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Abstract 

A Swarm Intelligence-based Modelling and Optimization (SI-M/O) algorithm is proposed in this paper, 

consisting of two parts: SI-M and SI-O. Processes with unknown reactions and limited data are challenging 

to model with high accuracy. SI-M uses a hybrid modelling approach via swarm intelligence algorithms and 

simple polynomial regression terms. It achieves high accuracy and wide applicability with a reasonable 

computational time. Based on the developed models, SI-O for a production plant is introduced. The 

productivity in the preliminary plant test was increased by 5.3% in one minute. SI-O not only maximizes 

the productivity, but also ensures the continuous plant operations. In addition, a graphical user interface of 

SI-M/O is designed for an easy usage. 
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1. Introduction 

A novel method of Swarm Intelligence-based Modelling and Optimization (SI-M/O) for complex reaction 

processes is proposed in this paper. SI-M/O consists of two major parts: SI-M for process modelling and 

SI-O for process optimization. Process modelling and simulation are essential for digitization in modern 

chemical industry. Generally, the approaches of modeling and simulation are divided into three categories: 

first-principle, data-driven, and hybrid (Zendehboudi et al., 2018). All of the three approaches have got 

decent performances in modelling reaction processes (Babanezhad et al., 2020; Rojnuckarin et al., 1993; 

Xie et al., 2018). First-principle modelling is based on chemical knowledge and provides high extrapolation 

capabilities. However, it requires the model designer to have a deep knowledge about the system taken into 

account (Pantelides and Renfro, 2013). This modelling approach is challenging, or even impossible, if the 

system is partially unknown. For example, there are unknown intermediates, reactions or interactions in a 

reaction process. The data-driven modelling derives information directly from data, but it lacks physical 

consistency, and has poor capabilities of generalization and extrapolation. The ideal dataset utilised in the 

data-driven modelling should have high ‘4V’ characteristics –Volume, Velocity, Veracity, and Variety 

(Anagnostopoulos et al., 2016), which is possible to acquire in simulations but is rare in laboratory or plant 

experiments. The data volume refers to the involved data quantity. A lack of data volume leads to unreliable 

derived information for modelling, but massive data volume results in data preproccessing problems. Data 

velocity shows the speed of getting and feeding new data. Data veracity defines the degree of involved data 

accuracy and precision, and data variety is the diversity of collected data in the problem space. In chemical 

engineering, it is common that the data from laboratories and plants is restricted to a specific range or a 

certain point because of practical and safety issues, which results in low data variety. Therefore, to overcome 

data and knowledge problems in complex reaction processes, a hybrid approach is preferred, which is a 

combination and takes both the advantages of first-principle and data-driven methods.  

SI-M proposed in this paper is a hybrid approach,  combining experimental data with low 4Vs and basic 

first principles that express mass or energy balances to simulate complex reaction processes. In the open 

literature Hybrid modelling has been widely applied for chemical processes simulations (Sansana et al., 

2021; von Stosch et al., 2014). Psichogios et al. developed a hybrid model for a fed-batch bioreactor with 

Artificial Neural Networks (ANN) (Psichogios and Ungar, 1992). In their research, they showed how the 

hybrid modelling outstand pure data-driven techniques. Following their research, the ANN-based hybrid 

modeling framework was employed by numerous authors, such as for Baker’s yeast production (Feyo De 

Azevedo et al., 1997), Fischer-Tropsch reaction (Shiva et al., 2013), and esterification reaction (Ammar et 

al., 2021). However, these ANN-based modelling approaches still required a large amount of data with high 

4Vs or careful consideration when applied outside the training domain. Besides ANN, other machine 

learning techniques were also investigated in hybrid modelling. For example, partial least square-based 

hybrid modelling was applied to study the concept of the hybridization degree for cell culture process 

modelling (Narayanan et al., 2022), and  a hybrid technique integrating principal component analysis was 

introduced to detect faults in heating, ventilation, and air conditioning systems (Hassanpour et al., 2020). 

To the best of our knowledge, there are few studies for complex reaction processes to overcome both 

difficulties simultaneously: a) unknown reactions and intermediates; b) a low amount of available data. In 

many cases, pure first-principle modelling is impossible because of the lacking knowledge of reactions or 

reactors. A huge amount of time and effort is needed to research unknown reactions or intermediates and to 

study the first priciples. Due to the low availability of data 4Vs, advanced machine learning techniques (e.g. 

ANN) would be unsuitable and easily result in overfitting. Therefore, SI-M in this paper uses simple 

polynomial regression terms to reduce the number of parameters. This novel hybrid modelling approach 

integrated with Swarm Intelligence (SI) algorithms to enhance the extrapolation capabilities of models, to 

reduce the amount of required data, and to decrease the time of model development. 
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As a subfield of AI, SI inspired by biological swarm behaviours is gaining more attention. It is collective 

intelligence collaborating with relatively simple individuals or processing units (Chakraborty and Kar, 

2017). SI algorithms are named after the  inspiration sources, and have been applied in chemical engineering. 

For example, Partical Swarm Optimisation (PSO) showed its efficiency for constructing confidence regions 

in a polymerization kinetics problem (Schwaab et al., 2008), where the first-principle model describing the 

rates of ethylene consumption was   given. In this paper, SI algorithms estimiated the parameters in not only 

first-principle models but also data-driven models. It is hypothsized that SI algorithms can solve the 

problems of high-dimensional parameters. PSO was also used in process optimization to obtain the optimal 

process operations (Fang et al., 2021). In this paper, the SI-based Optimisation (SI-O) approach for a 

continuous production plant is proposed. The aim of the proposed SI-O is to maximize the productivity and 

to ensure the plant operates continuously. It is hypothesized that SI algorithms can reach the relatively global 

optima instead of trap at local optima. Besides PSO, the applications of other SI algorithms in chemical 

engineering have also become increasingly common. For instance, an Ant Colony Optimisation (ACO)-

extended methodology was successfully applied in wastewater treatment plants for process design and 

control (Schlueter et al., 2009). The authors find there are few Slime Mould Algorithm (SMA) applications 

in chemical engineering. In contrast, its applications in electronic engineering (Kumar et al., 2020) and 

industrial engineering (Abdel-Basset et al., 2021) have shown a decent performance. It is noted that in this 

paper three SI algorithms PSO (animal-based), ACO (insect-based) and SMA (bacteria-based) were 

investigated for both process modeling (SI-M) and process optimization (SI-O), avoiding the similarities 

within the same group of SI categories. 

In this paper, SI-M/O (Swarm Intelligence-based Modelling and Optimization) of complex reaction 

processes is proposed. The system analyzed in this work shows high uncertainties where unknown reaction 

paths and intermediates exist. This makes impossible to create reliable and general first-principle models. 

Furthermore, the data used in this study for the model training did not respect the ‘4V’ characteristics. 
Therefore, SI-M (Swarm Intelligence-based Modelling) is applied to rapidly develop an accurate model 

with limited data. Following the model development, SI-O (Swarm Intelligence-based Optimization) is 

introduced to is to maximize the productivity and to ensure the plant operates continuously. A graphical 

user interface is designed to display the performance of SI-M/O.  

