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A B S T R A C T

Urban trees play a key role in mitigating environmental problems in cities, but they often face harsh environ-
mental conditions as they generally grow in sealed soils that have small rooting space and low water availability.
In this context, rapid monitoring and assessment of tree health status is critical to maintain urban trees and
secure the provisioning of urban ecosystem services. Across three European cities we selected 187 Tilia tomentosa
trees growing under following planting conditions: (i) sealed, trees planted in small soil pits or strips surrounded
by highly sealed surfaces (concrete, pavement or asphalt); and (ii) unsealed, trees planted in roomy soil surfaces
(e.g. parks). We measured leaf reflectance and fluorescence and derived a set of optical traits from the mea-
surements. We examined whether these non-destructively measured optical traits differ between planting con-
ditions and whether they correlate with leaf functional traits, e.g. specific leaf area (SLA), leaf water content
(LWC) and leaf water per area (LWA). Compared to the unsealed trees, sealed trees showed decreased SLA and
LWC while increased LWA. Leaf optical traits differed between the unsealed and sealed trees. Highly sealed soils
accelerated leaf senescence of the sealed trees compared to the unsealed trees, embodied in the temporal trend of
optical traits. Sealed planting conditions negatively affect urban tree health status and phenology. These ne-
gative effects can be estimated by leaf optical traits, demonstrating the great potential of optical traits in as-
sessing tree health status. Our findings provide insights into facilitating urban green management using optical
traits and remote sensing data.

1. Introduction

Urban trees play key roles in providing ecosystem services and
mitigating environmental problems in urban areas in the form of air
quality improvement, microclimate regulation, noise reduction, mod-
eration of the urban heat island effect and providing recreational and
cultural values (Bolund and Hunhammar, 1999). Yet, urban trees gen-
erally grow in soils sealed by buildings and urban infrastructures and
face harsh environmental conditions, including limited soil volume, soil

compaction and low soil moisture (Clark and Kjelgren, 1990; Sanders
and Grabosky, 2014). Lack of rooting space, water and nutrient holding
capacity will affect the development of urban trees, which leads to
reduction in growth and health and imposing high risks of tree mor-
tality (Grabosky and Bassuk, 1995). For instance, street trees planted in
pits often have smaller canopies than trees planted in linear strips
(Sanders and Grabosky, 2014). Moreover, urban trees are more prone to
water deficits than forest trees, making them very susceptible to pa-
thogens and pests (Clark and Kjelgren, 1990; Dale and Frank, 2017). All
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this, in turn, will reduce the ecosystem services provided by trees in
urban environments (Bolund and Hunhammar, 1999; Dale and Frank,
2017). In this context, monitoring urban tree health and, especially,
water status is crucial to secure the provisioning of urban ecosystem
services.

Water stress often leads to leaf morphological changes (Farooq
et al., 2009; Fernández et al., 2002), such as reduced cell growth and
small leaf area (Farooq et al., 2009). These morphological changes will
induce variations in the observed functional traits such that a reduction
in specific leaf area (SLA) and leaf water content (LWC) is often ob-
served during water stress (Xu et al., 2009), which further affects whole
plant growth (Farooq et al., 2009; Fernández et al., 2002). Therefore,
the stress response is a complex of changes in traits that reflect plant
strategies for coping with the stress (Farooq et al., 2009; Fernández
et al., 2002; Wellstein et al., 2017). Water stress can also induce leaf
senescence and alter tree phenology (Xie et al., 2015), disturbing eco-
system nutrient cycling and net primary production (Estiarte and
Peñuelas, 2015). Therefore, quantitative determination of changes in
leaf functional traits and changes related to leaf phenology during
water stress is essential to understand plant strategies related to water
stress.

Efficient assessment tools for monitoring urban tree health status
and measuring plant functional traits are still limited. Traditional ap-
proaches are mainly based on visual assessments and need additional
effort to standardize the data protocol and to account for subjective bias
in the data collected by different investigators (Roman et al., 2017).
Visible symptoms of certain stresses, however, may take a long time to
appear, whereas at the same time tree growth may have already been
seriously inhibited (Smoleń, 2012). Thus, efficient monitoring ap-
proaches are needed so that one can estimate the stress before visible
symptoms appear. Normally, stresses alter leaf biochemical character-
istics before visible symptoms (Petrova et al., 2014; Smoleń, 2012). It is
possible to detect stresses by measuring plant biochemical parameters
(e.g., pigment, nutrient element) as stress indicators. However, these
analyses are destructive, costly and time-consuming (de la Riva et al.,
2016; Petrova et al., 2014), making continuous monitoring of tree
health status infeasible.

