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Samenvatting

X-ray computertomografie (CT) is een krachtige en niet-invasieve tech-
niek om de interne structuur van een object te visualiseren aan de hand
van een reeks X-ray radiografieën. Reconstructiealgoritmes worden ge-
bruikt om vanuit projectiedata een 3D-representatie van het object op
te stellen. Een model van het X-ray acquisitieproces wordt gebruikt
door reconstructiealgoritmes en deze algoritmes vereisen een groot aantal
projecties om goed te functioneren. In bepaalde toepassingen moet het
aantal projecties echter beperkt worden, om de totale afgeleverde dosis
te verminderen, de acquisitietijd te verkorten, of vanwege geometrische
beperkingen. Bovendien hebben de meest gebruikte algoritmes een een-
voudig lineair voorwaarts model voor X-ray attenuatie dat de werkelijke
acquisitie niet nauwkeurig modelleert. Ten slotte zijn conventionele recon-
structiealgoritmes in CT niet efficiënt wat betreft rekenkracht. In deze
thesis zullen we verbeterde reconstructiealgoritmes voor CT ontwikkelen
door nauwkeurigere niet-lineaire voorwaartse modellen en verschillende
numerieke optimalisatiemethodes voor deze modellen te onderzoeken.
Zowel conventionele X-ray CT als fasegevoelige X-ray CT zullen worden
onderzocht. In fasegevoelige X-ray CT zijn aanvullende contrasten be-
schikbaar omdat de X-ray beeldvormingsopstelling gevoelig is gemaakt
voor refractie-effecten van de X-ray bundel. Hieronder volgt een overzicht
van de verschillende hoofdstukken van de thesis.

In Hoofdstuk 1 worden de concepten gëıntroduceerd die nodig zijn
voor deze thesis. Eerst worden de basisprincipes van X-ray beeldvorming
en X-ray CT beschreven. Vervolgens wordt een overzicht gegeven van
de effecten van undersampling en modelfouten op de reconstructie en
worden gevestigde methoden om met deze effecten om te gaan beschre-
ven. Daarna worden de basisconcepten van numerieke optimalisatie voor
CT gëıntroduceerd. Verschillende gradient descent- en quasi-Newton-
methoden worden beschreven, omdat ze een cruciale rol zullen spelen in
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wat volgt. Ten slotte wordt een fasegevoelige X-ray beeldvormingsmoda-
liteit, genaamd edge illumination, gëıntroduceerd en de oorsprong van
het nieuwe contrast wordt beschreven. De standaard verwerkingsproce-
dures om de contrasten te ontwarren worden uitgelegd en de standaard
reconstructietechnieken die worden gebruikt voor edge illumination CT
worden getoond.

In Hoofdstuk 2 wordt een nieuw reconstructiealgoritme voorgesteld,
genaamd poly-DART, om om te gaan met undersampled data van po-
lychromatische bronnen, gebaseerd op een heuristisch discreet tomogra-
fisch reconstructiekader, DART. DART is een reconstructiekader waarin
voorkennis over het aantal objectmaterialen wordt benut. In monochro-
matische X-ray CT is aangetoond dat DART leidt tot hoogwaardige
reconstructies, zelfs vanuit een laag aantal projecties of een beperkte
scankijk. De meeste X-ray bronnen zijn echter polychromatisch, wat
leidt tot beam hardening-effecten die de prestatie van DART aanzienlijk
verslechteren. Het voorgestelde discrete poly-DART-algoritme benut de
voorkennis over de attenuatiewaarden met behulp van DART en houdt
tegelijkertijd rekening met de polychromatische aard van de X-ray bron.
De resultaten tonen aan dat poly-DART leidt tot een aanzienlijk verbe-
terde segmentatie op polychromatische data verkregen uit Monte Carlo
simulaties en op experimentele data, in vergelijking met DART.

In Hoofdstuk 3 wordt een verbetering van de partitioneringsstap in
DART voorgesteld. Veel op discrete tomografie gebaseerde methoden
vertrouwen op een verdeel-en-heersprocedure om het volume in delen
te reconstrueren, wat hun looptijd en reconstructiekwaliteit verbetert.
De procedure is echter gebaseerd op statische regels, wat redundante
berekening introduceert en de efficiëntie vermindert. In dit hoofdstuk
wordt een update-strategiekader gëıntroduceerd dat dynamische regels
mogelijk maakt en meer controle biedt voor verdeel-en-heersmethoden
voor discrete tomografie. Het kader wordt gëıllustreerd door Tabu-DART
te introduceren, dat het voorgestelde kader combineert met DART. Uit
gereconstrueerde experimenten met gesimuleerde en echte data blijkt dat
de benadering vergelijkbare of verbeterde reconstructiekwaliteit oplevert
in vergelijking met DART, met aanzienlijk lagere rekencomplexiteit.
Bovendien kan de voorgestelde strategie worden gecombineerd met het
voorgestelde poly-DART-algoritme uit Hoofdstuk 2, wat de techniek
verbetert.

In Hoofdstuk 4 wordt het gebruik van quasi-Newton-methoden on-
derzocht om een polychromatische doelfunctie te minimaliseren zonder
de noodzaak om het beeld in verschillende materiaalgebieden te segmen-
teren. De voorgestelde doelfunctie kan ook eenvoudig worden uitgebreid
met regularisatietermen in een wiskundig kader. Er wordt aangetoond
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dat de quasi-Newton-methoden andere statistische of algebräısche recon-
structietechnieken kunnen overtreffen. De reconstructiekwaliteit en de
projectiefout voor reconstructies van zowel Monte Carlo-gesimuleerde
data als experimentele data worden onderzocht. Van de overwogen quasi-
Newton-methoden blijkt Gauss-Newton-Krylov het beste te presteren.
Vergeleken met een recent voorgestelde polychromatische algebräısche
reconstructietechniek bereiken quasi-Newton-methoden een lagere recon-
structiefout en hebben ze een verhoogde convergentiesnelheid.

In Hoofdstuk 5 wordt een nieuwe gezamenlijke reconstructiemethode
voorgesteld, die gebruikmaakt van een gecombineerd voorwaarts model
om de drie contrasten die verkregen kunnen worden met edge illumination-
beeldvorming simultaan te reconstrueren, zonder de noodzaak van een
preprocessing stap. De gezamenlijke reconstructiebenadering vermindert
reconstructietijden, omdat de preprocessing stap wordt overgeslagen
en maakt een veel flexibeler acquisitieschema mogelijk, omdat er geen
noodzaak is om bij elke projectiehoek een volledige illuminatiecurve te
samplen. De voorgestelde doelfunctie wordt geminimaliseerd met behulp
van verschillende niet-lineaire optimalisatiemethoden, en een gesplitste
Barzilai-Borwein-gradiëntmethode wordt gëıdentificeerd als de meest
praktische kandidaat. In vergelijking met de state-of-the-art verbetert
onze methode de reconstructiekwaliteit op subsampled datasets, waardoor
de reconstructie van drie contrasten uit single-shot datasets mogelijk is.

In Hoofdstuk 6 besluiten we de thesis door onze algemene bevindingen
uit de verschillende onderzoekshoofdstukken te beschrijven. Verder geven
we een overzicht van mogelijkheden voor toekomstig onderzoek gebaseerd
op het werk in deze thesis.
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Summary

X-ray computed tomography (CT) is a powerful and non-invasive tech-
nique to visualise the internal structure of an object from a set of X-ray
radiographs. Reconstruction algorithms are used to map projection data
to a 3D volume. A model of the X-ray acquisition process is used by
reconstruction algorithms and the algorithms require a large number of
projections to function well. However, in certain applications, the number
of projections has to be limited, to reduce total delivered dose, lower
acquisition time or because of geometrical constraints. Furthermore, the
most commonly used algorithms have a simple linear forward model for
X-ray attenuation that does not model the real acquisition accurately.
Finally, conventional reconstruction algorithms in CT are not efficient
with respect to computation time. In this thesis, we will develop improved
reconstruction algorithms for CT by investigating more accurate non-
linear forward models, and different numerical optimisation approaches
for these models. Both conventional X-ray CT and phase contrast X-ray
CT will be considered. In phase contrast X-ray CT, additional contrasts
are available since the X-ray imaging setup is made sensitive to refraction
effects of the X-ray beam. In what follows, an overview of the different
chapters of the thesis is given.

