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Adaptation to climate change: The irrigation technology mix of Italian farmers 

Introduction 

Crop and livestock growth are directly affected by climatic conditions, making the agricultural 

sector vulnerable to climate change (EEA, 2017). Studies show that the Mediterranean region 

is likely the most climate-vulnerable in Europe (Metzger et al., 2006; Reidsma et al., 2010). 

Soil quality will deteriorate as the southern climate gets warmer and drier, water shortages will 

increase and growing seasons will shorten (IPCC, 2001). These changes are detrimental to the 

agricultural sector in southern Europe. Yields and revenues will diminish and become more 

variable and the surface area suitable for traditional crop growth will become smaller (Bindi & 

Olesen, 2011). To reduce these negative effects and exploit the potential benefits of climate 

change, adaptation measures need to be implemented. A predominant form of adaptation and 

the focus of this study is irrigation. 

Farmers face two opposing challenges concerning irrigation. Farmers need irrigation to 

compensate for moisture deficiencies and droughts (Smit & Skinner, 2002). Therefore, on the 

one hand, as the climate gets warmer and drier, the need for irrigation increases. On the other 

hand, climate, among other factors, is putting pressure on freshwater availability. Agriculture 

is, with 70% globally and 40% in Europe, the most water-consuming sector (EEA, 2019; FAO, 

2012). Consequently, it is both a big contributor to and a victim of water scarcity. The 

combination of these two challenges—increased irrigation need and pressure on irrigation 

water use—leads to a need for more efficient irrigation systems.  

The literature on irrigation as a measure to adapt to climate change is vast. On the one hand, 

there are studies which analyse the driving factors for the decision to irrigate, focussing on 

climate as one of these factors (e.g., Negri et al., 2005; Olen et al., 2016). On the other hand, 

there are studies which focus on the value of irrigation as a climate adaptation measure, in 

terms of farm economic outcomes (e.g., Finger et al., 2011; Chatzopoulos &  Lippert, 2016). 
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Most of these studies—both the irrigation choice studies and the valuation studies—are limited 

to a comparison between irrigated and rainfed farming (e.g., Mendelsohn & Dinar, 2003; 

Schlenker et al., 2005), few of them focus on irrigation efficiency as a climate adaptation 

measure. We position our paper within the irrigation choice literature. The main research 

question for this paper is ‘How does the choice for certain irrigation technologies change with 

a changing climate?’ Irrigated agriculture is less vulnerable to climate change because it is less 

dependent on precipitation. However, crop vulnerability increases when water is scarce and 

competition for water is high, as is often the case in warm and dry regions (Reidsma et al., 

2010). In those areas, water has to be used more efficiently. The use of modern irrigation 

technologies allows farmers to achieve the same output with less water and hedge against the 

risk of profit loss during periods of water shortage. We, therefore, hypothesise that more 

efficient irrigation options, such as sprinkler irrigation and—even more so—drip irrigation, are 

adopted in warmer and drier climates (Mendelsohn & Dinar, 2003; Rosa, 2022). 

For a cross-sectional data analysis of climate impacts like this, a dataset with high climate 

variability is needed. Italy covers multiple climatic zones, ranging from the warm and dry 

Mediterranean climate to the cold and humid alpine climate (Chelli et al., 2017). We distinguish 

four different irrigation options: no irrigation (rainfed farming) and surface, sprinkler and drip 

irrigation (Sauer et al., 2010). We have access to the fractions of Italian farmers’ total land 

surfaces that are irrigated with each of the possible irrigation options. This type of data is called 

‘compositional data’. Compositional data are relative data with a constant-sum restriction, such 

as percentages which must sum to 100% (Aitchison, 1982; Greenacre, 2021). We consequently 

model the fractions of farmers’ land that are treated with each of the options as a function of 

climatic and control variables.  

Several researchers have used compositional data for analysing irrigation adoption. Frisvold 

and Bai (2016) and Mendelsohn and Dinar (2003) use the log ratio of surface areas irrigated 
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with different irrigation systems as the dependent variable in their analysis. This approach 

encounters a major limitation: it does not allow for structural zeros. Structural zeros, in contrast 

to sampling zeros, are true zero values, i.e., they are not the result of measurement error or 

rounding (Tsagris, 2018). In irrigation choice data, these are cases where farmers do not at all 

adopt a certain irrigation option. In our data sample, only 0.5% of farmers adopt all four 

irrigation options meaning that 99.5% of observations have a zero value for at least one of the 

options. For log-ratio models, these zeros are removed by transforming the [0,1] data to the 

(0,1) interval. Pronti et al. (2020) have looked at the fractions of farmers’ land that are irrigated 

with innovative irrigation technologies using a tobit model. This approach only allows for two 

options: innovatively irrigated land versus traditionally irrigated land. Pokhrel et al. (2018) 

analyse the factors determining the choice between different irrigation systems using a 

fractional model. Although this approach is suitable for modelling irrigation technology 

choices, it assumes that the decision to adopt an irrigation technology and the decision on the 

intensity of adoption (the land share) are made simultaneously, which has frequently been 

shown not to be the case in agricultural technology adoption (Siyum et al., 2022; Workie & 

Tasew, 2023; Yigezu et al., 2018). 

The contribution of this paper lies in developing an approach which overcomes these three 

limitations. The approach is inspired by the double hurdle model of Cragg (1971) and uses two 

steps. Cragg states that the decision to acquire—or the decision to adopt a technology—and 

the decision on the amount of the acquisition—or the intensity of adoption—are often two 

distinct processes. We consequently first model the decision of the farmer to adopt each of the 

irrigation options or not, using a multivariate probit model. With this step, we allow for 

structural zeros. The second step is a zero-adjusted Dirichlet regression (ZADR) model to 

estimate the ratio in which the adopted (non-zero) irrigation options occur (Tsagris & Stewart, 

2018). This second regression is run on a subsample of farms which adopt at least two different 
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options. Using a formula which combines both models, we predict each farm’s compositional 

response. To answer the research question we calculate the marginal effects of the climate 

variables on this compositional response. 

In the following section, we provide some background on irrigation efficiency and its relevance 

for agricultural policymaking. Next, we explain the methods used in this paper, followed by an 

overview of the variables chosen and the data sources used. Lastly, we explain the results in 

and conclude. In the appendix, we compare our results with the results of two alternative 

approaches.  

Background 

Besides rainfed farming, we distinguish three different irrigation methods in this study: surface, 

sprinkler and drip irrigation. Surface irrigation is the application of water through gravitational 

flow. This can be done by either flooding the entire field or by directing water into narrow 

channels or strips of land. With sprinkler irrigation, water is pumped through pipes and then 

sprayed onto the crops via rotating sprinkler heads, mimicking natural rainfall. Drip irrigation 

entails pressurized conveyance of water through a pipe system to the fields, where it drips in a 

slow, controlled manner onto the root zone of each plant through emitters or drippers (Brouwer 

et al., 1988). Sprinkler and drip irrigation allow for more controllable water application—via 

frequent irrigation with smaller amounts of water—and allow better uniformity of water 

distribution (Asrey et al., 2018; BIO Intelligence Service, 2012). 

The three methods differ in their degree of water efficiency. The principal sources of water 

losses in agriculture are deep percolation and surface runoff (Holzapfel & Mariño, 2008). Both 

issues arise mostly in surface irrigation. With sprinkler systems, water is lost through 

evaporation and lateral runoff (Jägermeyr et al., 2015). Also, strong wind can divert the water 

sprayed by sprinklers (Brouwer et al., 1988). Water losses for drip irrigation are minimal. 
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Depending on the water efficiency measure used, studies find different efficiencies for the three 

methods. Holzapfel and Mariño (2008) find efficiencies for surface, sprinkler and drip 

irrigation of 10-85%, 50-90% and 65-95% respectively, whereas Sauer et al. (2010) find 

efficiencies of 25-55, 60-86 and 80-93% and Jägermeyr et al. (2015) mention efficiency values 

of 30-60, 50-70 and 70-90%. Although these values lie relatively far apart, all references agree 

on surface irrigation as the least efficient and drip irrigation as the most efficient method. 

Although drip irrigation is most efficient, it has a high initial investment cost. Because of this, 

its application is often limited to high-value crops (Asrey et al., 2018).  

