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Abstract 

Environmental noise control regulations typically employ noise level descriptors to set limits for 

noise exposure. However, other noise characteristics, such as frequency content, temporal 

patterns and masking, have been proven to influence the perception of acoustic environments. 

Psychoacoustic indicators offer an objective means of establishing relationships between 

physical characteristics of noise and the human auditory sensation phenomena. This study 

explored psychoacoustic indicators of pass-by vehicle noise across different vehicle categories, 

driving speeds, and temperatures. Moreover, the indicators were exploited as features to train 

a classification algorithm to predict vehicle category. Over 2000 vehicle noise samples were 

collected using the Statistical Pass-By (SPB) method, categorized into three classes according to 

ISO 11819-1, besides an additional class for delivery vans. Correction coefficients were obtained 

for temperature and speed to noise levels, loudness, roughness, sharpness and fluctuation 

strength. Then, the differences in these indicators based on vehicle category were then 

discussed. A vehicle-category predictive model using the three vehicle categories defined in ISO 

11819-1 yielded 84% accuracy. Including vans as an extra vehicle category dropped accuracy to 

72% due to their misclassification with passenger cars. Combining these two categories 

increased overall accuracy to 86%. These findings could enable a less visual-dependent vehicle 

categorization so that vehicle fleets worldwide are more consistently classified in terms of 

noise. Additionally, psychoacoustic indicators appear to be valuable features for vehicle 

classification systems aimed to resemble the human auditory experience. 

Keywords: Machine Learning, Logistic Regression, Audio Signal Classification, Statistical Pass-

By 
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1. Introduction 

Physical and psychological health outcomes have been correlated with long-term exposure 

to road traffic noise (Stansfeld et al., 2021). Awareness of this hazard resulted in the 

development of guidelines for assessing and managing environmental noise, including the 

Environmental Noise Guideline for the European Region (WHO, 2018) and the Environmental 

Noise Directive (END) (European Union, 2002). The END requires European Union member 

states to perform strategic noise mapping for major roads, railways, airports, and 

agglomerations every five years. Large-scale urban traffic noise maps represent noise exposure 

via noise level descriptors as the energy-based index Lden (the day–evening–night level), and are 

drawn based on characteristics of the traffic flow microstructure, such as vehicle type, driving 

speed and road surface type (Morel et al., 2016). In the end, strategies concerning noise 

abatement rarely account for acoustical factors other than exposure levels, even though it is 

recognized that noise level reductions alone do not necessarily result in more positive 

impressions of an acoustic environment (Fiebig et al., 2020). 

Psychoacoustic indicators are metrics that establish functional relationships between 

complex spectral content, temporal envelopes and periodicities of acoustic signals with the 

human auditory sensation phenomena. The application of psychoacoustic indicators has 

received increasing attention owing to the recent paradigm shift from focusing on physical noise 

exposure to a more holistic approach based on the human perception of urban sound 

environments (Engel et al., 2021).  

Psychoacoustics has been used to assess road traffic noise. As stated by Moreno et al. 

(2023), noise intensity metrics such as noise levels are insufficient to provide all relevant 

information about a vehicle passage and, thus, are not suitable for evaluating the total emission 

energy. Methods used to collect audio samples to calculate psychoacoustic indicators include 

the Close-ProXimity (CPX) method (Soares et al., 2017; Guo et al., 2018; Freitas et al., 2018), 

which mainly captures noise from the near field tyre/road interaction. Although this procedure 

enables assessing rolling noise from distinct road surfaces, it does not account for the actual 

traffic flow in a receiver-oriented approach (Ascari et al., 2022), where other noise generation 

mechanisms play a role in total vehicle noise. Other researchers have conducted long roadside 

noise measurements and retrieved several pass-by vehicles without distinguishing among them 

(Lo Castro et al., 2018); studies such as Raggam et al. (2007) and Gille et al. (2016), although 

captured individual pass-by vehicles, aimed at synthetically creating and exploring a vehicle 

ensemble.  

Few publications are available on the acoustic and psychoacoustic descriptors of noise 

produced by isolated pass-by vehicles. The approach typically employed in these studies is to 

link the indicators to noise-induced annoyance, and only a limited number of (controlled) 

instances are presented. Morel et al. (2016) identified the perception of spectral and temporal 

features of pass-by vehicle noise in reported annoyance levels; Paviotti and Vogiatzis (2012) 

linked annoyance levels to the roughness of powered two-wheelers; Altinsoy (2021) showed 

that loudness, tonality, roughness and fluctuation strength are related to the perceived 

annoyance induced by pass-by noise of passenger cars. 
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Recording individual vehicle noise from traffic flow can be labour-intensive. George et al. 

(2013) describe challenges encountered in data collection from a two-lane undivided road, such 

as the simultaneous passage of different vehicles, horn sounds and random but identifiable 

background noises. The Statistical Pass-By (SPB) is a standardized methodology (ISO 11819-

1:2023) to measure and compare the acoustic quality of road surfaces by leveraging the vehicle 

fleet. Strict requirements of free-field conditions, low background noise, and pass-by vehicles 

driving at a constant speed and sufficiently spaced from other vehicles guarantee that 

recordings taken from these measurements comprise neat audio samples of individual vehicles. 

Another aspect to account for in roadside measurements is that environmental and driving 

conditions affect the noise levels and spectra of pass-by vehicles (Yang et al., 2020). 

Standardized procedures have been established to normalize noise levels to a common scale, 

with ISO/TS 13471-2 (2022) addressing temperature normalization and ISO 11819-1 (2023) 

incorporating a speed-correction method. Thus, these effects must also be explored so that 

psychoacoustic indicators of pass-by noise in uncontrolled driving conditions, such as those 

encountered in typical traffic flow scenarios, can be grouped and compared. 

According to the SPB method, pass-bys are classified into three categories: passenger cars, 

dual and multiple-axle heavy vehicles. The classification is performed visually by the 

measurement operator based on aspects such as number of seats, vehicle size (related to gross 

vehicle mass), and number of axles. Although this classification method seems easy to 

implement, an issue mentioned in Annex A of ISO 11819-1:2023 is that the vehicle fleet 

worldwide is very diverse, limiting the applicability of a standardized visual-based vehicle 

classification system.  

Audio signal classification involves extracting suitable features from sound/noise signals to 

determine classes to which the signals most closely fit. The choice of feature extraction and 

classification/clustering algorithms depends on the application's domain. Research on auditory 

classification has resulted in extensive libraries of computed features that can be divided into 

physical and perceptual characteristics. Physical characteristics are captured directly from the 

magnitudes of the audio waveform or short-time spectral values, while perceptual 

characteristics are estimated by auditory models and thus are linked to the human perception 

of noise. Psychoacoustic indicators belong to the realm of time and frequency-domain 

perceptual characteristics of noise (Chaki, 2020). 

In audio classification problems, a set of relevant features can be called the "acoustic 

signature" (Kandpal et al., 2013). Various studies have used supervised learning techniques to 

detect and classify vehicle noise using their acoustic signatures. Examples include Dawton et al. 

(2020), who extracted features from the frequency-domain representation of vehicle noise 

using successive short-time Fourier transforms and trained a support vector machine (SVM) to 

classify pass-bys into cars, scooters/motorbikes or buses. Kandpal et al. (2013) used features 

only in the time domain to train an artificial neural network (ANN) to distinguish between cars, 

trucks or motorbikes. George et al. (2013) used smoothed log energy for detecting noise peaks 

from pass-bys and extracted mel frequency cepstrum coefficients from fixed regions around the 
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detected peaks to train an ANN; the authors performed a classification task into heavy, medium 

and light vehicles. All these studies yielded accuracies above 65%.  

