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1 Abstract

2 Heavy metals in urban soils may impose a threat to public health and may 

3 negatively affect urban tree viability. Vegetation spectroscopy techniques 

4 applied to bio-indicators bring new opportunities to characterize heavy metal 

5 contamination, without being constrained by laborious  soil sampling and lab-

6 based sample processing. Here we used Tilia tomentosa trees, sampled 

7 across three European cities, as bio-indicators i) to investigate the impacts of 

8 elevated concentrations of cadmium (Cd) and lead (Pb) on leaf mass per area 

9 (LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and 

10 the maximal PSII photochemical efficiency (Fv/Fm); and ii) to evaluate the 

11 feasibility of detecting Cd and Pb contamination using leaf reflectance 

12 spectra. For the latter, we used a partial-least-squares discriminant analysis 

13 (PLS-DA) to train spectral-based models for the classification of Cd and/or Pb 

14 contamination. We show that elevated soil Pb concentrations induced a 

15 significant decrease in the LMA and Chla:Chlb, with no decrease in Chl. We 

16 did not observe pronounced reductions of Fv/Fm due to Cd and Pb 

17 contamination. Elevated Cd and Pb concentrations induced contrasting 

18 spectral changes in the red-edge (690~740 nm) region, which might be 

19 associated with the proportional changes in leaf pigments. PLS-DA models 

20 allowed for the classifications of Cd and Pb contamination, with a 

21 classification accuracy of 86% (Kappa=0.48) and 83% (Kappa=0.66), 

22 respectively. PLS-DA models also allowed for the detection of a collective 

23 elevation of soil Cd and Pb, with an accuracy of 66% (Kappa=0.49). This 
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24 study demonstrates the potential of using reflectance spectroscopy for 

25 biomonitoring of heavy metal contamination in urban soils. 

26 Keywords: soil heavy metal contamination; leaf functional trait; vegetation 

27 reflectance spectroscopy; red-edge position; bio-indicator

28 Capsule

29 Applying leaf reflectance spectroscopy to urban trees allows for biomonitoring 

30 of heavy metal pollution and the classification of pollutants in urban soils.
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31 Introduction

32 Soil contamination is a widely spread problem across Europe 

33 (European Commission, 2006). Among the most frequent soil pollutants are 

34 heavy metals such as arsenic (As), cadmium (Cd), chromium (Cr), copper 

35 (Cu), mercury (Hg), lead (Pb), zinc (Zn), antimony (Sb), cobalt (Co) and 

36 nickel (Ni), which accumulate on the soil surface and transfer to  deeper soil 

37 layers where they can infiltrate into the groundwater (Vince et al., 2014). 

38 Plants growing on heavy metal polluted soils passively take up heavy metals, 

39 jeopardizing their growth and negatively affecting other organisms feeding 

40 on the plants (Panagos et al., 2013; Tóth et al., 2016). Furthermore, 

41 elevated concentrations of these heavy metals in agricultural or urban soils 

42 endanger food safety and public health (Poggio et al., 2009; Tóth et al., 

43 2016). 

44  Urban soils typically contain elevated concentrations of Cd, Cu, Zn 

45 and Pb, originating from anthropogenic activities such as traffic and industrial 

46 emissions (Gallagher et al., 2008; Li et al., 2001; Poggio et al., 2009; 

47 Pourkhabbaz et al., 2010; Vince et al., 2014). Cd and Pb are the most 

48 common heavy metals resulting from road traffic, which is attributed to the 

49 historical use of Pb as a gasoline additive  (Kovarik, 2005) and Cd 

50 accumulation which is mainly due to abrasion of tires (Andersson et al., 

51 2010; Vince et al., 2014).  Cd and Pb are toxic for plants, animals and 

52 humans  (Pandit et al., 2010; Poggio et al., 2009). Cd accumulates in human 

53 body and can cause nephropathy, pulmonary lesions and lung cancer after 

54 long period of exposure (Poggio et al., 2009). Pb increases blood pressure 
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55 and damages liver, kidney and fertility, and most severely it reduces brain 

56 functioning and induces hyperactivity and hearing loss in children (Poggio et 

57 al., 2009). Therefore, it is vital to detect elevated concentrations of Cd and 

58 Pb in urban soils.

59 Measuring heavy metals is typically based on the collection of soil or 

60 road dust samples, which is labor intensive and costly, especially when 

61 monitoring heavy metal contamination at larger spatial scales (Wei and Yang, 

62 2010). In European countries, the estimated total annual cost related to 

63 monitoring and remediating soil contaminants is 17.3 billion euros (European 

64 Commission, 2006), and around  81% of the expenditures is spent on 

65 remediation measures (Liedekerke et al., 2014). Consequently, only up to 

66 15% is available to be spent on site investigations (Liedekerke et al., 2014), 

67 implying that there is a need for more cost-effective investigation methods to 

68 evaluate spatial and temporal heterogeneity of soil pollution. Soil near-

69 infrared (NIR) spectroscopy has been applied for the detection of heavy 

70 metals at relatively low cost. However, this method  requires intensive soil 

71 sampling (Pandit et al., 2010; Shi et al., 2014). Therefore, a spatially explicit 

72 characterization of heavy metal contamination at large scales is constrained 

73 by the capacity of sampling and sample processing, especially in urban areas 

74 characterized by sealed soil surfaces and highly heterogeneous land-use 

75 types.

76 Bio-indicators are living organisms that can be used to assess the 

77 quality of the environment (Holt and Miller, 2010; Parmar et al., 2016). 

78 Urban vegetation can be used as bio-indicators for monitoring air and soil 
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79 pollution (Ho, 1990; Khavanin Zadeh et al., 2013; Sawidis et al., 2011). 

80 Plants concentrate metal elements in their above ground parts, which are 

81 indicative of elevated soil heavy metal concentrations. Furthermore, heavy 

82 metals can inhibit plant growth (Giulia et al., 2013; Horler et al., 1980), and 

83 decrease chlorophyll content and biomass productivity (Gallagher et al., 

84 2008; Manios et al., 2003). Cd and Pb often limit plant growth by altering 

85 leaf internal structures (Giulia et al., 2013; Pourkhabbaz et al., 2010). For 

86 instance, Cd can reduce cell wall extensibility and relative water content 

87 (Barceló and Poschenrieder, 1990). Pb can reduce not only the leaf 

88 expansion but also the total chlorophyll content and efficiency of PSll electron 

89 transport (Kastori et al., 1998). Overall, heavy metal toxicity causes multiple 

90 direct and indirect effects on various physiological functions and on the 

91 morphology of plants (Barceló and Poschenrieder, 1990), reflected in 

92 changes of leaf functional traits.