Because of increasing water stress, moving from less to more efficient irrigation systems should 

be a focal point of agricultural policymaking. The Water Framework Directive, which was 

established in 2000 with the objective of protecting European waters, encourages member 

states to implement water-saving irrigation techniques (Article 11, WFD) (European 

Parliament, 2000). Through the Common Agricultural Policy (CAP), the European 

Commission aims to ensure that its agricultural sector contributes to these water policies. Two 

of the CAP’s specific objectives are related to improved irrigation efficiency: (4) ‘Contributing 

to climate mitigation and adaptation’ by adjusting irrigation practices (volumes and scheduling) 

to actual weather patterns farmers play an active role in adapting to climate change, and (5) 

‘Efficient management of natural resources’ by promoting optimization of the available 

irrigation volumes (European Commission, 2020; "Italy CAP Strategic Plan," 2022). Under the 

CAP’s Pillar I, income support for farmers is made conditional on adherence to environmental 

requirements, including sensible water use. Also under Pillar II ‘Rural Development’, funding 

is made available for improved water management and increased water efficiency (Rossi, 

2019). However, water metering needs to be in place to demonstrate the water efficiency gains 

resulting from these investments (European Parliament, 2013). Various policy instruments 

exist to encourage water use efficiency, among which subsidies, advisory services for farms, 
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water cost recovery (scarcity pricing), water licensing and providing limited support to newly 

irrigated areas (Gruère et al., 2020). 

In Italy’s CAP Strategic Plan 2023-2027 the budget foreseen for the development of innovative 

and more efficient irrigation infrastructure, better adapted to the climate, is 880 million euros. 

The Strategic Plan aims at more effective (related to crop needs) and more water-efficient 

irrigation, based on water balances which take into account crop type, field capacity, soil type, 

weather and seasonal trends, etc. The Strategic Plan emphasises that water stress is most severe 

during those times of the year when irrigation requirements are highest, highlighting the 

importance of efficient irrigation. Improved irrigation efficiency is considered protection 

against the adverse effects of climate-related extreme events (i.e., droughts) and can lead to a 

reduction in insurance premiums. In this context, it is interesting to understand whether 

improved irrigation efficiency is currently being used as a climate adaptation strategy by 

farmers, i.e., whether more efficient irrigation options are being used in warmer and drier 

regions in Italy. If this is not the case, this potentially means that there are shortcomings in 

Italy’s approach to increasing irrigation efficiency or that farmers are finding other ways to 

adapt to climate change. 

Method 

This study introduces a two-step modelling framework inspired by the double hurdle model of 

Cragg (1971). First, we run a multivariate probit model which predicts whether a farmer will 

adopt each of the irrigation options (1) or not (0). This is what Cragg (1971) calls the 

‘participation decision’. Then we proceed with the ZADR model proposed by Tsagris and 

Stewart (2018) to predict the ratios in which the non-zero options occur, the ‘consumption 

decision’. We use the combination of both steps to predict the compositional response of each 

farmer using Equation 1 (Feng et al., 2017). With the two steps, we allow the same factors to 
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influence the participation decision and the consumption decision differently, but this does not 

necessarily have to be the case.  

𝒀𝑗 =  (𝑌̃1𝑗, 𝑌̃2𝑗, 𝑌̃3𝑗, 𝑌̃4𝑗) = ( 𝑌1𝑗𝐷1𝑗∑ 𝑌𝑖𝑗𝐷𝑖𝑗 , 𝑌2𝑗𝐷2𝑗∑ 𝑌𝑖𝑗𝐷𝑖𝑗 , 𝑌3𝑗𝐷3𝑗∑ 𝑌𝑖𝑗𝐷𝑖𝑗 , 𝑌4𝑗𝐷4𝑗∑ 𝑌𝑖𝑗𝐷𝑖𝑗) (1) 

In this equation, 𝑖 stands for the irrigation option, where 1 = no irrigation, 2 = surface 

irrigation, 3 = sprinkler irrigation and 4 = drip irrigation. 𝑌𝑖𝑗 is the binary value predicted by 

the multivariate probit. This is equal to 1 if the model predicts that farmer 𝑗 is likely to adopt 

(𝑃 > 0.5) irrigation system 𝑖. 𝐷𝑖𝑗 is the fraction of farmer 𝑗’s land irrigated with irrigation 

system 𝑖 predicted by the ZADR model. Because the compositional response always has to 

sum to 1, the binary values predicted by the probit model cannot all equal 0. For this reason, 

we consider observations for which the multivariate probit predicts only zero values erroneous 

and check whether these occur before calculating the compositional responses. 

The multivariate probit model corresponds to multiple binary probit models—one for each 

irrigation option 𝑖—of which the error terms are multivariate normally distributed. This is a 

valid assumption because the decision to adopt one irrigation option is closely related to 

choices for other irrigation options. For the ZADR model, Tsagris and Stewart (2018) make an 

adjustment to the log-likelihood of the ‘standard’ Dirichlet regression1. Dirichlet regressions 

can only take values between 0 and 1. The authors circumvent this by splitting the 

compositional vector 𝒀 into 𝑩 possible subsets of non-zero components. The parameters are 

then estimated by maximising the sum of the Dirichlet log-likelihoods for each subset. There 

are four irrigation options for which the fractions can either be zero or non-zero, resulting in 𝑩 = 24 = 16 possible combinations. Table 1 illustrates these 16 possible combinations based 

on this study’s data (explained in Data and variable selection). The table shows the means and 

standard deviations of the irrigated fractions in each of these subsets. 
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[Table 1] 

The case where each of the options has a 0% fraction (first row of Table 1) does not comply 

with the constant-sum constraint of compositional data and does not occur in the dataset. The 

cases where 100% of a farm’s surface area is irrigated with a single irrigation option, cannot 

be treated with a Dirichlet regression since there are no fractions to predict. These are rows two 

to five in Table 1. We, therefore, estimate the ZADR based on a subset of farms which adopt 

at least two different irrigation options. Consequently, the resulting log-likelihood is the sum 

of 𝑩 = 11 separate log-likelihoods (i.e., the last 11 rows of Table 1)2. 

Running the ZADR on only a subset of farms likely induces a selection bias. Sample selection 

bias occurs when some unobservables in the probit model are correlated with the unobservables 

in the ZADR model. If these unobservables are correlated with the ZADR’s included 

explanatory variables, this leads to a bias in the estimates for these variables (Vella, 1998). 

This problem is overcome by adding a correction term which accounts for this dependence to 

the ZADR: the generalised residuals derived from the multivariate probit model (Gourieroux 

et al., 1987). These generalised residuals are, by construction, uncorrelated with the 

explanatory variables in the first-step multivariate probit model. By adding these residuals we 

run into a generated regressor problem which is avoided by bootstrapping the ZADR’s standard 

errors (Mason & Smale, 2013; Murakami et al., 2021)3.  

We cluster the standard errors of both the probit model and the ZADR at the province level 

because we cannot assume that errors within provinces are uncorrelated. The decision of a 

farmer to adopt a certain irrigation technology is likely influenced by the irrigation adoption of 

the surrounding farms (Di Falco et al., 2020; Foster & Rosenzweig, 1995; Genius et al., 2014). 

By allowing correlation within provinces we partly account for this spatial dependence. 
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Data and variable selection 

This study covers one specific country in the climate-vulnerable Mediterranean region. Italy 

represents an interesting study region because it has already suffered from climate change and 

will likely continue doing so (Brunetti et al., 2004; Giannakopoulos et al., 2009). Previous 

studies have shown that economic damage to agriculture caused by climate change in Italy is 

significant, especially in the South (Bozzola et al., 2018; Van Passel et al., 2017). Nonetheless, 

also the North will suffer from climate change (De Salvo et al., 2013). Because of this, Italy is 

expected to be one of Europe’s countries which would benefit most from climate adaptation 

measures, making it a suitable subject for this study. Together with Spain, Italy is the EU 

country with the largest irrigated area, the largest volumes of irrigation water and the highest 

water consumption per irrigated hectare (Rossi, 2019). 

The base dataset is farm-level data from 11,707 farms collected in 2021 by RICA, the Italian 

Farm Accountancy Data Network. Only 6,158 of these farms have an irrigable surface area4—

i.e., fields which are connected to irrigation water grids—and thus face the irrigation choice. 

All other farms are excluded from the analysis. Another 282 farms are removed due to data 

incorrectness or incompleteness (e.g., irrigated surface area > irrigable surface area). For 

privacy reasons, RICA does not provide the exact locations of farms but only the province in 

which they are located. The dataset covers 105 out of 107 Italian provinces. All variables which 

are not available at the farm level come from publicly available sources and are aggregated to 

the province level to combine with the RICA data.  

Table 2 gives an overview of the independent variables to include in the regression models, 

based on the existing irrigation choice literature. For each variable, we provide a hypothesis 

for the direction of the variable impact, i.e., whether we assume that the variable has a positive 

effect on the adoption of more efficient irrigation technologies or not. We base both the choice 

of variables and the hypotheses on a literature review of irrigation choice studies of which we 
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provide the references in the table. Important variables which we did not come across in 

literature are not mentioned in the table but are elaborated upon here. The dependent variables 

are the fractions of land that farmers allocate to each irrigation technology.  