Advances in optical sensing technologies provide a means to
quantify optical properties of leaves and characterize their optical traits
(Ollinger, 2011; Ustin et al., 2009). Leaf reflectance and fluorescence
measurements both allow for a rapid extraction of leaf optical traits of
interest related to plant health or vitality (Buschmann, 2007; Delalieux

et al., 2009; Gamon et al., 1992; Sims and Gamon, 2002). The former
measures the passively reflected light energy whereas the later mea-
sures the actively emitted energy by leaves, and both are of great po-
tential as alternatives of lab analyses for plant health assessment
(Lichtenthaler et al., 1998). Reflectance- and fluorescence-based tech-
niques are non-destructive and have great repeatability, which enables
to monitor plant health in situ readily by analyzing plant optical traits
(Gitelson et al., 2003; Lausch et al., 2016) and allows for remotely as-
sessing ecosystem functions (Pettorelli et al., 2017).

A reflectance-based approach for monitoring plant health typically
employs spectral indices (Rouse et al., 1974). Since decades, a diverse
set of spectral indices has been developed and validated for the esti-
mation of plant biological traits such as leaf pigments, area, water,
nitrogen and photosynthesis (Gamon et al., 1992; Gao, 1996; Gitelson
et al., 2003; Peñuelas et al., 1997; Sims and Gamon, 2002). Many of
these spectral indices have been well recognized as optical traits or
surrogates of biological traits (Ollinger, 2011; Ustin et al., 2009). High
spectral resolution sensors further enhance the estimation of plant
biological traits by providing high fidelity data (Ustin et al., 2009),
allowing for capturing subtle changes in spectral signatures as a re-
sponse to changes in plant physiology and phenology (Gamon et al.,
1992; Merzlyak et al., 1999; Peñuelas et al., 1995). For instance, hy-
perspectral reflectance spectra have been successfully used to estimate
leaf pigments based on their unique absorption features in the visible
region (Peñuelas et al., 1995; Sims and Gamon, 2002; Ustin et al., 2009)
and to estimate leaf water content based on the water absorption fea-
tures in the near infrared (NIR) and short-wave infrared (SWIR) spectral
regions (Eitel et al., 2006; Gao, 1996; Gutierrez et al., 2010; Serrano
et al., 2000). Facing the challenge of climate change mitigation, rapid
detection of plant water stress using reflectance spectra is becoming
increasingly critical (Maimaitiyiming et al., 2017; Zhang et al., 2017).

Leaf chlorophyll fluorescence (ChlF) is part of the light energy
dissipated by non-photochemical processes, mainly in the form of red
and far-red radiation (Buschmann, 2007; Lichtenthaler et al., 1998).
Biotic or abiotic stresses often affect the photosynthetic performance of
a leaf, and thus alter the intensity of ChlF emitted from the leaf
(Buschmann, 2007; Lichtenthaler et al., 1998). Similar to leaf re-
flectance spectra, optical traits extracted from a leaf ChlF emission
spectrum are widely used to estimate plant health status (Delalieux
et al., 2009). Furthermore, combined use of reflectance- and fluores-
cence-based optical traits allows for a simultaneous quantification of
multiple changes in leaves and plants (Delalieux et al., 2009; Yu et al.,

Table 1
Results of linear mixed models for testing the effect of different planting conditions (soil sealing conditions) on variations in leaf functional traits and optical traits.
We set the two variables City and Site as random effect factors and used the Dataset 1 (Table S2) for the mixed models. Bold font highlights the statistical significance
of each test (p < 0.05).