There is, however, a limited amount of studies available on psychoacoustic-based audio 

signal classifications. One example of its application in environmental acoustics is a clustering 

algorithm for soundscapes based on psychoacoustic indicators, among other acoustic features 

(Rychtáriková and Vermeir, 2013). Still, employing psychoacoustics particularly in vehicle 

classification is an unexplored attempt. The appeal of this approach is evidenced by Morel et al. 

(2012), who observed a congruence between the psychoacoustic indicators and a perceptual 

vehicle typology created in a free categorization task of pass-by vehicle noise via listening tests 

with subjects. 

The present study aims to investigate psychoacoustic indicators from pass-by vehicle noise 

from a large sample. The initial research question is twofold: to what extent are the indicators 

impacted by environmental and driving conditions, meaning air temperature and speed? 

Secondly, are the indicators sensitive enough to capture differences in pass-by vehicle noise 

among vehicle categories? The answers to these questions led to a third query: do 

psychoacoustic indicators enable enough information to derive patterns and create a 

relationship that allows predicting vehicle category at a reasonable accuracy? The motivation 

behind performing a classification task is to overcome the limitation presented in ISO 11819-

1:2023 regarding a visual-based classification system for vehicle fleets worldwide. From a 

broader perspective, these results enable evaluating whether a vehicle classification based on 

psychoacoustic indicators as objective indicators of the human auditory sensation is feasible.  

 

2. Materials and methods 

 

2.1 Research methodology overview  

An extensive SPB measurement campaign was performed to build a dataset of pass-by 

noise of different vehicle categories at a wide air temperature and speed range. The acoustic 

similarity between the test locations was evaluated via CPX and texture measurements, which 

allowed data polling from the SPB measurements, resulting in a dataset of 2199 observations. 

The SPB results were analysed via the average maximum A-weighted sound level (LA,max) spectra. 

Next, the psychoacoustic indicators (loudness, sharpness, roughness, and fluctuation strength) 

were calculated for each pass-by. To investigate the effects of air temperature and speed on the 

indicators, linear regression models were employed and their statistical significance was 

evaluated, allowing correction coefficients to be determined. The indicators could then be 

normalized to a reference temperature (20 °C) and speed (50km/h) and the pass-bys of each 

vehicle category were combined so that differences between psychoacoustic indicators among 

categories could be explored. Given the large sample size and the observed sensitivity to vehicle 

category, the psychoacoustic indicators were used as features to create a vehicle classifier. 

From the perspective of developing a classification system, this research methodology 

consists of four stages: sensing, segmentation, feature extraction, and classification (Kandpal et 

al. 2013). For audio data, sensing handles the practical issues related to physical sensors, such as 
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microphone setup and positioning. The segmentation stage deals with retrieving relevant 

information from the input data stream provided by the sensors, meaning, in this case, 

obtaining separate audio input from individual pass-by vehicles. Here, these two steps are 

covered by following the strict requirements of ISO 11819-1 as a data collection method: after 

each measurement, an already classified and timestamped dataset was obtained (Figure 1). 

Feature extraction aims at finding characteristics that aid in distinguishing vehicles among 

different classes. The psychoacoustic indicators were employed to build the feature vector as 

they proved to differ among vehicle categories. Lastly, the classification stage comprises training 

a classifier and performing the prediction task. For that, multinomial logistic regression was 

used – one of the classic supervised machine learning algorithms capable of doing multi-class 

classification. 

 

 
Figure 1: Development stages of a vehicle classification system based on psychoacoustic indicators of 

vehicle noise from SPB measurements 

 

2.2 SPB, CPX and texture measurements 

 

2.2.1 SPB method and measurement locations 

SPB measurements were performed according to ISO 11819-1 (2023), a recently published 

revision of the 1997's last version. One microphone was placed at 1.2 m height and 7.5 m from 

the center of the measured lane. A sonometer model NTi XL2 was used to continuously record 

the environmental noise levels as audio files and capture the LA,max of each pass-by in broadband 

and one-third octave bands. The speed radar KR-10 SP was used for speed measurements. 

Each pass-by vehicle is assigned by the operators to pre-defined categories having common 

features that are easy to visually identify in the traffic stream, such as the number of axles and 

body size. These characteristics are presumed to result in similarities in sound emission. The 

categories defined in the standard are passenger cars (P), dual-axle heavy vehicles (HD) and 

multiple-axle heavy vehicles (HM). Vehicles that do not correspond to these categories' 

descriptions are not taken into account.  

Among the changes proposed in the new version of the ISO SPB standard, HD and HM 

vehicles, although flagged separately on site, shall be combined into a single group (heavy 
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vehicles) for analysis purposes. To do so, 2.7 dB is added to the LA,max of HD vehicles. As the two 

resulting categories (light and heavy vehicles) present very distinguishing features, they are 

assumed to be sufficient to describe the acoustic performance of pavements, which is the 

primary goal of the SPB method. 

"Medium" vehicles, such as delivery vans, do not fit either category. The presence of vans in 

urban environments is significant due to their broad use for activities such as postal services and 

the construction industry. Vans are visually distinguishable from passenger cars and HD in their 

dimensions, cargo space, number of seats and tyre size. Given the number of vans spotted by 

the operators over this SPB measurement campaign, they were recorded as an extra vehicle 

category. 

The SPB measurements were performed in three locations in the Antwerp region (Belgium) 

throughout a two-month measurement campaign. Besides compliance with ISO 11819-1 

requirements for an acoustic free field around the microphone, these locations were chosen for 

having pavement surfaces in hot asphalt mixtures in moderate to good condition and a traffic 

composition with a large share of heavy vehicles. Table 1 presents a description of the locations. 

The mean profile depth (MPD) was retrieved from texture measurements as described in 

Section 2.2.2. 

 

Table 1: Test locations description 
 Location 1 Location 2 Location 3 

Street name, municipality 
Keetberglaan, 

Zwijndrecht  
Krijgsbaan, Zwijndrecht 

Stuivenbergvaart, 

Mechelen 

Asphalt type 
Stone Mastic 

Asphalt  
Stone Mastic Asphalt  

Chipped dense asphalt 

concrete type 2C* 

Max. aggregate size (mm) 10 10 10 

Mean profile depth (mm) 1.2 1.0 1.6 

Surface between lane 

and microphone 

Asphalt parking 

lane 

Cobblestone parking lane 

and concrete bike lane 

Concrete block pave 

bike lane and sidewalk 

N◦ of measurement days 4 2 3 

N◦ of vehicles measured  1403 406 390 

*a bituminous surface formerly common in highways in Belgium. It comprises a layer of dense asphalt 

concrete with 10 mm aggregates scattered over the hot surface and pressed again with a steel roller 

(BRRC, 2020).  

 

After outlier removal, 2199 vehicles were recorded: 823 passenger cars, 188 vans, 85 HD 

and 1103 HM. This dataset is an extract from a larger measurement campaign presented at 

Geluykens et al. (2022); see this reference for a more extensive description of the test locations 

and their selection procedure.  