We obtain the degree days variable by taking the sum of all daily temperatures exceeding 8°C 

over the growing season (Massetti et al., 2016). We define the growing season as the period 

from March 1st until September 30th (Di Falco et al., 2014). The precipitation variable is the 

sum of all rainfall over the growing season, in cm. For both variables, we take the 30-year 

mean, from 1991 until 2020. The 30-year mean of weather is climate, and we assume that 

farmers adapt their irrigation infrastructure in response to long-term climate rather than to 

yearly weather variations. We assume that rainfall directly influences the decision to irrigate 

or not since irrigation can substitute for precipitation. Additionally, we assume that rainfall 

indirectly influences the decision to adopt efficient irrigation options through its correlation 

with (ground)water availability, although this correlation decreases the more extreme the 

rainfall periods are. Besides the 30-year means, we also include variables for 30-year trends in 

the climate variables5. We are interested in whether farms respond to the 

temperature/precipitation increases/decreases which they have experienced through the 

adoption of different irrigation options. 

An important determinant of irrigation technology choice is cost. Sprinkler and drip irrigation 

systems are energy-using and labour and water-saving as opposed to surface irrigation. Water, 

labour and energy prices are thus important drivers for irrigation technology selection (Caswell 

& Zilberman, 1985; Dinar et al., 1992; Dinar & Yaron, 1990; Frisvold & Bai, 2016; 

Mendelsohn & Dinar, 2003; Negri & Brooks, 1990). Per farm plot, we have data on energy 

and water expenditures, as well as hourly labour expenditures. We calculate average 

expenditures per farm—in euros per hectare for energy and water, and euros per hour for 

labour6—and then take the weighted mean expenditures per region, where the weight is defined 
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by RICA such that sample statistics can be extrapolated to the full population of Italian farms. 

By using region-level costs rather than farm-level costs we avoid endogeneity of these variables 

in our model. Otherwise, costs might be a result of irrigation technology choice and not the 

reverse. 

Not all irrigation options are suitable for every crop type (Rosa, 2022; Sauer et al., 2010). 

Therefore, crop choice is an important determinant in the irrigation decision. However, Negri 

and Brooks (1990) omit crop choice from their irrigation choice model because annual 

cropping decisions are taken after irrigation technologies are implemented, making it an 

endogenous variable. Depending on whether the crops included in a data sample are perennial 

or annual, crop choice is thus endogenous. Green et al. (1996) also found that irrigation choice 

is different for perennial as opposed to annual crops. We, therefore, include a dummy variable 

‘perennial’ which is equal to one if the majority of the farm’s income comes from perennial 

crops. Additionally, we include a dummy variable ‘livestock’ which is equal to one if the farm’s 

core business is animal production. Similar to the study by Pronti et al. (2020), we expect these 

farms to be less willing to invest in costly irrigation systems. 

We add several farm-specific variables which do not occur in the irrigation choice literature: 

whether the farm is family-run, whether it is organic and the fraction of a farm’s total utilised 

agricultural area which is rented. We assume this latter fraction to be relevant since farmers are 

less incentivised to invest in land improvement when the land is not their own. Thus, we expect 

more capital-intensive irrigation technologies to be adopted by farmers with little to no rented 

land. We expect family-run farms to be more conservative and therefore less willing to invest 

in newer technologies such as drip irrigation. The effect of organic farming is uncertain: on the 

one hand, farmers’ pro-environmental reasons for choosing organic farming may also apply to 

using abundant volumes of water for irrigation. On the other hand, farmers may need more 

irrigation to compensate for the lack of chemical additives. We also add two province-specific 
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variables: GDP per capita (Kummu et al., 2020) and population density (ISTAT, 2020). The 

hypothesis for these two variables is that in wealthier regions or regions with more mouths to 

feed, there are higher fractions of (efficiently) irrigated land. 

Another variable worth mentioning is water source. In literature, a distinction is made between 

surface water and groundwater, where reliance on groundwater is associated with more likely 

adoption of modern irrigation technologies and access to surface water with the adoption of 

gravity irrigation systems (Caswell & Zilberman, 1985; Dinar et al., 1992; Negri & Brooks, 

1990). Besides individually sourced groundwater and surface water (through water abstraction 

licenses), irrigation water in Italy can be delivered by consortia. Water from consortia can come 

from either groundwater or surface water sources. The majority of farmers are part of a 

collective irrigation network, known as a Reclamation and Irrigation Consortium (RIC) (Molle 

et al., 2019). In terms of irrigation, these RICs are responsible for the rational use of water for 

irrigation purposes and the provision, regulation and quantitative and qualitative protection of 

irrigation water (Regione Lombardia, n.d.). In practice, RICs are mainly occupied with 

infrastructural irrigation works and the water costs mentioned earlier are paid to these RICs. 

We create a province-level dummy variable which states which water source is predominant in 

the province in terms of irrigable surface area. We use province-level data from the Italian 

agricultural census (ISTAT, 2010), rather than farm-level data because farm-level water source 

is likely endogenous. This variable is also an indication of water availability since regions in 

which groundwater is extracted are regions in which water is less readily available.  

[ Table 2] 
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Results 

Descriptive statistics 

Figure 1 shows the fractions of land irrigated with each irrigation option, considering the entire 

sample. The fractions per region are composed of the weighted mean fractions of all farms 

located within the region. We see that rainfed fractions are high, apart from in the far south and 

north of Italy. Surface irrigation mostly prevails in the northwest. Sprinkler irrigation is used 

throughout the whole of Italy. High fractions of drip irrigation are found mostly in Puglia, the 

heel of the boot.  

[Figure 1] 

The average water cost in our sample is 46.45 €/ha, ranging from 5.71 €/ha in the Marche 

region, up to 288.86 €/ha in Liguria. This is in line with the price ranges reported in the ‘Atlas 

of Italian irrigation systems’ CREA (2014). The low water cost in Marche does not mean that 

water is almost free of charge there, but that few of the farms in our sample located in this 

region pay for water. Descriptive statistics of all model variables are provided in Appendix B. 

We also show maps for the climatic variables. The descriptives of the subsample used for the 

ZADR (farms which adopt at least two irrigation systems) are similar to those of the rest of the 

sample. 

Results from the multivariate probit model 

The results of the multivariate probit model are provided in Appendix C. We standardise all 

continuous variables. A likelihood ratio test shows that the correlations between the equations’ 

error terms are significantly different from zero (𝜒62 =  736.15, 𝑝 = 0.00). This means that the 

use of a multivariate probit—rather than individual probit models—is important. 

Many of the variables are not statistically significant determinants of irrigation system 

adoption. This does not necessarily mean that the covariates are not important for this decision. 
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For some variables, depending on the width of the 95% confidence intervals (CIs), we can still 

reasonably say that one effect (in terms of sign) is more compatible with our data than the 

opposite effect (Amrhein et al., 2019). Looking at the CIs, we find that temperature is only 

statistically significant for sprinkler adoption. Higher temperatures result in higher 

probabilities of adopting sprinkler irrigation. Although not statistically significant, the CI of 

the degree days variable for surface irrigation is predominantly negative meaning that higher 

temperatures likely lead to lower probabilities of adopting this option. Precipitation has no 

statistically significant effect on the adoption of any of the irrigation types. However, looking 

at the CI, lower levels of precipitation likely encourage the use of drip irrigation, as 

hypothesized. The trend in growing season degree days does not affect irrigation system 

adoption. The trend in precipitation has a negative effect on the use of surface irrigation, i.e., 

farms which experience precipitation increases are less likely to adopt surface irrigation. The 

CIs indicate that sprinkler irrigation becomes more likely with the experienced precipitation 

increases. As expected, farms experiencing more frost days per year are more likely to adopt 

sprinkler irrigation since this serves as a frost protection measure. More frost days lead to less 

likely adoption of surface irrigation or rainfed farming. 

Family-directed firms are more likely to adopt surface irrigation and less likely to adopt 

sprinkler or drip irrigation. This confirms that these firms are perhaps more hesitant to switch 

to newer technologies. The variable ‘age’ is not statistically significant. On larger farms, 

rainfed farming is more likely. Drip irrigation is less likely. This is explained by the large 

investment necessary to cover a large surface area with infrastructure for drip irrigation. Farms 

located in less-favoured areas are more likely to adopt drip irrigation, in line with the findings 

of Molle et al. (2019). These farms receive more support for technology investment. As 

expected, livestock farms have a lower probability of adopting drip irrigation, likely also 

because of the costly investment. Farms with perennial crops, on the other hand, are more likely 
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to adopt drip irrigation. They are significantly less likely to use any of the other three options. 