Dependent variable Model statistics Post-hoc test (Tukey’s HSD)

F-value P-value Boxed – Linear Unlimited – Boxed Unlimited – Linear

estimate p-value estimate p-value estimate p-value

SLA 6.318 0.002 −0.605 0.535 4.235 0.002 3.63 0.008
LMA 7.773 0.001 0.315 0.383 −1.942 <0.001 −1.627 0.004
LWC 7.721 0.001 −1.399 0.031 4.156 0.002 2.757 0.051
LWA 3.923 0.023 −0.089 0.926 −1.208 0.033 −1.297 0.019
mSR705 5.708 0.005 −0.294 0.12 0.856 0.008 0.562 0.101
mND705 6.221 0.004 −0.029 0.062 0.072 0.007 0.043 0.141
NDWI 2.114 0.126 0.002 0.301 −0.004 0.188 −0.002 0.559
WI 1.067 0.349 −0.0002 0.934 0.002 0.318 0.002 0.409
MDWI 5.674 0.004 0.004 0.441 −0.026 0.003 −0.021 0.017
WI2 6.772 0.002 0.064 0.329 −0.345 0.001 −0.28 0.01
PRI 13.568 <0.001 −0.011 0.009 0.035 <0.001 0.023 0.005
PSRI 1.124 0.329 0.003 0.311 −0.001 0.983 0.002 0.734
SIPI 2.809 0.063 0.006 0.097 −0.007 0.185 −0.002 0.913
Fv/Fm 2.795 0.07 −0.007 0.222 0.015 0.106 0.008 0.488
PI 7.181 0.001 −0.257 0.612 2.103 0.001 1.845 0.004
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2014). However, understanding of the feasibility of using leaf ChlF- and
reflectance-based optical traits for measuring tree health status under
varying planting conditions and for charactering plant strategies in
urban environments is still limited.

Here, we measured a set of leaf functional traits, leaf ChlF- and
reflectance-based optical traits in 187 Tilia tomentosa trees growing in
urban areas, across three European countries. Planting conditions were
visually classified based on different types of sealed soil surface, re-
flecting a gradient in soil volume and water availability. Our objectives
were (i) to examine the effect of planting conditions on leaf functional
traits, optical traits and tree phenology; and (ii) to estimate functional
traits and tree health status using leaf optical traits.

2. Materials and methods

2.1. Experimental design and materials

Tilia species have been often used as bio-indicator of urban en-
vironments (Khavanin Zadeh et al., 2013; Petrova et al., 2014). Here,
we used Tilia tomentosa as a model species, which is one of the naturally
growing Tilia species in Europe, commonly planted in urban environ-
ments (Radoglou et al., 2009). T. tomentosa is a fast-growing, vigorous
and heat-and drought-tolerant tree species (Radoglou et al., 2009;
Sjöman and Oprea, 2010), and it is moderately shade tolerant in terms
of light requirements (Radoglou et al., 2009). T. tomentosa flowers be-
tween mid-July and early August in Europe.

Including multiple independent samples across different environ-
ments allows to avoid experimental bias (Low-Décarie et al., 2014).
Therefore, we selected T. tomentosa trees growing in three European
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Fig. 1. Boxplots showing the differences between the boxed, linear and unlimited planting conditions in: A) specific leaf area (SLA), B) leaf mass per area (LMA), C) leaf
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cities (Leuven, Porto and Strasbourg) under three planting conditions,
including (i) boxed, individual trees planted in a small rectangular area
of soil pits surrounded by a very highly sealed surface (concrete, pa-
vement or asphalt); (ii) linear, trees planted in a soil strip surrounded by
a highly sealed surface; and (iii) unlimited, trees planted within a large
green area, such as parks. In each city, several sites (streets, parks) were
randomly selected in order to include all the three planting conditions

(Table S1). We selected 64, 67 and 56 trees in Leuven, Porto and
Strasbourg, respectively, in total 187 trees. Tree diameter at breast
height (∼1.70m) was determined by measuring the trunk cir-
cumference.

We sampled leaves of the selected trees in each city at a similar
development stage (29 August – 28 September 2017) (Dataset 1, Table
S2). Additionally, we collected three additional collections in Leuven
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(13 June – 4 August 2017) in order to study the changes in phenology
(Dataset 2, Table S2). For each tree, three randomly chosen branches
located respectively within three equally sized sectors (i.e. nadir view)
of the crown were detached. Every sampled branch had at least five
intact leaves. Sampled branches were stored in a cool box and trans-
ported to the lab for leaf reflectance, fluorescence and functional trait
measurements. For each tree, 15 selected leaves (3 branches× 5 leaves
per branch) were measured in the following order for: (i) leaf re-
flectance, (ii) fluorescence, (iii) detaching leaves from the branch and
removing petioles for measuring leaf fresh weight (FW) and (vi) leaf
area scanned on a flatbed scanner.

