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Abstract—The design and development of cyber-physical sys-
tems (CPS) inherently involves multiple engineering domains.
As these systems become more complex, the different domains
involved in their design become intertwined. In such situations,
insufficient knowledge can lead to costly inconsistency and
integration problems. In previous work, we proposed the use
of a cross-domain knowledge model (CDKM) to capture these
dependencies to support the architectural and detailed design
stages of the development process. In this paper, we present
early-stage research aiming to extend this approach to also
support the verification and validation (V&V) stages, with the
goal of enabling continuous V&V. To this end, we propose a
megamodeling approach to provide traceability between different
models, using the CDKM to provide a system-level overview of
the CPS under development.

Index Terms—Cyber-Physical Systems, Model-Based Systems
Engineering, Co-Design, Continuous Verification and Validation,
Megamodeling

I. INTRODUCTION

The design and development of cyber-physical systems

(CPS) inherently involves multiple engineering domains. For

example, the design of a drone may involve a mechanical

engineer to design the frame, an electromechanical engineer to

design the propulsion system, a control engineer to develop the

control algorithms, and an embedded engineer to deploy these

algorithms. To improve the efficiency of the design process,

engineers from different domains often work in parallel, in

what is referred to as a co-design process. However, as these

CPS become more complex, the different engineering domains

become increasingly intertwined, with design decisions made

in one domain significantly affecting another. In these cases,

traditional co-design approaches can be inefficient or even fail

in finding good overall designs. Indeed, insufficient knowledge

about these cross-domain dependencies often leads to incon-

sistencies and integration problems, which often require costly

re-engineering to fix.

In previous work [1], we presented an approach which uses

ontologies to assist the co-design process by explicitly cap-

turing these dependencies, both within and across engineering

domains. As such, this provides a system-level overview of

the system under design. We refer to this as a cross-domain

knowledge model (CDKM). Figure 1 shows an excerpt of such
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Fig. 1. Excerpt of a cross-domain knowledge model for the design of a drone.

a CKDM for the design of a drone. This model consists of

two main parts, a property ontology, and a dependency model.

In short, the property ontology mainly supports the system

requirements and architectural design phase of the develop-

ment process. It contains properties relating to requirements

of the system under design. For example, the property Ac-

ceptableTemperature? relates to a requirement stating “The

temperature of the system shall not exceed 90 °C during

operation”. For properties to be considered True (satisfied),

they may Require other properties to be True as well. The

dependency model then supports the detailed design of the

system by capturing design parameters (DP) and performance

values (PV) relating to system components, and how these

influence each other. For example, the velocity constant of

the motors used for propulsion (K V) is a design parameter,

which affects, a.o., the Power Consumption and subsequently

the Operating Temperature of the system. Additionally, the

two parts of the CDKM are linked using Satisfies relationships.

These relationships are used to define when a property is

considered satisfied based on one or more performance values.

For example, AcceptableTemperature? is considered satisfied

if the PV operating temperature is less than 90 °C, as stated

in the previously mentioned requirement. For a more detailed

explanation of these concepts, the reader is referred to previous

work [1].



While this approach succeeds in providing a system-level

overview, it necessarily does so at a high level of abstraction.

The dependency model shows which design parameters and

performance values affect which other performance values, but

it cannot necessarily provide an exact value for a PV based on

the value of an influencing DP or PV. Consequently, this alone

is not enough to determine whether the properties, and thus

requirements, are satisfied or not. Indeed, during the devel-

opment process, engineers will perform different evaluations,

using different test scenarios, to determine the exact value of

these PVs, often using modeling and (co-)simulation to run

experiments in-silico, to determine if requirements are met. As

such, while the CDKM as previously presented can support

the architectural en detailed design stages of a development

process, it does not yet explicitly support the verification and

validation stages. In the current paper, we present early-stage

research to extend on the CDKM to support this.

We propose to explicitly model these test scenarios, explic-

itly linking test parameters and results to design parameters

and performance values in the dependency model. Moreover,

we propose a megamodeling approach to explicitly capture

the dependencies between these tests, the (co-)simulation

models used therein, the functional mockup units (FMUs)

these contain, and the (domain-specific) models from which

these FMUs have been generated to provide traceability. The

ultimate goal of this is to enable continuous testing in the

context of co-design processes, using the CDKM to maintain

a system-level overview of the overall status of the design.

