor, a pixel may

contain more than one material, in which case the measured

spectral reflectance is generally modeled as a linear mixture

of the different materials involved [2]. However, in reality, a

material is seldom homogeneous and behaves in itself as an

”intimate mixture” with which each photon interacts differ-

ently, making the relation between the spectral reflectance and

the material composition very complex and highly nonlinear.

With technological progress, small-size, low-cost hyper-

spectral cameras became available that can be installed on

unmanned aerial vehicles, agricultural equipment, conveyor

belts, or used in laboratory environments, and even be used

as handheld devices [3]. The close-range setting generates

higher-quality reflectance data, with the potential to better de-

scribe intimate mixtures and to relate the spectral reflectance

to the material composition.

Several nonlinear unmixing approaches have been devel-

oped [4]. Nonlinear mixing models, describing secondary

reflections [5], or higher-order interactions [6] oversimplify

the complex interaction of light with intimate mixtures. The

study [7] introduced the HapkeCNN, a Convolutional Neu-

ral Network (CNN) that incorporates the Hapke model into

the learning process. By integrating the physical model into

the CNN architecture, the HapkeCNN enhances the under-

standing and representation of the underlying physical pro-

cesses involved in the data. Most physics-based mixing mod-

els [8, 9] fail when the material grains/particles have a size,

smaller or comparable to the wavelength of the light, their

shape is non-spherical, and when they behave as anisotropic

scatterers. Moreover, these nonlinear mixing models are not

invariant to spectral variability, caused by variable acquisition

conditions, i.e., variable illumination conditions, distance and

orientation from the sensor, or the use of different sensors or

white calibration panels.

Some attempts to apply supervised machine learning have

been proposed, e.g. by learning a mapping from the spec-



tra directly to the fractional abundances, using neural net-

works and nonlinear regression methods, such as Gaussian

Processes [10]. However, since these mappings are uncon-

strained, they lead to nonphysical results (i.e. negative abun-

dance fractions) [11]. Moreover, most supervised machine-

learning methods from the literature fail to deal with spectral

variability.

The main obstacle to real advancements in nonlinear spec-

tral mixture analysis is the lack of proper ground truth data to

validate the developed approaches and/or to train supervised

approaches. In earlier work [12], we developed a robust non-

linear unmixing method by combining model-based unmix-

ing and machine learning and generated limited high-quality

ground-truth data of binary powder mixtures for training and

validation purposes.

In this work, we generate an extensive hyperspectral

dataset of intimate mixtures of up to 5 mineral powders,

acquired by 13 sensors using different acquisition config-

urations, covering a broad range between the visible and

the long-wavelength infrared regions (350 nm - 15000 nm).

To our knowledge, this is the first large-scale ground-truth

dataset of intimate mixtures. We will make this dataset

public, to be used by the community for the validation of

nonlinear unmixing methodologies.

2. METHODOLOGY/RESEARCH DESIGN

The study contains five different clay powders: Kaolin, Roof

clay, Red clay, mixed clay, and Calcium hydroxide. These

clay powders mostly contain Aluminium silicate hydroxide,

Aluminium oxide, Silicon dioxide, Calcium hydroxide, and

Calcium carbonate. black We generated a total of 325 mix-

tures by mixing these five pure clay powders. All possible

clay combinations of these powders were considered, i.e., 10

binary combinations, 10 ternary combinations, 5 quaternary

combinations, and one quinary combination.

The clay powders were homogeneously mixed with dif-

ferent fractional ratios, which are uniformly distributed with

a fixed interval of 14,29 %, leading to 325 unique samples:

6 unique fractional ratios for each of the 10 binary clay mix-

ture combinations, 15 unique ratios for each of the 10 ternary

mixture combinations, 20 unique ratios for each of the 5 qua-

ternary mixture combinations and 15 unique ratios for the

mixture of all 5 clays. In Fig. 1 we display the uniformly

sampled fractional abundances for a ternary clay combina-

tion. The three clays occupy the corners of the simplex, all

binary mixtures lie on the lines connecting two clay’s while

ternary mixtures lie inside the simplex. Mixtures were pro-

duced by weighing and combining the different components.

We fixed the weight of each mixture sample to be a total of

10 g, the scale had a precision of 0.001 g. Each 10 g sample

was put inside a glass bottle and a homogeneous mixture was

produced by rotating the bottle for approximately five min-

utes. Each sample was then put inside a clear plastic jar with

an interior diameter of 3.048 cm and a height of 1.524 cm.