 

2.2.2 CPX and texture 

Close-ProXimity (CPX) measurements were carried out according to ISO 11819-2 (2017) by 

the Belgian Road Research Centre (BRRC) at the three sites in sections of 200 m, which mid-
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point corresponded to the microphone position of the SPB measurements. The tyre/pavement 

noise was measured with the CPX trailer. CPX differs from the SPB method as it only considers 

tyre/road noise and not engine noise or propagation effects in the path to the roadside. The CPX 

measurements were conducted at a reference speed of 50 km/h, using the Standard Reference 

Test Tire (SRTT, P1), a representative of passenger cars tyres, and the CPX level (LCPX:P) was 

reported for 20-m segments. The air temperature was 20 ± 2 ⁰C, conveniently close to the 

reference temperature prescribed in ISO 13471-1 (2017) not to require temperature correction 

to the noise levels. 

Texture measurements were also conducted by the BRRC in the same 200-m sections, with 

two repetitions per location, according to ISO 13473 series. The laser beam mounted on a 

vehicle had a 0.2 mm diameter, high sampling frequency (78 kHz), vertical measuring range of 

64 mm and a vertical resolution of 1 µm. The profile was measured with equidistant steps of 

1 mm. 

 

2.3 Road traffic pass-by noise recordings 

The noise levels were continuously recorded throughout the SPB measurements as .wav 

audio files. A pass-by duration was defined as 4 s: from 2 s before to 2 s after a pass-by 

produced the peak noise level, which occurs approximately when the vehicle midpoint passes 

closest to the microphone. Independently of speed, this time window resulted in a good trade-

off between signals long enough to capture information on the vehicle passage and short 

enough to exclude unwanted noises such as those from other vehicles. Still, an analysis of the 

impact of speed on the psychoacoustic indicators is presented in Section 3.3.  

Among previous studies that also used pass-by methods to measure road traffic noise and 

calculate psychoacoustic indicators from short fragments, Morel et al. (2012) selected a pass-by 

duration ranging between 3 s to 9 s. Kandpal et al. (2013) have taken 5-s signals around the 

passing moment to use in an ANN classifier for ground vehicles, although the authors extracted 

acoustic features other than psychoacoustic indicators. In a similar context, Dawton et al. (2020) 

chose a 2-s signal as input for an SVM vehicle classifier.  

The audio files recorded in this measurement campaign, timestamps, air temperature and 

vehicle category for each relevant vehicle passage can be retrieved in an open-source online 

data repository (Grangeiro de Barros and Vuye, 2023).  

 

2.4 Acoustic and psychoacoustic indicators  

From the 4-s audio excerpts, psychoacoustic indicators were calculated in a MATLAB-based 

environment employing algorithms from PsySound3 (Cabrera et al., 2014). Loudness (N) 

calculation uses Fastl & Zwicker's model for time-varying signals and assumes free field frontal 

incidence, as detailed in ISO 532-1 method B (2017). Sharpness (S) calculation is also described 

in Fastl and Zwicker (2007). Roughness (R) is given by Daniel and Weber (1997) and fluctuation 

strength (FS) is based on the Zhou et al. (2015) model. Besides these parameters, we also 

determined the difference between the peak LA,max and the LA,max at 2 s before the peak was 
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reached, named ΔL. The final dataset is also available in the repository (Grangeiro de Barros and 

Vuye, 2023). 

The calculation outputs are given in percentile levels, which describe the statistical 

evolution of each parameter within the 4-s time window. A percentile n means that this value 

was exceeded in n% of the interval. Normally, the 5% percentile represents exceptional events 

in the signal, 95% characterizes a quasi-continuous situation, and the 50% percentile resembles 

a probable situation (Rychtáriková and Vermeir, 2013). Considering these noise excerpts are 

short and consistently variable, the 50th percentile may be the best representative.  

The following indicators are discussed: LA,max and N50 are explored as sound intensity 

measures. Loudness describes perceived noise intensity better than sound pressure level, as it 

accounts for spectral and temporal masking effects caused by the frequency selectivity 

characteristic of the human hearing system (Fastl and Zwicker, 2007). R50 and FS50 are both 

measures of noise amplitude modulation. Roughness relates to the perception of rapid periodic 

temporal changes (15-300 Hz), while the sensation measured by fluctuation strength is 

produced by temporal variations slowly enough (< 20 Hz) to be perceived by the human ear 

(Camacho et al., 2008). Information about the spectral envelope given through the spectra's 

centre of gravity is retrieved by S50. Sharpness of narrow-band noises increases sharply at high 

center frequencies; for this reason,  it is considered a noise high-frequency content descriptor 

(Fastl and Zwicker, 2007). 

 

2.5 Impacts of speed and temperature on psychoacoustic indicators  

Air temperature and speed affect vehicle noise levels and spectra. Consequently, it is 

expected that these driving and environmental conditions also impact psychoacoustic indicators 

derived from pass-by noise. Considering that, it is necessary to normalize these indicators to a 

common scale, enabling the grouping of vehicles by category and facilitating further 

comparative analysis. 

The known effect of air temperature is an increase in noise levels with a decrease in 

temperature. The relationship between noise level and temperature presented in ISO/TS 13471-

2 (2022) was determined from a compilation of several investigations; it considers the slope of 

the linear relationship between LA,max and temperature, named temperature coefficient (γt), 

given in dB/°C. γt is defined for tyre class and road surface type. Although the LA,max – 

temperature relationship is known, currently, there is no indication in the literature of the 

expected correlation between temperature and the psychoacoustic indicators retrieved from 

road traffic noise, if any. Therefore, this study analysed the correlation between the indicators 

and air temperature or speed using Pearson's correlation coefficient for linear relationships and 

Spearman's correlation coefficient for monotonic relationships. A temperature coefficient for 

LA,max was also calculated instead of using those specified in ISO 13471-2 (2022). The indicators 

presenting a linear correlation with temperature were normalized to a 20 °C reference 

temperature using the linear regression slope for each vehicle category (Equation 1).  
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𝐼𝑛𝑜𝑟𝑚,𝑖 =  𝐼𝑚𝑒𝑎𝑠,𝑖 − 𝛼𝑎𝑖𝑟 × (𝑇𝑎𝑖𝑟,𝑖 − 20) (1) 

Where: 

• 𝐼𝑛𝑜𝑟𝑚,𝑖: acoustic/psychoacoustic indicator normalized to 20 °C for vehicle i 

• 𝐼𝑚𝑒𝑎𝑠 : acoustic/psychoacoustic indicator as initially measured for vehicle i 

• 𝑇𝑎𝑖𝑟,𝑖 : air temperature measured during the passage of vehicle i  

• 𝛼𝑎𝑖𝑟: slope from the linear regression model between the 𝐼𝑚𝑒𝑎𝑠 and 𝑇𝑎𝑖𝑟 

 

Similarly to temperature, ISO 11819-1 (2023) describes that LA,max can be normalized to a 

reference speed using the slope of the linear regression between this parameter and the 

logarithm of speed. Thus, correlations between the psychoacoustic indicators and the log of 

speed were explored. The values corrected for temperature were then normalized to 50 km/h 

for the vehicle categories that displayed a significant linear correlation (Equation 2).   𝐼𝑛𝑜𝑟𝑚1,𝑖 =  𝐼𝑛𝑜𝑟𝑚,𝑖 −  𝛼𝑠𝑝𝑒𝑒𝑑 × 𝑙𝑜𝑔10( 𝑣𝑖50) (2) 

Where: 

• 𝐼𝑛𝑜𝑟𝑚1,𝑖: acoustic/psychoacoustic indicator normalized to 20 °C and 50 km/h for vehicle i 

• 𝑣𝑖  : speed of the pass-by vehicle i 

• 𝛼𝑠𝑝𝑒𝑒𝑑: retrieved from the linear regression between the 𝐼𝑛𝑜𝑟𝑚 and log(𝑣𝑖) 
 

2.6 Multinomial logistic regression for vehicle classification 

Logistic regression is an analytic technique for multivariate modelling of categorical 

outcome variables. Multinomial logistic regression (MLR) is the generalization of binary logistic 

regression for categorical outcomes with more than two classes.  