In Chapter 1, the concepts needed for this thesis are introduced.
First, the basics of X-ray imaging and X-ray CT are described. Next, an
overview is given of the effects undersampling and model errors have on
the reconstruction and established methods to deal with these effects
are examined. Then, basic concepts of numerical optimisation for CT
are introduced. Different gradient descent and quasi-Newton methods
are described, as they will play a crucial role in what follows. Finally,
a phase sensitive X-ray imaging modality, called edge illumination, is
introduced and the origin of the new contrast is described. The standard
processing procedures to disentangle the contrasts are explained and the
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standard reconstruction techniques used for edge illumination CT are
shown.

In Chapter 2, a novel reconstruction algorithm, called poly-DART, is
proposed, to deal with undersampled data from polychromatic sources,
based on a heuristic discrete tomographic reconstruction framework,
DART. DART is a reconstruction framework in which prior knowledge
on the number of object materials is exploited. In monochromatic X-ray
CT, DART has been shown to lead to high-quality reconstructions, even
with a low number of projections or a limited scanning view. However,
most X-ray sources are polychromatic, leading to beam hardening effects,
which significantly degrade the performance of DART. The proposed
discrete poly-DART algorithm exploits sparsity in the attenuation values
using DART and simultaneously accounts for the polychromatic nature
of the X-ray source. The results show that poly-DART leads to a vastly
improved segmentation on polychromatic data obtained from Monte
Carlo simulations and on experimental data, compared to DART.

In Chapter 3, an improvement to the partitioning step in DART is
proposed. Many discrete tomography-based methods rely on a divide-and-
conquer procedure to reconstruct the volume in parts, which improves
their run-time and reconstruction quality. However, the procedure is
based on static rules, which introduces redundant computation and
diminishes the efficiency. In this work, an update strategy framework is
introduced that allows dynamic rules and increases control for divide-and-
conquer methods for discrete tomography. The framework is illustrated by
introducing Tabu-DART, which combines the proposed framework with
DART. Through simulated and real data reconstruction experiments, it is
shown that the approach yields similar or improved reconstruction quality
compared to DART, with substantially lower computational complexity.
Furthermore, the proposed strategy can be combined with the proposed
poly-DART algorithm from Chapter 2, improving the technique.

In Chapter 4, the use of quasi-Newton methods to minimise a polychro-
matic objective function is investigated, without the need for segmenting
the image into different material regions. The proposed objective function
can also be easily extended with regularisation terms in a mathematic-
ally sound framework. It is shown that the quasi-Newton methods can
outperform other statistical or algebraic reconstruction techniques. The
reconstruction quality and the projection error for reconstructions of
both Monte Carlo simulated data and experimental data are investigated.
From the considered quasi-Newton methods, Gauss-Newton-Krylov is
found to perform best. Compared to a recently proposed polychromatic
algebraic reconstruction technique, quasi-Newton solvers reach a lower
reconstruction error and have an increased convergence speed.
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In Chapter 5, a novel joint reconstruction method is proposed, which
utilises a combined forward model to reconstruct the three contrasts
obtainable with edge illumination imaging simultaneously, without the
need for a retrieval step. The joint reconstruction approach reduces re-
construction times, as the retrieval step is skipped, and allows for a much
more flexible acquisition scheme, as there is no need to sample a full illu-
mination curve at each projection angle. The proposed objective function
is minimised using different non-linear optimisation approaches and a
split Barzilai-Borwein gradient method is identified as the most practical
candidate. Compared to the state-of-the-art, our method improves recon-
struction quality on subsampled datasets, allowing the reconstruction of
three contrasts from single-shot datasets.

In Chapter 6, we conclude the thesis by describing our general findings
from the different research chapters. Furthermore, we provide an outlook
on opportunities for future research built upon the work in this thesis.
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CHAPTER 1
Introduction

1.1 Fundamentals of X-ray CT imaging

X-ray computed tomography (CT) is a non-destructive technique which
attempts to reconstruct the internal structure of an object from a set of
X-ray projections taken from different angles. This section outlines the
primary principles of tomographic X-ray imaging. The basics of X-ray
generation and attenuation are described, explaining how single X-ray
projections are formed. Next, we explore tomographic geometries and
basic reconstruction algorithms. For an in-depth exploration of these
topics, the readers are referred to [1] and [2].

1.1.1 X-ray generation

In both medical and laboratory CT systems, X-rays are typically pro-
duced using an X-ray tube, as illustrated in Fig. 1.1a. The generation
process commences by heating a cathode to around 2400 K, sufficient to
overcome the binding energy of electrons, thus leading to their emission.
The emitted electrons are then accelerated by a high voltage, generally
in the range of 10 to 300 kV, applied between the cathode and anode,
and will subsequently collide with the metal anode. Upon collision, the
electrons interact with the matter of the anode and decelerate quickly
and these interaction generate X-rays. An example of an X-ray spec-
trum, i.e. the distribution of different photon energies emitted by an
X-ray tube, is shown in Fig. 1.1b. The continuous line is comprised of
the bremsstrahlung and the discrete high peaks are from characteristic
radiation. The physical processes generating these two types of radiation
are different. Bremsstrahlung is the result of electrons slowing down and
deflecting as they move through the anode material. At each interaction,
the electron loses energy, and this lost energy is emitted in the form of
an X-ray photon. Characteristic X-rays are generated when an incoming
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1. Introduction

(a) (b)

Figure 1.1. Schematic drawing of an X-ray tube (a) and example of an
emitted X-ray spectrum (b).
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Figure 1.2. X-ray projection (a) with line profile (b) of an aluminium
step wedge. The first step is 5mm thick, all subsequent steps add 3mm.

electron ejects an inner-shell electron from an atom in the anode. A
higher-shell electron will move to the inner shell and in the process emit
a photon. The emitted photons only have a limited number of possible
energies, which are dependent on the material of the anode, and therefore
show up as discrete peaks in the emitted X-ray spectrum.

1.1.2 Attenuation of X-rays by matter

X-rays are known for their high capability to penetrate matter. However,
as an X-ray beam passes through an object, it loses intensity exponen-
tially. An X-ray projection of a step phantom is shown in Fig. 1.2a. The
phantom is made of aluminium and looks like a staircase, with each step
adding 3mm of additional material. It is clear from the line profile that
when the steps increase in thickness linearly, the intensity loss happens
exponentially.

The amount of intensity lost depends on several factors, including
the distance the beam travelled through the material, the atomic com-
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1.1. Fundamentals of X-ray CT imaging

position of the material, and the density of the material. In the case of a
homogeneous object, these last two factors can be combined into a single
value, the attenuation coefficient µ of the object. For non-homogeneous
objects, the attenuation value is dependent on the position in the object,
so it becomes a spatial function µ(s), where s represents the position
within the object. The Beer-Lambert law offers a formula that expresses
how much of the X-ray beam will be absorbed when passing through a
homogeneous material. Let I be the intensity of the beam after travelling
through the material, l the distance travelled, and I0 the original intensity
of the beam, the Beer-Lambert law is then expressed as follows:

I = I0e
−µl. (1.1)

To describe the attenuation of a non-homogeneous object, the Beer-
Lambert law can be straightforwardly extended using a line integral. For
each infinitesimal length along the line, the attenuation is given by the
homogeneous Beer-Lambert law in Eq. 1.1. So, to give the complete atten-
uation of the X-ray beam along a line, all the infinitesimal attenuations
need to be summed up as follows:

I = I0e
−

∫
µ(s) ds, (1.2)

with s the position vector in object space. As shown in Fig. 1.1b, an X-ray
tube usually emits a wide spectrum of X-rays. In reality, photons with
different energies interact with matter differently, thus the attenuation
coefficient is energy dependent. Again, the attenuation model can be
updated to reflect the energy dependence. Assume that the spectrum
has minimal and maximal energy, ϵmin and ϵmax respectively. Let I0(ϵ)
be the original energy-dependent intensity of the beam and let µ(s, ϵ)
be the energy-dependent spatial function of the attenuation coefficients
in the object, then the polychromatic Beer-Lambert law along a line is
given as:

I =

∫ ϵmax

ϵmin

I0(ϵ)e
−

∫
µ(s,ϵ) dsdϵ. (1.3)

In practice, the monochromatic formula in Eq. 1.2 is the expression
most commonly used to model X-ray attenuation. It is an approximation
of Eq. 1.3 at one so-called effective energy in the spectrum. The mono-
chromatic formula is used often because Eq. 1.2 can be easily linearised,
and Eq. 1.3 can not. Linearising Eq. 1.2 is done by transforming it to the
following equivalent equation:

−ln

(
I

I0

)
=

∫
µ(s) ds. (1.4)

3



1. Introduction

Figure 1.3. FleXCT scanner system with rotating sample stage at
Vision Lab, University of Antwerp with the main parts indicated.