Approximately 3 g of mixtures was required to fill the sample

holder. The samples were then compacted and smoothened

using a stamp compactor.

Fig. 1. The ternary diagram of clay mixtures.

Spectral reflectance from all these samples was ac-

quired by 13 different sensors: ASD Spectroradiometer

(350-2500 nm), PSR-3500 spectral evolution (350-2500

nm), Specim AsiaFenix (400-2500 nm), Specim sCMOS

(400-1000 nm), Senops HSC2 (500-900 nm), Cubert Ul-

tris X20P (350-1000 nm), Specim JAI (440-630 nm), Cu-

bert panchromatic, Specim FX50 (2700-5300 nm), Agilent

4300 Fourier-transform infrared spectroscopy (2500-15385

nm), Telops mid-wave infrared (3000-9000 nm), Specim

AsiaOwl (7600-12300 nm), Telops Hypercam long-wave

infrared (7400-12500 nm).

For all samples, the ground truth composition is obtained

by construction, but to verify that the generated samples are

sufficiently homogeneous, X-ray powder diffraction and X-

ray fluorescence elemental analysis (Bruker Tornado M4)

were performed. To obtain the bulk composition of the sam-

ples, the field of view of the X-ray powder diffractometer was

fixed to 400 µm, and that of the micro-X-ray fluorescence

was set to 170 µm.

3. EXPERIMENTAL RESULTS AND DISCUSSION

In Fig. 2, the spectral reflectance of binary mixtures of Kaolin

and Mixed clay, acquired by seven different sensors (in VNIR

and SWIR wavelength regions), is shown. It is interesting to

note that there is a large spectral variability in the acquired

spectra. This variability is likely introduced due to variations

in illumination and acquisition angle, and in the distances

from the samples to the sensors. In general, band-wise scal-

ing differences can be observed between the acquired spectral

reflectances of the different sensors. These effects are caused

by variations in illumination and acquisition conditions, the



use of different white calibration panels, and specific differ-

ences between the sensors. In general, the spectral features of

both Kaolin and Mixed clay are present in these spectra, and

gradually change when the fractional abundance of each min-

eral changes in the mixture. For example, the spectral feature

of Kaolin around 1400 nm is clearly visible in the sample Ka-

Mi 0.855-0.145 and gradually diminishes with a reduction of

the abundance of Ka.
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Fig. 2. Spectra of binary mixtures (i.e., a mixture of Kaolin

and Mixed clay) acquired by seven different sensors in the

VNIR and SWIR; (a) Ka-Mi 14-86; (b) Ka-Mi 28-72; (c) Ka-

Mi 43-57; (d) Ka-Mi 57-43; (e) Ka-Mi 72-28; (f) Ka-Mi 86-

14.

3.1. Spectral mixture analysis

It can be assumed that the spectral reflectances obtained from

the intimate mixtures are nonlinearly related to the ground

truth fractional abundances, due to higher-order scattering of

the light rays within the powders before reaching the sensor.

To demonstrate the impact of these effects on the abundance

estimation, the data are linearly unmixed and the deviations

of the linearly estimated fractional abundances from the real

ground-truth abundances are studied.

In Fig. 3, we display the estimated fractional abundances

by FCLSU on the reflectance dataset in the VNIR/SWIR, ob-

tained from the binary and ternary mixtures of the Red Clay,

Mixed Clay, and Calcium hydroxide, overlaid on the ternary

diagram of the clay mixtures. In the figure, the blue dots de-

note the estimated abundances, while the red arrows show the

real position of the mixtures in the ternary diagram. As can be

observed, the error in the estimated fractional abundances of

the binary mixtures is significant. Moreover, the linear model

projects many of the ternary mixtures onto the faces of the

simplex leading to a significant error in the estimated frac-

tional abundances.

4. CONCLUSIONS

In this work, we generated 325 samples by homogeneously

mixing five different clay powders (Kaolin, Roof clay, Red

clay, mixed clay, and Calcium hydroxide). Among the 325

samples, 60 mixtures were binary, 150 were ternary, 100

were quaternary, and 15 were quinary. These samples (and

pure clay powders) were scanned by 13 different sensors,

with a wavelength range between the visible and the long-

wavelength infrared regions (i.e., between 350 nm and 15385

nm) to produce a comprehensive hyperspectral dataset of in-

timate mixtures. The low performance of the linear mixing

model to estimate the composition of the mixtures demon-

strates that advanced hyperspectral unmixing methods are

required that can tackle both spectral variability and nonlin-

earity.
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