The LogisticRegression function from the Scikitlearn library in Python was used to 

implement the logistic regression classifier. The algorithm uses the cross-entropy loss for 

multinomial logistic regression, 'lbfgs' solver, L2 regularization, C=1.0, and the softmax function 

to find the predicted probability of each class. The dataset was stratified by the vehicle 

categories and split randomly into a training set of 70% and a testing set with the 30% 

remaining data. The models' performance was measured via recall for each class: the ratio of 

true positives to the total number of observations in that class. The overall model's accuracy 

was obtained by dividing the total number of correct predictions by the total number of 

predictions. 

Three models were developed: one considering the three ISO categories, another 

considering the four categories in the dataset, and a third in which passenger cars and vans 

were combined into a single class.   

 

2.7 Data preparation 

 

2.7.1 Multicollinearity  

Logistic regression (LR) analysis is a useful complement to ordinary linear regression (OLS) 

when dealing with categorical response variables. However, since LR calculates changes in the 
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log odds of the response variable instead of changes in the variable itself, the underlying 

assumptions for OLS regression, such as linearity, normal distribution and homoscedasticity, are 

not required for LR. Yet, strong multicollinearity can negatively impact prediction accuracy. 

Multicollinearity among predictors can lead to an inflation of the coefficient estimates. This 

inflation is captured by the Variance Inflation Factor (VIF), which is, therefore, a multicollinearity 

indicator. A predictor with a VIF score higher than 5 can be predicted by other independent 

variables in the dataset (Midi et al., 2013). VIF scores were calculated using the 

variance_inflation_factor function from the Statsmodels library in Python.  

 

2.7.2 Dataset balancing: under sampling and over sampling  

While this dataset has many observations for passenger cars and HM, it falls short in Vans 

and HD (n = 823, 1103, 188 and 85, respectively). Imbalanced datasets introduce bias into the 

predictive tasks as there are insufficient examples of the minority classes for a model to learn 

the decision boundary effectively. Class imbalance can be addressed by re-sampling the original 

dataset, by over-sampling the minority classes and/or under-sampling the majority classes. 

Synthetic Minority Oversampling Technique (SMOTE) is a data augmentation technique that 

uses a k-nearest neighbour algorithm to interpolate new synthetic instances in feature space 

(Nitesh Chawla, et al. 2002). SMOTE and RandomUnderSampler functions from the imblearn 

library in Python were used. The sampling strategy comprised undersampling the two largest 

categories to 500 observations each and oversampling the two smallest categories to the same 

sample size, achieving a final dataset with 2000 observations in total. 

 

3. Results and discussions 

 

3.1 Texture and CPX 

Figure 2 shows the one-third octave band texture spectra at a reference value of 10-6 m in 

the megatexture and most of the macrotexture range for two measurement repetitions at each 

location. Good repeatability is observed between repetitions for the texture range below 

250 mm. Some variability is visible for larger wavelengths, probably due to transversal 

inhomogeneities of the pavement texture. 
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Figure 2: Texture spectra (average of 1-m segments) 

 

 

The texture wavelength at which the texture level peaks is about 1.2 times the maximum 

aggregate size (10 mm) for the SMA surfaces at locations 1 and 2. The same is, however, not 

observed for the chipped dense asphalt concrete surface of Location 3.  

The spectra of Location 1 and 2 have a similar shape, although the first presents 2 to 3 dB 

higher texture levels. ISO 13473-5 (2009) indicates that the texture level in the octave band 

centered at 63 mm (Ltx63) plays a direct role in the tyre/road noise generation as these 

wavelengths correspond to the tyre/pavement contact patch length. Ltx63 is 51.6, 49.5 and 54.4 

dB for Locations 1, 2 and 3, respectively.  

Location 3 presents the highest megatexture (wavelengths between 50 mm and 500 mm). 

This texture level drops to values below the two other locations for shorter wavelengths 

(<25 mm) in the macrotexture range. An increased megatexture combined with a smaller 

macrotexture may result in a higher tyre/road noise (Sandberg and Ejsmont, 2002).  

Figure 3 displays the three locations' one-third octave band noise spectra determined from 

the CPX measurements with the P1 tyre. The standard deviations are displayed as error bars 

around the data points. Table 2 presents the broadband LCPX:P.  

 

35,0 

37,0 

39,0 

41,0 

43,0 

45,0 

47,0 

49,0 

51,0 

53,0 

T
e

xt
u

re
 l

e
v
e

l 
(d

B
 r

e
f.

 1
0

-6
m

)

Texture wavelength (mm)

Location 1, measurement 1 Location 1, measurement 2

Location 2, measurement 1 Location 2, measurement 2

Location 3, measurement 1 Location 3, measurement 2

Megatexture Macrotexture 



12 

 

 
Figure 3: LCPX:P in 1/3 octave bands (average from 20-m segments) 

 

Table 2: Broadband CPX levels (LCPX:P,50 in dBA – mean ± standard deviation) 

Location 1 Location 2 Location 3 

92.8 ± 0.1 92.6 ± 0.1 92.8 ± 0.3 

 

The relatively low standard deviation (up to 0.8 dBA) indicates homogeneity of the LCPX:P 

across the 20 m segments in all frequency bands. This implies that the noise levels recorded in 

front of the SPB microphone position accurately represent the whole 200 m sections.  

Locations 1 and 2 present similar noise levels in most frequency bands. Between 315 and 

630 Hz, the LCPX:P of Location 3 is slightly higher than the other two, with a maximum difference 

of 3.8 dBA observed at 315 Hz. These values are expected as, at these noise frequencies, the 

tyre/road noise of passenger cars increases with texture levels in the megatexture range 

(Sandberg and Ejsmont, 2002). These differences are reduced and the three spectra merge at 

800 and 1000 Hz. Above 1250 Hz, the noise levels at Location 3 are lower, differing from 

Location 1 by a maximum of 2.3 dBA at 5000 Hz. 

Despite the differences in the noise spectra, Table 2 shows that the broadband CPX levels 

are very similar across locations. Consequently, it can be inferred that the road surfaces have 

comparable acoustic performance. 

 

3.2 SPB noise level spectra 

Considering that the ISO 11819-1 (2023) requirements for free-field conditions and 

background noise are met, the differences between testing sites lie mainly in the road surface 

characteristics that impact tyre/road noise generation. From the CPX results, it is acceptable to 

consider the three locations as similar in these terms and pool the SPB measurements to obtain 

a more robust dataset. Figure 4 depicts the average LA,max spectra for each vehicle category from 

all locations. These averages were obtained from the LA,max corrected for temperature according 

to ISO/TS 13471-2 (2022) and then normalized to 50 km/h for each one-third octave band. The 

error bars represent the standard deviation.   
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Figure 4: Average LA,max spectra (at reference 50km/h and 20 °C) 

 

Passenger cars and vans present a similar LA,max peak around the 800-1000 Hz third-octave 

bands and their spectra almost coincide between 1000 and 2500 Hz. For frequency bands below 

1000 and above 2500 Hz, the average noise levels of vans are slightly higher than those of 

passenger cars, but mostly by no more than 2 dBA, probably due to contributions from engine 

and car body radiation rather than from tyre/road interaction. The noise spectra of HD and HM 

exhibit comparable shapes, with the second shifted upwards by 2.1 ± 0.7 dBA on average. This 

difference suggests that these two groups are similarly affected by the different tyre/road 

noise-generating mechanisms, resulting in a consistent vehicle group once the noise levels for 

HD are incremented, as proposed in ISO 11819-1 (2023). 