93 Metal induced morphological and physiological changes can further 

94 alter vegetation absorbance and reflectance characteristics (Horler et al., 

95 1980). Typically, heavy metal contamination induces most notable changes 

96 in the visible and NIR spectral regions, and thus reflectance spectroscopy 

97 holds great promise for evaluating the impact of heavy metal contamination 

98 on vegetation (Clevers et al., 2004; Kooistra et al., 2004, 2003; Rosso et al., 

99 2005). By applying reflectance spectroscopy to monitoring candidate bio-

100 indicators located at multiple sites in urban areas, researchers have been 

101 able to detect polluted sites (Khavanin Zadeh et al., 2013). Previous studies 

102 have investigated the effect of individual metals on vegetation spectral 
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103 responses, e.g., canopy reflectance in response to manipulated pot-soil Cd 

104 changes (Rosso et al., 2005). However, different metals may induce similar 

105 or contrasting spectral responses (Amer et al., 2017; Horler et al., 1980; 

106 Manios et al., 2003). Some studies have focused on spectral response in 

107 specific spectral bands such as the red-edge region (690~740 nm), which 

108 has been used to estimate plant chlorophyll variations under stress due to 

109 heavy metals (Clevers et al., 2004; Rosso et al., 2005). The red-edge 

110 position (REP) is defined as the position generating the maximum slope 

111 (inflection point) of the reflectance spectra (or maximum first derivative 

112 reflectance) in the red-edge region (Clevers et al., 2004; Horler et al., 1983), 

113 and has been found to be negatively related to soil Pb concentration (Clevers 

114 et al., 2004; Kooistra et al., 2004). Overall, associating soil heavy metal 

115 pollution with a range of plant functional and reflectance characteristics 

116 provides a cost-effective method for assessing heavy metal pollutions. 

117 However, there is still a lack of vegetation reflectance spectroscopy studies 

118 that bio-monitor Cd and Pb contamination across a variety of urban 

119 environments, especially for monitoring contamination due to multiple 

120 metals. 

121 Here we tested Tilia tomentosa as a bio-indicator for elevated soil Cd 

122 and Pb concentrations. Selecting 187 study trees cross three European cities 

123 (Leuven, Porto and Strasbourg), our objectives were: i) to assess the 

124 impacts of elevated concentrations of Cd and Pb on leaf mass per area 

125 (LMA), total chlorophyll content (Chl), chlorophyll a to b ratio (Chla:Chlb) and 

126 the maximal PSII photochemical efficiency (Fv/Fm); and ii) to investigate the 
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127 feasibility of using leaf reflectance spectroscopy and partial-least-squares 

128 discriminant analysis for biomonitoring soil Cd and Pb contamination.

129 Materials and Methods 

130 Sampling of leaf and soil and heavy metal measurements

131 We conducted soil and leaf sampling in summer 2017 and randomly selected 

132 19 sites and 187 T. tomentosa trees across three medium sized cities 

133 (Leuven (Belgium): n = 64; Porto (Portugal), n = 67; Strasbourg (France): n 

134 = 56). We randomly selected trees for sampling, and the trunk diameter 

135 ranged 5-130 cm. For each tree, we sampled the top soils (0–10 cm) at three 

136 random locations surrounding the trunk, and the three locations are mixed 

137 for metal measurements. We sampled 15 leaves at three random positions in 

138 each tree and stored the leaf samples in a cool box with ice. We performed 

139 soil sampling once, while leaf sampling was performed multiple times 

140 throughout the growing season for a subset of trees in Leuven and 

141 Strasbourg.

142 Heavy metal concentrations in the soil were measured by digesting 50 

143 mg of dried and sieved soil with 7.5 ml concentrated hydrochloric acid and 

144 2.5 ml concentrated nitric acid. The digested solution was diluted to 10 ml 

145 and measured with ICP-OES. For quality control of soil metal analysis, an 

146 internal soil standard was run parallel with the soil samples, which deviated 

147 less than 5% of the known composition. In this study, we focused on Cd and 

148 Pb, as these were the heavy metals that reached the toxicity thresholds 

149 (Table 1).
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150 Identification of contamination based on soil heavy metal thresholds 

151 Soil heavy metal contamination levels were identified based on published 

152 threshold standards (Tóth et al., 2016) released by the Ministry of the 

153 Environment, Finland (MEF, 2007). We grouped the samples into two classes 

154 - non-contaminated and contaminated, subjected to individual metals (Table 

155 1). Soil samples and corresponding leaf spectral observations (section 2.3) 

156 were grouped into four classes according to Pb contamination following the 

157 MEF standard (MEF, 2007). The four classes included class 0 being non-

158 contaminated (Pb < 60 mg/kg), class 1 of low contamination (60 ≤ Pb < 200 

159 mg/kg), class 2 of medium contamination (200 ≤ Pb < 750 mg/kg) and class 

160 3 of high contamination (Pb ≥ 750 mg/kg). 

161 We also defined four contamination classes subjected to both Cd and 

162 Pb contamination by re-grouping of the Cd and Pb binary classes (Table S1), 

163 i.e., four CdxPb classes including the non-contaminated (class 0), Cd 

164 contaminated only (class 1), Pb contaminated only (class 2) as well as when 

165 both Cd and Pb are over the thresholds (class 3). 

166 Leaf reflectance and functional traits

167 Leaf reflectance was measured using an ASD FieldSpec 3 spectroradiometer 

168 (ASD Inc., Longmont, CO, USA) connected to a Plant Probe and Leaf Clip 

169 Assembly (ASD Inc., Longmont, CO, USA). It allows for reflectance 

170 measurement in a spectral range of 350 – 2500nm with a band width of 1 

171 nm. Next, we measured the leaf maximal PSII photochemical efficiency 

172 (Fv/Fm, ratio of the variable fluorescence to the maximal fluorescence) using 
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173 a chlorophyll fluorescence meter (Handy PEA, Hansatech Instruments Ltd., 

174 Pentney, UK), combined with a leaf clip that allows for dark adaption (25 

175 min). Then, we measured the leaf area using a flatbed scanner, followed by 

176 oven dry for 3 days, allowing to determine leaf mass per area (LMA). In 

177 total, aggregated per tree and sampling time, collected leave samples 

178 allowed for further statistical analysis on a sample size of 333 for reflectance 

179 and functional traits. The 333 observations of reflectance spectra and 

180 functional traits were grouped into their contamination classes subjected to 

181 the soil heavy metal contamination classes as defined in the Section 2.2. 

182 A random subset of the leaf samples (n=53) were used to determine 

183 the total chlorophyll (Chl) and carotenoid (Car) content. Leaf round discs with 

184 a diameter of 28.6 mm were punched from the leaf samples using a paper 

185 punch. Chla, Chlb and Car were extracted with a mortar and pestle in 80% 

186 acetone and their concentrations determined by measuring the solution 

187 absorbance (A) at wavelengths 470, 646.8 and 663.2 nm using a UV-VIS 

188 spectrophotometer (Shimadzu 1650 PC, Kyoto, Japan) according to Eqs. (1-

189 3) (Lichtenthaler, 1987). 

190 𝐶ℎ𝑙𝑎 = 12.25 ∗ 𝐴663.2 ‒ 2.79 ∗ 𝐴646.8#(1)

191 𝐶ℎ𝑙𝑏 = 21.50 ∗ 𝐴646.8 ‒ 5.10 ∗ 𝐴663.2#(2)

192 𝐶𝑎𝑟 =
1000 ∗ 𝐴470 ‒ 1.82 ∗ 𝐶ℎ𝑙𝑎 ‒ 85.02 ∗ 𝐶ℎ𝑙𝑏

198
#(3)



11

193 For quality control of chlorophyll analysis, we performed parallel 

194 measurements in 12 samples, and the average standard error was lower 

195 than 5%. 

196 Spectral and statistical analysis

197 To highlight the metal-induced spectral variations, we calculated the 

198 reflectance relative differences between group means for the contaminated 

199 and non-contaminated classes subjected to Cd and Pb contamination. We 

200 also applied first derivatives to the reflectance, focusing mainly on the red-

201 edge region, to derive the red-edge inflection point (REIP) and evaluate the 

202 metal induced red-edge shifts (Clevers et al., 2004). 