Measured leaves were dried at 75 °C for more than 3 days until a
constant dry weight (DW). Thereafter, the leaf water content (LWC) was
calculated following LWC= (FW−DW)/FW. Based on the total area of
the 15 selected leaves (A), the leaf water per area (LWA= (FW−DW)/
A), specific leaf area (SLA=A/DW) and leaf dry mass per unit area
(LMA=DW/A) were calculated. Since LMA is the inverse of SLA,
correlation analysis will be focused mainly on SLA.

2.2. Leaf reflectance measurements

Leaf reflectance was measured using an ASD FieldSpec 3 spectro-
radiometer (ASD Inc., Longmont, CO, USA) connected to a Plant Probe
combined with Leaf Clip Assembly (ASD Inc.). The spectrometer

operates in the spectral range of 350–2500 nm. The Leaf Clip Assembly
measures a spot size of ∼10mm, within a round clipping area with a
diameter of ∼2.5 cm. On each leaf, three spots on the adaxial side were
measured, collecting in total 45 spectra for the 15 selected leaves of
each tree. The 45 reflectance spectra were averaged per individual trees
for further analyses.

In order to link optical traits to tree health status, we selected the
following spectral indices (SIs) related to (i) plant chlorophyll content –
mSR705 and mND705 (Sims and Gamon, 2002), (ii) water status –
NDWI, MDWI, WI and WI2 (Eitel et al., 2006; Gao, 1996; Peñuelas
et al., 1997; Seelig et al., 2008), (iii) photosynthetic light use efficiency
– PRI (Gamon et al., 1992), and (iv) plant senescence – PSRI and SIPI
(Merzlyak et al., 1999; Peñuelas et al., 1995). Details of calculation
formulas of the selected SIs are listed in Table S3.

2.3. Leaf chlorophyll fluorescence measurements

We measured leaf ChlF using a Handy PEA fluorometer (Hansatech
Instruments Ltd., Pentney, UK) together with specially designed leaf
clips with shutter plates that allow to measure a spot size of 4× 4mm2.
On each selected leaf, a random spot was measured after a dark
adaptation for ∼25min, generating 15 data records for each tree. We
used the maximum efficiency of PSII (Fv/Fm) and performance index
(PI) and averaged the 15 records per individual trees for further
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analyses. Fv/Fm is sensitive to a wide range of plant stresses (Chen
et al., 2015). PI can be expressed in fluorescence terms, i.e. PI= (Vj/
(dV/dto)) * Fv/Fm * (Fv/Fo) * (Fm-Fj)/(Fj-Fo), where for a detailed ex-
planation readers are encouraged to refer to Strasser et al. (2000). PI is
related to the forces of redox reactions in biochemical systems, and it is
an indicator of plant/leaf sample vitality (Strasserf and Srivastava,
1995).

2.4. Statistical analysis

We divided the entire dataset into two subsets: Datasets 1 and 2
(Table S2). Dataset 1 was used to test whether planting conditions af-
fect the leaf growth and health of trees. We used linear mixed models to
test the effects of the tree planting conditions (fixed factor) on the
analyzed leaf functional and optical traits using the variables city and
site as random effect factors. In addition, Dataset 2, including four
collections in Leuven only, was used to test whether planting conditions
have an impact on tree phenology, i.e., testing the effect of planting-
condition-by-time interaction on optical traits by applying mixed
models for repeated measures.

Pooled data (i.e. datasets 1 & 2, Table S2) were used to determine
the potential of optical traits as predictors of leaf functional traits. We
used principal components analysis (PCA) to examine the relative
contribution of individual variables to the overall variation in traits. For
a comparison of variable associations, we also conducted the Pearson’s
correlation analysis for the relationships between individual variables

as well as for correlations between the optical traits and functional
traits. Statistical analyses were performed in the R programing en-
vironment (R Core Team, 2016). We used the package ‘lme4’ (Bates
et al., 2015) for running the mixed models, and the package ‘lsmeans’
(Lenth, 2016) for post-hoc analysis comparing planting conditions
pairwise based on Tukey's HSD test.