It should be recalled that SPB measurements capture vehicle noise, a combination of both 

tyre/road noise and power-unit noise. Power-unit noise composes the largest share of vehicle 

noise at low speeds, but tyre/road noise dominates vehicle noise generation as speeds increase. 

This transition occurs at a lower speed for light vehicles; at 50 km/h, tyre/road noise is already 

the primary source of vehicle noise for passenger cars, while for heavy vehicles, the share of 

power-unit noise is still considerable (Li, 2018). Therefore, the vehicle noise samples of heavy 

vehicles in this study are expected to have a significant share of engine noise. Still, when 

investigating tyre/road noise, tyre characteristics play a major role in differentiating tyre/road 

noise emission among vehicle categories. Regardless of the type of pavement, the range 

between the loudest and quietest tyre can reach up to 10 dB, as observed by Sandberg and 

Ejsmont (2002). Therefore, the similarities between passenger cars to vans and HD to HM 

observed in Figure 4 can be attributed to passenger cars having type C1 tyres, while on vans 

mostly C1, but also C2 tyres are mounted. HD are equipped with C2 and, in some cases, with C3 

tyres, while HM are equipped with C3 only. 

The spectral energy contribution rate (P(k) in Equation 3) was calculated, as proposed by 

Yang et al. (2020). This approach rules out magnitude differences, facilitating the visualization of 

the noise frequency components' contribution and the identification of mechanisms affecting 

vehicle noise generation among the vehicle categories. P(k) is the percentage of the LA,max at 
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each k-th one-third octave band (Lk) in relation to the total LA,max (L). k ranges from 6.3 Hz to 20 

kHz. Only the spectral energy contribution rates in the 315 to 5000 Hz frequency bands are 

displayed in Figure 5, as it contains almost the entire energy share.  

 P(𝑘) =  100.1∗𝐿𝑘100.1∗𝐿 × 100, 𝑘 = 6.3, 8, … , 20000 (3) 

 

 
Figure 5: Spectral energy contribution rate 

 

More than half of the spectral energy contribution rate for HD and HM is present at 

frequency bands up to 800 Hz. For passenger cars, the contribution rate becomes more 

significant at the 1000 and 1250 Hz bands. 

Although the noise levels were normalized to a reference speed, the speed impact on the 

energy contribution rates is not entirely ruled out, especially as heavy vehicles travel slower 

than light vehicles (Table 3). Since power-unit noise is linked to low-frequency components of 

vehicle noise (Roberts, 2010), the more significant energy contribution rates in the low 

frequencies confirm that HD and HM vehicle noise is affected by power-unit noise. 

Regarding tyre/road noise, low-frequency components primarily result from tyre vibrations 

induced by the shocks of irregularities in the megatexture range, whereas energy in the high 

frequencies is linked to air pumping caused by noisy air displacement in/out of the tyre tread 

upon contact with the pavement. The crossover frequency between the two phenomena occurs 

at 500-630 Hz and 800-1200 Hz for trucks and car tyres, respectively (Sandberg and Ejsmont, 

2002). Figure 5 supports the notion that impact mechanisms are more significant in generating 

tyre/road noise for heavy vehicles, while air pumping is more prominent for light vehicles.  

From 2000 Hz, Figure 5 displays similar spectral energy contribution rates for all vehicle 

categories. Given that the microphone is placed in the far field in the SPB method, the received 

signal is impacted by propagation effects such as sound absorption in the travelling medium and 

interaction with the ground. Typically, the higher noise frequencies are more easily attenuated 
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in the propagation path than low frequencies (Lercher, 2019), explaining the reduced 

contribution rate in the higher bands. 

 

3.3 Dataset overview and psychoacoustic indicators correlations with temperature and speed 

Table 3 shows the average of a set of features that describe the 4 s vehicle passages for the 

four categories. Apart from the parameters described in Section 2.4, Table 3 presents the 

average speed, the A-weighted equivalent continuous sound level (LA,eq) and the 10 and 90% 

percentile statistical noise levels. 

 

Table 3: Acoustic and psychoacoustic indicators averages and standard deviation with neither 

temperature nor speed correction 

Feature P Vans HD HM 

Amount 823 188 85 1103 

Speed (km/h) 57.4 ± 10.0 56.1 ± 10.0 51.0 ± 7.0 51.6 ± 7.2 

LA,max (dBA) 75.1 ± 2.6 75.6 ± 2.4 78.8 ± 2.7 81.5 ± 2.0 

ΔL (dBA) 10.9 ± 4.2 10.4 ± 4.1  13.5 ± 4.2 14.5 ± 4.2 

LA,eq (dBA) 71.6 ± 2.3 72.0 ± 2.2 75.0 ± 2.1 77.7 ± 2.4 

L10 (dBA) 74.4 ± 2.8 74.9 ± 2.7 78.1 ± 2.5 80.7 ± 2.9 

L90 (dBA) 66.2 ± 2.2 66.8 ± 2.0 68.6 ± 2.1 70.4 ± 2.4 

N50 (sone) 22.52 ± 2.63 23.99 ± 2.63 30.77 ± 3.39 36.83 ± 4.79 

S50 (acum) 1.254 ± 0.060 1.293 ± 0.065 1.263 ± 0.055 1.302 ± 0.058 

R50 (asper) 0.058 ± 0.010 0.060 ± 0.009 0.065 ± 0.009 0.072 ± 0.011 

FS50 (vacil) 0.479 ± 0.070 0.479 ± 0.052 0.467 ± 0.052 0.493 ± 0.076 

 

These averages are, however, calculated from vehicles that passed at different speeds and 

air temperatures. As described in Section 2.5, these environmental and driving conditions 

impact tyre/road noise and may consequently affect the psychoacoustic indicators. A 

normalization to reference values is necessary to allow direct comparison among categories.  

Henceforth, the calculations and discussions will be limited to the chosen relevant 

indicators LA,max, ΔL, N50, S50, R50, and FS50. Table 4 shows Pearson's correlation coefficient and 

simple linear regression coefficients between these indicators and air temperature for each 

vehicle category. The air temperature in the measurements ranged from 16.0 to 36.4 °C, 

averaging 24.3 ± 4.2 °C. 