203 Partial least squares (PLS) regression is a multivariate method for 

204 relating two data matrices, X and Y, i.e., explanatory and response matrices, 

205 by extracting latent variables (components) to model the variations of both 

206 matrices (Wold et al., 2001). The PLS regression can reduce high 

207 dimensional data (e.g. hyperspectral) to a small number of latent variables 

208 which serve as new predictors on which the response variable is regressed 

209 (Rosipal and Krämer, 2006). Partial least squares discriminant analysis (PLS-

210 DA) is a variant used when the response variable is categorical. We used 

211 PLS-DA for the classification of metal contamination classes. PLS-DA models 

212 were applied to four types of data, (i) the original reflectance spectral, and 

213 three pre-processed spectral data including (i) first derivative (ii), standard 

214 normal variate SNV and (iii) continuum removal (CR) precede applying the 

215 PLS-DA models. PLS-DA model calibration was first initiated on the entire 

216 dataset for the full spectrum with 10 components. The initial model was 



12

217 trained using a 10-fold cross-validation with 99 times of permutations, 

218 allowing for determination of the optimal number of components and the 

219 spectral bands yielding a variable importance in projection (VIP) ≥ 0.8. 

220 For an independent validation, the entire dataset was randomly split 

221 into the training and test subsets, with a sample size being 2/3 (n=215) and 

222 1/3 (n=118) of the total observations (n=333), respectively. The VIP ≥ 0.8 

223 spectral bands were then used to train and test models on the two subsets, 

224 respectively.

225 PLS-DA Model classification accuracy was evaluated using the overall 

226 accuracy (Eq. 4) and kappa coefficient (Eq. 5), as well as for assessing the 

227 classification for individual classes using the producer’s (Eq. 7) and user’s 

228 accuracies (Eq. 8),

229 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁) (𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)#(4)

230 𝐾𝑎𝑝𝑝𝑎 =
𝑝𝑎 ‒ 𝑝𝑒
1 ‒ 𝑝𝑒 #(5)

231 𝑝𝑒 =
(𝑇𝑁 + 𝐹𝑃) × (𝑇𝑁 + 𝐹𝑁) + (𝐹𝑁 + 𝑇𝑃) × (𝐹𝑃 + 𝑇𝑃)

(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁)2
#(6)

232 𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)#(7)

233 𝑈𝑠𝑒𝑟 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)#(8)

234 where the letters T and F denote true and false, respectively, and P and N 

235 denote positive and negative, respectively,  is the actual agreement 𝑝𝑎
236 (identical to accuracy), whereas  is the expected agreement by chance 𝑝𝑒
237 (random accuracy) that can be calculated as Eq. (6). 
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238 We used linear mixed models to test whether elevated soil heavy 

239 metals affect the leaf functional traits. We defined the metal contamination 

240 classes, i.e., binary or multi-class, as the fixed effect factor and defined city 

241 and sampling site as random effect factors in the mixed models. All analyses 

242 were performed in the R programming environment (R Core Team, 2016). 

243 The R package ‘lme4’ (Bates et al., 2015) was used for running the mixed 

244 models, and the package ‘lsmeans’ (Lenth, 2016) was used for post-hoc 

245 analysis of pairwise comparisons between the contaminated classes based on 

246 Tukey's test. PLS-DA was implemented using the package ‘mixOmics’ (Rohart 

247 et al., 2017). 

248 Results and Discussion

249 Heavy metal effects on leaf functional traits

250 Elevated Pb and Cd concentrations had a significant effect on LMA of T. 

251 tomentosa trees (Table 2). Soil Cd contamination did not induce significant 

252 changes in LMA (Fig. 1a), whereas Pb contamination significantly decreased 

253 LMA (Fig. 1b). Generally, Cd and Pb stress leads to damages to chloroplasts 

254 and thylakoid membranes in plants (Shen et al., 2016; Wu et al., 2014), 

255 which often causes reduced leaf growth such as small leaf size and small 

256 stomata (Shi and Cai, 2009), as well as thin cuticles of leaf surfaces 

257 (Pourkhabbaz et al., 2010). Therefore, elevated Pb concentrations could have 

258 reduced leaf thickness and thus decreased LMA. Cd also induces changes in 

259 leaf structural properties, while Cd concentrations measured in this study 

260 might still be below the threshold that induces significant inhibition of leaf 

261 expansion. 
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262 Elevated soil Pb induced significant changes in leaf total Chl content, 

263 Chla to Chlb ratio (Chla:Chlb) and Fv/Fm, whereas Cd and other metals did 

264 not yield significant changes (Table 2). Decrease in leaf Chl content is often 

265 associated with photoinhibition and reduction of the photosynthetic capacity 

266 (Shen et al., 2016). Chla:Chlb decreased significantly along with the increase 

267 in soil Pb concentration (Fig. 2), suggesting that Chla was more suppressed 

268 compared to Chlb (Nie et al., 2016). Similarly, a significant reduction of 

269 Chla:Chlb has been found in Torreya grandis (Shen et al., 2016) and Typha 

270 latifolia plants (Manios et al., 2003) treated with a high concentration of Cd 

271 and Pb, suggesting increases in chlorophyll hydrolysis due to the toxic effect 

272 (Manios et al., 2003). Results may differ for different plant species, for 

273 instance in a greenhouse environment, Horler et al. (1980) observed a 

274 significant decrease of Chla:Chlb in pea leaves due to elevated Cd 

275 concentrations, but no changes following elevated Pb (Horler et al., 1980).

276 Cd and Pb contamination induced a decrease in Fv/Fm (Fig. 3a, b), 

277 whereas Fv/Fm appeared to be not sensitive to low-level Pb contamination 

278 (Fig. 3d), suggesting that Cd and Pb stress may induce photosynthesis 

279 inhibition. Similarly, Cd was found to affect Fv/Fm in the wetland plant 

280 species Salicornia virginica (Rosso et al., 2005) and in the turf grass species 

281 Festuca arundinacea Schreb (Huang et al., 2017). Generally, the observed 

282 decrease in Fv/Fm in plants subjected to Cd/Pb stress is associated with the 

283 photoinhibition of PSII, as a result of the overproduction of reactive oxygen 

284 species (ROS) (Huang et al., 2017; Shen et al., 2016). However, a significant 

285 decrease in Fv/Fm may not always be observable if Cd/Pb concentration does 
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286 not exceed a high threshold (Huang et al., 2017; Shen et al., 2016). Giulia et 

287 al. (2013) found that a high soil Pb concentration did not decrease Fv/Fm in 

288 Q. ilex plants, and they argued that these metals may not significantly alter 

289 functionality of the photosynthetic apparatus. Similarly, Shi and Cai (2009) 

290 reported that Fv/Fm was not affected in peanut plants treated with a high 

291 concentration of Cd. Therefore, the effect of heavy metals on Fv/Fm might 

292 depend largely on metal type, concentration and plant species.

293 Mixed models for multi-class CdxPb and Pb contamination showed 

294 much more pronounced effects on LMA and Chla:Chlb than on Fv/Fm and leaf 

295 total Chl content (Table 3), which suggests that heavy metals induced more 

296 structural changes and proportional changes in leaf biochemicals than the 

297 quantity changes of individual components. An increase in leaf total Chl 

298 content and Fv/Fm was observed at a relative low-level Pb or Cd×Pb 

299 contamination (Table 3), suggesting that heavy metals impose complicated 

300 effects on photosynthesis and that Cd and Pb may increase the PSII quantum 

301 yield within a certain range of low concentrations (Ouyang et al., 2012; Shen 

302 et al., 2016). 