2. Methodology 

The data utilised in this paper are from experiments in chemical laboratories and production plants. Because 

the experiments are time-consuming and there are strict safety regulations, the obtained data has a low 

volume and a low variety. Also, the reaction process consists of unknown reactions and intermediates. 

However, the proposed SI-M (Swarm Intelligence-based Modelling) with simple polynomial regression 

terms can be used to overcome the challenges. Furthermore, SI-O is introduced to optimize the system. 

2.1. Swarm intelligence 

Swarm intelligence (SI) can be sorted into meta-heuristic search algorithms. Their search is not based on 

the gradient of the function but relies on the synergic work of several particles sharing information to reach 

the optima of the optimization function. One of the main advantages of SI techniques is that the cost function 

can also be discontinuous (Kennedy, 2006).The initial swarms are generated, starting within the assigned 

search space. The evaluation of each individual is then made to check whether it meets the requirements. 

Each unit in the population would be updated by the policies inspired by nature swarms until the criteria are 

satisfied. The new individuals would repeat the same evaluation and renewal process until they meet the 

requirements, and the final units can be seen as acceptable solutions.  
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In this paper, three SI algorithms are applied, including Slime Mould Algorithm (SMA), Particle Swarm 

Optimization (PSO), and Ant Colony Optimization (ACO). SMA is from the approaching food method of 

slime mold according to the odour in the air (Li et al., 2020). PSO is inspired by the bird swarm behaviour 

proposed in 1995 (Kennedy and Eberhart, 1995). The initial ACO algorithms are designed to solve discrete 

optimization problems and have been extended to continuous domains since 1995 (Blum, 2005). This paper 

uses the extended ACO algorithm through the probabilistic sampling of search spaces (Riadi, 2014).  

2.2. Process modelling 

In this paper, the reactions involved in the processes are complex, while the experimental data is limited. 

SI-M is presented to overcome these obstacles for achieving an accurate model from the limited data. The 

training structure of the SI-M is shown in Fig. 1a, including data, models, objective function, and swarm 

intelligence. The aim is to get the minimum value of the objective function (i.e., objective value). The 

objective values are calculated from the experimental outputs, the modelled outputs, and the parameters. At 

every optimization step, SI-M suggested another set of parameters within the pre-defined boundaries. The 

model is simulated using the proposed parameters. From the simulation results, the objective value is 

calculated and the loop continues until the stopping criteria are met. The optimal set of parameters is 

obtained when the training stops.  

The hybrid models consist of reaction models and reactor models. Fig. 1b gives the elements and parameters 

in hybrid models, including reaction and reactor models. The involving residual terms are the simple 

polynomial regression, which is the black-box modelling part in SI-M. The corresponding parameters are 

the regression factors, and the details are shown in Equation 20, Equation 21, and Equation 22. The white-

box models are derived from known reactions and measurable chemicals. The employed equations are based 

on Arrenhuis equations and steady-state plug-flow reactor models, where the incorporated parameters can 

be found in Equation 7 and Equation 16. The parameters in the white-box part are called white-box 

parameters, and the ones in the black-box part are black-box parameters. This work applies training 

approaches: 1) the white-box and black-box parameters are identified at the same time; 2) the white-box 

parameters are identified as first followed by another training to identify the parameters of the ML 

polynomial functions. The two training approaches are called one-time and step-by-step, respectively. 

 

Fig. 1: a) The training structure of SI-M (Swarm Intelligence-based Modelling). It consists of four parts: 

data, models, objective function, and swarm intelligence algorithms. b) The elements and parameters in 

hybrid models, including reaction and reactor models. The involving residual terms play a role as the black-

box modelling part, with parameters a, b, …(see Equation 20, Equation 21, Equation 22). The white-box 

models are incorporated with A (pre-exponential factor), Ea (activation energy), U (heat transfer 

coefficient) (see Equation 7, Equation 16).  

2.2.1. First-principle models 

A reaction process model can be divided into reaction kinetics and reactor models. There were three types 

of experiments conducted - Continuous Flow Reactor (CFR), Semi-Batch Reactor (SBR), and Reaction 
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Calorimetry (RC1) to acquire the data. Because the limiting information was obtained from CFR processes 

where only the reactor outlet can be measured, SBR and RC1 experiments were also conducted to investigate 

the reactions. RC1 experiments were conducted in SBR operation to determine the reaction heats. SBR 

experiments provide more information about side reactions at the long residence time. RC1 experiments 

give observed reaction heats of different reactions. Moreover, the CFR experiments focus on reactions at a 

short residence time and their performance at various temperatures. The reactions in the studied processes 

are complex, and some are unknown, as shown in Fig. 2a).  

 

Fig. 2: a): The reactions involved in the studied process. The A, B, C, D are the known chemicals, while the 

Us are unknown. The blue and purple arrows represent known interactions, and the black arrows are 

unknown. b): The simplified diagram of SBR mode. B is stored in the vessel, and A is fed at a constant flow 

rate. The samples were analyzed by Gas Chromatography (GC) to get concentrations of A, B, C in the 

solution.  

Moreover, some chemicals (e.g. Us in Fig. 2a) are not measurable because of the analytics tool limitations. 

The known reactions and measurable chemicals are modelled via the white-box modelling. The unknown 

reactions or unmeasurable chemicals are approximated by the black-box modelling. Based on the literature 

study of similar chemical compounds (Proctor, 2014), the most critical reactions are listed:  

R1: A + B ⇌ C 

S1: B + C ⇌ D 

where A, B, C, D stand for different chemical species, R1 is the main reaction, S1 is the side reaction, and 

↔ denotes the reversible reaction. The power-law kinetic model is applied and the corresponding reaction 

rates 𝑟 [mol/(L·min)] are shown below (Davis and Davis, 2003). 

 𝑟𝑅1 = 𝑘𝑅1,𝑓𝐶𝐴𝐶𝐵 − 𝑘𝑅1,𝑏𝐶𝐶 Equation 1 

 𝑟𝑆1 = 𝑘𝑆1,𝑓𝐶𝐵𝐶𝐶 − 𝑘𝑆1,𝑏𝐶𝐷 Equation 2 𝑓  and 𝑏  are forward and backward reactions, respectively. The concentration changes of the chemical 

components in the system can be represented in the following system: 

 𝑟𝐴 =  − 𝑟𝑅1, Equation 3 

 𝑟𝐵 =  − 𝑟𝑅1 − 𝑟𝑆1, Equation 4 

 𝑟𝐶 =   𝑟𝑅1 − 𝑟𝑆1, Equation 5 

 𝑟𝐷 = 𝑟𝑆1. Equation 6 

It is noted that the reactions listed in equations above are only known ones in the system. Overall, the 

reactions in the system are more than two reaction paths. Experimental data are used to approximate other 

unknown reactions via SI and regression methods. Some chemicals in the mixture cannot be measured or 

estimated; these are modelled as a lumped group in the SI-M hybrid modelling system. The reaction rate 

constants 𝑘 related to temperatures 𝑇 can be derived from Arrhenius equation: 

 𝑘 = 𝐴 exp (− 𝐸𝑎𝑅𝑇), Equation 7 
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where 𝐴  is the pre-exponential factor, 𝐸𝑎  is the activation energy [J/mol], and 𝑅  is the gas constant 

[J/(K·mol)]. The heat of reversible reactions ∆𝐻 [J/mol] can be calculated from the activation energy of the 

forward reaction 𝐸𝑎𝑓 and the backward reaction 𝐸𝑎𝑏 by: 

 ∆𝐻 = 𝐸𝑎𝑓 − 𝐸𝑎𝑏.  Equation 8 

Totally, eight first-principle parameters were required for the two aforementioned reversible reactions, 

namely pre-exponential factors and activation energies. These reactions and equations are not affected by 

the type of reactor and they are included in the first-principle model of SI-M (Arrhenius equation block in 

Fig.1b). 