 

Table 4: Simple linear regression analysis results between (psycho)acoustic indicators and air 

temperature (p-values < 0.05 in red) 
 Category LA,max ΔL N50 S50 R50 FS50 

Pearson's 

correlation 

coefficient 

P -0.39 0.04 -0.34 <0.01 -0.26 0.26 

Vans -0.41 0.05 -0.31 0.08 -0.32 0.09 

HD -0.28 -0.06 -0.28 -0.03 -0.03 0.10 

HM -0.16 0.03 -0.12 -0.06 -0.11 0.05 

p-value 

P <.001 .304 <.001 .984 <.001 <.001 

Vans <.001 .530 <.001 .282 <.001 .229 

HD .009 .605 .008 .771 .761 .343 
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HM <.001 .395 <.001 .030 <.001 .073 

Slope 

P -0.28 0.04 -0.22 1.06 × 10-5 -6.42 × 10-4 4.58 × 10-3 

Vans -0.28 0.05 -0.20 1.29 × 10-3 -7.47 × 10-4 1.17 × 10-3 

HD -0.16 -0.05 -0.21 -3.88 × 10-4 -6.98 × 10-5 1.18 × 10-3 

HM -0.11 0.03 -0.13 -8.97 × 10-4 -2.89 × 10-4 9.61× 10-4 

Standard error P 0.02 0.04 0.02 5.2 × 10-4 8.1 × 10-5 5.8 × 10-4 

 
Vans 0.05 0.08 0.05 1.2 × 10-3 1.6 × 10-4 9.6 × 10-4 

HD 0.06 0.10 0.08 1.3 × 10-3 2.2 × 10-4 1.2 × 10-3 

HM 0.02 0.03 0.03 4.1 × 10-4 7.6 × 10-5 5.3 × 10-4 

 

A statistically significant negative linear correlation (p<0.05) exists between air temperature 

and LA,max and N50 for all vehicle categories. R50 exhibited a significant negative linear correlation 

across all vehicle categories, except for HD, which may be attributed to the relatively smaller 

sample size of this group. Moreover, a significant negative linear correlation (p=0.03) was 

observed between air temperature and S50 for HM only. Conversely, for P only, a significant 

negative linear correlation with FS50 was found (p<0.001). Spearman's correlation coefficient 

was calculated to ensure that monotonic, although non-linear, correlations between the 

indicators and temperature were not disregarded. The only extra significant correlation not 

presented in Table 4 retrieved from this non-parametric test is given by FS50, for HM (p = 0.002).  

For dense asphalt surfaces, the temperature coefficients in ISO/TS 13471-2 (2022) for tyres 

C1, C2 and C3 are, respectively, -0.10, -0.07 and -0.06 in dB/°C. Although smaller, these values 

are in the same order of magnitude as the slopes for LA,max in Table 4. The differences between 

the ISO coefficients and those retrieved in this study can be attributed to the broader 

temperature range covered in the standard (5°C and 35 °C), while the air temperatures of our 

measurement campaign cover only the higher end of this range. 

 Similarly to the A-weighted noise level, N50 also shows significant negative linear relations, 

as expected, considering that both parameters are related to sound energy content. The slopes 

for both indicators versus temperature are quite similar for all vehicle categories, even though 

loudness, in sones, is spread over a wider range of values than LA,max in dBA (Figure 6 a and b). 
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Figure 6: Scatter plot and regression line of a) LA,max, b) N50 and c) S50 versus air temperature 

 

The same temperature coefficients are applied to all one-third octave bands in ISO/TS 

13471-2 (2022). According to the standard, although some studies indicate that temperature 

influence is more pronounced at low (below 800 Hz) and high frequencies (above 1250 Hz), 

insufficient consistency exists to consider a frequency-dependent effect of temperature on road 

traffic noise. The lack of correlation between S50 and temperature (see also flat linear trendlines 

in Figure 6 c) supports the premise that temperature changes have no significant impact on 

high-frequency components. 

The non-significant correlation for ΔL seems logical as it is derived from subtracting two 

noise levels equally impacted by temperature; possibly for the same reason, the temperature 

does not affect low-modulated noise fluctuations, given by FS50. On the other hand, there is no 

clear physical explanation for fast-modulated sounds (R50) to show a significant negative 

correlation with temperature; in this case, the correlation might not indicate a causal 

relationship. 

The significant correlations found for only a single vehicle category for a certain indicator 

were neglected and LA,max, N50 and R50 were normalized to 20 °C for all vehicle categories, 

according to Equation 1. Subsequently, the linear correlations between the indicators (already 

corrected for temperature) and the speed log (Table 5) were checked.  

Pearson's correlation coefficients are statistically significant for most indicators, except for 

S50 for Vans, HD and HM, and FS50 for HD. For HD, Spearman's correlation coefficient was 

a) b) 

c) 



18 

 

significant in FS50 (p = 0.022). Therefore, except for S50, all parameters were normalized to 

50 km/h for each vehicle category, as per Equation 2. 

The significant positive linear correlations between LA,max and log of speed agree with the 

behaviour described in ISO/TS 11819-1. This standard proposes a fixed speed coefficient of 25 

for heavy vehicles and dense asphalt surfaces. The slope retrieved for HD is very close to this 

value (24.92), while for HM, although smaller, it is still relatively similar. A reason for the smaller 

slope may be more significant power-unit noise contributions in total vehicle noise for HM than 

HD, given that power-unit noise is less sensitive to speed changes than tyre/road noise 

(Sandberg and  Ejsmont, 2002).  
 

Table 5: Simple linear regression analysis results between (psycho)acoustic indicators (corrected for 

temperature) and log of speed (p-values < 0.05 in red) 
 Category LA,max ΔL N50 S50 R50 FS50 

Pearson's 

correlation 

coefficient 

P 0.67 0.26 0.29 0.19 0.31 -0.48 

Vans 0.60 0.16 0.22 -0.04 0.25 -0.35 

HD 0.58 0.25 0.33 -0.05 0.22 -0.21 

HM 0.40 0.26 0.18 0.02 0.10 -0.13 

p-value 

P <.001 <.001 <.001 <.001 <.001 <.001 

Vans <.001 .025 .003 .540 .001 <.001 

HD <.001 .021 .002 .666 .044 .051 

HM <.001 <.001 <.001 .447 .001 <.001 

Slope 

P 23.87 14.69 9.63 0.15 0.04 -0.45 

Vans 19.67 8.78 6.70 -0.04 0.03 -0.24 

HD 24.92 18.10 18.00 -0.04 0.03 -0.18 

HM 18.60 17.69 14.06 0.02 0.02 -0.16 

Standard error 

P 0.94 1.91 1.11 0.03 4.2 × 10-3 0.03 

Vans 1.94 3.88 2.33 0.06 0.01 0.05 

HD 3.81 7.68 5.66 0.10 0.02 0.09 

HM 1.28 1.99 2.29 0.03 0.01 0.04 

 

N50 presents similar behaviour as LA,max, but smaller Pearson's correlation coefficients and 

slopes. Peak intensity descriptors are expected to be more sensitive to speed variations than 

noise intensity descriptors that cover the whole signal sensation.  

ΔL presents a positive linear correlation with the log of speed. Naturally, the faster the 

vehicle, the farther away it is from the microphone at 2 s before it produces the peak noise 

level, resulting in a smaller LA,max at that moment. In addition, faster vehicles provoke a higher 

LA,max peak; thus, subtracting these two noise levels results in larger ΔL. Overall, the slopes for 

this indicator mean that a 10 km/h increase in vehicle speed in the range of 30-50 km/h 

increases ΔL by 0.9 - 1.8 dBA.  