The division by I0 is called flatfielding or normalising, as it transforms
the measured intensity image I into a relative intensity, and the image
I0, which is the projection image without sample present, is called the
flatfield. Taking the negative natural logarithm is called log-correcting.
The same technique of flatfielding and log-correcting cannot be used to
linearise Eq. 1.3, as there is no closed-form inverse function for general
sums or integrals of exponential functions.

The next section will discuss how the inverse problem can be solved,
that is, how attenuation values µ(s) can be reconstructed from measured
intensities I.

1.1.3 Tomographic imaging

With X-ray imaging, it is possible to acquire 2D images of an object,
called radiographs. Radiographs are projections or X-ray shadows of the
object, where the detected intensity is predicted by the Beer-Lambert
law. It is clear that it is impossible to infer from a single projection value
which specific distribution of attenuation values along the ray led to the
measured loss in intensity. There are infinitely many different solutions to
the problem. A clear drawback of radiography is, therefore, that all spatial
information in the projection direction is lost as the 3D object is projected
onto a 2D plane. To regain the spatial information, multiple measurements
are required. If the position of the X-ray source and detector relative to
the object is changed, then the lines along which the attenuation values
are integrated change and a new measurement of the same object is
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1.1. Fundamentals of X-ray CT imaging

(a) (b)

Figure 1.4. Figure showing (a) two orthogonal parallel beam projections
of a 2D Shepp-Logan phantom and (b) the sinogram containing 1000
parallel beam projections of the Shepp-Logan phantom, with projection
angles evenly spaced in [0, 180◦].

obtained. Therefore, multiple projections are acquired while the source
and detector are rotated around the sample (or, equivalently, the sample
itself rotates), leading to X-ray tomography. An example of an X-ray
scanner, the FleXCT system at Vision Lab, University of Antwerp [3], is
shown in Fig. 1.3. Since each measurement is of the same spatial function
µ(s) of attenuation values in the object, given enough measurements, it
is possible to retrieve a full 3D representation of the object, through the
use of a CT reconstruction algorithm. Such algorithms depend on the
projection geometry that is used in the acquisition. In 2D tomography,
i.e. projections of 2D slices onto a 1D line detector, the most common
geometries are parallel beam or fan beam. In a parallel beam geometry
all lines from source to detector along which the projection is taken are
parallel to each other - see Fig. 1.4, while in a fan beam geometry the lines
all originate from a single source point and fan out towards the detector.
In 3D equivalent projection geometries exist, parallel beam and cone
beam. For a 3D parallel beam, the rays are detected at a plane instead
of a line, thus can be seen as a stack of 2D parallel beam geometries.
With a cone beam geometry the rays form a cone instead of a fan as they
go from the point source to the detector plane. The central slice of a

5



1. Introduction

cone beam projection is the same as that of a fan beam projection from
the same point source. The next section describes how to reconstruct an
object from its projections.

1.1.4 Computed tomography

Given a set of tomographic projections, the goal of computed tomography
(CT) algorithms is to reconstruct the 3D object. In this section the
projection geometry is first assumed to be parallel beam and the 2D
case will be presented and it is noted whenever the presented algorithms
would need to be adapted for other projection geometries. The problem
of reconstructing a 3D volume from 2D projections in a 3D parallel beam
geometry is equivalent to reconstructing a 2D slice from 1D projections in
a 2D parallel beam geometry multiple times. A linear physical projection
model for an X-ray image along a single ray is given by the Beer-Lambert
law in Eq. 1.4. After imaging, the left-hand side of Eq. 1.4 is known, as it
is the projection data, while the spatial function µ(s) is our unknown
object to be reconstructed. The projection operator of the 2D object
to 1D projections is mathematically described by the Radon transform
of the function µ. Any line L in 2D space, can be identified by two
parameters, its distance from the origin and the angle it makes with the
y-axis, η and θ, respectively. All lines in a 2D space can then be written
in the form:

L(η, θ) = {(x, y) ∈ R2 : η = x cos(θ) + y sin(θ)}. (1.5)

The line integral of a function f : R2 → R along L(η, θ):

p(η, θ) =

∫
L(η,θ)

f(s)ds

=

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(θ) + y sin(θ)− η)dxdy,

(1.6)

with δ(0) = 1 and δ(x) = 0 for every x ∈ R0. The Radon transform of f
is the function Rf that maps each line L(η, θ) to the line integral of f
along that line. From Eq. 1.4 it is clear that Rµ, when µ is the function
of attenuation values in space of an object, is the collection of all possible
flatfielded and log-corrected X-ray projections of µ.

Analytical reconstruction techniques

The simplest reconstruction method is the basic back projection of the
sinogram:

f(x, y) =

∫ π

0
p(x cos θ + y sin θ, θ)dθ (1.7)
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1.1. Fundamentals of X-ray CT imaging

(a) (b)

Figure 1.5. Reconstructions of the Shepp-Logan phantom from the
sinogram data in Fig. 1.4b, using (a) back projection and (b) filtered
back projection.

The back projection smears the projected data back along each corres-
ponding projection direction, resulting in a blurred reconstruction, as
can be seen in Fig 1.5a. The back projection is unsuited for use as a
reconstruction technique directly, however, it is an integral part of other
reconstruction techniques.

Using the Fourier slice theorem [2], it can be proven that the following
formula gives an exact inverse of the Radon transform:

f(x, y) =

∫ π

0

∫ ∞

−∞
P (q, θ))|q|e2πiq(x cos θ+y sin θ)dqdθ, (1.8)

with P (q, θ) the Fourier transform of p(η, θ). Applying the formula (1.8) to
projection data gives back the function µ and therefore is a reconstruction
algorithm, called filtered back projection (FBP). Following Eq. 1.8, the
FBP algorithm consists of the following steps:

1. Calculate the Fourier transform of the measured sinogram p(η, θ),
giving P (q, θ).

2. Multiply with a ramp-filter |q|, giving |q|P (q, θ)

3. Calculate the inverse Fourier transform of |q|P (q, θ), resulting in a
filtered sinogram.

4. Back project the filtered sinogram to obtain a reconstruction of
the object.

7



1. Introduction

In Fig. 1.5b the FBP reconstruction of the sinogram data from Fig. 1.4b
is shown. Although FBP is theoretically the exact solution to the inverse
problem, this only holds in the case where all projection data is available,
i.e. the continuous projection of the function along every possible line
in space is known. In practice, only a finite number of line integrals
is calculated, one for each pixel on the detector, for each projection
angle. The quality of the reconstruction can be severely degraded when
only a small number of projections or noisy projections are available.
Furthermore, the algorithm only holds for parallel beam geometries. X-
ray setups following a parallel beam geometry are present at synchrotron
facilities, large particle accelerators which can provide high intensity
X-ray beams, however, for laboratory imaging setups, a fan-beam or
cone-beam geometry is the correct model. Therefore, other analytical
formulas need to be used for data from lab-based systems. However,
FBP is widely used in practice as it is not a computationally intensive
algorithm and therefore results in fast reconstructions. Furthermore,
when a lot of high-quality data is available, FBP can also result in
high-quality reconstructions.