3. Results

3.1. Planting condition effect on leaf functional traits

Planting conditions had significant effects on the measured func-
tional traits (p < 0.05, Table 1). According to post-hoc tests for pair-
wise comparisons, the boxed and linear trees were significantly different
from the unlimited trees, whereas we did not observe significant dif-
ferences between the boxed and linear trees, except for LWC (Table 1).
SLA in the boxed and linear trees was significantly lower than in the
unlimited trees (Fig. 1A, Table 1), whereas LMA was significantly higher
than in the unlimited trees (Fig. 1B, Table 1). LWC in the boxed and
linear trees was significantly lower than in the unlimited trees (Fig. 1C,
Table 1), whereas LWA was significantly higher than in the unlimited
trees (Fig. 1D, Table 1).

3.2. Planting condition effect on leaf optical traits

Leaf reflectance in the visible region in the boxed and linear trees
was higher than in the unlimited trees, and it was highest in the boxed
trees, followed by the linear ones (Fig. 2A-B). The Leaf reflectance in the
unlimited trees were lower than the boxed and linear trees in the NIR
(750–1300 nm) (Fig. 2C-E). In contrast, the reflectance in the SWIR
regions (1300–2500 nm) were higher in the unlimited trees, and it was
lowest in the boxed trees, followed by the linear trees (Fig. 2E-F).

Planting conditions had a significant effect on mSR705, ND705,
MDWI, WI2 and PRI (p < 0.01, Table 1), among other SIs. MDWI, WI2
and PRI in the boxed and linear trees were significantly different from
the unlimited trees (p < 0.05), whereas the differences between the
boxed and linear trees were relatively small and PRI was the only
spectral index that showed significant difference (Fig. 3, Table 1).
Moreover, PRI was the only spectral index that indicated the significant
difference between all the planting conditions.

For ChlF traits, we observed a significant planting condition effect
on PI (p < 0.01, Table 1) rather than on Fv/Fm (p=0.07). For pair-
wise comparisons, PI values of the boxed and linear trees were sig-
nificantly lower than the unlimited trees. In contrast, there were no
significant Fv/Fm differences between planting conditions. Yet, we
observed lower Fv/Fm in the boxed and linear trees than in the unlimited
trees in each city individually (Fig. 4, Table 1).

We found a significant planting-condition-by-time interaction effect
on mSR705, ND705, PRI, PSRI and SIPI (p < 0.05, Table 2), compared
to other optical traits, and PRI was the best performing one (p≤ 0.001).
The mSR705, ND705, PRI, PSRI and SIPI showed rapidly changing
trends in the boxed trees compared to the unlimited trees (Fig. 5). Spe-
cifically, the mSR705, ND705 and PRI showed a faster decline in the
boxed trees than in unlimited trees, whereas PSRI and SIPI showed a
steeper increase in the boxed trees than in the unlimited trees.

3.3. Relationships between functional traits and optical traits

PCA showed that the trunk diameter did not account for much of the
trait variations (Fig. 6A). Fv/Fm, PI and NDWI accounted for most of
the variations in the first dimension, followed by mSR705, mND705,
MDWI, WI2 and PRI. SIPI was independent of SLA and LMA compared
to other SIs. LWC was weakly associated with water SIs, instead it was
closely related to PRI. Water SIs were more dependent of LWA than of
LWC (Fig. 6A), which is also indicated by their correlation coefficients
(Fig. 6B).

Table 2
Mixed models for testing the effect of planting condition and time interaction
on repeated measures of leaf optical traits measured multiple times in Leuven
(Dataset 2, see details in Table S2). Bold font highlights the optical traits that
capture the phenology difference between planting conditions (p < 0.05).