For slowly modulated noise, the negative Pearson's correlation coefficient for FS50 implies 

that speed reduces the sensation of sound fluctuation. Going further through the modulation 

frequency range, roughness, on the other hand, increases with speed. In Morel et al. (2016), the 

pass-by noise of two-wheeled vehicles in acceleration also produced higher roughness values 

than those driving at a constant speed, attributed partially to the presence of engine noise but 

also to the speed increase. 
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Overall, the linear correlations between S50 and log of speed were not statistically 

significant. By calculating the sharpness from tyre/road noise recorded in CPX measurements at 

different speeds, Guo et al. (2018) observed no trends or considerable changes in sharpness. 

The sharpness values of the constant speed and accelerating vehicles presented by Morel et al. 

(2016) also do not change significantly between the two driving conditions. 

 

3.4 Comparison of acoustic and psychoacoustic indicators among vehicle categories 

With values normalized to a reference temperature and speed, measures of central 

tendency can be compared across vehicle categories. Figure 7 to 9 display the indicator's 

distributions as boxplots. The averages and standard deviations are also presented in Table 6.  

In general, passenger cars and HM present a more significant number of outliers due to 

their larger sample size and, for HM, possibly increased by variations in tyre load and number of 

axles. For each indicator, the interquartile range is similar across vehicle categories, showing 

that the distribution behaviour of these quantities is not sensible to vehicle type. A one-way 

ANOVA at a 5% significance level revealed overall statistically significant differences in mean 

across vehicle categories for all indicators. Posthoc Tukey test results regarding individual 

differences between pairs are discussed in the following paragraphs.  

 

Table 6: (Psycho)acoustic indicators averages and standard deviations, corrected for temperature and 

speed  

Feature P Vans HD HM 

LA,max (dBA) 75.2 ± 2.0 75.9 ± 2.0 79.7 ± 2.1 81.7 ± 2.6 

ΔL (dBA) 10.1 ± 4.1 10.1 ± 4.1  13.5 ± 4.2 14.4 ± 4.1 

N50 (sone) 23.07 ± 2.37 24.54 ± 2.45 31.94 ± 3.07 37.21 ± 4.67 

S50 (acum) 1.254 ± 0.060 1.293 ± 0.065 1.263 ± 0.055 1.302 ± 0.058 

R50 (asper) 0.059 ± 0.009 0.062 ± 0.009 0.065 ± 0.009 0.072 ± 0.011 

FS50 (vacil) 0.502 ± 0.061 0.489 ± 0.049 0.468 ± 0.051 0.494 ± 0.075 

 

      

 

      

 
Figure 7: Boxplots of a) LA,max and b) N50, both corrected for temperature and speed 

 

a)  b) 
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From Table 6, the means of LA,max in passenger cars and vans are virtually identical, while HD 

is 4 and HM 6 dBA larger than the first two. The detailed discussion on these differences, also 

considering the LA,max spectra, was presented in Section 3.2.  

The magnitude differences in loudness are more discrepant than LA,max, with vans being 1.5 

sones louder than passenger cars, while this difference is 8.9 and 14.1 sones for HD and HM, 

respectively. Posthoc Tukey tests revealed that the differences in average are statistically 

significant between all categories for both LA,max and N50. 

 

      

 

     

 
Figure 8: Boxplots of a) ΔL and b) S50, both corrected for temperature and speed 

 

ΔL of heavy vehicles is around 4 dBA larger than for light vehicles (Figure 10 a). This value is 

smaller than the difference in peak LA,max, as a heavy vehicle approaching produces higher noise 

levels than a light vehicle at 2 s before it crosses the microphone. Tukey's test found no 

statistically significant differences between passenger cars and vans (p-value = 0.900) and 

between HD and HM (p-value = 0.222).  

The magnitude variation in sharpness among vehicle categories (Figure 10 b) is not wide. 

HM exhibited the highest average sharpness of 1.30 acum, while passenger cars had the lowest 

average sharpness of 1.25 acum. This can be attributed to the differences in high-frequency 

noise content of these samples not being so pronounced to impact the sharpness values 

substantially. From the posthoc Tukey test, passenger cars and HD showed no statistically 

significant differences (p-value = 0.491), or vans and HM (p-value = 0.172). Morel et al. (2012) 

reported 1.5, 1.3 and 1.2 acum for a two-wheeled, a light and a heavy pass-by vehicle, 

respectively, also calculated by Zwicker's model. Fu and Murphy (2017) recorded pass-by noise 

of a motorcycle and a passenger car driving at certain acceleration and speed conditions to 

obtain samples dominated by engine noise and tyre/road noise, respectively; sharpness values 

yielded 1.51 acum for tyre/road noise and 1.13 acum for engine noise (employing Zwicker's 

model). Paviotti and Vogiatzis (2012) observed that sharpness did not allow for distinguishing 

between cars and two-wheeled pass-bys. Considering these results and confirmed by the 

literature, no clear relationship between vehicle characteristics and sharpness is observed.  

 

 

 

 

a) b) 
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Figure 9: Boxplots of a) R50 and b) FS50 both corrected for temperature and speed 

 

Concerning temporal aspects, Altinsoy (2022) stated that quickly modulated noise 

components tend to arise from engine orders or diesel knocking in internal combustion engine 

cars. Also, according to Morel et al. (2012), roughness in road traffic noise can be attributed to 

engine noise being predominant for limited-speed vehicles in urban areas. The tyre/road noise 

sample obtained by Fu and Murphy (2017), calculated by Zwicker's model in this study,  

presented R50 of approximately 0.036 asper, while this value was 1.7 asper for the engine noise 

sample. Figure 9 a) shows a consistent increase in roughness from light to heavy vehicles. The 

value of 0.072 yielded by HM is double the roughness of Fu and Murphy's (2017) tyre/road 

noise sample. This discrepancy suggests that an engine noise share in the heavy vehicles noise 

samples, especially HM, may have increased the average roughness compared to passenger cars 

and vans. Additionally, posthoc Tukey tests displayed statistically significant differences 

between all categories. Paviotti and Vogiatzis (2012) describe roughness as an important 

differentiating parameter among cars, motorbikes and scooters' pass-by noise, given its 

independence of loudness level and large sensitivity. 

In Morel et al. (2012), the fluctuation strength of pass-bys shows an increasing trend in the 

following order: heavy, light and two-wheeled vehicles. The fluctuation strength of pass-by 

noise samples analyzed by Paviotti and Vogiatzis (2012) did not present a systematic variation 

among classes. The differences in average seen in Figure 9 b), with passenger cars presenting 

the higher FS value (0.502 vacil) and HD the lowest (0.468 vacil), are not clearly associated with 

any particular characteristic of the vehicle categories. Tukey's posthoc test revealed that 

differences in means between vans to passenger cars, HD and HM were not statistically 

significant (p-values of 0.069, 0.078, and 0.724, respectively). 

The considerable number of instances and the sensible variation of the psychoacoustic 

indicators with vehicle category render these attributes potentially relevant to training a 

machine learning model to predict vehicle categories.  

 

3.5 Classification 

Table 7 presents the VIF scores used to measure multicollinearity. Initially, all parameters 

showed a VIF score above 5 (see column "Before scaling"), which may be caused by structural 

multicollinearity. Structural multicollinearity is a mathematical artefact caused by creating new 

a) b) 
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predictors from the data itself rather than actual sampled data. As the psychoacoustic indicators 

are calculated from the same noise signal, some degree of structural multicollinearity is to be 

expected. Standardization is a feature scaling technique that aids in reducing structural 

multicollinearity without removing explanatory variables from the model (Ríos and Simpson, 

2017). It transforms the data into zero mean and standard deviation of one. The third column of 

Table 7 shows that feature scaling reduced the VIF scores greatly, although LA,max and N50 still 

show a certain degree of multicollinearity. Removing either N50 or LA,max dropped the VIF scores 

to values below 5 (fourth and fifth columns in Table 7, respectively). This is expected as both 

loudness and LA,max are indicators of noise intensity. In a preliminary attempt to train the 

classifier, the prediction accuracy yielded by using LA,max was lower than using loudness, 

therefore, we proceeded with including only N50 to avoid model overfitting.  
 