II. RELATED WORK

Larsen et al. [2] recognize the challenges associated with

CPS design due to their heterogeneous nature. They state

that the required dependability of CPS means that there is a

need for well-founded validation and verification (V&V) tech-

niques. However, combining the diverse modeling paradigms

used during CPS design is challenging in this regard. In the

INTO-CPS project, they developed a toolchain to support the

multidisciplinary, collaborative modeling of CPS. Here, they

rely on the functional mock-up interface (FMI) standard [3] to

enable the integration of domain-specific models through co-

simulation. In the current approach, we rely on the concepts

proposed in the INTO-CPS project to define co-simulation

models comprising domain-specific models of the CPS under

design.

Van Acker et al. [4] presented the Validity Frame (VF)

structure to (i) capture the range-of-validity of a model and

(ii) provide methods/processes to assure that a model faithfully

represents the source system. In [5], this VF concept was

used to reduce the effort (and cost) of the V&V phase of the

engineering process of complex CPSs, this by enhancing the

knowledge about the system components. It provides valuable

insights in how system properties are explicitly linked to the

model and how they are evaluated by means of validation ex-

periments. However, the focus of VFs is solely on the validity

evaluation of a single model, not on a model composition.

In systems engineering, engineers often rely on textual

requirements to drive the integration verification and validation

(IVV) of the system, with manually created traceability links

between requirements and associated test cases [6]. However,

Voirin et al. [6] recognize that, as the complexity increases,

this textual requirements-based approach reaches its limits

for multiple reasons: requirements are not able to formally

describe the solution, traceability links are unreliable, test

campaigns remain informal and thus subject to interpreta-

tion, it is difficult to identify and localize problems, etc.

They state that one of the goals of model-based engineering

(MBE) approaches, such as Acadia [7], is to overcome these

limitations of textual requirements by formalizing them in

a shareable form, complementing them with models. One

major advantages of such model-based approaches is that they

can provide traceability links between models. For example,

in Arcadia, links between requirements and IVV tests are

derived from requirements-to-models and model-to-test links,

which makes them more reliable and easier to check [6].

They identify a number of benefits of this approach. First, the

traceability provided by this approach allows tools to identify

which tests need to be run, or not run, based on the availability

of system components. Similarly, regression tests can also be

optimized based on which components have changed since the

previous version of the system (impact analysis). Additionally,

they state that this should allow optimization of the IVV across

different engineering levels, based on the organization and the

links between models at different levels. However, to the best

of our knowledge, in Arcadia, this IVV concerns the correct

implementation and integration of system components, and

not necessarily their optimal implementation. As such, to the

best of our knowledge, there are no explicit links to design

parameters and performance values.

Bézivin et al. [8] first describe the need for megamodels

in the context of model-driven engineering. They define a

megamodel as “a model of which at least some elements

represent and/or refer to models or metamodels”. As such, they

consider megamodeling to provide a global view on different

artifacts, i.e., models. Over the years, many further definitions

for megamodels have appeared in literature. Hebig et al. [9]

unify these different definitions by defining a megamodel as

“a model that contains models and relations between them”.

It is this definition that we follow in the current paper.

Regarding the use of megamodeling in the design of CPS, the

MegaM@Rt2 project aims to create an integrated framework

for continuous system engineering and runtime V&V [10]. The

major challenge they aim to address is enabling traceability

between design-time and runtime. They do this by providing

a megamodeling approach to manage system artifacts, such as

different types of models, workflows, configurations, etc., to

provide a complete view of a CPS. Regarding runtime, they

consider traces produced by, e.g., online monitors, which are

linked to system artifacts for validation purposes with the goal

of detecting possible design deviations [11]. In the current

paper, we mainly focus on enabling traceability and continuous

V&V at design time.



III. PROPOSED APPROACH

The proposed megamodel is illustrated in Figure 2, which

provides a high-level overview of the overall approach. Cur-

rently, we consider six different types of models, shown in

different sections in the figure, separated by dashed lines.

Models in the different sections are linked using different types

of relationships, all of which denote some form of dependency

between the models. The top two sections, Property Ontology

and Dependency Model, correspond to the two parts of the

cross-domain knowledge model as described in the introduc-

tion. The other sections and their relationships are defined as

follows:

• Test Scenarios These models are further detailed in Sec-

tion III-A. In short, they contain sequences of different

types of evaluations and related artifacts, which are

designed to evaluate specific aspects of the design.

• Multi-Models These are (co-)simulation models as de-

fined in the INTO-CPS project [2]. They define instances

of functional mock-up units, as well as how these are

connected, settable parameters with their default values,

simulation setting, etc. The mentioned settable parameters

are linked to parameter variables of the FMU instances.