In line with Mendelsohn and Dinar (2003), we find that clayey soils discourage the irrigation 

use. 

Drip irrigation is used less in regions where the predominant water sources are surface water 

and consortium water. This confirms the existing literature which states that drip irrigation is 

used in places where groundwater use prevails. Farms located in regions where water 

predominantly comes from consortia are more likely to use surface irrigation, despite the 

responsibility of consortia to preserve irrigation water. Higher labour costs lead to a higher 

likelihood of rainfed farming or adoption of drip irrigation and a lower likelihood of surface 

irrigation. This is in line with surface irrigation as a more labour-intensive irrigation method. 

Higher water costs do not discourage farmers from irrigating; this variable has a negative 

coefficient for rainfed farming. On the contrary, water costs are positively correlated with the 

probability of adopting surface irrigation, the most water-consuming technology. Consortia in 

Italy usually charge a flat rate per hectare, rather than a volumetric price (Berbel et al., 2019; 

CREA, 2014). This likely discourages them from investing in water-saving irrigation 

technologies. The fact that both variables—consortium water as the predominant water source, 

and water costs—have coefficients of the same sign was to be expected, since RICs are the 

organisations which collect the water charges. This may raise concerns regarding the 

correlation between these variables. However, the correlations between water costs and the 

water source dummies are low7. Furthermore, when we exclude the three cost variables from 

the multivariate probit and the ZADR, the results remain stable. 

Results from the zero-adjusted Dirichlet regression 

Table C - 2 in Appendix C shows the regression output of the ZADR model. The estimates in 

bold are those which are statistically significant. The generalised residuals from the first hurdle 

are statistically significant for rainfed farming, sprinkler irrigation and drip irrigation. Meaning 
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that there is a selection bias, especially for these components. This is reasonable because, by 

running the ZADR on a subset of farms which adopt at least two irrigation options, we remove 

mostly farms which are 100% rainfed, sprinkler irrigated or drip irrigated (1,185, 687 and 737 

farms respectively, see Table 1).  

Family-directed firms likely have lower degrees of sprinkler and drip irrigation, in line with 

the results of the probit model. In regions where mainly consortium water is used, there are 

higher degrees of surface irrigation and lower degrees of drip irrigation. The drip irrigation 

coefficients for both consortium water and surface water are negative, meaning that higher 

drip-irrigated fractions are found in regions where individually sourced groundwater prevails. 

In line with the multivariate probit model, regions in which the majority of water comes from 

consortia have higher degrees of surface irrigation. As mentioned earlier, water metering is not 

the norm in Italy (Berbel et al., 2019; CREA, 2014), meaning that the fixed rate charged by 

these consortia does not discourage farmers from having high fractions of surface irrigation.  

Perennial crop farms have larger shares of irrigated land (negative coefficient for rainfed 

farming), drip irrigation in particular. They have significantly lower fractions of sprinkler 

irrigation. Our results suggest that farm size does not affect the degree of irrigation technology 

adoption. We hypothesized that larger farms are more likely to invest in capital-intensive 

irrigation technologies because they can realise economies of scale and because, with 

irrigation, they have the potential to benefit from climate warming (Vanschoenwinkel & Van 

Passel, 2018). However, to have a large share of efficiently irrigated land, farms with large 

surface areas also need to irrigate a very large area. This is potentially a reason why the farm 

size variable has a significant influence on rainfed farming and the adoption of drip irrigation 

in the probit models, but not in the ZADR model.  
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Temperature positively influences the adoption intensity of sprinkler irrigation. Our data 

suggests that surface-irrigated fractions are negatively influenced by higher temperatures. 

Rainfed and drip-irrigated fractions are relatively insensitive to temperature. The amount of 

precipitation over the growing season does not significantly affect the degree of adoption of 

any of the options. Neither does the trend in growing season degree days, i.e., the temperature 

increase/decrease which farms have experienced over the past 30 years does not influence their 

irrigated fractions. The trend in precipitation levels, however, does play a role in their adoption 

intensity decisions. Figure 2 illustrates these findings on graphs. The plots show how the 

fractions of each of the irrigation technologies change in response to both the mean and trend 

in growing season degree days and precipitation, predicted by the ZADR model. All other 

independent variables are set to their mean (continuous variables) or mode (categorical 

variables).  

[Figure 2] 

Looking at the graphs, we see that the fraction of surface-irrigated land decreases with 

temperature and the fractions of sprinkler-irrigated land increase, from a particular point. 

Rainfed fractions increase up to a certain temperature, from where they start to decrease. In the 

graph, the rainfed fraction is highest at around 2050 degree days (≈ 17.6°C). 67 out of 107 

provinces have temperatures lower than this threshold. These results suggest that a large 

number of farms adapt to climate change by reducing their surface-irrigated land shares  (and 

increasing rainfed fractions). When temperatures exceed a certain threshold, however, we find 

that farmers invest in sprinkler irrigation. The initial switch from surface irrigation to rainfed 

farming can be either out of necessity (i.e., water is scarce so farmers have no irrigation water 

available) or because farmers switch to more heat and drought-resistant varieties. Crop 

switching has been shown to have great potential in reducing climate-induced agricultural 
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losses (Rising & Devineni, 2020) and farmers in the Mediterranean region are found to adapt 

to high temperatures by choosing crops which are less sensitive to higher temperatures and are 

traditionally rainfed (Vanschoenwinkel et al., 2022). However, since expertise is needed for 

growing a certain crop, it is unlikely that farmers will switch to heat-resistant crops as an initial 

reaction and subsequently invest in sprinkler irrigation systems. Drip irrigation appears to be 

relatively insensitive to growing season degree days. The high costs of installing and 

implementing this technology, The graphs for mean growing season precipitation and trends in 

the growing season degree days confirm that irrigated fractions are relatively insensitive to 

these variables. The curves of all four options are relatively flat in these graphs. The limited 

effect of precipitation is in line with a study by Mendelsohn and Dinar (2003), who found that 

irrigation substitutes for temperature but not for precipitation. 

For the precipitation trend, we find similar responses as those for temperature, although these 

graphs are less straightforward to interpret. Farms which have experienced precipitation 

increases (right of the vertical line) have higher fractions of rainfed farming and sprinkler 

irrigation and lower fractions of surface irrigation. Farms which have experienced precipitation 

decreases (left of the vertical line) have lower fractions of rainfed farming, as expected. We 

would hypothesize that farms that have seen their climate become drier would make the switch 

to more efficient irrigation systems. Oddly, these farms have higher fractions of surface 

irrigation. If we look at the maps of the climate variables, shown in Appendix B, we see that 

the regions which have become drier are those regions which have the highest rainfall on 

average. Surface irrigation is not suitable in areas with too much rainfall: Negri and Brooks 

(1990) state that unexpected rainfall after (heavy) surface irrigation leads to crop damage 

discouraging the use of surface irrigation in regions with a lot of rainfall. These wet regions 

becoming drier might make surface irrigation more suitable for these farmers.  
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Comparing the regression tables of the multivariate probit model and the ZADR, we find that 

the coefficient signs are mostly consistent across both models. However, we do not find that 

the same variables are significant in both models. For example, the multivariate probit finds a 

positive significant effect of perennial farming on the adoption of drip irrigation and negative 

significant effects for the other options. The signs of the ZADR estimates point in the same 

direction, but perennial crop farms do not have significantly higher fractions of drip-irrigated 

land or lower fractions of surface-irrigated land. Consequently, we conclude that the adoption 

decision and the intensity-of-adoption decision are made separately and the use of this double 

hurdle-like approach is appropriate. 

Predicting the compositional response 

The results of the previous two sections can now be used to predict the compositional response 

of each farm, by plugging the results of both models into Equation 1. We ensure that the 

multivariate probit model does not predict zero values for all four irrigation options, because 

this would mean that the constant-sum constraint is not met.  

Table 3 shows how the average compositional response changes when temperatures increase 

by 1°C (+ 214 degree days over the growing season, frost days variable remains unaltered) and 

the case where rainfall decreases by 1 cm over the growing season. All other covariates are 

kept constant. This is equivalent to calculating the marginal effects of temperature and 

precipitation on the irrigation choice, as has been done by Ahmed and Schmitz (2015) for 

(discrete) crop choices. In addition to these marginal effects, we calculate changes in the 

irrigated fractions resulting from a more realistic change in climate. Under RCP 4.5—an 

intermediate climate scenario—temperatures in Italy will likely increase by 2.5°C by 2061-

2090 in comparison to the reference period 1971-2000. By the end of the century, precipitation 

will likely decrease by 1.5% (Baronetti et al., 2022). This 1.5% is equivalent to 0.16-1.18 cm 

of precipitation in our sample. These results confirm the limited effect of mean precipitation 
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on the irrigated shares. Looking at the combined effect of temperature and precipitation (right 

column in Table 3), the effect of a temperature increase clearly dominates. Note that these 

results differ from the graphs shown in Figure 2, since they are calculated from the combination 

of both models rather than just the ZADR.  