Two types of operations were involved in this paper – SBR and CFR. Fig. 2b gives the simplified diagram 

of the SBR, and the corresponding experimental setup is Mettler Toledo® Easymax 102 equipped with a 

dosing system, as shown in Supporting Information. B was firstly stored in the vessel at a constant 

temperature, and A was then fed at a constant flow rate. The temperatures of the vessels were kept constant. 

After a specific feeding time (approximately 180 minutes), the solution was kept in the vessel for another 

180 minutes for post-reactions. There are two parts for modeling this experiment: feeding and after-feeding 

(Florit et al., 2018), which were modelled via the following equations: 

 𝑑𝐶𝑖𝑑𝑡 = 𝑟𝑖 − 𝑣𝑓𝑒𝑒𝑑𝑉 (−𝐶𝑖,𝑓𝑒𝑒𝑑 + 𝐶𝑖), 𝑖 =  A, B, C, D Equation 9 

 𝑑𝑉𝑑𝑡 = 𝑣𝑓𝑒𝑒𝑑 , Equation 10 

 𝑑𝑀𝑑𝑡 = 𝑣𝑓𝑒𝑒𝑑𝜌𝑓𝑒𝑒𝑑, Equation 11 

where 𝐶𝑖 is the chemical species concentration [mol/L], 𝑣𝑓𝑒𝑒𝑑 is the feed flowrate [L/min], 𝑉 is the solution 

volume [L], 𝑟 is the reaction rate [mol/(L·min)], 𝑀 is the mass of the solution [g], and 𝜌𝑓𝑒𝑒𝑑  is the feed 

density [g/L]. When the feeding stopped, 𝑣𝑓𝑒𝑒𝑑 = 0 [L/min]. The concentration derivatives are equal to the 

reaction rates. 

RC1 experiment is operated in SBR modes and measures the heat flow rate of reactions. The corresponding 

experimental setup is provided in Supporting Information. The jacket temperature 𝑇𝑗  is measured and 

dynamically changed, while the temperature inside the reactor 𝑇 is kept constant. The heat flow rate is 

calculated based on the energy and mass balances. At first, an adequate amount of B solution in the reactor 

was heated to the set temperature. Solution A was then added with a constant flow rate. The energy balances 

over the reactor are  

 𝑄𝑠𝑦𝑠𝑡𝑒𝑚 = 𝑄𝑖𝑛 + 𝑄𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 − 𝑄𝑜𝑢𝑡, Equation 12 

 𝑄𝑠𝑦𝑠𝑡𝑒𝑚  =  𝑀𝐶𝑝 𝑑𝑇𝑑𝑡  , Equation 13 

 𝑄𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 =  𝑉(𝑡) ∑ ∆𝐻𝑚𝑟𝑚(𝑡)2𝑚=1 , Equation 14 

 𝑄𝑖𝑛  =  𝑄𝑠𝑡𝑖𝑟𝑟𝑒𝑟 + 𝐶𝑝,𝑑𝑜𝑠(𝑇𝑑𝑜𝑠 − 𝑇) 𝑑𝑀𝑑𝑜𝑠𝑑𝑡 , Equation 15 

 𝑄𝑜𝑢𝑡 =  𝑈𝐴(𝑇 − 𝑇𝑗), Equation 16 

where 𝐶𝑝 is the specific heat capacity [J/(mol·K)], the subscription 𝑑𝑜𝑠 is for dosage, 𝑄𝑠𝑡𝑖𝑟𝑟𝑒𝑟 is the energy 

from the stirring [W], also considered a baseline, and 𝑈𝐴  is the product of heat transfer coefficient 

[W/(m2·K)] and transfer area [m2]. The reaction rate 𝑟 is on unit [mol/(L·s)], and Δ𝐻 is the reaction heat 

[J/mol] (Stoessel, 1997). From the system above, the reaction heat can be estimated. 
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Fig. 3: The simplified diagram of the CFR process in the plant. The streams A and B were forwarded to the 

first reactor after mixing, and their flowrates are set by 𝐹𝐴,𝑆𝑃 and 𝐹𝐵,𝑆𝑃. Only CFR1, 2, 3 have jackets, and 

the jacket temperatures can be set at the desired values independently with 𝑇𝐽1,𝑆𝑃, 𝑇𝐽2,𝑆𝑃, and  𝑇𝐽3,𝑆𝑃. The 

last one is cooled via the air at the room temperature.  

Fig. 3 shows the CFR process in the plant, consisting of four identical flow reactors with 4.5 L volume each. 

Two feeding streams containing A and B were first mixed at the pre-set ratios. Then the mixed stream passed 

through the four reactors one by one. During the whole reaction process, the jacket temperature of each 

reactor was kept at the desired setpoints. The solution concentrations were analyzed only at the outlet when 

the plant reached steady states. Each reactor in this process was considered a plug-flow reactor. The steady-

state equations for a plug flow reactor without axial and radial dispersion (Smets et al., 2001) can be written 

as follows: 

 𝑑𝐶𝑚𝑑𝑉 =  1𝑣𝑓𝑒𝑒𝑑 𝑟𝑚, Equation 17 

 𝑑𝑇𝑑𝑉 = 1𝑣𝑓𝑒𝑒𝑑 (∑ ∆𝐻𝑛𝑟𝑛2𝑛=1𝜌𝐶𝑝 + 𝑈𝐴(𝑇𝑗−𝑇)𝜌𝐶𝑝𝑉 ), 
Equation 18 

where 𝐶𝑚, 𝑟𝑚, and 𝑇 are component 𝑚 concentrations [mol/L], component 𝑚 reaction rates [mol/(L·min)] 

and temperature [K], 𝑉  is the reactor volume [L], 𝑣𝑓𝑒𝑒𝑑  is the feed flowrate [L/min], 𝜌 and 𝐶𝑝  are the 

density [g/L] and specific heat capacity [J/(mol·K)], ∆𝐻𝑛 and 𝑟𝑛 are the reaction heat and rate of reaction 𝑛, 𝑈 , 𝐴  and 𝑇𝑗  are the heat transfer coefficient [W/(m2·K)], the heat transfer area [m2], and the jacket 

temperature [K], respectively. This way, the modelling of the CFRs at a steady state is developed. The four 

flow reactors in series can represent the process. The heat transfer coefficients of CFR1, CFR2 and CFR3 

are already known. An additional heat transfer 𝑈 of CFR4 is required to determine due to no equipped 

jacket. 