Variable Factor F-value P-value

mSR705 Condition 4.159 0.018
Time 14.103 < 0.001
Condition×Time 4.217 0.017

mND705 Condition 5.93 0.004
Time 14.953 < 0.001
Condition×Time 5.991 0.003

NDWI Condition 0.016 0.984
Time 2.528 0.115
Condition×Time 0.017 0.984

WI Condition 0.595 0.553
Time 1.359 0.246
Condition×Time 0.596 0.553

MDWI Condition 0.748 0.476
Time 0.726 0.396
Condition×Time 0.758 0.471

WI2 Condition 1.183 0.31
Time 0.481 0.49
Condition×Time 1.183 0.31

PRI Condition 7.179 0.001
Time 30.379 < 0.001
Condition×Time 7.255 0.001

PSRI Condition 3.189 0.044
Time 3.559 0.061
Condition×Time 3.191 0.044

SIPI Condition 3.757 0.026
Time 5.871 0.017
Condition×Time 3.769 0.026

Fv/Fm Condition 0.474 0.624
Time 2.232 0.138
Condition×Time 0.482 0.619

PI Condition 0.933 0.397
Time 0.339 0.562
Condition×Time 0.953 0.389
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SLA and LMA correlated strongly with MDWI and WI2, followed by
PRI and PSRI, WI and NDWI (Fig. 6B). LWC and LWA showed con-
trasting relationships with SIs. LWC was highly correlated with PRI,
followed by NDWI, mSR705 mND705 and PSRI. In contrast, LWA cor-
related strongly with water SIs, i.e., MDWI, WI2, NDWI and WI. SIPI,
however, was not correlated with SLA, LMA, LWC and LMA (Fig. 6B).

Correlations between the leaf functional traits and their corre-
sponding highest ranked four SIs are illustrated in Fig. 7. MDWI and
WI2 yielded the best correlations with SLA (r=−0.79, p < 0.001,
Fig. 7A). PRI yielded the best correlation with LWC (r=0.66,
p < 0.001, Fig. 7B), followed by PSRI (r=0.34, p < 0.001). MDWI,
NDWI, and WI2 yielded a same magnitude of correlations (p < 0.001),
whereas WI was not correlated with LWC (Fig. S1). In contrast, MDWI
and WI2 yielded the best correlations with LWA (r=0.88, p < 0.001,
Fig. 7C), followed by WI (r=−0.71, p < 0.001) and NDWI (r=0.64,
p < 0.001).

3.4. Development patterns of traits

By normalizing the leaf optical traits and functional traits to the
same range (0∼ 1), we observed that trees growing in different

planting conditions displayed distinct patterns of trait variations
(Fig. 8). Compared to the unlimited trees, the boxed and linear trees
produced low scores of SLA and LWC and high scores of LMA and LWA.
The unlimited trees showed high scores of mND705, mSR705, PRI and
WI, whereas the boxed and linear trees showed high scores of MDWI,
NDWI, SIPI and WI2.

4. Discussion

4.1. Tree health status reflected in functional trait variations

Decreased SLA and LWC in the boxed trees suggest that soil sealing
affects leaf growth, which can be attributed to small soil volumes and
low water availability in sealed soils. This is in agreement with other
studies reporting that drought causes decreased SLA (Farooq et al.,
2009; Fernández et al., 2002; Xu et al., 2009; Zhang et al., 2015).
Varying effects of water stress on SLA, however, might exist in different
climate zones or due to intraspecific variations – for instance, forbs may
not show decreased SLA under drought in temperate systems (Wellstein
et al., 2017). Decreased SLA in boxed trees implies a reduction of leaf
area, which has been found in many species as an adaptation to drought
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(Xu et al., 2009; Zhang et al., 2015). One of the main reasons of SLA
reduction during drought is that leaf expansion and translocation of
assimilates from leaf to stem might be inhibited, resulting in thicker
leaves and lower SLA (Zhang et al., 2015). Drought induced SLA re-
duction may further cause reduced whole-plant growth and biomass
production (Fernández et al., 2002). Similarly, in urban environments,
trees planted in pits often have small canopies compared to trees
planted in soil strips (Sanders and Grabosky, 2014).

It has been found that LMA reduces along with water availability
across a range of control environments (Poorter et al., 2009), and that
across a range of natural environments with lower water availability
plants are generally characterized by a high LMA (de la Riva et al.,
2016). However, less usable soil and water stress may not be the only
factors causing the variations in LMA. LMA also varies with nutrient,
light availability and other environmental factors (Witkowski and
Lamont, 1991; Xu et al., 2009). It is very likely that the boxed trees have
low nutrient availability given that highly sealed soils often constrain
nutrient supplying and holding capacity (Smiley et al., 2006). Urban
soil sealing reduces not only the soil carbon and nitrogen content but
also the microbial biomass and its activity (Piotrowska-Długosz and
Charzyński, 2015; Zhao et al., 2012), which in turn affects root and tree
growth and functional traits. Under varying light availability, plants
may optimize canopy photosynthetic rate by investing differently in
LMA. For instance, with a steeper leaf inclination, the maximum of
canopy photosynthesis rate is often reached at a lower LMA (Gutschick
and Wiegel, 1988).