Algebraic reconstruction techniques

There is a disconnect between the model used in analytical methods and
the reality of tomographic imaging and reconstruction on a computer.
The use of the Radon transform as a model for the acquisition process
starts from the assumption that everything is continuous. In practice,
all parts of the imaging and reconstruction framework are discrete: the
detector has a finite number of pixels with a certain width and the image
grid to be reconstructed on, stored in computer memory, will have a
finite number of pixels. Algebraic reconstruction techniques model the
problem using discretised expressions already. In the case where the
linear Beer-Lambert expression Eq.,1.4 is used as the physical model,
the following linear system of equations is found:

p = Ax. (1.9)

Here, x ∈ Rnvol represents the lexicographically vectorised image, with
nvol = nx ∗ ny, the number of voxels. Each element of x corresponds to
the average linear attenuation coefficient µ(s) within the corresponding
continuous region. The normalised and log-corrected projection p, is a
vector in Rnproj , with nproj = ndet ∗ nangles, the product of the number
of detector pixels and the number of projection angles. The projection
matrix A ∈ Rnproj×nvol is the matrix that models the projection as
a weighted sum of the elements in x. The elements aij in A are the
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1.1. Fundamentals of X-ray CT imaging

Figure 1.6. Graphical representation of the weights aij found in the
projection matrix A. The intersection length of the ray from the source
to the detector pixel pi with the voxel xj is shown in red.

intersection lengths of the ray li with the voxel xj . For a single parallel
beam projection, a graphical representation is given in Fig. 1.6. For the
projection matrices associated with a fan or cone beam geometry the
concept is the same, but as the lines to each detector element have a
differently angled path, the intersection lengths will be different compared
to parallel beam. Multiplication with the projection matrix A can be
seen as a discretised version of the Radon transform, where the function
exists on a finite grid and the transform only considers a finite number of
rays. Additionally, multiplication with the transposed projection matrix
A⊤ is a weighted distribution of the projection values on the pixels,
which is a discretised version of the back projection. The goal of any
reconstruction algorithm is to find a solution to Eq. 1.9. In general, the
inverse of the matrix A does not exist, so the system does not have a
true solution. Instead, a best solution x∗ can be defined as the solution
to a minimisation problem:

x∗ = argmin
x

∥Ax− p∥, (1.10)

with ∥·∥ some vector norm, typically a squared 2-norm. In case of the
squared 2-norm, the best solution, then called the least-squares approx-
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imation, can be found using the Moore-Penrose inverse as [4]:

x∗ = argmin
x

∥Ax− p∥22 = (A⊤A)−1A⊤p. (1.11)

However, the exact solution cannot be constructed for most real CT
problems as the matrix A⊤A is too large and ill-conditioned, as A
is ill-conditioned. Algebraic reconstruction techniques will instead it-
eratively approximate the solution x∗. Many iterative reconstruction
techniques have been developed for CT, such as the Algebraic Recon-
struction Technique (ART), the Simultaneous Iterative Reconstruction
Technique (SIRT), and the Simultaneous Algebraic Reconstruction Tech-
nique (SART)[5, 6, 7]. However, any optimisation algorithm for linear
problems can be used to solve Eq. 1.10. For example in [8] it is shown that
it is possible to achieve the same reconstructions as SIRT with less com-
putational work, with the use of Krylov optimisation techniques. In this
section, SIRT [6] will be introduced , which is a Landweber algorithm to
solve Eq.,1.10. More advanced algorithms for CT reconstructions will be
discussed in Section 1.2. Starting with an initial guess x(0), for example
the 0-vector, SIRT provides new approximations for the reconstruction
iteratively as follows:

x(k+1) = x(k) −CA⊤R
(
Ax(k) − p

)
, (1.12)

with C = (c)ij and R = (r)ij diagonal matrices of inverse column and
row sums, respectively.

cii =

(∑
k

aki

)−1

, rii =

(∑
k

aik

)−1

. (1.13)

As the operators A and A⊤ can be seen as forward and back projection,
the steps in the SIRT algorithm can be described as follows:

1. From the current guess x(k) simulated projections Ax(k) are made.

2. The simulated projections are compared to the measured data to
find the projection difference: Ax(k) − p.

3. The projection difference is then weighted with R, back projected,
and weighted with C.

4. The resulting correction term is subtracted from x(k).

5. Repeat steps 1-4 until a stopping criterion is reached.
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1.2. CT artefacts and specialised reconstruction techniques

The SIRT algorithm solves the weighted least squares problem:

argmin
x

∥Ax− p∥2R, (1.14)

and can be shown to always converge to the reconstruction with minimal
error in R-norm [9].

1.2 CT artefacts and specialised reconstruction
techniques

In Section 1.1 basic reconstruction techniques for X-ray CT, FBP and
SIRT were described. Both methods are based on the linearised monochro-
matic Beer-Lambert law (1.4). The model makes a number of assumptions
of the imaging setup, for example, the source being a point-source, the
beam being monochromatic and the object being stationary. Whenever
the model does not align with reality, errors in the model will be trans-
ferred to the reconstruction as artefacts [10, 11, 1]. Additionally, for
high-quality reconstructions, an adequate number of projections has
to be acquired. Otherwise, the reconstruction problem is too underde-
termined, and underdetermination will also result in artefacts in the
reconstructed images. Artefacts obscure the interior structure, leading to
a (partially) unusable scan or, worse, can lead to misinterpretation of the
artefact as a feature of the real object [12]. In this section, an overview of
common sources of reconstruction artefacts and their associated effect on
the reconstruction will be provided. Next, algorithms designed to reduce
the effects of certain artefacts are described.

1.2.1 CT reconstruction artefacts

Sources of CT reconstruction artefacts can be broadly divided into three
categories:

• Calibration errors occur when information about the state of scan-
ner is incorrect or unkown.

• Undersampling takes place when the angular sampling is insuffi-
cient.

• Model errors, where the linear Beer-Lambert model no longer
accurately describes the real image formation process.

Each of these scenarios will be investigated separately in the following
sections. Of course, in an experimental setup, multiple sources of errors
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1. Introduction

Figure 1.7. Shepp-logan phantom on 1024× 1024 pixel grid.

can be simultaneously present, further degrading the quality of the
reconstruction. The artefacts discussed here will be demonstrated using
simulated reconstructions. From the 1024× 1024 Shepp-Logan phantom,
shown in Fig. 1.7, simulated projections with 1449 detector pixels will
be created. Different sources of reconstruction artefacts will be present
in different simulated datasets. CT reconstructions will be made using
FBP from the imperfect projection data. Unless otherwise stated, 1000
simulated projections are used.

Calibration errors

The first source of error is the X-ray scanner itself. From the equation
of the Beer-Lambert law 1.4 and the associated linear problem 1.9, the
parameters and properties of the scanner define both I0, the flatfield
intensity, and A the projection matrix dependent on the chosen scanning
geometry. Computing a reconstruction of the scanned data with I0 or
A wrongly measured will result in inaccurate reconstructions. For I0,
also known as the flatfield intensity, projections are usually taken before
and/or after scanning the object, as I0 represents the intensity measured
when no attenuation occurs between source and detector. In general, I0
is different for different detector pixels, as the detector sensitivity is not
uniform. Additionally, detector pixels can malfunction over time, leading
to dead pixels. When I0 is not measured accurately, lighter and darked
bands are still visible on the flat-field corrected sinogram. The bands
give rise to light and dark rings in the reconstruction [13, 10, 11]. A
simulated example of such ring artefacts is shown in Fig. 1.8a.

The projection matrix A is incorrectly constructed when the geomet-
ric information about the trajectory of the scanner is incorrect. Some
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1.2. CT artefacts and specialised reconstruction techniques

(a) (b)

Figure 1.8. Reconstructions of the Shepp-Logan phantom using FBP: (a)
from projections where I0 has unknown variations, (b) from projections
where the COR is wrongly estimated by 10 pixels.

examples of geometric parameters that can be changed are the distances
between source, object, and detector, the rotational step, and the centre
of rotation (COR). Typically, all required parameters are reported by the
scanning system. A common source of error is an incorrectly documented
COR, which even for small misalignments can give severe reconstruction
artefacts [14]. When the COR is misaligned, the motion of the object
between projections is incorrectly described, leading to smearing and
doubling artefacts throughout the reconstruction. An example of the
reconstruction of the Shepp-Logan phantom with a misaligned COR of
10 pixels is shown in Fig. 1.8b.

In general, calibration errors can lead to severe artefacts in recon-
structions. However, for standard acquisition setups, the effects can be
minimised by adequate flatfielding and proper system maintenance.