The system modelling SBR, RC1, and CFR constructs the first-principle part. It has the corresponding nine 

first-priciple parameters (four pre-exponential factors, four activation energies, and one heat transfer 

coefficient) to be identified during the training. 

2.2.2. Hybrid models 

The hybrid models were obtained combining dat-driven models with the first principle equations reported 

in in section 2.2.1. The first-principle equations are with nine parameters: activation energies 𝐸𝑎, pre-

exponential factors 𝐴 and the heat transfer coefficient 𝑈. The data-driven part in the hybrid models is based 

on two polynomial regressors:  

 𝑟𝑏𝑏,𝑖1  = (𝑎𝑖𝐶𝐴 + 𝑏𝑖𝐶𝐵 + 𝑐𝑖𝐶𝐶 + 𝑑𝑖)(− 1𝑇 + 𝑒𝑖), Equation 19 

 𝑟𝑏𝑏,𝑖2 = (𝑎𝑖𝐶𝐴𝐶𝐵 + 𝑏𝑖𝐶𝐵𝐶𝐶 + 𝑐𝑖𝐶𝐶𝐶𝐴 + 𝑑𝑖)(− 1𝑇 + 𝑒𝑖), Equation 20 

 𝑞𝑏𝑏  = 𝑓 ∑ 𝑟𝑏𝑏,𝑖1 𝑜𝑟 23𝑖=1 . Equation 21 
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where 𝑖 = A, B, C stands for the three essential chemical components analyzed via GC. 𝑟𝑏𝑏,𝑖1  is the data-

driven part of 𝑖 reaction rate of the first regression method. 𝐶 is the concentration in the solution [mol/L]. 

Furthermore, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 are the corresponding regression coefficients. Overall, the system has sixteen 

data-driven parameters. The first regression method (see Equation 19) is based on linear regression and 

additional influence from temperature. In this way, the first-order reactions are assumed. The second 

regression method (see Equation 20) is from the interaction terms of the second-order polynomial regression.  

The hybrid reaction rates [mol/(L·min)] of component 𝑖 and the hybrid general reaction heat [W] in the 

system are: 

 𝑟ℎ𝑦,𝑖 =  𝑟𝑖  +  𝑟𝑏𝑏,𝑖1 𝑜𝑟 2,  Equation 22 

 𝑞ℎ𝑦 = ∑ ∆𝐻𝑖𝑟𝑖2𝑖=1 + 𝑞𝑏𝑏. Equation 23 

where 𝑟𝑖 is the first-principle part from Equation 3, Equation 4, and Equation 5. Δ𝐻 is the reaction heat 

obtained from Equation 8. Together with the ordinary differential equations (Equation 9, Equation 10, 

Equation 11, Equation 14, Equation 17, Equation 18), the developed hybrid models enable to predict the 

process outputs (concentration and temperature profiles).  

Overall, the hybrid model has twenty-five parameters to be identified (i.e., nine parameters of the first-

principle model and sixteen parameters of the statistical model). The objective function values are calculated 

using the modelled outputs from hybrid models, the experimental outputs, and the parameters. By evaluating 

the objective values and bounds, SI algorithms can give the parameters for the next iteration. The whole 

training procedure stops till it reaches the set iterations. As shown in Fig. 1a, this paper considers feed 

concentrations, feed flow rates, jacket temperatures, and reactor volumes as inputs. The outputs are the 

concentrations and heat flows. The bounds for first-principle parameters are set according to the literature 

study, while the data-driven coefficients were searched in the range of [-0.1, 0.1]. The reason why a small 

range [-0.1, 0.1] was chosen is that the first-principle parts play the primary role in the hybrid modelling to 

explain the complex reaction processes. 

The utilized objective function 𝐹 in this paper is the sum of Normalized Mean Squared Errors (NMSEs) 

with L1 regularization term, defined as: 

 𝐹   =  ∑(𝑁𝑀𝑆𝐸𝑠) + 𝐿1, 

       = ∑ ∑ ( 𝑤(�̂�𝑖𝑘−𝑦𝑖𝑘)max(𝑦𝑘)−min(𝑦𝑘))2𝑛𝑘𝑖=1 𝑛𝑘𝑙𝑘 +  𝜆 ∑ |𝜃𝑗|𝑚𝑗=1  

Equation 24 

where 𝑛  is the number of the training data points, �̂�𝑘  is the predicted output of variable 𝑘 , 𝑦 is the 

experimental data, and 𝑤 is the adjustment factor, set to 10 in this paper. For the L1 regularization term, 𝜆 = 10−3 and 𝜃𝑗 is the 𝑗-th parameter among the 𝑚 hybrid model parameters. SI algorithms searched within 

the boundaries via algorithms inspired by mold, birds, and ants. The optimal set of parameters is given by 

minimizing the objective value 𝐹. 

This paper studies two regression methods (i.e., Equation 19 and Equation 20) and three SI algorithms (i.e., 

SMA, ACO, PSO in section 2.1) in SI-M. The simulation and training routines are implemented in Python. 

They are also compared with a commonly used gradient descent method, L-BFGS-B (Limited-memory 

Broyden–Fletcher–Goldfarb–Shanno with Bounds) implemented in SciPy (Byrd et al., 1995; Machalek et 

al., 2021; Morales and Nocedal, 2011). The calculation used a machine having Intel®Xeon®Gold 5220 CPU 

@ 2.20GHz, 2195 Mhz, 18 Core(s), 36 Logical Processor(s). 
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2.3. Process optimization 

Using the trained hybrid models, SI-O (Swarm Intelligence-based Optimization) was conducted to 

maximize the productivity of C. The developed optimization agent provides the optimal setpoints of A or B 

inlet flow rate (𝐹𝐴,𝑆𝑃 , 𝐹𝐵,𝑆𝑃), feed temperature (𝑇𝑓,𝑆𝑃), and the jacket temperatures of the first three reactors 

(𝑇𝐽1,𝑆𝑃, 𝑇𝐽2,𝑆𝑃 , 𝑇𝐽3,𝑆𝑃) as shown in Fig. 4.  

The optimization agent relies on the developed model and the algorithms to update the setpoints. The initial 

candidates, namely starting setpoints in this study, can be randomly generated or assigned by users. Based 

on the given candidates, the process can be simulated. The corresponding modelling results are evaluated 

according to the C productivity. In this process, the price of product C is much higher than the raw materials 

and utilities. The constraints to avoid the plant shut-down are also included in the evaluation function, where 

the evaluation value would be -1 if the constraints cannot be maintained. The working flow of the 

optimization stops when the defined requirements are met, namely the number of iterations. If the 

requirements are not met, the candidate setpoints are updated by SI algorithms, and it repeats the modelling 

and evaluation steps. 