[Table 3] 

Because the standard deviations are large, we know that there is a lot of variation over the 

sample. Figure 3 shows how the effects of the climate scenario vary across the country. The 

effect of this change in climate is predominantly positive for the adoption of sprinkler irrigation 

and negative for the rainfed fractions. In Piemonte (North West) we see a switch from surface 

irrigation to rainfed farming. This is the region which currently still has the most surface 

irrigation (Figure 1).  

[Figure 3] 

Conclusion 

With this research, we attempted to determine whether farmers adapt to climate change by 

switching between irrigation options and how. Based on the results, we can confirm that surface 

irrigation will phase out of the irrigation mix in Italy with increasing temperatures, as it has 

been doing already (CREA, 2014). We can also confirm that the adoption of sprinkler irrigation 

will likely increase with warming and rainfed fractions will decrease. 

From the ZADR’s results, we conclude that farms located in cooler regions respond to 

increasing temperatures by reducing their surface-irrigated fractions and switching to rainfed 

farming (Figure 3 shows that this is the case for Piemonte). However, from a certain 

temperature threshold, this strategy likely becomes unprofitable and farmers increase their land 

shares irrigated with sprinkler irrigation. The highest fractions of sprinkler-irrigated land are 
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found in the North of Italy, where water availability is highest. Farms with sprinkler irrigation 

in regions with lower water availability are more likely to irrigate when water is available, 

rather than based on crop needs. The same conclusion cannot be drawn for drip irrigation. The 

model does not predict an increase in the adoption of drip irrigation under climate warming, 

suggesting that farmers are not making the transition to this highly efficient irrigation method 

autonomously. This is presumably due to the high capital costs associated with such irrigation 

systems, suggesting that support policies are needed to initiate this transition. However, support 

for investments in irrigation can only be given to farms in case water-saving targets are 

measured and met. This requires water metering systems to be in place (European Commission, 

2021), which is currently lacking in Italy.  

The results show that farms which are located in regions where irrigation water is 

predominantly obtained through consortia have higher fractions of inefficiently irrigated land. 

Consortium membership likely offers farmers abundant volumes of water at a fixed tariff, 

making them less aware of water scarcity and less inclined to reduce their water consumption. 

Although RICs are responsible for the ‘qualitative and quantitative protection of irrigation 

water’ this is not visible in the regression outputs. Closely related to this conclusion is the 

finding that higher water costs do not encourage farmers to transition from surface to sprinkler 

irrigation, or from sprinkler to drip irrigation, although this likely only holds for fixed water 

costs per hectare. With our results, we cannot make claims about the effectiveness of 

volumetric excise taxes on water as a measure for stimulating the adoption of more efficient 

irrigation technologies, since currently farmers’ water consumption is insufficiently reflected 

in their water bills.  

Although this paper solves some of the statistical limitations related to previous irrigation 

choice studies, it also has some setbacks. Farms which currently have no irrigable surface area 

have been excluded from the analysis, reducing the data sample considerably. If irrigation 
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networks are expanded, these farms will face the irrigation choice in the future. Secondly, the 

RICA dataset only contains data on legal water extraction and irrigation. According to Molle 

et al. (2019), public authorities in Italy are not fully capable of preventing illegal or excessive 

water abstraction. This may mean that a large part of the ‘rainfed’ agriculture in the dataset is 

indeed irrigated. Further future research could look at the economic value of switching to more 

efficient irrigation options, rather than at the actual choices of farmers. As mentioned in the 

introduction, many studies have already attempted at valuing irrigation as a climate adaptation 

measure. Vanschoenwinkel and Van Passel (2018), for example, show that the positive 

marginal effect of temperature on farmland values increases with the share of land that is 

irrigated. One could analyse how economic climate change impacts differ depending on the 

irrigation options used and their land shares.  Future research could also look at how increasing 

irrigation efficiency compares to other water-saving strategies. For example, and as mentioned 

previously, studies have pointed toward the planting of less water-intensive crops as a way to 

reduce water demand (McCord et al., 2018; Rosa, 2022). It would be interesting to see how 

both strategies compare to one another in terms of farm preferences, effectiveness (in reducing 

water consumption) and economic feasibility. 

 
1 We provide an explanatory note on the Dirichlet distribution and its log-likelihood formula 

in Appendix A, based on the work of Maier, M. J. (2014). DirichletReg: Dirichlet Regression 

for Compositional Data in R (Research Report Series / Department of Statistics and 

Mathematics, Issue. https://epub.wu.ac.at/4077/. 
2 For the estimation of this regression, we use the ‘zadr’ function from the R package 
‘Compositional’ R Core Team. (2020). R: A language and environment  for statistical 

computing. In R Foundation for  Statistical Computing. https://www.R-project.org/, Tsagris, 

M., Athineou, G., Alenazi, A., & Adam, C. (2023). Compositional: Compositional Data 

Analysis. In (Version 6.1) https://CRAN.R-project.org/package=Compositional. 
3 A generated regressor problem occurs when a regressor, in this case the generalised residual, 

is generated from the data. This leads to their standard errors being too small. Bootstrapping is 

considered a solution to this issue. 
4 Irrigable surface area is defined as the ‘maximum area that can potentially be irrigated during 

the reference crop year based on the capacity of the technical systems and the amount of water 
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available under normal conditions’ ISTAT. (2010). 6° Censimento dell'agricoltura. http://dati-

censimentoagricoltura.istat.it/ . 
5 This 30-year trend is derived from regressing the two climatic variables on a continuous 

variable ‘year’. The trend is then equal to the slope, i.e., the estimated coefficient for the years 

variable. 
6 Preferable would be a price per m³ for water and a price per kWh for energy, but these are 

not deducible from the data. 
7 The point-biserial correlation between water costs and the dummy ‘Source – consortium 

water’ is 0.08, the dummy ‘Source – groundwater’ is -0.01 and the dummy ‘Source – surface 

water’ is -0.12. 
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 Tables 

Table 1: Mean fractions (and standard deviations) for each irrigation type and each of the 16 subsets 

None Surface Sprinkler Drip # 

0 0 0 0 0 

100% 0 0 0 1,185 

0 100% 0 0 323 

0 0 100% 0 687 

0 0 0 100% 737 

35.8% 

(28.8%) 

64.2% 

(28.8%) 
0 0 351 

0 
51.8% 

(30.5%) 

48.2% 

(30.5%) 
0 39 

0 0 
57.2% 

(28.4%) 

42.8% 

(28.4%) 
227 

49.2% 

(29.6) 
0 0 

50.8% 

(29.6) 
611 

0 
55.1% 

(28.7%) 
0 

44.9% 

(28.7%) 
29 

45.1% 

(28.6%) 
0 

54.9% 

(28.6%) 
0 1,152 

32.6% 

(25.5%) 

33.2% 

(27.0%) 

34.2% 

(25.1%) 
0 78 

0 
32.0% 

(22.2%) 

30.3% 

(22.8%) 

37.7% 

(21.7%) 
10 

30.1% 

(24.2% 
0 

39.7% 

(26.0%) 

30.2% 

(25.0%) 
354 

25.9% 

(24.1%) 

47.1% 

(32.5%) 
0 

27.0% 

(27.1%) 
62 

25.7% 

(24.0%) 

30.9% 

(24.4%) 

17.0% 

(14.9%) 

26.4% 

(22.9%) 
31 

38.9% 

(40.8%) 

11.1% 

(28.9%) 

28.0% 

(38.5%) 

22.0% 

(36.9%) 
5,876 
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Table 2: Variable descriptions and hypotheses 

Variable Source/RICA References Hypothesis 

Growing season 

degree days 

E-OBS (Cornes et al., 

2018) 

Dinar et al. (1992); Dinar and Yaron (1990); Mendelsohn 

and Dinar (2003); Negri and Brooks (1990); Negri et al. 

(1989); Olen et al. (2016) 

Sprinkler irrigation is used under cooler temperatures because too 

high temperatures lead to evaporative losses. 

 

Growing season 

precipitation 

E-OBS (Cornes et al., 

2018) 

Mendelsohn and Dinar (2003); Negri and Brooks (1990) Irrigation can be a substitute for precipitation, thus farms with little 

rainfall are more likely irrigated. 

Surface irrigation is used less in places with much rainfall since 

rainfall after surface irrigation can cause crop damage. 

Frost days E-OBS (Cornes et al., 

2018) 

Frisvold and Bai (2016); Negri and Brooks (1990); Olen 

et al. (2016) 

Sprinkler use increases with frost days because it is better suited 

for frost protection. 