• Functional Mock-up Units (FMUs) This essentially de-

fines a library of FMUs available to the engineers. It

contains information about each FMU itself, as well as its

available ports, parameters, etc., obtained from the model

description of the FMU.

• Models This is essentially an index of (possibly domain-

specific) models developed by the engineers. They may

represent different parts of the system, potentially imple-

mented in different tools, such as Simulink, AMESim,

Modelica, etc. Different models may also represent dif-

ferent aspect of the same part of the system. For example,

separate electromechanical and thermal models of the

propulsion system of a drone.

Additionally, we define different types of relationships (de-

pendencies) between the different sections. Similarly, the

Requires, Satisfies, and Influences relationships correspond

to those defined for the cross-domain knowledge model as

described in the introduction. The other relationships are

defined as follows:

• Input/Output (I/O) Dependency These dependencies are

used to link artifacts used in the test scenarios to specific

design parameters or performance values in the depen-

dency model. Additionally, they can be used to model

dependencies between test scenarios. For example, if

some output of one scenario is required as input for an

other.

• Model Dependency These are used to define which multi-

models are used in which test scenario, in the case

that such a scenario involves running a (co-)simulation.

Moreover, they link parameters defined in the multi-

models to artifacts in a test scenario. For example, to

further link a design parameter through to a parameter

value defined in the multi-model.
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Fig. 2. An illustration of the overall proposed approach, showing the different
types of models and their relationships.

• Instance Of This links an FMU instance defined in a

multi-model to a specific functional mock-up unit.

• Exports This defines from which model each FMU is

exported.

As can be seen in Figure 2, explicitly capturing the rela-

tionships between the different sections in this way provides

traceability, all the way from the (domain-specific) models to

the requirements as captured in the property ontology. In Sec-

tion IV, we discuss how these explicitly modeled relationships

can be leveraged to provide different benefits.

A. Test Scenarios

Figure 3 shows a simplified class diagram of a test suite

with test scenarios. We define a test scenario as a sequence of

evaluations to be performed. These evaluations can require one

or more artifacts as input and produce one or more artifacts as

output. Currently, we discern two different types of evaluation:

(co-)simulations and scripts. Here, (co-)simulations reference

specific multi-models, while scripts are mainly used to provide

pre- or post-processing capabilities. For the artifacts, we also

currently discern two types: values and traces. Here, values

represent variables which are considered constant over the

course of an evaluation, such as a test parameter. These can

be linked to design parameters or performance values in the

dependency model. Conversely, traces are sequences of values.

We mostly use traces to define input stimuli for simulations or

to capture simulation outputs over time. Performance values

are often obtained from traces after post-processing. Addition-

ally, artifacts produced in one scenario may be required as
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Fig. 4. Illustration of a scenario to evaluate the design of a propulsion system.

input for an other, leading to a dependency between the two

(not shown).

An example of such a scenario, designed to evaluate the

propulsion system of a drone, is shown in Figure 4. More

specifically, to evaluate its thrust. The scenario contains two

input values, a motor velocity constant for the motor used

in the propulsion system (K V) and the total mass of the

drone (Mass). Additionally, it contains an input trace (Throttle

Ramp). It also contains a (co-)simulation, which references

the multi-model “Propulsion System”, and a post-processing

script. The input trace contains a throttle curve which serves as

input for the (co-)simulation, while the value K V is linked to

a parameter of an FMU instance in the multi-model. From the

(co-)simulation, we obtain a new trace (Thrust Curve). This

new trace, together with the value Mass, serves as input for the

post-processing script, which calculates the values Max. Thrust

and TWR (the thrust-to-weight ratio). In this case, input and

output values are linked to design parameters and performance

values in the dependency model.

IV. PRELIMINARY RESULTS & FUTURE WORK

A prototype version of the proposed approach has been

implemented in the eclipse modeling framework (EMF) [12].

This covers everything from FMUs up to I/O dependencies

(Figure 2), with the CDKM portion being reused from previous

work [1]. With the goal of continuous testing in mind, we have

already identified two major benefits of the proposed approach,

similar to those identified by Voirin et al. [6]:

a) Generating Testing Workflows: First, the information

contained in the megamodel allows us to determine the correct

order in which to run the different tests, i.e., taking into

account direct or indirect dependencies between the differ-

ent scenarios. For example, given the example illustrated

in Figure 2, we see that Test Control Response should be

executed before Test Thermal Performance, as there is a

direct dependency between the two scenarios. Additionally,

as the property ResponsiveControl? also requires the property

SufficientThrust? to be satisfied, it might be advantageous to

execute Test Propulsion System before Test Control Response.