The optimization strategy of the applied process is slightly different from normal operations in order to 

decrease the calculation times of the agent. The calculation time is critical in this continuous process, and 

the product is lost when the process is waiting for the new optimal setpoints. Therefore, a modified  

optimization strategy in SI-O is proposed and illustrated in Fig. 5. It recclculates the process setpoints (𝑎) 

from the agent unless the process inputs (𝑢) are different from the previous optimal history. If the deviation 

between the new 𝑢(𝑡 + 1) and the previous optimal 𝑢𝑜𝑝𝑡(𝑡𝑜𝑝𝑡) is low, the reward function 𝑟 is calculated 

based on the current states 𝑠(𝑡), historical actions 𝑎(𝑡𝑜𝑝𝑡) and the corresponding inputs 𝑢(𝑡 + 1). If the 

reward is higher than 0, the new setpoints 𝑎(𝑡 + 1) are 𝑎(𝑡𝑜𝑝𝑡). Otherwise, the optimization agent is applied 

to get the new setpoints 𝑎𝑎𝑔𝑒𝑛𝑡. The system stops when the time 𝑡𝑒𝑛𝑑 is reached.  

As methined above, the optimization strategy highly depends on the developed process models. If the model 

cannot represent the process anymore, the proposed setpoints would be unsuitable. Fortunately, the process 

is already proven to operate safely at some fixed setpoints. With these setpoints, the maximum productivity 

cannot be achieved, but the process can avoid unexpected shut-downs. In order to ensure the process keep 

working, a back-up mode can be added. The optimization mode is applied initially from the beginning of 

the process. The corresponding plant outputs are compared with the model outputs to check if the model is 

still valid or not. If the model is invalid, the backup mode with fixed setpoints is employed. The plant outputs 

from the backup mode are also compared to the previous plant outputs from the optimization mode. Suppose 

the performance of the optimization mode is better than the backup mode. In that case, the optimization 

mode will be reused, meaning the process behaviours still follow the model behaviours even though the 

model cannot provide accurate absolute values. Otherwise, the backup mode will be used at the following 

time of the plant operation, and the model is required to be retrained. A graphical user interface for SI-M/O 

is designed to have a clear view of its performance, which is implemented in python via Tkinter (Lundh, 

1999). It consists of four sections: process information, settings, running messages and results. 
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Fig. 5: The SI-O optimization strategy of the process, where u(t) is the inputs of the plant at time t, r is the 

defined reward function, a is the setpoints applied to the process, s is the states of the process, and d is the 

set deviation. 

3. Results 

3.1. Process modelling 

With the methodology SI-O explained in section 2.2, the hybrid model for complex reaction processes can 

be developed. A total of sixteen approaches are investigated in this paper, resulting from the involved two 

sub-training categories (one-time and step-by-step), two regression methods (Regression 1 in Equation 19 

and Regression 2 in Equation 20), and four optimization algorithms (ACO, PSO, SMA, and L-BFGS-B). 

The following section gives the performance analysis of different approaches. The sensitivity analysis and 

the applications to the production plant are also given based on the optimal approach. 

3.1.1. Performance analysis 

All sixteen approaches are trained ten times with a maximum of 600 iterations. The using boundaries are 

the same, which are [0, 1] for the first-principle parameters including pre-exponential factors 𝐴, activation 

energies 𝐸𝑎, and heat transfer coefficients 𝑈 with scaling factors [1.5e4, 1e0, 1e4, 1e0, -1e4, -1e4, -1e4, -

1e5, 1e1], and the range [-0.1, 0.1] was employed for the data-friven parameters. The number of solution 

candidates is 30 for SI algorithms (ACO, PSO, SMA). One of the advantages of SI is that no initial guessed 

point is required. However, the initial starting points of the L-BFGS-B method are compulsory, set to the 

random values between the upper and lower bounds in each run.  
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In this paper, L-BFGS-B returns the highest objective values with the magnitude of 105 in every training 

approach. That is because L-BFGS-B can easily converge to the local optimum; most probably this is related 

to the random initial conditions adopted in this paper. Also, the used functions are with high nonlinearity. 

The ideal objective functions of this technique are usually required to be continuous and easily 

differentiable, which is not the case in this paper. A high amount of extra fine-tuning work is required in L-

BFGS-B for a fair comparison. Hence, it is suggested to apply L-BFGS-B when the starting solution has 

high confidence and the used functions are not highly nonlinear. 

The average objective values 𝐹𝑎𝑣𝑔 at the end of the training and the average calculation time 𝑡𝑐𝑎𝑙 in seconds 

are presented in Table 1.  

Table 1: The average objective value 𝐹𝑎𝑣𝑔 and average calculation time  𝑡𝑐𝑎𝑙 in seconds for ten runs. The 

number in [ ] are the approach index as shown in Fig. 6. 

SI 

algorithms 

Regression 1 Regression 2 

One-time Step-by-step One-time Step-by-step 𝐹𝑎𝑣𝑔 𝑡𝑐𝑎𝑙 𝐹𝑎𝑣𝑔 𝑡𝑐𝑎𝑙 𝐹𝑎𝑣𝑔 𝑡𝑐𝑎𝑙 𝐹𝑎𝑣𝑔 𝑡𝑐𝑎𝑙 
ACO 

46.5 

[1] 

1,730.4 

[1] 

41.9 

[2] 

1,784.9 

[2] 

54.9 

[3] 

2,057.0 

[3] 

39.3 

[4] 

1,304.1 

[4] 

PSO 
53.4 

[5] 

20,130.4 

[5] 

46.7 

[6] 

11,512.9 

[6] 

54.8 

[7] 

14,122.5 

[7] 

52.1 

[8] 

11,227.2 

[8] 

SMA 
45.0 

[9] 

20,524.4 

[9] 

36.2 

[10] 

7,053.4 

[10] 

55.4 

[11] 

20,038.0 

[11] 

40.3 

[12] 

7,733.0 

[12] 

The average objective values 𝐹𝑎𝑣𝑔 for SI approaches are all below 60. The approaches with ACO take less 

calculation time 𝑡𝑐𝑎𝑙 than the others, and their average objective values 𝐹𝑎𝑣𝑔 are lower than those with PSO. 

The PSO approaches achieve  higher 𝐹𝑎𝑣𝑔 values than ACO and SMA, and their calculation time is higher 

than those in the same sub-categories except SMA + one-time approaches. For SMA, the one-time 

approaches take more calculation time than ACO and PSO, and the step-by-step approaches consume less 

than PSO but more than ACO. Also, the lowest average objective value 𝐹𝑎𝑣𝑔 is achieved by Approach 10: 

SMA + Regression 1 + step-by-step. 

Generally, the step-by-step approaches achieved lower 𝐹𝑎𝑣𝑔 and lower calculation time than the one-time 

approaches. The time differences between step-by-step and one-time for SMA are high as close to three 

times. The reason is that the step-by-step approaches splits a high-dimension task with twenty-five 

parameters into two sub-tasks: one is for nine first-pricinple parameters and the other is for sixteen data-

driven parameters. In conclusion, Approach 10: SMA + Regression 1 + step-by-step achieved the lowest 

objective value with a reasonable calculation time of 7,053.4 seconds. 