Undersampling

Tomographic reconstruction requires a large number of projections to
generate a high-quality image. For FBP, a large number of projections is
required to accurately approximate the continuous problem the algorithm
solves. For algebraic methods, enough samples must be taken to ensure
that the minimisation problem in (1.10) is not underdetermined. When
the number of projections is low or the projections do not cover the
full angular range, this underdetermination will lead to reconstruction
artefacts, as many local minima of the inverse reconstruction problem
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(1.10) exist.

When only a limited number of projections are acquired, it is called
few-view tomography. In Fig. 1.9 FBP reconstructions of few-view datasets
are shown, with an increasing number of projections. Streaking artefacts
appear in a pattern formed by backprojection. As more projections
become available, the artefact pattern becomes less severe and more
details in the reconstruction can be discerned. In the reconstruction from
five projections, close to no information about the object can be inferred.
At 10 projections, the general shape of the outside and the largest inner
features can be seen. In the reconstructions from 20 and 50 projections,
most of the structures can be seen, although the undersampling artefacts
are still strongly present.

Another potential way undersampling can occur is when the range
in which projections are taken is reduced, also called a missing wedge.
In Fig. 1.10 reconstructions from such a dataset are shown. For both
reconstructions 1000 projections are used, however, instead of sampling
the full [0, 180◦] range, the subsets [5◦, 175◦] and [20◦, 160◦] are considered.
In both cases, it can be observed that X-shaped streaks appear in the
phantom, with the angle dependent on the missing wedge angle, lowering
reconstruction quality.

In contrast to the calibration errors seen in the previous section, un-
dersampling in X-ray CT is typically not an error but a choice. Few-view
imaging allows for much faster scan times. If the reconstructions made
from such a highly subsampled dataset are still usable, then acquiring
fewer images is beneficial for a variety of applications, for example: fewer
projections of a patient in medical imaging reduce the dose of harmful
radiation [15], industrial in-line inspection only allows a few seconds per
object for scanning [16] and a higher time resolution can be obtained
in 4D-CT, with less scans needed [17]. The need for limited angular
range tomography arises when large objects are to be scanned, such as
entire cars and aeroplane wings [18]. In such cases, the source and de-
tector are often unable to make a full rotation. Therefore, it is clear that
the development of techniques that allow for accurate reconstructions
from undersampled data is important to advance the field of X-ray CT
imaging. Because of their practical importance, reconstructions from
undersampled data will be a main focus for the research presented in
this thesis, see Chapters 2, 3, and 5.

Model errors

The last type of reconstruction error to be considered are those related
to deviations from the imaging model. Both FBP and SIRT assume a
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(a) (b)

(c) (d)

Figure 1.9. Few-view reconstructions of the Shepp-Logan phantom
using FBP from (a) 5, (b) 10, (c) 20 and (d) 50 projections.

linear imaging model based on the normalised and log-corrected Beer-
Lambert law (1.4) and (1.9). Reality can deviate from the assumptions
of the Beer-Lambert model in a variety of ways [10, 11, 1, 19]. In this
section, three common ways will be highlighted. First, movement of the
object during scanning will be considered. Next, the effect of noise in the
measurement will be shown. Finally, the effect of polychromatic sources
is studied.

In the basic tomography models introduced in Section 1.1.4 the
imaged object is assumed to be static, i.e. unchanging throughout the
scan. Mathematically, the static nature of the object is expressed by the
spatial function µ(s) being independent of time. When the object is not
stationary during the acquisition, or equivalently, if the scanning setup
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(a) (b)

Figure 1.10. Missing wedge reconstructions of the Shepp-Logan
phantom using FBP from 1000 projections in (a) [5◦, 175◦] and (b)
[20◦, 160◦].

is unstable, artefacts appear in the reconstruction. In Fig. 1.11 the FBP
reconstruction of the Shepp-Logan phantom is shown, where the phantom
was translated for 0.1 pixel per projection at an angle of 45◦, for half of
the scan in one direction, and for the second half back in the direction
of the starting position. To compensate for the discrepancy between the
static model and the dynamic acquisition, the large structures in the
reconstructed image are deformed, while the smaller features, such as the
three ellipses on the bottom, are smeared out and become unrecognisable.
Movement of the object during scanning is a common problem in medical
CT, where involuntary patient movement hinders clear imaging [10, 20].
Recently, 4D CT, that is, time-resolved tomography, has become an
imaging modality with increasing research interest [21, 22, 23, 24, 25].
4D CT is made possible by more accurate modelling of the dynamic
imaging process.

The entire X-ray imaging chain is a stochastic process. It can be
shown that the resulting process from X-ray generation to measurement
by the detector is a cascaded Poisson process [1]. Therefore, noise in
the acquired images is unavoidable in real measurements. However,
the Beer-Lambert law does not take statistical behaviour of the X-ray
beam into account, modelling the acquisition instead as a deterministic
process. This discrepancy will again lead to reconstruction errors since,
according to the deterministic model, any fluctuation in the projection
data must be due to differences in the attenuation coefficients of the object.
Reconstructions using FBP from projection data with different levels of
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1.2. CT artefacts and specialised reconstruction techniques

Figure 1.11. FBP reconstruction of the Shepp-Logan phantom with
simulated movement during scanning.

simulated Poisson noise are shown in Fig. 1.12. The reconstructions from
noisy data appear to be noisy themselves. The more photon counts are
expected per detector pixel, the lower the effect of the noise becomes. In
the case with the strongest noise, Fig. 1.12a, details of the reconstructions
are fully obscured, while in the case with the most photons, Fig. 1.12d,
the fluctuations in the reconstructed values are minimal. The number of
detected photons can be increased by either increasing the exposure time
or by increasing the source power. In this thesis, no special attention is
paid to the statistical nature of the images, although noise is of course
present in all experimental datasets used. A large body of literature is
available on the nature of noise in CT images and algorithms attempting
to diminish its adverse effects on reconstructions [26, 27, 17, 28].

The spectrum emitted by an X-ray tube is polychromatic, i.e. the
tube emits photons at different energies. In reality, attenuation depends
on the energy of the photons as discussed in Section 1.1.2. The energy
dependence of the attenuation coefficient for different materials is shown
in Fig. 1.13. From Fig. 1.13 one sees that the relationship between at-
tenuation and energy is non-linear and different for different materials.
Furthermore, the lower-energy photons are attenuated at a higher rate
than the higher-energy photons. As a result, the average energy of the
X-ray beam shifts upward as it travels through an attenuating object,
as the low-energy photons get attenuated at a higher rate. In recon-
structions utilising a monochromatic model, the energy shift leads to
cupping artefacts: the attenuation is overestimated at the edge of the
object and underestimated on the inside. An FBP reconstruction from
simulated polychromatic data, as well as a line profile through the recon-
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(a) (b)

(c) (d)

Figure 1.12. FBP reconstructions of the Shepp-Logan phantom with
simulated noise corresponding to (a) 102, (b) 103 and (c) 104 (d) 105

photons per detector pixel in the flatfield.

struction of the middle column of the image, which shows clear cupping,
are shown in Fig. 1.14. A side effect of cupping is that regions that are
in reality homogeneous no longer are reconstructed with a single grey
value, complicating segmentation procedures common in the analysis of
X-ray images. Research on novel reconstruction techniques that account
for polychromaticity is presented in Chapters 2, 3, and 4.

1.2.2 Advanced reconstruction techniques

In this section an overview of strategies to deal with the problems outlined
in the previous section is given. It will mainly be dealing with the two
sources of artefacts that are investigated in this thesis, polychromatic
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Figure 1.13. Attenuation coefficients of different materials as a function
of photon energy.
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Figure 1.14. (a) FBP reconstructions of the Shepp-Logan phantom with
simulated polychromatic spectrum. (b) Lineplot of the middle column of
the reconstruction.

effects and undersampling.

Reconstructions from polychromatic data

There are three strategies to deal with model errors [29, 30]: hardware,
image processing, and model-based approaches.

First, there are hardware solutions which attempt to change the real
acquisition in such a way that it is better approximated by the chosen
reconstruction model. An example of hardware solutions that reduce
beam hardening is the use of a hardware filter, which is a small metal plate
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placed directly at the source [31]. The filter removes a larger fraction of
low-energy photons, pre-hardening the beam. Reconstructions from data
acquired with a pre-hardened spectrum will show less cupping artefacts,
however, the filter absorbs a number of the total photons available for
imaging, so the resulting images will either be noisier or longer scan
times are required.