4.2. Water stress indicated by optical traits

Decreased LWC and increased LWA in the boxed and linear trees
confirm that the highly sealed soils have low water availability, causing
water stress. NDWI and WI are closely related to LWC of plants growing
under severe drought stresses (Eitel et al., 2006; Gutierrez et al., 2010;
Peñuelas et al., 1997). NDWI and WI were highly correlated with LWA,
despite the relatively weak correlations with LWC. Similarly, a previous
study reported that NDWI and WI were not correlated with LWC under
low-to-moderate water stress (Eitel et al., 2006). Therefore, our results
imply that the degree of water stress in the boxed and linear trees is not
likely to be severe or persistent, and that NDWI and WI may not be the
optimal surrogates of LWC when water deficit is not very severe. Sur-
prisingly, PRI was highly correlated with LWC, suggesting that short-
term plant physiological changes in response to water stress can be

detected using PRI (Gamon et al., 1992; Maimaitiyiming et al., 2017).
Relatively weak relations between the water SIs and LWC can be

attributed the confounding effect of leaf thickness on leaf reflectance
(Eitel et al., 2006; Seelig et al., 2008). A recent study showed that the
NIR reflectance of a leaf stack is about 25% higher than that of a single
leaf (Neuwirthová et al., 2017), suggesting that thicker leaves produce
high NIR reflectance. The high NIR reflectance observed in the boxed
and linear trees suggests an increased leaf thickness (cf. Fig. 2). SWIR
reflectance might be more sensitive to leaf water status than NIR re-
flectance (Eitel et al., 2006; Seelig et al., 2008). By employing SWIR
bands, MDWI and WI2 improved the correlation with LWA compared to
NDWI and WI, suggesting that SWIR reflectance is highly sensitive to
leaf water content while less sensitive to leaf thickness at leaf level
(Eitel et al., 2006). From the perspective of remote sensing, LWA
measured with reflectance data can be very robust compared to LWC,
since LWA partially accounts for the leaf water thickness. Yet, leaves
may develop a certain leaf thickness even under no water deficit (Seelig
et al., 2008). Considering the scale effect, NIR may be suitable for water
estimation from a distance above the canopy (Gutierrez et al., 2010;
Serrano et al., 2000). Overall, measured optical traits indicate that
sealed soils pose water stress on trees, particularly in dry seasons (Sela
et al., 2015). Further investigations are needed to study how leaf
thickness and other factors affect water estimation using hyperspectral
reflectance data.

4.3. Senescence and phenology change indicated by optical traits

Significant planting-condition-by-time effects on SIs is highlighted
by the rapidly changing trends of SIs in the boxed trees compared to
unlimited trees, suggesting that soil sealing limits soil water availability
and in turn affects tree phenology (Link et al., 1990; Xie et al., 2015).
SIPI is an indicator of changes in carotenoids relative to chlorophyll,
and it is related to senescence (Peñuelas et al., 1995). Steeply increased
SIPI in the boxed trees suggests that soil sealing accelerated leaf se-
nescence. PSRI is also related to the relative changes in carotenoids and
chlorophyll (Merzlyak et al., 1999), but its changes appeared to be
more pronounced at individual time points rather than in the temporal
trends observed here. Compared to PSRI, SIPI was independent of the
variations in functional traits (cf. Fig. 6). Therefore, considering the
highly varying leaf structures across multiple species, SIPI can be used
as a robust indicator for early identification of senescence compared to
other SIs.
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Rapid decline in mSR705 and mND705 for the boxed trees are as-
sociated with chlorophyll degradation, whereas decline in PRI may be
associated with photosynthetic activity and physiological responses to
water stress. The boxed trees grow under low water availability, which
can be the direct cause of early onset of leaf senescence since drought
accelerates senescence (Chen et al., 2015; Estiarte and Peñuelas, 2015;
Xie et al., 2015). At global scale, global warming may accelerate the
growth of urban trees or delay leaf senescence (Estiarte and Peñuelas,

2015; Pretzsch et al., 2017). From a different perspective and scale, our
results showed that planting conditions have a large impact on func-
tional traits and phenology in a relatively consistent manner across
three European cities. Our results raise the need of studying the effect of
climate change on urban tree growth by taking into account planting
conditions.
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4.4. Characterization of plant strategies using multiple optical traits

Leaf area-based traits such as SLA and LWA can vary as a result of
changes in leaf thickness, particularly across species, in different cli-
mate zones, suggesting that one cannot predict plant strategies perfectly
using a single trait (Wellstein et al., 2017; Wilson et al., 1999). Our
results show that the selected SIs have reliable performance in esti-
mating different functional traits and differentiating planting condi-
tions. Therefore, the selected SIs provide a means to rapidly estimate
leaf morpho-physiological and biochemical variations that are asso-
ciated with the development of certain strategies mitigating negative
effects due to soil sealing in urban environments.