Table 7: Variance Inflation Factor 

Feature 
VIF score 

Before scaling After scaling 

LA,max 804.00 7.36 1.80 - 

ΔL 58.28 1.24 1.24 1.20 

N50 9.96 7.35 - 1.80 

S50 457.08 1.11 1.10 1.10 

R50 58.26 1.44 1.38 1.44 

FS50 68.39 1.09 1.07 1.04 

 

The dataset was balanced with 500 instances per vehicle category and split into 70% for 

training and 30% for testing, resulting in 150 observations per class to assess the algorithm's 

accuracy. Model 1 considers the vehicle categories defined in ISO 11819-1; Table 8 shows the 

performance metrics per class (recall) and overall model accuracy, while Figure 10 a) displays 

the confusion matrix of the model. Overall accuracy reaches 84.0%, indicating the 

psychoacoustic attributes have patterns that match the visual-based labels with considerable 

precision. Although HD and HM present notable similarities in psychoacoustic indicators, as 

presented in Section 3.4, the misclassification between these categories hit 16%.  

Model 2 (Figure 10 b) yielded 71.5% accuracy considering the four vehicle categories. The 

main cause of accuracy losses is 27% of the passenger cars being misclassified as vans and vice-

versa. Additionally, 17% of the true HDs were predicted as HM, and 19% of the HM as HD. There 

was almost no misclassification between the extreme ends, e.g. passenger cars and vans by HM, 

but a few (8%) passenger cars and vans were classified as HD.  

The performance of Model 2 demonstrates that vans are considerably similar to passenger 

cars in terms of auditory sensation represented by psychoacoustic indicators. This compatibility 

is also clear by the small average differences presented in Section 3.4 and the noise spectra 

displayed in Figure 4. If vans were to be included in SPB measurements, this group seems too 

similar to passenger cars to compose a fourth vehicle category, and could be better leveraged if 

combined with passenger cars. To illustrate that, a third model was built with passenger cars 

and vans combined; prediction performance is shown in Figure 10 c) and Table 8 (Model 3). 

Overall accuracy yields 85.7% and recall of the P+Vans class reaches 91%. The misclassification 
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between HD and HM is also reduced compared to Model 2. The greater accuracy compared to 

Model 1 highlights the feasibility of including vans in the passenger cars category. 

 

a) 

 

b) 

 

c)

 
  Figure 10: Confusion matrix a) ISO 11819-1 categories (Model 1), b) Four vehicle categories (Model 2), 

c) P and vans combined (Model 3) 

 

Table 8: Performance metrics 

 

 

Reaching higher prediction accuracy or having a larger number of classes is a trade-off, after 

all, vans still yielded a recall of 65% in Model 2. The choice of one over the other depends on the 

model's intended use. The practicality of SPB measurements could be improved if vehicles that 

would otherwise not be considered were incorporated into the current vehicle classification. 

However, a classification system aiming to capture characteristics of the traffic flow 

microstructure to estimate, for example, noise-induced annoyance may be better represented 

by more, detailed classes even if prediction accuracy is reduced.  

 

4. Conclusions 

An SPB measurement campaign was performed in three locations on hot-mix asphalt road 

surfaces. CPX measurements proved their comparable acoustic performance and a pooled 

dataset with 2199 vehicle pass-bys was obtained, divided into four categories: passenger cars, 

vans and heavy vehicles with dual or multiple axles.  

The noise level (LA,max) spectra and the spectral energy contribution rate of each vehicle 

category presented trends that generally align with previous studies, with heavy vehicles 

showing higher noise levels and more energy share in the lower frequencies compared to light 

vehicles. The differences and similarities in the noise spectra among vehicle categories are 

attributed mainly to the tyre type and the more significant contribution of power-unit noise for 

heavy vehicles.  

Model 1 Recall Model 2 Recall Model 3 Recall 

P 0.920 
P 0.653 

P + Vans 0.913 
Vans 0.653 

HD 0.807 HD 0.767 HD 0.827 

HM 0.793 HM 0.787 HM 0.833 

Overall accuracy 0.840  0.715  0.857 
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The psychoacoustic indicators loudness, sharpness, roughness, and fluctuation strength, 

besides LA,max and ΔL, were calculated from 4 s audio segments taken around the moment a 

vehicle produced the peak noise level. The effects of air temperature and speed on these 

indicators were checked via linear regression. LA,max, loudness and roughness showed a positive 

linear correlation with temperature. The log of speed presented positive significant linear 

correlations with LA,max, ΔL, loudness, roughness and a negative correlation with fluctuation 

strength. To the authors' knowledge, this is the first time correction coefficients of temperature 

and speed for psychoacoustic indicators have been published. 

 The averages of the acoustic and psychoacoustic indicators per vehicle category were 

obtained from values normalized to 20 °C and 50 km/h. The parameters related to noise 

intensity (LA,max, ΔL, and loudness) increased consistently from light to heavier categories, as 

expected. The same trend is observed for roughness, probably due to quickly modulated noise 

components from engine noise. No tendencies were observed for sharpness and fluctuation 

strength across vehicle categories.  

A machine-learning logistic regression model to predict vehicle category was trained using 

ΔL and the psychoacoustic indicators N50, S50, R50, FS50 as features. The psychoacoustic 

indicators have allowed the algorithm to derive patterns that matched the visual vehicle 

classification defined in ISO 11819-1 with considerable accuracy in the testing set (84%). For a 

model including the extra vehicle category (vans), accuracy dropped to 72%, with 

misclassification between passenger cars and vans being the main cause of accuracy reductions. 

Combining these two classes into a single group increased accuracy to 86%. 

In the context of the SPB method, this outcome shows the potential of enabling a less visual 

and operator-dependent vehicle classification task, as it could be performed by using audio 

signal only. Besides, pass-by vehicles that do not fit any category defined in ISO 11819-1, and 

would otherwise be excluded from the measurement, could be incorporated into the existing 

classes due to similarities in acoustic signature, as were vans in this study. Also, new categories 

that fit well together in terms of auditory sensation could be explored, for instance, electric 

vehicles, an emerging concern for the current classification systems. That said, the issue of 

inconsistent vehicle classification systems described in ISO 11819-1 for the vehicle fleet 

worldwide could be mitigated. SPB measurements have been widely performed to assess road 

surfaces' acoustic quality, and the recent ISO 11819-1 update shows it remains state-of-the-art. 

With larger training sets and increased training repetitions, the classifier can reach higher levels 

of predictive accuracy. 

Within the framework of environmental noise control shifting toward a human-centred 

approach, a vehicle classification system based on auditory noise sensation, rather than size, 

gross vehicle mass or number of axles, can be relevant. To expand the current approach, pass-

by noise samples labelled with more and different classes than those from the SPB standard 

should be explored using the psychoacoustic-based classifier. Additionally, instead of a 

supervised classification algorithm with visual-based labels, a clustering algorithm could be 

employed to investigate how the cluster structure forms based on psychoacoustic indicators.  
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