The second option is an image preprocessing approach [32, 33]. Here,
the acquired images undergo an algorithmic image processing step that
attempts to correct the acquired images so that the resulting preprocessed
data set fits the chosen reconstruction model. For the case of beam
hardening, a preprocessing step can be seen as a function f such that:

f(ppoly(µ(s))) ≈ pmono(µ(s)), (1.15)

with ppoly(µ(s) the polychromatic forward projection and pmono(µ(s)
the monochromatic forward projection of an object µ(s). In other words,
the function f takes the polychromatic projections as input and attempts
to approximate a set of monochromatic projections from the same object.
The polychromatic-to-monochromatic conversion problem is in general
heavily underdetermined, therefore, some prior knowledge on the sample
must be assumed. A simple version of such a preprocessing algorithm
can be found by assuming that the spectrum of the source is known
and that the X-ray beam only traverses two materials from source to
detector: air and, for example, water. With the known spectrum and
the material-dependent attenuation curve, such as the ones shown in
1.13, it is trivial to create an algorithm that transforms polychromatic
measurements to equivalent line lengths through the chosen material. In
practice, however, samples of only a single non-air material are rarely of
interest, and the described preprocessing approach no longer provides
acceptable approximations once the materials present in the sample vary
too much in energy-dependent attenuation values [32]. Improvements,
for example, using fitted quadratic or cubic polynomials for f , have been
presented in [32]. Preprocessing techniques have the practical benefits
of being generally fast and not requiring a change in the imaging setup.
However, when the object to be imaged does not fulfil the assumptions
of the method, the artefact can be reduced insufficiently.

The third option is to define a new model of the acquisition process
and create a reconstruction algorithm based on the newly defined model.
The benefit of such a model-based reconstruction technique is that it
allows the most accurate modelling of the acquisition, therefore having
the potential to generate the most faithful reconstructions. The downside
is that, in general, model-based techniques require more computation time
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to reconstruct an image. In the next paragraphs, an in-depth look at the
construction of a model-based reconstruction algorithm for polychromatic
CT will be given: the polychromatic SIRT or pSIRT technique described
in [34]. First, the polychromatic algebraic forward model is introduced
and then the pSIRT update step is described.

As a model for the acquisition process, the polychromatic Beer-
Lambert law (1.3), described in Section 1.1.2, is used. After discretising
the energy spectrum into ne energy bins and discretising the object space,
one obtains the polychromatic analog to (1.9):

p(x) =

ne∑
e=1

I0(e) exp(−Ax(e)) , (1.16)

where each x(e) ∈ Rnvol is an object with linear attenuation coefficients
at energy e, with e ∈ {1, . . . , ne}. The model in (1.16) requires a prior
estimate of the energy-dependent flatfield I0(e). In (1.16) the number of
unknowns is ne times higher than in the monochromatic case, however,
there is of course a strong correlation between the different values that
xi takes at the different energy levels, as it represents the same point in
space and thus the same material. To reduce the number of unknowns
to the same number as in the monochromatic case, basis materials
are used. Each material present in the object is assumed to be one of
the basis materials or is well approximated by a combination of them.
The attenuation coefficients of the basis materials can be looked up for
any energy bin, for example at [35]. By selecting nm basis materials,
as well as the attenuation values of the materials in all energy bins,
µ1(e), . . . , µnm(e), (1.16) can be rewritten as:

p(x) =

ne∑
e=1

I0(e) exp

(
−

nm∑
m=1

AMm(x)µm(e)

)
, (1.17)

with Mm triangular pointwise functions operating on the image x as
follows: 

0 if x ̸∈ [µm−1(er), µm+1(er)]

x−µm−1(er)
µm(er)−µm−1(er)

if x ∈ [µm−1(er), µm(er)]

x−µm+1(er)
µm(er)−µm+1(er)

if x ∈ [µm(er), µm+1(er)]

, (1.18)

with er an a priori selected reference energy. The Mm functions define
a linear interpolation model assuming that every voxel is a mixture of
two basis materials with neighbouring attenuation coefficients. When
more basis materials are considered, the number of forward projections
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increases. However, every non-zero value in x only gives rise to a non-
zero value in at most two of the Mm(x), so the volumes also get more
sparse as more basis materials are selected. From (1.17), one can define
a normalised polychromatic projection operator polyProj(·):

polyProj(x) = − log

(
p(x)∑ne
e=1 I0(e)

)
. (1.19)

Polychromatic SIRT (pSIRT) is a heuristic algorithm introduced in
[34], which changes the forward model in (1.12), while keeping the
backprojection of the error the same:

x(k+1) = x(k) −CA⊤R
(
polyProj(x(k))− p

)
. (1.20)

The pSIRT technique was shown to be able to accurately remove beam
hardening artefacts in clinical CT [34]. In this thesis, it will be used in
Chapter 2. However, some questions about the method also naturally
arise, as the backprojection of the errors was left unchanged from SIRT.
Therefore in the backprojection step, the polychromaticity is no longer
modelled. The method has also been shown to not converge in certain
cases [36]. An investigation into improved reconstruction algorithms from
the forward model in 1.17 is presented in Chapter 4.

Reconstructions from undersampled data

The simplest solution to the problem of undersampling would be to
interpolate the given data so that a ”full” dataset is still acquired.
An example of the interpolation method is shown in Fig. 1.15, where
reconstructions are made after interpolating the same datasets used for
Fig. 1.9 to 1000 projections each. The reconstructions do not exhibit the
typical streaking artefacts of undersampling as strongly as in Fig. 1.9, as
enough projections are available. However, the reconstructions exhibit
rotational blur, with the strength of the blurring dependent on the
angular step between the measured projections. Smaller details in the
reconstruction, such as the ellipses at the bottom of the phantom, are
smeared out by the rotational blur. It is clear from these reconstructions
that this approach is generally not advisable.

The interpolation solution does not address the fundamental issue
with reconstructions from undersampled data, namely that the space
of possible solutions is too large. Therefore, to deal with undersampled
data, some sort of prior knowledge of the object is usually required. The
prior knowledge will either be used to form a regularisation term, guiding
the reconstruction to a solution exhibiting desired traits, or will act as
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1.2. CT artefacts and specialised reconstruction techniques

(a) (b)

(c) (d)

Figure 1.15. Few-view reconstructions of the Shepp-Logan phantom
using FBP where the projection data is interpolated to create 1000
projections from (a) 5, (b) 10, (c) 20 and (d) 50 projections.

a constraint, reducing the space to be searched for solutions. Different
types of prior information can be exploited. In [37] reconstructions from
few-view projections in an industrial setting are improved by using the
CAD model of the scanned piece as prior information. Many methods
make use of some kind of sparsity of the image or a transformation of the
image, that is, in some sense, the domain is restricted. If the (transformed)
image is sparse in the image domain, i.e. the number of non-zero voxels
is small, compressed sensing [38] techniques can be used to retrieve more
accurate reconstructions. A common sparsifying transformation for X-ray
CT images is the gradient, as the object itself is not sparse in the image
domain, but the boundaries between different homogeneous regions are
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sparse compared to the rest of the image [39, 40, 41, 42]. Another type
of prior knowledge is knowledge on the values that the reconstruction
can take. In industrial CT the composition of the object is known in
advance, making a prior based on attenuation values a natural choice
[43]. Instead of reconstructing an image x ∈ Rnvol , the reconstruction
problem is reduced to searching for the optimal x ∈ {ρ1, ρ2, . . . , ρnm}nvol ,
with nm the number of materials and ρi the known attenuation values
of the materials. It is clear that, in theory, as the reconstruction domain
is significantly reduced in size, it should be possible to reconstruct the
image from a smaller number of projections. Reconstructing images with
only a limited number of possible grey values is studied in Discrete
Tomography (DT). For a more in-depth exploration of DT, the reader is
referred to [44, 45, 46]. In this thesis, we will work with and improve on
a discrete tomography technique called DART [47]. DART is a practical
CT algorithm shown to work well in a variety of use-cases [48, 49, 50,
51].