Farm size RICA: SAU Irrigata Dinar et al. (1992); Dinar and Yaron (1990); Finkel and 

Nir (1983); Frisvold and Bai (2016); Genius et al. (2014); 

Negri and Brooks (1990); Pronti et al. (2020); 

Vanschoenwinkel et al. (2022) 

Effect of farm size is uncertain. Most references agree: sprinkler 

and drip irrigation require greater investment, therefore acting as a 

barrier to smaller farms. Larger farms can realise economies of 

scale. But, larger farms may encounter less financial pressure to 

improve water effectiveness. 

Perennial OTE Green et al. (1996); Pronti et al. (2020) Farms with perennial crops are more likely to invest in efficient 

irrigation options. 

Livestock OTE Pronti et al. (2020) Farms whose core business is animal husbandry are less likely to 

invest in efficient irrigation options. 

Age RICA: 

ANNO_NASCITA 

(Dinar et al., 1992); Dinar and Yaron (1990); Genius et al. 

(2014); Molle et al. (2019); Pokhrel et al. (2018) 

Effect of age is uncertain. Farming experience enables farmers to 

make more informed decisions, positively influencing modern 

technology adoption. But, young farmers receive more investment 

support for new technologies under Rural Development Policies 

and have a longer planning horizon. 

Off-farm 

activities 

RICA: Attivita Extra 

Aziendale 

Frisvold and Deva (2012); Pokhrel et al. (2018); Pronti et 

al. (2020) 

Income from off-farm activities reduces the likelihood of adopting 

more efficient irrigation systems because the risk of income loss is 

lower. 

Rented RICA: (SAU_Affitto + 

SAU_Comodato)/SAU 

Pokhrel et al. (2018); Pronti et al. (2020) Farmers are more likely to invest in capital-intensive infrastructure 

(such as sprinkler and drip irrigation) when they own the land. 

Less-favoured 

area 

RICA: ZSVA Molle et al. (2019) Farms located in mountain areas or other areas affected by 

environmental constraints are more likely to invest in new 

technologies (they also receive more financial support for this). 



32 

 

Variable Source/RICA References Hypothesis 

Water source ISTAT (2010) Caswell and Zilberman (1985); Dinar et al. (1992); Green 

et al. (1996); Moreno and Sunding (2005); Negri and 

Brooks (1990) 

Farmers with access to surface water are more likely to choose 

surface irrigation and less likely to choose sprinkler irrigation. 

Farmers using groundwater are more likely to adopt modern (drip) 

irrigation systems. 

Soil type RICA: Sup_Tess_ Frisvold and Bai (2016); Mendelsohn and Dinar (2003); 

Negri and Brooks (1990) 

Sandy soils decrease the likelihood of using surface irrigation and 

increase the likelihood of using sprinkler or drip irrigation.  

The effect of clay is uncertain. One source claims that high clay 

content leads to higher efficiency in surface irrigation, whereas 

another concludes that clayey soils discourage the adoption of all 

irrigation systems, especially surface irrigation. 

Available Water 

Capacity 

AWC (Ballabio et al., 

2016) 

Dinar et al. (1992); Frisvold and Bai (2016); 

Kurukulasuriya et al. (2011); Mendelsohn and Dinar 

(2003); Negri and Brooks (1990); Negri et al. (2005) 

Soil that can hold water is more attractive for irrigation. 

Surface irrigation requires a higher water-holding capacity than 

sprinkler or drip irrigation. 

Slope SUP_ACC Frisvold and Bai (2016); Mendelsohn and Dinar (2003); 

Negri and Brooks (1990); Negri et al. (2005) 

Flatter slopes are more favourable to surface irrigation, steeper 

slopes cause water run-off. 

Altitude ALT_MED Mendelsohn and Dinar (2003) Irrigation adoption decreases with higher altitudes. 

Source/RICA: in case the variable comes from the RICA database, we mention the corresponding RICA variable label. Labels and variable descriptions can be found on the 

RICA website (CREA, 2022). 
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Table 3: Predicted change in the adoption of irrigation options (in %) as a result of a temperature increase, a 

precipitation increase, or both 

 Temperature Precipitation RCP 4.5 

 +1°C +2.5°C -1 cm -1.5% +2.5°C and -1.5% 

No irrigation -5.74 

(22.81) 

-14.25 

(37.75) 

-0.20 

(3.69) 

-0.15 

(2.99) 

-14.33 

(37.87) 

Surface irrigation -1.79 

(11.07) 

-4.75 

(18.64) 

-0.02 

(1.29) 

-0.005 

(0.16) 

-4.78 

(18.70) 

Sprinkler irrigation 9.54 

(22.94) 

24.24 

(36.28) 

0.04 

(0.68) 

0.04 

(0.68) 

24.35 

(36.36) 

Drip irrigation -2.01 

(13.78) 

-5.25 

(21.06) 

0.18 

(3.39) 

0.12 

(2.91) 

-5.25 

(21.03) 
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Figures 

Figure 1: Fractions of agricultural land surface irrigated with each option, per region 
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Figure 2: ZADR’s predictions of the irrigation response to degree days (left) and precipitation (right)  
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Figure 3: Predicted change in the adoption of irrigation options (in %) as a result of a 2.5°C increase and a 

1.5% precipitation decrease 
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Appendix 

Appendix A: Note on Dirichlet regression 

The fractions 𝑦𝑖 are Dirichlet distributed with 𝛼𝑖 the shape parameter for each variable. The 

distribution, with 𝐵(𝛼𝑖) the multinomial beta function and  Γ(∙) the gamma function, can be 

represented as in Eq. (A -  1). 

𝑓 (𝒚|𝜶) =  1𝐵(𝜶) ∏ 𝑦𝑖(𝛼𝑖−1)4
𝑖=1 =  Γ(∑ 𝛼𝑖4𝑖=1 )∏ Γ(𝛼𝑖)4𝑖=1 ∏ 𝑦𝑖(𝛼𝑖−1)4

𝑖=1  (A -  1) 

In this equation 4 is the number of possible irrigation options, 𝑦𝑖 is the fraction of land irrigated 

with option 𝑖 and ∑ 𝑦𝑖4𝑖=1 = 1 ∀𝑖 is the constant-sum constraint. The log-likelihood function 

derived from the above distribution is the following: 

ℓ𝑖(𝒚|𝜶) = log Γ (∑ 𝛼𝑖4
𝑖=1 ) − ∑ log Γ(𝛼𝑖)4

𝑖=1 +  ∑(𝛼𝑖 − 1) log(𝑦𝑖)4
𝑖=1  (A -  2) 

The parameter 𝛼𝑖 can be modelled linearly using a log link function. Note that log(𝑦𝑖 = 0) =  −∞. This means that the Dirichlet distribution is only defined for the interval 

(0,1), which is the reason why ‘standard’ Dirichlet regression cannot accommodate structural 

zeros. 

The zero-adjusted log-likelihood developed by Tsagris and Stewart (2018) is shown in Eq. (A 

-  3). 

ℓ𝑖(𝒚|𝜶) = log Γ (∑ 𝛼𝑖4
𝑖=1 ) − ∑ log Γ(𝛼𝑖)4

𝑖=1 +  ∑(𝛼𝑖 − 1) log(𝑦𝑖)4
𝑖=1  (A -  3) 

Note on the ZADR 

When two or more components have estimates of the same sign for a variable, the one with the 

largest parameter in absolute terms will prevail over the other(s) as the variable increases in 

value. We use an example from this paper to illustrate this. As we see in the results, the frost 

days coefficient for sprinkler irrigation is more positive (3.2936) than the coefficient for drip 

irrigation (0.2012) and the coefficients for rainfed farming and surface irrigation are both 

negative (-0.6907and -1.4029 respectively). This means that, as the fractions of rainfed farming 

and surface irrigation get closer to zero with increasing numbers of frost days, sprinkler 

irrigation will push the fraction of drip irrigation downwards although it has a positive 

coefficient (to keep the constant-sum constraint).  
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Appendix B: Descriptive statistics 
Table B - 1: Descriptive statistics for all continuous variables 

Variable Variable description Min Mean Max SD 

Mean growing 

degree days 

Sum of the degree days (> 8°C) from March to 

September, averaged over 30 years (1991-

2020) 

346.0 1787.0 2490.0 533.0 

Growing degree 

days trend 

30-year trend in growing season degree days 

(1991-2020) derived from a linear regression 

of growing degree days on years 

-12.0 6.7 19.0 6.0 

Mean growing 

season 

precipitation 

Sum of all rainfall (in cm) from March to 

September, averaged over 30 years (1991-

2020) 