For the performance analysis of different modelling approaches in ten training runs, Fig. 6 gives the boxplot 

where the boxes and lines depict the distributions of final objective values at the end of training. The soild 

box indicates the range of the central 50% of the data, with a central white line marking the median values. 

The bounds of boxes are defined when greater or less than 25% of the data. The extended lines from each 

box capture the remaining data range, with circles indicating outliers. It can be seen that Approach 4, 

Approach 10 and Approach 12 have most objective values lower than 40. Among the three approaches, 

Approach 10 outperforms the others showing no outliers, a low variance and the lowest median. 
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Fig. 6: Box plot of the final objective values via SI algorithms. The boxes and lines depict the distributions 

of final objective values at the end of ten runs for various modelling approaches. The box indicates the 

range of the central 50% of the data, with a white line marking the median values. The extended lines from 

each box capture the range of the remaining data, with circles indicating outliers. 

3.1.2. Searching progress of swarm intelligence algorithms 

This section discusses how the various SI algorithms perform the parameters searching while training the 

model. The training processes of the twelf approaches are shown in Fig. 7. In this Figure, a, b, and c plots 

are for ACO, PSO, and SMA, respectively. The dashed lines are the objective value minimum during the 

600 iterations, and the dotted lines are the maximum. 

 

Fig. 7: The training processes of 12 approaches with swarm intelligence algorithms: a) ACO, b) PSO, c) 

SMA. The solid lines are the average objective values. The dashed lines are the objective value minimum 

during the 600 iterations, and the dotted lines are the objective value maximum during the 600 iterations. 

For all ACO, PSO, and SMA approaches, step-by-step ones (black and green lines in Fig. 7) achieve lower 

average objective values than one-time approaches (blue and red lines in Fig. 7). In the step-by-step 

apporoch, the first 300 iterations are dedicated for the first-principle models. Then, the first-principle 

parameters are fixed and the other 300 iterations are for data-driven parameters. The improvements are 

significant when the training starts over at the 300th iteration. For some runs after the 300th iteration in SMA 
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and PSO, the objective values increase slightly because the primary search does not find the desired 

direction. The difference between ACO and SMA approaches is minor, but the PSO approaches are usually 

with higher ending objective values than the other two. Even the maximum objective values of SMA + 

Regression 1 + step-by-step are smaller than those of most PSO approaches. In sum, Approach 10: 

SMA+Regression 1 + step-by-step gets the lowest mean objective value. Also, its variance, which can be 

indicated from the difference between the minimum and the maximum runs, is smaller than the others. 

The reasons why different SI algorithms perform differently are investigated too. Three randomly selected 

candidates among thirty are plotted in Fig. 8, indicating their position changes during the training process. 

The randomly chosen parameters are Parameter 9 (one first-principle parameter) and Parameter 10 (one 

data-driven parameter). The arrows in Fig. 8 show the changing directions of the candidates in 600 iterations. 

The training process of other example parameter sets can be found in Supporting Information. 

The ACO approaches show fewer movements than PSO and SMA, resulting in low stability, as seen in Fig. 

6. After several movements, the candidates arrive at similar positions. The first-principle parameters (e.g., 

Parameter 9) keep the same after the 300th iteration in step-by-step approaches, resulting in vertical arrows. 

PSO-based approaches, which cost high computational time, explore the entire region within the boundaries. 

However, the final solutions of PSO approaches within the 600 iterations are with high objective values. 

The reasons can be that the updates of PSO candidates do not take much into account the information from 

the other candidates, resulting in the candidates working more independently than the other approaches. The 

SMA-based approaches balance the exploration and the computational cost appropriately. The behaviours 

of condidates in Fig. 8 explain why Approach 10: SMA + Regression 1 + step-by-step outperforms the other 

approaches. 
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Fig. 8: The position changes during the training process for Parameter 9 (a white-box parameter) and 

Parameter 10 (a black-box parameter). Three candidates (blue, green, red) are involved among 30 

candidates, and the corresponding arrows show the changing directions of the candidates in 600 iterations. 

3.1.3. Model validation and sensitivity analysis 

The model developed via Approach 10: SMA + Regression 1 + step-by-step is used to simulate the steady 

states of the plant process (see Fig. 3). Fig. 9 gives the corresponding model performance through two tests. 
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The scatters are experimental data points, and the lines are modelling results. The experimental data is 

limited because the composition analysis is only at the exit of the fourth continuous flow reactor (CFR) and 

the temperature measurements are only available at the exit of the four CFRs.  

 

Fig. 9: Model validation of SMA + Regression 1 + step-by-step method via two tests(Test1:solid lines, Test2: 

dashed lines). a): Normalized concentrations in weight mass percentage [wt%] of components A (red), 

B(blue) and C(black). The scatters are the experimental data at the exit of the fourth reactor. The lines are 

the modelling results from the developed model; b): Temperatures of continuous flow reactor1 (CFR1)(red), 

CFR2(blue), CFR3(black), and CFR4(green). The scatters are the experimental data at the exit of four 

reactors. The lines are the modelling results from the developed model. 

These two tests used different plant settings compared to the training data set, which are listed in Table 2, 

while the concentrations of feeding raw materials A and B are the same, namely 40.5% and 91.9%, 

respectively. 𝐹𝐴 and 𝐹𝐵 are the feed flow rates of A and B in [kg/h], 𝑇𝑓 is the feeding temperature in [°C], 

and 𝑇𝐽1, 𝑇𝐽2 and 𝑇𝐽3 are the jacket temperatures in [°C]. 

Table 2:The six setpoints of the plant for validating the developed model. 𝐹𝐴 and 𝐹𝐵 are the feed flowrates 

of A and B, 𝑇𝑓 is the feeding temperature, and 𝑇𝐽1, 𝑇𝐽2 and 𝑇𝐽3 are the jacket temperatures. 

 𝐹𝐴,𝑆𝑃 [kg/h] 𝐹𝐵,𝑆𝑃 [kg/h] 𝑇𝑓,𝑆𝑃 [°C] 𝑇𝐽1,𝑆𝑃 [°C] 𝑇𝐽2,𝑆𝑃 [°C] 𝑇𝐽2,𝑆𝑃 [°C] 

Test1 101.2 54.5 12.5 37.5 42.5 45.0 

Test2 82.1 73.6 15.0 25.0 50.0 50.0 

It can be seen in Fig. 9 that the model predicts the plant process accurately in two different tests. In Test1, 

the starting B mass percentage is less than in Test2, leading to the lower ending B, C and the higher ending 

A. The jacket temperatures highly influence the temperatures inside the reactors. The higher jacket 

temperatures result in higher exit temperatures. The exit temperature of the fourth reactor is slightly lower 

than the previous reactor because the fourth CFR does not have a jacket. CFR4 is influenced by the room 
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temperature, which keeps at 20 °C in the plant. The developed model with Approach 10: SMA + Regression 

1 + step-by-step successfully simulates the plant process at steady states with high accuracy.  