DART is built upon an Algebraic Reconstruction Method (ARM),
which calculates solutions to the reconstruction problem (1.9). A relaxed
SIRT is commonly used as the ARM. Relaxed SIRT iteratively computes
the following update step:

x(k+1) = x(k) − λCA⊤R
(
Ax(k) − p

)
. (1.21)

where λ ∈ R+ is called the relaxation parameter.
Let R = {ρ1 < ... < ρnm} be the set of grey values representing the

different materials of which the object is composed. Then, a solution
x to (1.9) is discrete if x ∈ {ρ1, ..., ρnm}nvol . Given an initial SIRT
reconstruction x(0), the key iterative steps in the DART algorithm can
be summarized as follows:

1. Segmentation: Let x(ℓ) be the output of the previous DART
iterations, with x(0) the output from the initial SIRT iterations.
Since the grey levels in the desired reconstruction are known to
be in R, the elements of x(ℓ) are projected (e.g., by thresholding)
onto R. The segmented image is denoted by s(ℓ).

2. Partitioning: In the partitioning step, a divide-and-conquer pro-
cedure is initiated by labelling the image voxels into two categories:
free voxels (which will be updated) and fixed voxels (which are kept
fixed at their current value). If a voxel has at least one neighbour-
ing voxel with a different grey value, it is considered a boundary
voxel and is added to the set of free voxels. Otherwise, the voxel is
initially considered fixed. Additionally, every non-boundary voxel
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1.2. CT artefacts and specialised reconstruction techniques

has a small but constant probability p to be included in the free set.
After labelling, the reconstruction process continues on the free
voxels only, while the values of the fixed voxels are not updated.

3. Masked reconstruction: A fixed number of SIRT iterations
is then performed on the free voxels and a new image x(ℓ+1) is
calculated by merging the updated free voxels with the fixed voxels.

4. Smooth and repeat After an optional smoothing is performed
by convolution with a 3 × 3 kernel, the steps are repeated until
a convergence criterion is met or a maximum number of DART
iterations has been reached. In this thesis, a 3× 3 median kernel
M was used with weight parameter b:

x = (1− b)x(ℓ+1) + b(M ∗ x(ℓ+1)) ,

where ∗ denotes the convolution operator.

Thanks to the masking step, the DART algorithm can deal with the
underdetermination of the reconstruction problem. When a voxel xi is
fixed at value ρj , the linear system (1.9) is updated as follows:

[
A1 · · · Ai−1 Ai+1 · · · Anvol

]


x1
...

xi−1

xi+1
...

xnvol


= p− ρjAi (1.22)

In the updated system the number of unknowns is reduced by one, while
the number of equations remains the same. Assuming that the segmented
value of xi is correct, the DART reconstruction will provide a better
estimate of the original object by solving the smaller linear system with
the fixed voxels removed, compared to solving the underdetermined
system directly with SIRT. The heuristic behind the partitioning into
boundary and non-boundary pixels is that algebraic reconstructions
tend to reconstruct large homogeneous regions well quickly, while the
detailed boundary regions take significantly more iterations. The DART
algorithm has a number of parameters that will influence performance
and are chosen heuristically. The most important ones are the percentage
of random voxels chosen to be free in the masking step and the different
numbers of iterations (initial, inner and outer).
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In Chapters 2 and 3, improvements to DART are presented. DART
relies on accurate prior knowledge of expected grey values for recon-
struction. However, as seen in Section 1.2.1, beam hardening makes
homogeneous object regions non-homogeneous in the reconstruction.
Polychromatic sources are unavoidable in industrial settings where the
prior knowledge required for DART is readily available. An approach to
deal with polychromatic data in the framework of DART is proposed and
this work is presented in Chapter 2. Furthermore, the chosen percentage
of random voxels is an important parameter in the DART framework. In-
creasing the number of fixed voxels reduces the computation per iteration.
However, a lower fix percentage can make the algorithm more robust to
noise and allow segmentation errors to be corrected more quickly [47].
For these reasons, the automatic optimal selection of the fix percentage
would make the DART framework more practically usable. It is also
clear that there is no need for the fix percentage to be static through-
out the different iterations of the DART algorithm. Therefore, a novel
framework to dynamically update the parameter is presented in Chapter
3. Furthermore, it is shown that the dynamic framework improves the
newly proposed polychromatic DART algorithm from Chapter 2.

1.3 Non-linear optimisation for CT

In this section we introduce the basic concepts of numerical optimisation
algorithms that we will use for CT. As mentioned in Section 1.2, it is
not clear that either SIRT or pSIRT are optimal iterative algorithms to
solve their respective CT reconstruction problems. The main drawback of
iterative algebraic solvers for CT, when compared to analytical methods
such as FBP, is their long computation time. Therefore, it is crucial to use
efficient methods to solve optimisation problems related to CT. First, we
will introduce gradient descent, a fundamental way to solve any optimisa-
tion problem. Next, a class of non-linear optimisation algorithms called
quasi-Newton methods are introduced. Finally, we quickly look at the
shortcomings of SIRT. For an in-depth look into numerical optimisation,
we refer to [4].

1.3.1 Gradient descent

A vector-valued optimisation problem is defined as:

min
x

f(x), (1.23)
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with x ∈ Rn and f : Rn → R, the objective function. It will be assumed
that f is a continuously differentiable function. The goal of an optim-
isation algorithm is to provide iterates x(k) that converge to a (at least
local) minimum of the objective function. The iterates can be written in
the following form:

x(k+1) = x(k) + α(k)d(k), (1.24)

with d(k) the direction of the step and α(k) the step size. In any point
x the gradient of f in x, ∇f(x), is the vector pointing in the direction
of steepest ascent. Therefore, as a minimisation strategy, it is natural
to choose the negative gradient as the step direction, which defines the
iterations of gradient descent :

x(k+1) = x(k) − α(k)∇f(x(k)). (1.25)

Gradient descent defines the direction of each step, but the step size still
needs to be selected. A good choice of step size is important, as sufficient
progress towards the minimum has to be made in each iteration for the
algorithm to be efficient. A second optimisation problem is defined for

the optimal step size in iteration k + 1, α
(k+1)
∗ :

α
(k+1)
∗ = argmin

α
f
(
x(k) + α∇f(x(k)

)
. (1.26)

Finding α
(k+1)
∗ would be too expensive to solve in every iteration, thus

there is a trade-off between the efficiency of the step and the time spent
determining α(k+1). The simplest option is to keep the step size constant
throughout the iterations. In this case, the convergence speed of the
gradient descent algorithm will be highly dependent on the choice of
α. However, no computation time is needed to calculate the step size.
Another option is to perform an inexact backtracking line search, that
is, iteratively checking if a step size αℓ fulfils certain conditions, such
as Wolfe, Goldstein, or Armijo [4]. If αℓ does not meet the conditions,
αℓ+1 = λαℓ is tried, with λ ∈]0, 1[, continuing until an acceptable step size
is found. Gradient descent with line searches is intuitively clear, however,
it does not perform well. Convergence to the minimum is heavily affected
by ill-conditioning [52], even in the case where the optimal step size
α∗ is found. A special step size for gradient descent will be considered
that makes the algorithm behave entirely differently from the line search
version. Barzilai-Borwein steps [52], are step sizes for gradient descent,
which, in iteration k, are defined as:

α(k) =

(
x(k) − x(k−1)

)
·
(
∇f(x(k))−∇f(x(k−1))

)(
∇f(x(k))−∇f(x(k−1))

)
·
(
∇f(x(k))−∇f(x(k−1))

) , (1.27)
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with an initial step size for the first iteration being chosen as either a
fixed step size or found through a backtracking line search. The Barzilai-
Borwein formula requires storing both the current and the previous value
for both x and ∇f(x). Using Barzilai-Borwein steps leads to improved
convergence speed and robustness against ill-conditioning [52]. However,
convergence to a minimum is no longer guaranteed to be monotone and
convergence tends to exhibit some erratic behaviour [53]. The Barzilai-
Borwein formula will be revisited in Section 1.3.2.

1.3.2 Quasi-Newton methods

To overcome some of the limitations of gradient descent and similar
first-order methods, quasi-Newton methods have been developed. Quasi-
Newton methods approximate the Hessian matrix (the second derivative
of the objective function), which can lead to significantly faster conver-
gence rates.