11.0 41.0 79.0 16.0 

Growing season 

precipitation 

trend 

30-year trend in growing season precipitation 

(1991-2020) derived from a linear regression 

of growing season precipitation on years 

-0.9 0.0 0.7 0.3 

Frost days Number of days per year with temperatures < 

0°C (1991-2020) 
0.0 22.0 130.0 34.0 

Age Age of the (oldest) farm head 20.0 60.0 96.0 13.0 

Rented Percentage of the farm that is rented or shared 0.0% 53.0% 100.0% 41.0% 

Farm size Utilised Agricultural Area (ha) 0.0 33.0 1265.0 58.0 

Available water 

capacity 

The difference between the 33 kPa and the 

1500 kPa soil water content (volume fraction) 

(Ballabio et al., 2016) 

0.093 0.110 0.130 0.009 

Altitude Average altitude of the farm plot (m) 1.0 230.0 2021.0 291.0 

Water cost Yearly water expenditure (€/ha), averaged over 
the region 

5.7 46.0 289.0 53.0 

Electricity cost Yearly electricity expenditure (€/ha), averaged 

over the region 
31.0 287.0 1884.0 392.0 

Labour cost Labour expenditure per hour worked on the 

holding (€/hour), averaged over the region 
5.6 9.3 13.0 1.3 

GDP per capita GDP per capita (PPP) in 2015, in thousands 

2011 international US dollars 
22.0 35.0 43.0 7.4 

Population 

density 

Number of inhabitants per km² 
36.0 201.0 2574.0 245.0 

 

Table B - 2: Descriptive statistics for all categorical variables  

Variable Variable description Percentages per category 

Off-farm 

activities 

Dummy variable stating whether the farm 

head engages in off-farm activities or not 

No Yes  

90% 10%  

Family Dummy variable stating whether the farm is 

family-led or not 

No Yes  

63% 37%  

Organic Dummy variable stating whether the farm has 

at least one organic product or not 

No Yes  

84% 16%  

LFA Dummy variable stating whether the farm is 

located in a less-favoured area or not 

No Yes  

57% 43%  
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Soil type Soil type of the largest part of the farm’s 
agricultural area 

Loose 

texture 

Limy-

clayey 

texture 

Medium 

texture 

11% 6% 83% 

Slope Slope for the largest part of the farm’s 
agricultural area  

Level Sloping Steep 

69% 25% 6% 

Perennial crops Dummy variable stating whether the farm’s 
main income source is perennial crops or not 

No Yes  

 68% 33%  

Livestock 

farming 

Dummy variable stating whether the farm’s 
main income source is livestock farming or 

not 

No Yes  

 80% 20%  

Water source Predominant water source in the region Underground Surface Consortium 

24% 8% 68% 

Figure B - 1: Maps showing the four climate variables: (i) mean growing season degree days, (ii) mean 

precipitation, (iii) growing season degree days trend, (iv) growing season precipitation trend 
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Appendix C: Regression results 
Table C - 1: Regression results of the multivariate probit model 

 No irrigation Surface irrigation Sprinkler irrigation Drip irrigation 

 Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

(Intercept) 0.8148 0.1959 1.4338 -1.0669 -1.7235 -0.4103 0.3687 -0.3254 1.0629 0.7839 0.0655 1.5023 

Mean growing season degree days -0.1100 -0.3842 0.1642 -0.4268 -0.8730 0.0194 0.4622 0.0919 0.8324 -0.0429 -0.3735 0.2877 

Growing season degree days trend 0.0279 -0.0736 0.1294 -0.0961 -0.2476 0.0553 0.0091 -0.1511 0.1692 0.0402 -0.0722 0.1525 

Mean growing season precipitation 0.0920 -0.1775 0.3614 0.0881 -0.1908 0.3670 -0.0517 -0.3093 0.2060 -0.1411 -0.3525 0.0704 

Growing season precipitation trend 0.1373 -0.0401 0.3148 -0.6409 -0.9021 -0.3796 0.1449 -0.0303 0.3202 0.0297 -0.1705 0.2298 

Frost days -0.4211 -0.7472 -0.0951 -0.6558 -1.3072 -0.0043 0.7669 0.3357 1.1980 0.2217 -0.1543 0.5977 

Age 0.0336 -0.0155 0.0826 0.0225 -0.0307 0.0758 -0.0183 -0.0691 0.0325 -0.0371 -0.0814 0.0073 

Family -0.0065 -0.1292 0.1162 0.2445 0.0694 0.4196 -0.1408 -0.2677 -0.0139 -0.4825 -0.5923 -0.3727 

Off-farm income 0.0507 -0.1224 0.2239 -0.1118 -0.3082 0.0845 -0.0769 -0.2353 0.0815 -0.0957 -0.2461 0.0546 

Organic farming 0.0956 -0.0322 0.2234 -0.0302 -0.2102 0.1499 -0.0909 -0.2370 0.0552 0.0293 -0.0912 0.1497 

Less-favoured area -0.0104 -0.2210 0.2002 -0.2454 -0.5241 0.0332 -0.0256 -0.1902 0.1390 0.2531 0.0034 0.5029 

Rented -0.0190 -0.0650 0.0270 0.0573 -0.0040 0.1186 0.0361 -0.0077 0.0799 0.0123 -0.0257 0.0504 

Water source (base = groundwater)             

   Consortium water 0.0063 -0.2816 0.2941 0.6642 0.3053 1.0230 0.0281 -0.2780 0.3342 -0.2956 -0.5950 0.0039 

   Surface water 0.0468 -0.5352 0.6288 0.0973 -0.6546 0.8492 0.3248 -0.2458 0.8954 -0.6800 -1.1079 -0.2522 

Farm size 0.0775 0.0055 0.1495 0.0695 -0.0033 0.1422 0.0440 -0.0198 0.1078 -0.1276 -0.2211 -0.0342 

Perennial crops -0.5828 -0.7908 -0.3748 -0.3403 -0.5869 -0.0938 -0.1842 -0.3550 -0.0133 0.5786 0.3734 0.7838 

Livestock farming 0.0991 -0.0928 0.2909 -0.0161 -0.2534 0.2212 0.0752 -0.1743 0.3247 -0.9750 -1.2921 -0.6579 

Soil (base = loose texture)             

   Limy-clayey texture 0.2874 0.0654 0.5094 0.2042 -0.0536 0.4620 -0.0214 -0.3070 0.2642 -0.3183 -0.5712 -0.0654 

   Medium texture 0.1108 -0.0852 0.3068 0.0602 -0.0793 0.1997 0.0874 -0.0609 0.2356 -0.1980 -0.3647 -0.0313 

Available water-holding capacity 0.0853 -0.0597 0.2304 0.0993 -0.1133 0.3119 0.0147 -0.1439 0.1734 -0.0183 -0.1603 0.1238 

Slope (base = flat)             

   Sloping 0.0900 -0.0581 0.2382 -0.2026 -0.4794 0.0741 -0.2050 -0.3879 -0.0220 -0.1301 -0.3415 0.0812 

   Steep 0.1931 0.0062 0.3799 -0.0968 -0.5208 0.3272 -0.2101 -0.4667 0.0464 -0.2979 -0.5952 -0.0005 

Altitude 0.0469 -0.0831 0.1768 0.2509 0.0009 0.5010 -0.1549 -0.3249 0.0151 -0.1119 -0.2179 -0.0059 

Water cost -0.3882 -0.5973 -0.1792 0.2433 0.0295 0.4572 0.1364 -0.0459 0.3187 0.0697 -0.1011 0.2404 

Electricity cost 0.0182 -0.2083 0.2448 -0.2835 -0.4931 -0.0739 0.0205 -0.1478 0.1888 0.0228 -0.1736 0.2192 

Labour cost 0.1844 0.0533 0.3155 -0.3480 -0.5178 -0.1782 0.0982 -0.0460 0.2424 0.1192 -0.0029 0.2413 

GDP per capita 0.3198 0.1073 0.5323 -0.2374 -0.5650 0.0902 -0.0208 -0.2755 0.2339 -0.0782 -0.3026 0.1463 

Population density 0.0341 -0.0326 0.1008 0.0365 -0.0779 0.1509 0.0117 -0.0612 0.0847 -0.0281 -0.1169 0.0607 

Notes: 95% confidence intervals are calculated using province-clustered standard errors corrected for heteroskedasticity. Estimates in bold = CI does not include 0. 
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Table C - 2: Regression results of the ZADR model 

 No irrigation Surface irrigation Sprinkler irrigation Drip irrigation 

 Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI 

(Intercept) -1.5911 -2.7832 -0.3990 -2.6695 -5.1658 -0.1732 -4.8735 -6.0663 -3.6807 -3.0833 -4.2914 -1.8752 