As stated in section 2.2, the involved parameters play important roles in the developed model. Therefore, a 

sensitivity analysis was conducted to check the influence of parameters on the obtained model. The used 

reference settings are from Test1, including the A and B feeding flow rates, the feeding temperature, and 

the jacket temperatures. Based on the obtained parameters, the changes in parameters are in the ranges of 

10%, 20% and 30%, respectively. 1,000 parameter samples are randomly generated using Latin Hypercube 

Sampling (LHS). The corresponding concentration and temperature profiles are shown in Fig. 10, where the 

filled areas illustrate the model vibrations resulting from the changing parameters. The solid line is the 

reference model performance for Test1 with the obtained parameters via Approach 10: SMA + Regression 

1 + step-by-step. 

 

Fig. 10: The changes of parameter values in 10%, 20% and 30% to the model in Test1. LHS within selected 

boundaries randomly generates the changes in the parameters in 1,000 samples. The solid line is based on 

the model with the obtained optimal parameters. 

The changes in the parameters in the range of 10% significantly influence the concentration profiles but 

have much less influence on the temperature profiles, resulting from that the major number of parameters 

in the model is related to reaction kinetics. The parameters connected to the reactors are mainly from the 

available database, instead of estimated via the SI-M training. The parameter changes within 30% highly 

affect the model performance both for concentration and temperature profiles. The changes higher than 30% 

lead to the failure of the model convergence. In conclusion, the developed model is sensitive to the involved 
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parameters. It can explain why the conventional algorithm (e.g. L-BFGS-B in this paper) obtained high 

objective values when training the model, because the inappropriate starting parameters can also fail the 

model convergence. However, the SI algorithms including ACO, SMA and PSO can easily overcome this 

shortcoming, benefiting from many beginning searching candidates. Compared to conventional algorithms, 

the risk of inappropriate starting candidates or parameter ranges is reduced via SI-M. 

3.2. Process optimization 

Based on Approach 10: SMA + Regression 1 + step-by-step, the model of the plant process (see Fig. 3) is 

developed and the parameter sensitivity analysis is performed. The following process optimization is based 

on the obtained model, and the six setpoints are changed according to the raw material changes via SI-O 

(Swarm Intelligence-based Optimisation). This section presents the performance analysis of SI-O. 

Furthermore, the results of experimental plant test via SI-O is given. In addition, a graphical user interface 

is designed. 

3.2.1. Performance analysis 

The aim of process optimization is to maximize the productivity and to ensure the plant continuous operation. 

The corresponding reward function is designed based on these requirements. The constraints can be divided 

into Hard Constraints (HCs) and Soft Constraints (SCs). In this study, there are two hard constraints to avoid 

the plant shut-down and to operate the plant safely, namely 1) the feeding flowrate of raw materials A and 

B should be smaller than the maximum values set by the operators; 2) the total flow rate should be smaller 

than the maximum value given by the operators as well. Moreover, two soft constraints should be obeyed 

based on the human expert experience for reactions and reactors: 1) the residence time should be in the 

range of 4 and 7 minutes; 2) the feeding ratio of pure material B vs A should be lower than 1.25 and higher 

than 0.75. Therefore, the final reward function 𝑅 is 

 𝑅 =  { −1, if HCs are not met 𝑤𝑡𝑐𝑀 − 𝑤𝑟𝑡𝑃𝑟𝑡 − 𝑤𝑟𝑎𝑡𝑖𝑜𝑃𝑟𝑎𝑡𝑖𝑜, if HCs are met  Equation 25 

where 𝑤𝑡𝑐 is the weight mass percentage (%) of the product, 𝑤𝑟𝑡 and 𝑤𝑟𝑎𝑡𝑖𝑜 are the weights assigned to the 

punishments of the residence time (𝑃𝑟𝑡) and the feeding ratio (𝑃𝑟𝑎𝑡𝑖𝑜), respectively. The punishments 𝑃𝑟𝑡 

and 𝑃𝑟𝑎𝑡𝑖𝑜 are calculated by the absolute difference from the desired ranges, and the corresponding 𝑤𝑟𝑡 

equals 1.0 and 𝑤𝑟𝑎𝑡𝑖𝑜 is 10.0.  

ACO, PSO, SMA and L-BFGS-B are employed to obtain the maximum reward. Their performances 

according to the changes of the feeding raw material A and B weight percentage concentrations are shown 

in Fig. 11. The x-axis represents 10 different changing steps of raw materials A and B. Fig. 14a gives how 

the feed concentrations of raw materials A and B change. It can be seen that the changes are not gradually 

but in steps. In this study, the step values can keep for a few hours, which is much longer than the residence 

time in the magnitude of minutes. That is why the steady-state model of the plant process can be utilized in 

SI-O. Fig. 14b and Fig. 14c illustrate the averages and standard deviations of reward values for 10 runs 

according to raw material changes in Fig. 14a, where the circles are the average values, and the vertical lines 

are the standard deviations. 
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Fig. 11: The performance of optimization agents with different swarm intelligence algorithms and L-BFGS-

B, the x-axis is standing for 10 different changing steps of raw material A and B. a): The changes of the feed 

concentrations of raw material A and B; b) and c): The averages and standard deviations of reward values 

for 10 runs according to raw material changes(the circles are the averages, the vertical lines are the 

standard deviations); d): The average calculation times for 10 runs according to raw material changes. 

ACO got the highest reward average values and the lowest standard deviations of ten runs for the ten 

different changing steps. In contrast, the average reward values and the standard deviations of PSO and 

SMA are close. It is noted that in SI-M, Approach 10 with SMA obtained the best performance while ACO 

achieved the best performance in SI-O. One of the reasons is that ACO is more suitable to low-dimension 
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tasks, such as six setpoints in SI-O compared to twenty-five parameters in SI-M. It can get the optima much 

faster than SMA and PSO, which is crucial because the delay in applying new setpoints causes the ongoing 

product losses in the process. However, ACO shows high variance and low stability when it comes with 

high-dimension problems with over twenty parameters. The employed functions, which are the objective 

function 𝐹 (see Equation 24) in SI-M and the reward function 𝑅 (see Equation 25) in SI-O have different 

characteristics. The objective function 𝐹  is continuous and considering the regularization term, but the 

reward function 𝑅 is discontinuous and no regularization term is involoved.  

The performance of L-BFGS-B in SI-O is similar to its performance in SI-M. It easily traps in the local 

optimal point. It sometimes even cannot find a positive reward value in SI-O, leading to the lowest average 

value and the highest standard deviations. However, it can be seen from Fig. 14d that the average calculation 

times for L-BFGS-B is the least. L-BFGS-B can be an applicable algorithm if the starting point and the 

applied boundaries are with high condfidence. It has to be emphasized that in this research, the starting point 

is randomized, and the applied boundaries are the same as the other three SI algorithms. It also shows one 

of the advantages of SI algorithms is that less work is required to tune the starting points and searching 

boundaries. ACO used the least calculation average time and the highest average reward values among the 

three SI algorithms. Hence, ACO is employed for the further study of SI-O. An experimental plant test with 

SI-O was conducted, and the results are provided in the following section. 