303 The effect of soil heavy metals on leaves or the content of heavy metal 

304 accumulation in the leaves might be related to the age of trees (Doganlar et 

305 al., 2012). To test whether tree age difference affect the observed effects of 

306 Cd and Pb on leaf functional traits in this study, we used trunk diameter as a 

307 proxy of tree age and added it as an additional random factor in the mixed 

308 models (Table S2 and Table S3). Results suggest that the observed effects of 
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309 Cd and Pb on T. tomentosa leaves was not significantly influenced by tree 

310 age. 

311 Reflectance and first derivatives in response to heavy metals

312 Elevated soil Cd concentrations yielded relatively large variations in leaf 

313 reflectance centered at the 500, 680 and 720 nm bands (Fig. 4a), whereas 

314 elevated Pb yielded large variations at the 550 and 700 nm bands (Fig. 4b). 

315 In the red-edge region, Cd had a large effect on reflectance at the red-edge 

316 center (~720 nm), whereas Pb had a large effect on reflectance ranging from 

317 the red absorption to the beginning of the red-edge bands (680~700 nm). 

318 Over the full spectrum, soil Pb contamination induced larger variations 

319 (±10%, Fig. 4b) compared to Cd contamination (±5%) (Fig. 4a), which 

320 might be attributed to the fact that Pb contamination was severer than Cd in 

321 this study. Cd concentration was slightly higher than the threshold (1 

322 mg/kg), but was much lower than the ‘low guideline’ of contamination level 

323 (10 mg/kg) at which ecological or health risks present (Tóth et al., 2016). 

324 The decrease in the NIR region (750~1400 nm) was associated with 

325 elevated Cd and Pb concentrations. This might be attributed partly to the 

326 decreased LMA because contaminated trees often have a much thinner outer 

327 epidermal layer and thus thinner leaves (Pourkhabbaz et al., 2010), although 

328 the effect of Cd on LMA observed in this study was marginal (Fig. 1). Metal-

329 induced decreases in leaf NIR reflectance might be associated mainly with 

330 the changes in leaf internal structural properties which decrease the internal 
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331 light scattering and increase the transmittance of leaves (Horler et al., 1980; 

332 Kumar et al., 2001). 

333 The first derivative reflectance in the visible-to-NIR bands showed two 

334 major peaks centered at 530 and 720 nm (Fig. S1). In the red-edge spectral 

335 region, Cd contamination induced a shift of absorbance features towards the 

336 shorter wavelengths (Fig. S1a). In contrast, Pb contamination induced a red-

337 edge shift to the longer wavelengths (Fig. S1b). In addition to the red-edge 

338 bands, Pb contamination also yielded large variations in the first derivative 

339 reflectance at the green bands, suggesting a more pronounced change of the 

340 overall shape of reflectance (cf. Fig. 4). As shown in the first derivative 

341 reflectance, Pb contamination also induced a shift in the green edges (both 

342 sides of the green peak) compared to Cd contamination. This might explain 

343 the observed decrease in the Chla:Chlb ratio (Fig. 2), since absorption at the 

344 green edge bands is related to Chlb variations (Kumar et al., 2001).

345 The extracted REIP showed contrasting changes in the Cd and Pb 

346 contaminated trees, with decreasing and increasing trends, respectively (Fig. 

347 S2), which confirms the contrasting effects of Cd and Pb contamination on 

348 the red-edge reflectance. Heavy-metal induced REIP changes, or red-edge 

349 shifts, have been found to depend to some degree on plant species and 

350 sampling sites (Kooistra et al., 2004). Normally, a decreased REIP can be 

351 observed when plant stress induces a reduction in leaf total Chl content 

352 (Horler et al., 1983). However, here we did not observe obvious Chl 

353 reduction associated with Cd or Pb contamination. Therefore, the REIP 

354 variations observed here were more likely associated with the proportional 
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355 changes in the Chla:Chlb ratio, in combination with changes in leaf 

356 structures. 

357 PLS-DA model calibration for binary and multi-class classifications 

358 In the binary classifications, the PLS-DA calibration models for Cd-

359 contamination classification yielded a total accuracy of 84.1~86.5% (kappa = 

360 0.46~0.49, Table S4). PLS-DA models for Pb contamination yielded a total 

361 accuracy of 72.7~77.8% (kappa = 0.46~0.57). For the multi-class 

362 classification of CdxPb-mixed contamination, PLS-DA models yielded a total 

363 accuracy of 43.2~66.1% (kappa = 0.24~0.49, Table S4). PLS-DA models for 

364 the multi-class classification of Pb yielded a total accuracy of 52.0~64.0% 

365 (kappa = 0.29~0.43). The best classifications for individual metals are 

366 illustrated in confusion-matrix plots (Fig. 5). 

367 The best model for Cd correctly classified the Cd class 0 with a 

368 producer and use accuracy of 86% and 97%, respectively, and were 77% 

369 and 43% for the Cd class 1 (Fig. 5a). The producer and use accuracy for the 

370 Pb class 0 were  88% and 67%, respectively, and 77% and 90% for the Pb 

371 class 1 (Fig. 5b). The best model for Cd×Pb yielded a relatively low user 

372 accuracy in predicting the classes 1 and 3 (Fig. 5c), which however, accounts 

373 for a very small proportion of the total observations. The best model for 

374 multi-class Pb contamination yielded a relatively high producer accuracy for 

375 the classes 0 and 3 (Fig. 5d), with 80% and 100%, respectively. In contrast, 

376 the model yielded a higher user accuracy for the classes 0 and 1 than for the 

377 classes 2 and 3. The low user accuracy for the Pb classes 2 and 3 was mainly 
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378 due to the small sample size of high Pb concentrations, which consists of only 

379 17 and 4 observations for the classes 2 and 3, respectively.

380 Overall, the high producer accuracy, paired with relatively low user 

381 accuracy for a relatively high metal concentration was rather encouraging, 

382 since our models slightly tended to overestimate the observed contamination 

383 rather than underestimate the elevated contamination. This implies a high 

384 probability of detecting the elevated concentrations of soil heavy metals.

385 PLS-DA model validation using full spectrum and VIP-bands

386 Compared to model calibration accuracies, model validation based on the full 

387 spectrum produced comparable accuracies (Table S5). In binary 

388 classifications, models for Pb contamination yielded higher kappa coefficients 

389 than the models for Cd contamination. In multi-class classifications, model 

390 validation showed improved total accuracies and kappa coefficients (Table 

391 S5), suggesting the potential of using calibrated PLS-DA models for detecting 

392 elevated soil Cd and Pb concentrations. 

393 Validation of models trained with the VIP (≥ 0.8) bands showed 

394 slightly improved kappa values and total accuracies compared to the full use 

395 of bands (Table S5). The importance of individual spectral bands in the 

396 classification is indicated by the VIP scores for individual metals (Fig. 6). Cd 

397 contamination yielded relatively high VIP scores at the red-edge (730 nm) 

398 and SWIR bands (1300 nm, 1650 nm) compared to Pb contamination, 

399 suggesting unique spectral responses to elevated soil Cd in these bands (Fig. 