However, the optimal ordering of these two test would de-

pend on, e.g., their individual computational requirements.

Moreover, the megamodel allows us to identify which actions

need to be taken before a certain test can be executed. For

example, before executing Test Propulsion System, the FMU

“Propulsion” needs to be exported from the relevant model.

As such, the presented megamodel should allow us to generate

a full test workflow for a system under design, for example,

captured in a process model (PM) [13]. However, it is cur-

rently considered future work to fully implement this, and to

investigate which criteria could be used to generate an optimal

workflow, i.e., taking into account the effort, computational

requirements, etc., associated with executing each test.

b) Impact Analysis: The traceability provided by the

explicit relationships between the different models also allows

for automated impact analysis. It allows us to determine

which FMUs, tests, performance values, properties, etc., are

invalidated by changes to any model, design parameter, per-

formance value, etc., thus indicating, a.o., which tests needs

to be re-run for a particular change. For example, if the

model “Thermal” has been modified, we know we need to

re-export the FMU “Thermal”, and re-execute Test Thermal

Performance, to ultimately re-evaluate the property Accept-

ableTemperature?. Moreover, modeling the test scenarios at

a lower level of abstraction, i.e., as a series of evaluations,

allows us to identify which part(s) of the test scenario need(s)

to be re-executed. For example, if the design parameter Total

Mass changes, the megamodel as illustrated in Figure 2, would

indicate that Test Propulsion System needs to be re-executed.

However, looking at Figure 4 shows that only Post-process

needs to be re-executed. We believe this would allow for

more efficient testing when changes are detected. However, the

current implementation does not explicitly support versioning

or change detection mechanisms. As such, it is currently

considered future work to further develop this.

In general, the integration of the presented approach in

an actual continuous integration (CI) pipeline is currently

considered future work. In this case, we envision that the

exports relationships between the models and FMUs would

include build scripts to enable the automatic generation of

FMUs from the relevant models.

Additionally, we envision other possible applications for the

presented approach. However, these all require further research

to determine their viability:

• As a first step towards validity of composition models

as an extension of validity frames. This may include the

introduction of validity monitors on the links between the

different types of models.

• In the context of DevOps for CPS, similar to the

MegaM@Rt approach [11], parts of the presented ap-



proach may be reused to determine performance values

from logged data instead of from simulation traces. This

should make it possible to detect when certain properties

(and thus requirements) are no longer satisfied, which

could mean that the system has diverged from the original

models, e.g., due to wear or modifications [14]. Alterna-

tively, this could reveal edge-cases which are not yet part

of the test scenarios.

• The information captured in the megamodel, particularly

the test scenarios, may also be used in the context of

design space exploration (DSE) to optimize the CPS

under design. In previous work [15], we already presented

a method for determining DSE workflows for a given

system under design, starting from, a.o., a dependency

model and a library of evaluation functions. Here, the test

scenarios would correspond to the evaluation functions

in previous work. However, information regarding their

computational requirements would need to be added to

the current approach.

• Explicitly capturing the dependencies between different

models, test scenarios, properties, etc., also reveals the

dependencies between the different engineering teams.

This information might be used to determine an efficient

co-design workflow for the system under design, as it

reveals where teams can work in parallel or where they

need to wait for each other, e.g., because models from

multiple different teams are required for a specific test,

to evaluate whether a specific requirement is met.

However, while the proposed approach provides several (po-

tential) benefits, a drawback is that it may require significant

additional modeling effort during the development process. As

such, it remains to be seen to what extent the benefits provided

outweigh the additional effort required during development.

V. CONCLUSIONS

We presented early-stage research wherein we aim to extend

on our previously developed cross-domain knowledge models

(CDKMs) to also support the system verification and vali-

dation stages of the development process for cyber-physical

systems. We do this by explicitly modeling test scenarios

used to evaluate the performance of the system under design.

Moreover, we propose a megamodeling approach, wherein we

not only link these test scenarios to the CDKM, but also

to co-simulation models, functional mock-up units, etc., to

provide traceability from models to requirements. With the

goal of continuous verification and validation in mind, we have

already identified two major benefits of the proposed approach.

Namely, the generation of testing workflows and automated

impact analysis. However, both require further research to fully

implement them and to integrate this into an actual continuous

integration pipeline. Additionally, we have identified further

possible applications of the proposed approach in the context

of validity frames, DevOps, design space exploration, and co-

design workflows. However, these all require further research

to determine their viability.
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