3.2.2. Experimental and simulation tests 

In the experimental tests for SI-O, the conditions of the plant process were kept the same, namely, the 

concentrations of feeding raw materials A and B were constant, and the maximum flow rates set by operators 

were constant as well. The analyzed samples of the outlet stream were taken when the process reached 

steady states. The “Current approach” used the setpoints given by the company internal calculations, 

including the feeding flowrates of A and B (𝐹𝐴,𝑆𝑃 , 𝐹𝐵,𝑆𝑃), the feed temperatures (𝑇𝑓,𝑆𝑃), and the jacket 

temperature of the first three reactors (𝑇𝐽1,𝑆𝑃 , 𝑇𝐽2,𝑆𝑃 , 𝑇𝐽3,𝑆𝑃) as illustrated in Fig. 3. The “Opt. temperatures” 

applied the optimal temperatures (𝑇𝑓,𝑆𝑃 , 𝑇𝐽1,𝑆𝑃 , 𝑇𝐽2,𝑆𝑃 , 𝑇𝐽3,𝑆𝑃) only from the optimization agent with ACO 

but used the same flow rates as the current approach. The reason for applying only the optimal temperatures 

is that, based on the expert experience, the temperature influence might be less than the impact of the flow 

rates. This way, the plant will not shut down unexpectedly at the first stage. The second stage, “Opt. 

temperatures & flowrates”, applied both the optimal temperatures and the optimal flowrates 

(𝑇𝑓,𝑆𝑃, 𝑇𝐽1,𝑆𝑃, 𝑇𝐽2,𝑆𝑃 , 𝑇𝐽3,𝑆𝑃 , 𝐹𝐴,𝑆𝑃 , 𝐹𝐵,𝑆𝑃). The experimental test results of the normalized C productivity for 

three approaches are given in Fig. 12.  

The colourful bars are the average normalized productivities in [kg/h], and the solid lines are the standard 

deviations of taken samples. It can be seen that with only the optimal temperatures 

( 𝑇𝑓,𝑆𝑃, 𝑇𝐽1,𝑆𝑃, 𝑇𝐽2,𝑆𝑃 , 𝑇𝐽3,𝑆𝑃 ), the productivity increased by 3.5%. The standard deviations of analyzed 

samples in “Opt. temperatures” are higher than the other two because the limited three samples were taken 

and analyzed. With the optimal temperatures and flowrates (𝑇𝑓,𝑆𝑃 , 𝑇𝐽1,𝑆𝑃 , 𝑇𝐽2,𝑆𝑃 , 𝑇𝐽3,𝑆𝑃 , 𝐹𝐴,𝑆𝑃 , 𝐹𝐵,𝑆𝑃 ), the 

mean productivity can increase by 5.3% compared to the current approach. It can be seen that the 

experimental test with SI-O in the plant was successful.  
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Fig. 12: The plant test results based on the optimization agent with ACO. The bars represent the average 

normalized C productivity in kg/h, and the solid lines are the standard deviations of taken samples. The 

“Current approach” used the setpoints given by the internal calculations from the company. “Opt. 
temperatures” applied only the optimal temperatures from the optimization agent with ACO. “Opt. 
temperatures & flowrates” utilised both the optimal temperatures and the optimal flow rates from the agent.  

 

Fig. 13: The performance of SI-O and backup mode for different hard constraints, where“Flowrate1”(solid 

lines) is 132 kg/h for the maximum flowrate of A, and the “Flowrate2” (dashed lines) is 70 kg/h. a): The 

changes in the feed concentrations of raw materials A and B; b): The obtained reward values of optimization 

and backup modes according to raw material changes. 
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In the previous test, the raw material concentrations are constant, and the maximum flow rates of A and B 

and the maximum total flow rates are also constant. The maximum flowrates are the part of hard constraints, 

as shown in Equation 26.  To check the performance of SI-O for different hard constraints, the tests in the 

simulation environment are also conducted, and the results are shown in Fig. 13. Normally, the maximum 

flowrate should be 132 kg/h, as “Flowrate1” (solid lines). However, this limitation can be 70 kg/h due to 

the pump failures or the requirements of the downstream processes, as “Flowrate2” (dashed lines). It can be 

seen in Fig. 13 that SI-O always gives a higher reward value than the backup mode which used fixed 

setpoints. However, the improvement for “Flowrate1” is much less than “Flowrate2” because the fixed 

setpoints has been optimized for “Flowrate1” in the previous years. However, the backup mode cannot 
handle the new “Flowrate2”, where SI-O shows the significant improvement. The proposed optimization 

strategy SI-O obtains the high flexibility, whether the maximum flow rate of A is low or high. At the end, 

the graphical user interface for SI-M/O was designed and implemented in python, as shown in Supporting 

Information. 

4. Conclusions 

This study proposes “SI-M/O” a Swarm Intelligence-based Modelling and Optimization structure to model 

and optimizate complex reaction processes. The proposed methodology gives a more promising result than 

the commonly used L-BFGS-B (Limited-memory Broyden–Fletcher–Goldfarb–Shanno with Bounds). Due 

to the used functions and unavailable starting points, the approaches with L-BFGS-B are unsuitable in this 

case. In SI-O, Slime Mold Algorithm (SMA) outperforms Ant Colony Optimization (ACO), and Particle 

Swarm Optimization (PSO) integrated with the residual regression term with the first-order regression 

(Regression 1) and the step-by-step training. This study fills in the empty part of SMA applications in 

chemical engineering. With the help of SI-M (Swarm Intelligence-based Modelling), the obstacles of 

unknown reactions and limited data in modelling complex reaction processes are overcome, obtaining the 

models with high accuracy and reasonable calculation time. The SMA + Regression 1 + step-by-step 

approach shows the advantages with reasonable calculation time and lower objective values than others. 

This hybrid modelling structure can also be applied to other processes with similar problems, such as for 

unexpected impurities.  

According to the SI-M developed models, the process optimization for the plant was developed based on 

the proposed SI-O (Swarm Intelligence-based Optimization). The SI-O strategy with ACO gives the highest 

average reward values with the second lowest calculation time. It also increased productivity by 5.8% 

compared to the current approach in the experimental production plant test. The optimization mode in SI-O 

always gives higher reward values than the backup mode in the simulation. Moreover, the plant can operate 

continuously through the accompanied backup mode even when the models are not valid longer. This 

approach can also be applied other continuous processes, e.g. continuous distillation and continuous 

crystallization.  

Future work will apply the proposed SI-M to obtain a hybrid dynamic model of a production plant. The 

appliablilty of SI-M can also be evaluated. The current SI-O is based on the steady-state models. The future 

work will apply the dynamic models in SI-O as well to investigate its performance compared to advanced 

machine learning techniques, such as reinfrocement learning. 
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