400 6). Pb contamination yielded higher VIP scores at the green (530 nm) and 
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401 the beginning of red-edge (700 nm), suggesting that Pb contamination 

402 induced more pronounced responses in the visible bands. For the binary 

403 classifications, VIP-based PLS-DA models yielded higher accuracies for Pb-

404 contamination classification (kappa = 0.66) than for Cd (kappa= 0.39, Table 

405 S5). For multi-class classifications, the VIP-based PLS-DA models yielded 

406 comparable accuracies by using a much less amount of bands compared to 

407 the use of full spectral bands. 

408 Model validation results showed that selecting a set of influential bands 

409 (VIP ≥ 0.8) allowed for maintaining classification accuracy and improving 

410 model-use and computational efficiencies. Within a limited number of 

411 observations, by randomly dividing independent training and testing subsets 

412 of observations, our results suggest that spectrally calibrated PLS-DA models 

413 have great potential of applying to future scenarios for monitoring heavy 

414 metals. 

415 Comparison between reflectance pre-processing methods

416 The kappa coefficient is a balanced measure compared to the use of the 

417 producer-, user- and total accuracies, especially when the observations in 

418 difference classes are highly imbalanced such as in this study. Hence, we 

419 evaluated the three spectra-preprocessing methods according to the kappa 

420 values. Model calibration and validation both showed that the first derivatives 

421 yielded the highest kappa values compared to the use of the original and 

422 SNV reflectance data (Table S4 and Table S5).
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423 Using a different number of components might induce some degree of 

424 variation in model accuracies, although we used the cross-validation (CV) 

425 procedure. In addition to the CV-optimized number of components, model 

426 calibration and validation were repeated by using a fixed number of 

427 components (Table S6, Table S7 and Table S8). Results showed that the first 

428 derivative reflectance yielded the highest kappa coefficients, followed by the 

429 CR reflectance and the original reflectance (Fig. S3). The SNV reflectance did 

430 not yield improvement compared to the original reflectance data, suggesting 

431 that the SNV process may mask subtle spectral responses subjected to 

432 individual metals. Overall, PLS-DA models based on the first derivative 

433 reflectance produced the best classifications, which also suggests that heavy 

434 metals have induced complicated effects on leaf biochemical and structural 

435 properties that lead to light absorption changes/shifts over the full spectrum.

436 First derivative spectra of leaves have been proven to be effective in 

437 eliminating background signals and for resolving overlapping spectral 

438 features (Demetriades-Shah et al., 1990), which is useful to detect plant 

439 stresses or estimate pigment changes (Rundquist et al., 1996; Smith et al., 

440 2004). Also, first derivative reflectance has better discrimination power 

441 compared to the original reflectance by characterizing the rate of change of 

442 reflectance with respect to wavelengths (Bao et al., 2013; Lassalle et al., 

443 2018; Smith et al., 2004). Typically, derivative analysis may facilitate the 

444 detection of changes that might be masked in the original spectra by the 

445 presence of plant intrinsic co-variations (Horler et al., 1983). For instance, 

446 derivative spectra in the visible region may enable to detect subtle changes 
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447 in leaf pigment balance associated with physiological disorders or vegetation 

448 types (Bandaru et al., 2016; Demetriades-Shah et al., 1990; Pu, 2011).

449 Derivative analysis can be particularly useful for remotely biomonitoring 

450 heavy metal using reflectance spectra measured from above the vegetation 

451 canopy (Wang et al., 2018). Canopy spectra first derivatives eliminate the 

452 additive noises (baseline shifts) induced by illumination instability, canopy 

453 structural or soil background influences (Demetriades-Shah et al., 1990; 

454 Gnyp et al., 2014; Kochubey and Kazantsev, 2012; Pu, 2011), thereby 

455 improving the accuracy for quantification of canopy biochemical or 

456 physiological changes (Jin and Wang, 2016; O’Connell et al., 2014). 

457 Moreover, PLS modeling further facilitates the use of features of the full 

458 derivative spectrum for the characterization of vegetation undergoing 

459 changes or stresses. 

460 Apparently, PLS-DA models for Pb-contamination classifications 

461 exclusively produced higher kappa values than for Cd contamination 

462 classifications, across different cases of spectra-preprocessing methods, 

463 model calibration (Fig. S3a) and validation (Fig. S3b), as well as when using 

464 a subset of VIP-bands (Fig. S3c). This can be attributed to the data 

465 imbalance between the Cd- and Pb-contamination levels, which, however, 

466 shows a great promise of the proposed approach for spectroscopic detection 

467 of elevated soil heavy metals, given that a diverse set of observations are 

468 used for model calibration.
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469 Conclusions

470 This study used T. Tomentosa trees growing in three European cities as bio-

471 indicators of soil heavy metal contamination, and evaluated whether tree 

472 spectra responses were able to reflect the elevated metal concentrations. 

473 Results showed that elevated soil Cd and Pb concentrations led to decrease in 

474 the leaf mass per area (LMA) and the chlorophyll a to b ratio (Chla:Chlb), 

475 while no significant reduction in leaf total chlorophyll (Chl) and the maximal 

476 PSII photochemical efficiency (Fv/Fm). Soil Pb contamination was severer 

477 and showed more pronounced effect on LMA, Fv/Fm, Chl and Chla:Chlb than 

478 did the Cd contamination in the studied sites. 

479 Cd and Pb contamination induced specific changes in leaf reflectance 

480 and the reflectance first derivatives, particularly in the red-edge spectral 

481 region. Partial least squares discriminant analysis (PLS-DA) models calibrated 

482 using leaf reflectance showed promise for detecting soil Cd and Pb 

483 contamination in urban areas. PLS-DA models based on reflectance first 

484 derivatives allowed for the best classification of Cd and Pb contamination. 

485 This study shows that elevated soil heavy metals can be monitored by 

486 measuring leaf spectra of trees. This holds great potential for mapping urban 

487 heavy metal contamination by measuring urban vegetation using high-

488 resolution spectrometers onboard airborne or drone platforms. Future work 

489 should investigate whether our findings can be extrapolated to broader scales 

490 by using canopy level reflectance data and a diverse set of plant species as 

491 bio-indicators. Multi-temporal investigations of the quantitative relationships 

492 between the practical content of heavy metals in leaves and reflectance 
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493 spectroscopic measures are also needed to understand metal translocation 

494 from soil to vegetation and for dynamic biomonitoring of heavy metal 

495 contamination.    
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Figure Captions

Fig. 1. Boxplots with the leaf mass per area (LMA) differences between the 
binary classes (0 = non-contaminated, 1 = contaminated) of (a) Cd and (b) 
Pb contamination, as well as among multiple classes of (c) Cd×Pb and (d) Pb 
contamination. Significance levels are indicated according to the post-hoc 
Tukey’s test of the applied mixed models.

Fig. 2. Boxplots with the leaf chlorophyll a to b ratio (Chla:Chlb) differences 
between the binary classes (0 = non-contaminated, 1 = contaminated) of (a) 
Cd and (b) Pb contamination, as well as among multiple classes for (c) 
Cd×Pb and (d) Pb contamination. Significance levels are indicated according 
to the post-hoc Tukey’s test of the applied mixed models.

Fig. 3. Boxplots show the chlorophyll fluorescence Fv/Fm differences between 
the binary classes (0 = non-contaminated, 1 = contaminated) of (a) Cd and 
(b) Pb contamination, as well as among multi-class classifications of (c) 
Cd×Pb and (d) Pb contamination. Significance levels are indicated according 
to the post-hoc Tukey’s test of the applied mixed models.