ChlF metrics differed slightly in distinguishing sealed planting
conditions in three cities, and we did not observe significant effects of
planting conditions on Fv/Fm across cities. This can be attributed to, on
one hand, that Fv/Fm is sensitive to severe stress which was not likely
the case in this study; and on the other hand, that the difficulty of ChlF
measurements lies in the fact that it was inapplicable to determine the
optimal dark adaptation time for individual planting conditions, sites or
cities. Typically, ChlF measurements need a dark adaptation preceding
the measurement, which increases the time cost when measuring a
large amount of samples compared to leaf reflectance measurements. In
contrast, reflectance-based approach simplifies the measurement pro-
cedure while maintains the power of capturing subtle variations over a
range of narrow bands, highlighting that leaf optical traits extracted
from hyperspectral reflectance are indicative of moderate stresses and
unfavorable growing conditions for urban trees.

By combining the hyperspectral optical traits and functional traits,
plant developmental strategies can be characterized for individual
planting conditions. Distinct development patterns produced by the
three planting conditions highlight the developmental strengths and
weaknesses in functional traits and hyperspectral optical traits of trees
(Fig. 8). For instance, possessing low scores of SLA and LWC and high
scores of LMA and LWA, the boxed and linear trees show the char-
acteristics of water stress. Clearly, the development strategy is embo-
died in the dissimilarities in hyperspectral optical traits, which thus
enables to characterize the structure and function of urban vegetation

as a whole, in a spatially explicit manner (Alonzo et al., 2016). For
instance, SIPI (i.e. carotenoid-chlorophyll ratio) has been used as an
indicator of urban green roof vegetation health status (Piro et al.,
2017). Here, the high scores of SIPI highlight the association with a
high degree of leaf chlorosis and senescence, and the concurrently ob-
served low scores of PRI indicate a relatively low investment in pho-
tosynthetic activity (cf. Fig. 8). Collectively, optical traits are able to
detect the negative effects of planting conditions and to estimate leaf
functional traits, and thus have great promise for characterizing plant
strategies.

Among other spectral indices tested in this study, PRI was the best
performing spectral index in differentiating planting conditions as well
as for capturing the phenology changes. In addition to PRI, the use of
multiple optical traits is recommended for assessing urban vegetation
health status. For detecting soil sealing stress particularly, mSR705,
mND705 and the water spectral indices using SWIR bands, MDWI and
WI2, are recommended; and SIPI is recommended for detecting leaf
phenology change.

Further research needs to determine the best strategy for the as-
sessment of urban tree health using optical and multimodal sensing
techniques (Alonzo et al., 2016; Degerickx et al., 2018). This will enable
us to develop a standardized quantitative approach for monitoring and
assessing tree health status across multiple environments, as well as for
up-scaling using air- and space-borne remote sensing data (Degerickx
et al., 2018; van der Linden et al., 2018).

5. Conclusions

This study investigated how the varying planting conditions in
urban areas affect tree health status by measuring a set of foliar func-
tional traits and optical traits of Tilia tomentosa trees, across multiple
environments in three European countries. We examined whether the
variations in functional traits are predictable by non-destructively
measured foliar optical traits, particularly those spectral indices related
to leaf chlorophyll, water, photosynthetic efficiency and senescence.
Results showed that highly sealed planting conditions have negative
impacts on urban tree health status, yielding decreased specific leaf
area and leaf water content and accelerated leaf senescence. Non-de-
structively measured foliar optical traits can predict these negative ef-
fects, such that PRI and MDWI explain 60%-80% of the variations in
specific leaf area and leaf water status; and that SIPI is associated with
advanced leaf senescence while being irrespective of other functional
traits, demonstrating the power of combining multiple optical traits for
monitoring urban tree health status. Our findings imply strong asso-
ciations between planting conditions and health status of urban trees,
and provide new insights into urban green management for the provi-
sioning of ecosystem services.
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