Mean growing season degree days -0.0058 -0.7044 0.6927 -0.9406 -2.1528 0.2716 2.2291 1.6905 2.7676 -0.2958 -1.5137 0.9222 

Growing season degree days trend 0.0456 -0.7165 0.8077 0.0048 -2.0573 2.0670 0.1160 -0.3212 0.5532 0.2285 -0.0574 0.5144 

Mean growing season precipitation 0.1383 -0.6175 0.8940 0.1812 -0.7992 1.1615 -0.0917 -0.4445 0.2610 -0.2596 -1.6968 1.1775 

Growing season precipitation trend 0.3014 -0.2563 0.8592 -0.7425 -1.8294 0.3445 0.6968 -0.9857 2.3793 -0.0844 -0.5471 0.3784 

Frost days -0.6907 -1.4289 0.0474 -1.4029 -3.1501 0.3444 3.2936 2.7490 3.8381 0.2012 -0.3712 0.7737 

Age 0.1263 -0.5084 0.7610 0.0966 -0.6056 0.7987 -0.0447 -1.7860 1.6965 -0.0868 -0.7942 0.6206 

Family 0.1458 -0.8992 1.1908 0.4330 -0.3240 1.1899 -0.4475 -0.9256 0.0306 -1.3860 -3.2741 0.5022 

Off-farm income 0.2703 -0.3146 0.8552 -0.0719 -4.4596 4.3157 -0.3724 -1.1152 0.3703 -0.1372 -2.4397 2.1653 

Organic farming 0.1946 -1.1008 1.4900 -0.1440 -1.0506 0.7627 -0.5143 -1.7943 0.7657 0.2094 -0.2090 0.6278 

Less-favoured area 0.0067 -1.2761 1.2894 -0.3431 -1.0875 0.4013 -0.0738 -0.6292 0.4816 0.5011 -0.3942 1.3964 

Rented -0.0407 -0.7321 0.6507 0.0893 -1.5087 1.6873 0.1489 -0.2932 0.5910 0.0821 -0.9570 1.1212 

Water source (base = groundwater)             

   Consortium water -0.3007 -0.9094 0.3080 0.9465 -0.0755 1.9685 0.2450 -0.2888 0.7788 -0.8834 -1.8401 0.0734 

   Surface water -0.2609 -0.7447 0.2229 0.0428 -8.0262 8.1117 1.7527 0.4858 3.0196 -3.0402 -23.4098 17.3295 

Farm size 0.0716 -0.5204 0.6635 0.0967 -0.4693 0.6628 0.0592 -0.2213 0.3397 -0.5184 -1.8901 0.8532 

Perennial crops -1.4495 -3.5204 0.6214 -0.1050 -0.8868 0.6768 -0.6250 -1.4648 0.2148 2.1907 -0.7210 5.1023 

Livestock farming 0.1963 -1.7253 2.1178 0.2440 -0.6873 1.1754 0.4151 -0.7531 1.5832 -2.8547 -11.5717 5.8623 

Soil (base = loose texture)             

   Limy-clayey texture 0.2196 -0.5679 1.0072 0.2615 -4.0271 4.5501 0.2396 -3.0786 3.5578 -0.7825 -4.4311 2.8660 

   Medium texture 0.0449 -0.8488 0.9387 -0.0414 -1.2950 1.2122 0.4724 -0.1721 1.1168 -0.5534 -2.2282 1.1214 

Available water-holding capacity 0.1198 -0.4053 0.6448 0.0750 -0.9146 1.0645 0.0405 -0.8980 0.9791 0.1942 -0.7084 1.0969 

Slope (base = flat)             

   Sloping 0.4659 -0.7439 1.6757 -0.1758 -3.9885 3.6369 -0.9207 -1.6599 -0.1814 -0.2807 -1.1210 0.5596 

   Steep 0.8222 -0.0124 1.6568 -0.3641 -4.7551 4.0269 -1.0459 -3.0872 0.9955 -0.4879 -3.6923 2.7166 

Altitude 0.0977 -0.4530 0.6485 0.3436 -1.0230 1.7101 -0.5397 -0.8238 -0.2556 -0.1590 -1.9020 1.5840 

Water cost -0.7899 -1.8387 0.2588 0.2744 -1.2265 1.7753 0.4958 0.2099 0.7816 0.2273 -0.3761 0.8308 

Electricity cost 0.0033 -0.7978 0.8043 -0.3748 -2.5384 1.7887 0.2733 0.0128 0.5338 0.0455 -0.2124 0.3035 

Labour cost 0.4590 -1.0169 1.9349 -0.4839 -1.3326 0.3648 0.3173 -0.5847 1.2192 0.2459 -0.2621 0.7538 

GDP per capita 0.6121 -0.2074 1.4316 -0.3081 -2.7352 2.1190 -0.1651 -1.0323 0.7021 -0.2644 -0.9157 0.3870 

Population density 0.0001 -0.7080 0.7081 0.0017 -0.8297 0.8332 0.0587 -0.6486 0.7660 -0.1865 -0.6797 0.3067 

Generalised residuals 2.6210 0.7520 4.4899 1.2930 -4.1883 6.7743 5.5212 -0.4841 11.5266 3.7238 0.3145 7.1330 

Notes: 95% confidence intervals are calculated using province-clustered standard errors (Jackknife SE (Hansen, 2022)). Estimates in bold = CI does not include 0. 
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Appendix D: Alternative estimations 

In this additional section, we compare our results to the results of two simpler one-step 

approaches: a Dirichlet regression model with (0,1)-transformed data and a multinomial logit 

model with discretised data. Both these approaches can be applied to the full dataset, i.e., 5,876 

observations.  

For the first alternative, we use the DirichletReg package in R (Maier, 2014). This package 

first transforms the data from the [0,1] interval to the (0,1) interval using the  ‘lemon squeezer’ 

proposed by Smithson and Verkuilen (2006). As such, it treats the zero values as erroneous 

rather than structural. The model is then estimated by maximising the log-likelihood presented 

in Appendix A. The results of this approach are similar to those of our two-step model: rainfed 

farming and sprinkler irrigation increase with temperature, surface irrigation decreases and drip 

irrigation remains relatively stable. Although these general trends are the same, the standard 

Dirichlet regression appears to be more moderated (figure D - 1). For the current climate, the 

Dirichlet model predicts fractions between 8.3% and 60.1% for all four irrigation options, the 

ZADR model predicts fractions between 0% and 94.8% and the combined approach with the 

multivariate probit models between 0 and 100%. This is likely caused by the transformation of 

the data to the (0,1) interval.  

Figure D - 1: Irrigation response to degree days (left) and precipitation (right) estimated with Dirichlet 

regression. Model run on the full sample (5,876 observations) 

  

 

 

For the second alternative, we transform the compositional data into a discrete variable. This 

categorical variable is the irrigation option which is used for the largest part of the farm’s 

surface area. We then use this categorical variable as the outcome of a multinomial logit model. 

Multinomial logit models applied to farmers’ adaptation behaviour have frequently been used 

in Structural Ricardian models, such as by Seo and Mendelsohn (2008) who studied switching 

between livestock species and Kurukulasuriya and Mendelsohn (2008) who studied switching 
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between crop types. These studies do not take into account that a farmer can opt for a 

combination of different types, rather than just one predominant one. The alternative model we 

use here follows the same assumption. The vertical axis in figure D - 2 is thus not the estimated 

fraction of land treated with each irrigation option, it is the probability of choosing each 

irrigation option as their predominant irrigation option. We find that the responses predicted 

by this model are very different from those predicted by the other two approaches: the 

probability of choosing surface irrigation increases with temperature and the probability of 

choosing sprinkler irrigation decreases with temperature. These results are very different, likely 

because the discretised data looks very different from the compositional data. For example, in 

the discretised data, surface irrigation becomes the most frequent category (38% of farms have 

surface irrigation as their major irrigation option), whereas area-wise surface irrigation is the 

least used option (11% on average) (Table D - 1). Although this does not confirm our previous 

findings, it does confirm that the restriction of discrete choices generates very different results 

than when allowing farmers to choose a combination of different options. The interpretation of 

both approaches is very different, meaning that one cannot be compared with or preferred to 

the other. This clearly shows the relevance of the developed and applied method. 

Figure D - 2: Irrigation response to degree days (left) and precipitation (right) estimated with MNL regression. 

Model run on the full sample (5,876 observations)  

  

 

Table D - 1: Compositional irrigation data versus discrete irrigation data for the full sample (5,876 farms) 

 Compositional data: 

mean % surface area 

Discretised data: 

% of farms 

No irrigation 38.9% 21.6% 

Surface irrigation 11.1% 38.4% 

Sprinkler irrigation 28.0% 11.5% 

Drip irrigation 22.0% 28.6% 

 