Fig. 4. Leaf mean reflectance of the contaminated (1) and non-contaminated 
(0) trees subjected to (a) Cd and (b) Pb, and their reflectance relative 
difference ((X1-X0)/X0) between the contaminated and non-contaminated 
leaves.

Fig. 5. Predicted versus observed classes for (a) Cd binary classification, (b) 
Pb binary classification, (c) Cd×Pb classification and (d) Pb multi-class 
classification. Here the first derivative reflectance data were used for (a), (b) 
and (c), the original reflectance were used for (d). Numbers indicate the 
confusion matrix of classification.

Fig. 6. The variable importance in projection (VIP) scores for the spectral-
based PLS-DA models for binary classification for Cd and Pb contamination, 
and for multi-class classification of Pb and CdxPb contamination. VIP ≥ 0.8 

highlights the spectral bands contributing significantly to the PLS-DA models.
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Tables

Table 1. Measured soil heavy metal content and the threshold values for 

classification of contamination. Cd and Pb were the major contaminates in this 

study, and Pb was the only metal that reached the highline and thus Pb 

contamination was classified into three sub-classes. 

Number of observations (n)
Metal Range (mg/kg) Threshold (mg/kg)

Class 0 Class 1/Pb 1 Pb 2 Pb 3

Cd 0-3.9 1 294 39

Pb* 0-2170.8 60 132 201/180 17 4

Co 0-15.9 20 333 0

Cr 0-120.9 100 327 6

Cu 0-159.1 100 330 3

Ni 0-76.8 50 331 2

Zn 10-265.8 200 329 4

*, Pb contamination sub-levels: 

1) Low contamination (60 ≤ Pb < 200 mg/kg);

2) Medium contamination (200 ≤ Pb < 750 mg/kg); 

3) High contamination (Pb ≥ 750 mg/kg).
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Table 2. Results of mixed models for testing the effect of soil heavy metals on 

leaf functional traits, including the leaf mass per area (LMA), Fv/Fm, total 

chlorophyll content (Chl) and Chla:Chlb ratio. Modelle random effects were city 

and sites. Chlorophyll data were only available for a subset of the samples, 

where only Cd and Pb reached the thresholds of contamination.

Mixed Model Tukey's Test Class 0 – 1

Trait Metal F-value P-value Estimate P-value

LMA Cd 1.11 0.292 0.249 0.292

Cr 6.68 0.010 -1.319 0.010

Cu 0.16 0.691 0.284 0.691

Ni 0.23 0.632 0.425 0.632

Pb 67.08 <0.001 1.284 <0.001

Zn 0.70 0.404 0.521 0.404

Fv/Fm Cd 0.02 0.901 -0.0013 0.901

Cr 0.01 0.905 0.0027 0.905

Cu 0.01 0.911 0.0034 0.911

Ni 0.08 0.772 -0.0109 0.772

Pb 5.84 0.016 -0.0162 0.016

Zn 0.08 0.784 -0.0074 0.784

Chl Cd 2.31 0.138 18.091 0.138

Pb 6.78 0.013 -9.238 0.013

Chla:Chlb Cd 0.45 0.509 0.181 0.509

Pb 23.58 <0.001 0.331 <0.001

kyu
Cross-Out
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Table 3. Mixed models for testing the effect of multi-level Cd×Pb and Pb contamination on leaf functional traits, 

including the leaf mass per area (LMA), Fv/Fm, total chlorophyll content (Chl) and Chla:Chlb ratio. The modeled 

random effects are city and site. Chlorophyll data were only available for a subset of the samples, where only Cd and 

Pb reached the threshold of contamination.

Tukey's Test
Mixed model

Class 0 – 1 Class 0 - 2 Class 0 - 3 Class 1 - 2 Class 1 - 3 Class 2 – 3

Trait Metal F-value P-value estimate p estimate p estimate p estimate p estimate p estimate P

LMA Cd×Pb 23.74 <0.001 0.025 1.000 1.256 <0.001 1.722 <0.001 1.231 0.006 1.698 0.001 0.466 0.246

Pb 26.29 <0.001 1.21 <0.001 1.831 <0.001 2.444 <0.001 0.621 0.104 1.234 0.104 0.613 0.731

Fv/fm Cd×Pb 2.42 0.066 -0.0211 0.661 -0.0184 0.044 -0.0143 0.713 0.0028 0.999 0.0069 0.987 0.0041 0.987

Pb 2.00 0.113 -0.0168 0.070 -0.0109 0.863 -0.0106 0.980 0.0059 0.971 0.0062 0.996 0.0003 1.000

Chl Cd×Pb 5.86 0.006 -10.275 0.014 12.558 0.495 22.834 0.108

Pb 6.40 0.004 -8.108 0.057 -32.96 0.012 -24.852 0.070

Chla:Chlb Cd×Pb 11.47 <0.001 0.332 <0.001 0.319 0.319 -0.012 0.998

Pb 12.01 <0.001 0.323 <0.001 0.495 0.072 0.172 0.709
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Table S1. Classification of samples into four contamination levels of heavy metals according to the 

two major contaminates Cd and Pb in this study.

Cd

Metal Class 0 1 Total

Pb 0 CdxPb 0 CdxPb 1

(n=121) (n=11)
132

 1 CdxPb 2 CdxPb 3

(n=173) (n=28)
201

Total 294 39 333



Table S2. Results of mixed models for testing the effect of soil heavy metals on leaf functional 

traits, including the leaf mass per area (LMA), Fv/Fm, total chlorophyll content (Chl) and Chla:Chlb 

ratio. Modeled random effects were City, Site and Trunk Diameter. Chlorophyll data were only 

available for a subset of the samples, where only Cd and Pb reached the thresholds of 

contamination.

Mixed Model Tukey's Test Class 0 – 1

Trait Metal F-value P-value Estimate P-value

LMA Cd 1.114 0.292 0.249 0.292

Cr 6.676 0.01 -1.319 0.01

Cu 0.158 0.691 0.284 0.691

Ni 0.23 0.632 0.425 0.632

Pb 67.079 <0.001 1.284 <0.001

Zn 0.699 0.404 0.521 0.404

Fv/Fm Cd 0.016 0.901 -0.001 0.901

Cr 0.014 0.905 0.003 0.905

Cu 0.012 0.911 0.003 0.911

Ni 0.084 0.772 -0.011 0.772

Pb 5.842 0.016 -0.016 0.016

Zn 0.075 0.784 -0.007 0.784

Chl Cd 1.859 0.183 17.944 0.183

Pb 9.32 0.005 -13.188 0.005

Chla:Chlb Cd 0.065 0.801 0.071 0.801

Pb 12.942 0.001 0.314 0.001



Table S3. Mixed models for testing the effect of multi-level Cd×Pb and Pb contamination on leaf functional traits, including the leaf mass per area 

(LMA), Fv/Fm, total chlorophyll content (Chl) and Chla:Chlb ratio. The modeled random effects are City, Site and Trunk Diameter. Chlorophyll data 

were only available for a subset of the samples, where only Cd and Pb reached the threshold of contamination.

Tukey's Test
Mixed model

Class 0 – 1 Class 0 - 2 Class 0 - 3 Class 1 - 2 Class 1 - 3 Class 2 – 3

Trait Metal F-value P-value estimate p estimate p estimate p estimate p estimate p estimate P

LMA Cd×Pb 23.741 <0.001 0.025 1.000 1.256 <0.001 1.722 <0.001 1.231 0.006 1.698 0.001 0.466 0.246

Pb 26.290 <0.001 1.210 <0.001 1.831 <0.001 2.444 <0.001 0.621 0.104 1.234 0.104 0.613 0.731

Fv/fm Cd×Pb 2.420 0.066 -0.021 0.661 -0.018 0.044 -0.014 0.713 0.003 0.999 0.007 0.987 0.004 0.987

Pb 2.004 0.113 -0.017 0.070 -0.011 0.863 -0.011 0.980 0.006 0.971 0.006 0.996 0.000 1.000

Chl Cd×Pb 7.103 0.003 NA NA -14.226 0.005 8.608 0.743 NA NA NA NA 22.834 0.132

Pb 7.659 0.002 -12.058 0.018 -36.911 0.009 NA NA -24.852 0.089 NA NA NA NA

Chla:Chlb Cd×Pb 6.265 0.006 NA NA 0.315 0.004 0.297 0.463 NA NA NA NA -0.018 0.997

Pb 6.679 0.004 0.302 0.006 0.483 0.124 NA NA 0.181 0.729 NA NA NA NA

NA, not applicable.



Table S4. PLS-DA model calibration accuracies for the binary classification of Cd and Pb 

contamination and for multi-class classification of Cd×Pb interactions and four-level Pb 

contamination.

Metal Spectra* Components Producer Accuracy User Accuracy Accuracy Kappa

Binary

Cd ASD 5 74.36% 45.31% 86.49% 0.49

ASD.cr 4 82.05% 41.03% 84.08% 0.46

ASD.d1 2 76.92% 42.86% 85.29% 0.47

ASD.snv 2 76.92% 42.86% 85.29% 0.47

Pb ASD 2 64.18% 90.85% 74.47% 0.50

ASD.cr 5 65.17% 86.18% 72.67% 0.46

ASD.d1 4 71.14% 89.94% 77.78% 0.56

ASD.snv 5 64.68% 87.25% 72.97% 0.47

Multi-class

CdxPb ASD 4  NA%  NA% 43.24% 0.24

ASD.cr 8  NA%  NA% 62.16% 0.44

ASD.d1 5  NA%  NA% 66.07% 0.49

ASD.snv 4  NA%  NA% 50.15% 0.27

Pb ASD 3  NA%  NA% 51.95% 0.29

ASD.cr 8  NA%  NA% 52.85% 0.31

ASD.d1 8  NA%  NA% 63.96% 0.43

ASD.snv 6  NA%  NA% 54.05% 0.29

*cr, continuum removal; d1, first derivatives; snv, standard normal variate.



Table S5. Validation of the PLS-DA models calibrated with the full wavebands and VIP (≥  0.8) bands for the binary classification of Cd and Pb 

contamination and for multi-class classification of CdxPb and Pb contamination. Model training used 2/3 of the observations (n=215), and the 

remaining 1/3 of the observations (n=118) were used for testing model accuracies.

Full spectrum VIP bands

Metal Spectra*
Components

Producer

Accuracy

User

Accuracy
Accuracy Kappa Components

Producer

Accuracy

User

Accuracy
Accuracy Kappa

Binary

Cd ASD 8 13.33% 100.00% 88.98% 0.21 8 13.33% 100.00% 88.98% 0.21

ASD.cr 3 66.67% 47.62% 86.44% 0.48 3 66.67% 38.46% 82.20% 0.39

ASD.d1 6 26.67% 80.00% 89.83% 0.36 6 26.67% 80.00% 89.83% 0.36

ASD.snv 8 13.33% 66.67% 88.14% 0.19 8 6.67% 33.33% 86.44% 0.07

Pb ASD 8 74.55% 77.36% 77.97% 0.56 8 83.64% 79.31% 82.20% 0.64

ASD.cr 10 74.55% 83.67% 81.36% 0.62 10 76.36% 85.71% 83.05% 0.66

ASD.d1 6 80.00% 77.19% 79.66% 0.59 6 89.09% 77.78% 83.05% 0.66

ASD.snv 10 70.91% 82.98% 79.66% 0.59 10 69.09% 79.17% 77.12% 0.54

Multi-class

CdxPb ASD 9  NA%  NA% 68.64% 0.44 9  NA%  NA% 70.34% 0.47

ASD.cr 5  NA%  NA% 66.10% 0.41 4  NA%  NA% 66.10% 0.40

ASD.d1 4  NA%  NA% 65.25% 0.45 4  NA%  NA% 66.10% 0.46

ASD.snv 6  NA%  NA% 68.64% 0.48 6  NA%  NA% 68.64% 0.48

Pb ASD 9  NA%  NA% 75.42% 0.52 9  NA%  NA% 75.42% 0.52

ASD.cr 3  NA%  NA% 72.88% 0.49 3  NA%  NA% 74.58% 0.52

ASD.d1 9  NA%  NA% 78.81% 0.59 9  NA%  NA% 79.66% 0.61

ASD.snv 10  NA%  NA% 64.41% 0.37 10  NA%  NA% 62.71% 0.35

*cr, continuum removal; d1, first derivatives; snv, standard normal variate.



Table S6. Classification accuracies of PLS-DA model calibration using the original and preprocessed 

reflectance data with a fixed (n=5) and the optimized number of components determined by 

cross-validation. Producer and user accuracies are not valid for the cases of absent prediction of 

individual classes.

Accuracy

Classification Metal Spectra Components Producer User Total Kappa

Binary Cd ASD 9 23.08% 69.23% 89.79% 0.31

Binary Cd ASD 5 10.26% 57.14% 88.59% 0.14

Binary Cd ASD.cr 5 12.82% 71.43% 89.19% 0.19

Binary Cd ASD.cr 4 82.05% 41.03% 84.08% 0.46

Binary Cd ASD.d1 2 76.92% 42.86% 85.29% 0.47

Binary Cd ASD.d1 5 38.46% 68.18% 90.69% 0.44

Binary Cd ASD.snv 2 76.92% 42.86% 85.29% 0.47

Binary Cd ASD.snv 5 12.82% 62.50% 88.89% 0.18

Binary Pb ASD 5 85.07% 84.24% 81.38% 0.61

Binary Pb ASD 7 87.06% 86.21% 83.78% 0.66

Binary Pb ASD.cr 4 85.57% 85.57% 82.58% 0.64

Binary Pb ASD.cr 5 65.17% 86.18% 72.67% 0.46

Binary Pb ASD.d1 5 91.54% 88.04% 87.39% 0.73

Binary Pb ASD.d1 4 71.14% 89.94% 77.78% 0.56

Binary Pb ASD.snv 9 82.59% 87.83% 82.58% 0.64

Binary Pb ASD.snv 5 64.68% 87.25% 72.97% 0.47

Multi-class Cd×Pb ASD 5 NA% NA% 68.64% 0.44

Multi-class Cd×Pb ASD 4 NA% NA% 43.24% 0.24

Multi-class Cd×Pb ASD.cr 8 NA% NA% 62.16% 0.44

Multi-class Cd×Pb ASD.cr 5 NA% NA% 71.77% 0.48

Multi-class Cd×Pb ASD.d1 9 NA% NA% 80.78% 0.65

Multi-class Cd×Pb ASD.d1 5 NA% NA% 66.07% 0.49

Multi-class Cd×Pb ASD.snv 4 NA% NA% 50.15% 0.27

Multi-class Cd×Pb ASD.snv 5 NA% NA% 66.37% 0.39

Multi-class Pb ASD 5 NA% NA% 71.19% 0.46

Multi-class Pb ASD 6 NA% NA% 77.48% 0.56

Multi-class Pb ASD.cr 8 NA% NA% 52.85% 0.31

Multi-class Pb ASD.cr 5 NA% NA% 75.38% 0.52

Multi-class Pb ASD.d1 8 NA% NA% 63.96% 0.43

Multi-class Pb ASD.d1 5 NA% NA% 79.28% 0.6

Multi-class Pb ASD.snv 6 NA% NA% 54.05% 0.29

Multi-class Pb ASD.snv 5 NA% NA% 71.77% 0.45



Table S7. Classification accuracies of PLS-DA model validation by dividing the entire dataset to 

train (n=215) and test (n=118) sub sets and applying onto the original and preprocessed 

reflectance data with a fixed (5) and the optimized number of components determined by cross-

validation. Producer and user accuracies are not valid for the cases of absent prediction of 

individual classes.

Accuracy

Classification Metal Spectra Components Producer User Total Kappa

Binary Cd ASD 8 13.33% 100.00% 88.98% 0.21

Binary Cd ASD 5 6.67% 100.00% 88.14% 0.11

Binary Cd ASD.cr 3 66.67% 47.62% 86.44% 0.48

Binary Cd ASD.cr 5 6.67% 100.00% 88.14% 0.11

Binary Cd ASD.d1 6 26.67% 80.00% 89.83% 0.36

Binary Cd ASD.d1 5 26.67% 100.00% 90.68% 0.39

Binary Cd ASD.snv 8 13.33% 66.67% 88.14% 0.19

Binary Cd ASD.snv 5 13.33% 100.00% 88.98% 0.21

Binary Pb ASD 8 74.55% 77.36% 77.97% 0.56

Binary Pb ASD 5 87.27% 75.00% 80.51% 0.61

Binary Pb ASD.cr 10 74.55% 83.67% 81.36% 0.62

Binary Pb ASD.cr 5 87.27% 72.73% 78.81% 0.58

Binary Pb ASD.d1 6 80.00% 77.19% 79.66% 0.59

Binary Pb ASD.d1 5 83.64% 80.70% 83.05% 0.66

Binary Pb ASD.snv 10 70.91% 82.98% 79.66% 0.59

Binary Pb ASD.snv 5 80.00% 72.13% 76.27% 0.53

Multi-class Cd×Pb ASD 9 NA% NA% 68.64% 0.44

Multi-class Cd×Pb ASD 5 NA% NA% 68.64% 0.44

Multi-class Cd×Pb ASD.cr 5 NA% NA% 66.10% 0.41

Multi-class Cd×Pb ASD.cr 4 NA% NA% 65.25% 0.39

Multi-class Cd×Pb ASD.d1 4 NA% NA% 65.25% 0.45

Multi-class Cd×Pb ASD.d1 5 NA% NA% 70.34% 0.47

Multi-class Cd×Pb ASD.snv 6 NA% NA% 68.64% 0.48

Multi-class Cd×Pb ASD.snv 5 NA% NA% 61.02% 0.32

Multi-class Pb ASD 9 NA% NA% 75.42% 0.52

Multi-class Pb ASD 5 NA% NA% 72.03% 0.48

Multi-class Pb ASD.cr 3 NA% NA% 72.88% 0.49

Multi-class Pb ASD.cr 5 NA% NA% 73.73% 0.51

Multi-class Pb ASD.d1 9 NA% NA% 78.81% 0.59

Multi-class Pb ASD.d1 5 NA% NA% 77.97% 0.58

Multi-class Pb ASD.snv 10 NA% NA% 64.41% 0.37

Multi-class Pb ASD.snv 5 NA% NA% 73.73% 0.5



Table S8. Classification accuracies of VIP-based PLS-DA model validation by dividing the entire 

dataset to train (n=215) and test (n=118) sub sets and applying onto the original and preprocessed 

reflectance data with a fixed (5) and the optimized number of components determined by cross-

validation. Producer and user accuracies are not valid for the cases of absent prediction of 

individual classes.

Accuracy

Classification Metal Spectra Components Producer User Total Kappa

Binary Cd ASD 5 6.67% 100.00% 88.14% 0.11

Binary Cd ASD 8 13.33% 100.00% 88.98% 0.21

Binary Cd ASD.cr 5 6.67% 100.00% 88.14% 0.11

Binary Cd ASD.cr 3 66.67% 38.46% 82.20% 0.39

Binary Cd ASD.d1 5 20.00% 100.00% 89.83% 0.3

Binary Cd ASD.d1 6 26.67% 80.00% 89.83% 0.36

Binary Cd ASD.snv 5 13.33% 100.00% 88.98% 0.21

Binary Cd ASD.snv 8 6.67% 33.33% 86.44% 0.07

Binary Pb ASD 5 83.64% 73.02% 77.97% 0.56

Binary Pb ASD 8 83.64% 79.31% 82.20% 0.64

Binary Pb ASD.cr 5 83.64% 74.19% 78.81% 0.58

Binary Pb ASD.cr 10 76.36% 85.71% 83.05% 0.66

Binary Pb ASD.d1 5 90.91% 80.65% 85.59% 0.71

Binary Pb ASD.d1 6 89.09% 77.78% 83.05% 0.66

Binary Pb ASD.snv 5 80.00% 70.97% 75.42% 0.51

Binary Pb ASD.snv 10 69.09% 79.17% 77.12% 0.54

Multi-class Cd×Pb ASD 5  NA%  NA% 67.80% 0.43

Multi-class Cd×Pb ASD 9  NA%  NA% 70.34% 0.47

Multi-class Cd×Pb ASD.cr 5  NA%  NA% 66.10% 0.41

Multi-class Cd×Pb ASD.cr 4  NA%  NA% 66.10% 0.4

Multi-class Cd×Pb ASD.d1 5  NA%  NA% 68.64% 0.44

Multi-class Cd×Pb ASD.d1 4  NA%  NA% 66.10% 0.46

Multi-class Cd×Pb ASD.snv 5  NA%  NA% 62.71% 0.36

Multi-class Cd×Pb ASD.snv 6  NA%  NA% 68.64% 0.48

Multi-class Pb ASD 5  NA%  NA% 76.27% 0.55

Multi-class Pb ASD 9  NA%  NA% 75.42% 0.52

Multi-class Pb ASD.cr 5  NA%  NA% 72.88% 0.49

Multi-class Pb ASD.cr 3  NA%  NA% 74.58% 0.52

Multi-class Pb ASD.d1 5  NA%  NA% 77.97% 0.58

Multi-class Pb ASD.d1 9  NA%  NA% 79.66% 0.61

Multi-class Pb ASD.snv 5  NA%  NA% 71.19% 0.46

Multi-class Pb ASD.snv 10  NA%  NA% 62.71% 0.35



Fig. S1. First derivative reflectance of the leaves of the non-contaminated as compared with the 

contaminated soils by (a) Cd and (b) Pb.



Fig. S2. Red-edge inflection points (REIP) extracted from the first derivative reflectance show the 

differences between the contaminated and non-contaminated classes of (a) Cd and (b) Pb 

classifications.



Fig. S3. Kappa coefficients of the PLS-DA classification for model (a) calibration, (b) validation and 

(c) VIP-based validation, when applied to the original reflectance data (no preprocessing) and 

three preprocessing types (D1 = first derivatives, SNV = standard normal variate, CR = continuum 

removal).