Newton’s method is an iterative root-finding algorithm. That is, given
a differentiable function F , Newton’s method iteratively approaches an
x such that F (x) = 0. Newton’s method was originally developed for
1-dimensional real-valued functions, however, it is easily extended to
higher-dimensional functions. Given F : Rn → Rn, differentiable, and its
Jacobian matrix JF , the kth update for Newton’s method is given by [4]:

∆x(k) = −JF (x
(k))−1F (x(k)) , (1.28)

such that x(k+1) = x(k) +∆x(k).

Newton’s method can be used for optimisation problems, since every
minimum of the objective function has to be a root of the gradient of
the objective function. So, given the objective function f : Rn → R,

∆x(k) = −Hf (x
(k))−1∇f(x(k)) , (1.29)

with H the Hessian matrix, gives the update step towards a critical
point of f . A critical point is guaranteed to be a minimum if f is convex.
For optimisation problems, the same update step can also be derived
from the second-order Taylor expansion of the objective function f :

f(x(k) + d) ≈ f(x(k)) + d⊤∇f(x(k)) +
1

2
d⊤Hf (x

(k))d. (1.30)

The ideal update d should minimise the right-hand side. The minimum
is found as a root of the derivative of the right-hand side with respect to
d, resulting again in the formula in (1.29).
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1.3. Non-linear optimisation for CT

The update step in (1.29) can also be seen as a search direction for
(1.24). The direction given in (1.29) is called the Newton direction and
can again be used in a line search method. Methods using the Newton
direction tend to have faster local convergence than steepest descent
methods [4].

For CT, Newton’s method can be used to minimize least-squares
problems, with objective function G : Rn → R:

G : x 7→ 1

2
∥B(x)− b∥22 (1.31)

with x ∈ Rn, b ∈ Rm and B : Rn → Rm some imaging model that maps
x to the space of the vector b.

Inversion of the HessianHG is infeasible for large systems of equations,
as is the case for X-ray CT data. Quasi-Newton methods attempt to
solve (1.29) through some, usually easier to compute, approximation of
the (inverse) Hessian. Two different quasi-Newton techniques will now be
considerd, Gauss-Newton-Krylov (GNK) and Broyden-Fletcher-Goldfarb-
Shanno (BFGS). Furthermore, gradient descent with Barzilai-Borwein
will aslo be briefly described in the context of quasi-Newton methods.

Gauss-Newton-Krylov

Equation (1.29) can be rewritten as the following equivalent linear system
of equations:

HG(x
(k))∆x(k) = −∇G(x(k)) , (1.32)

which can be solved with an iterative method to obtain an approximate
solution for ∆x(k). Krylov subspace methods, explained below, can be
used to solve the linear system, resulting in the so-called Newton-Krylov
method [54]. The Newton-Krylov approach solves the problem of having
to calculate the inverse directly.

Given a set of linear equations,

Wx = s, (1.33)

Krylov-subspace methods will iteratively minimize the residual over the
r-order Krylov subspace [54]

Kr(W , s) = span{s,Ws,W 2s, . . . ,W r−1s} (1.34)

in the rth step. A well-known and widespread Krylov algorithm is the
Conjugate Gradient method (CG)[55], which solves systems for symmetric
and positive definite matrices W . In this thesis, the minimal residual
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method (MINRES)[56] was always used, as implemented in MATLAB,
which still requires W to be symmetric, but no longer positive definite.

For least-squares problems of the form (1.31), the Hessian matrix can
be approximated as [4]:

HG(x
k) = J⊤

B (x(k))JB(x
(k)) , (1.35)

with JB the Jacobian of the model B in our objective function. The
approximation in (1.35) leads to the following system of equations:

J⊤
B

(
x(k)

)
JB

(
x(k)

) (
∆x(k)

)
=

−J⊤
B

(
x(k)

) (
B(x(k))− b

)
,

(1.36)

to which an approximate solution can be constructed using MINRES.
Once again, to guarantee a sufficient decrease in the sum of squares

of the residuals in each step, a backtracking line search with Armijo
conditions [4] can be performed along the descent direction ∆x(k) found
from (1.36). The resulting method is the Gauss-Newton-Krylov method.
For the practical implementation of the method, it is important to note
that there is no need to explicitly calculate and store the Jacobian or
approximated Hessian matrices. In X-ray CT applications, these matrices
are typically too large to store in memory. It suffices to program methods
FJ and FH , which, given a vector y, directly calculate the matrix-vector
products FJ(y) = Jy and FH(y) = Hy.

BFGS

A second quasi-Newton method to consider is BFGS. Starting from the
Taylor expansion (1.30), the exact Hessian is replaced by an approxima-
tion B(k):

f(x(k) + d) ≈ f(x(k)) + d⊤∇f(x(k)) +
1

2
d⊤B(k)d. (1.37)

BFGS is an algorithm that will update the Hessian approximation B(k)

in every iteration. The approximate Newton direction is:

d(k) = −B−1
(k)∇f(x(k)). (1.38)

To make B(k) a sensible approximation, it will be required to have certain
properties that make it similar to the exact Hessian. Since the Hessian
is always symmetric, the B(k) are required to be symmetric. For the
second condition, the approximation (1.37) is required to improve from
one iteration to the next. Assume that Bk is already known, and have
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thus made a new iterate x(k+1) = α(k)d(k). An update to B(k) needs to
be defined, to construct B(k+1). If the right-hand side of (1.37) is defined

as q(k)(d), then it is trivially seen that in d = 0, q(k) has the same value
and gradient as f in the point x(k). Similarly, in the next iteration q(k+1)

has the same value and gradient as f in the point x(k+1), regardless of
what B(k+1) is. The approximation B(k+1) can now be required to be
chosen in such a way that q(k+1) also matches the gradient of f in the

point x(k):

∇q(k+1)(−α(k)d(k)) = ∇f(x(k+1))− α(k)B(k+1)d
(k)

∇f(x(k)) = ∇f(x(k+1))− α(k)B(k+1)d
(k)

B(k+1)(x
(k+1) − x(k)) = ∇f(x(k+1))−∇f(x(k)).

(1.39)

(1.40)

The expression in (1.40) is called the secant equation. The BFGS al-
gorithm will require the updates to be symmetric, follow the secant
equation, and be positive definite. However, updates will not be made on
B(k), but directly on the inverse matrices B−1

(k). Furthermore, B−1
(k+1) is

chosen so that
∥∥∥B−1

(k+1) −B−1
(k)

∥∥∥ is small [4]. The update step for BFGS

is [4]:

B−1
(k+1) =

(
I −

y(k)g
⊤
(k)

g⊤
(k)y(k)

)
B−1

(k)

(
I −

y(k)g
⊤
(k)

g⊤
(k)y(k)

)
+

y(k)y
⊤
(k)

g⊤
(k)y(k)

(1.41)

with y(k) = x(k+1) − x(k) and g(k) = ∇f(x(k+1))−∇f(x(k)).

Barzilai-Borwein

The Barzilai-Borwein step size formula of (1.27) is found by defining α(k)

as [52]:

α(k+1) = argmin
α

∥yk − αgk∥22 . (1.42)

The Barzilai-Borwein steps provide therefore provide a scalar α(k+1), such
that the constant matrix 1

α(k+1) I comes as close as possible to satisfying
the secant equation. Barzilai-Borwein steps are a quasi-Newton method
where in every step the optimal constant diagonal matrix approximation
to the Hessian is chosen. If this matrix is defined as B(k+1) =

1
α(k+1) I, the

gradient descent step with step size α(k+1) can also be seen as a step with
length 1 along the approximate Newton direction −B(k+1)∇f(x(k+1)).
Barzilai-Borwein can therefore be seen as a quasi-Newton method, using
the best constant approximation to the Hessian in each iteration, with
’best’ being defined as the best at solving the secant equation.
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1.3.3 SIRT as an optimisation algorithm

In Section 1.1 the SIRT algorithm was introduced. As shown in equations
(1.10) and (1.14), the CT reconstruction problem is a minimisation
problem of the form of (1.23) and SIRT converges to a minimum if f is
chosen to be the R-norm of the projection difference. It turns out that
SIRT is not actually an optimal solver for the reconstruction problem.
In [9], SIRT is seen as an example of Richardson iterations [57] and it
is shown that the convergence of SIRT can be improved by multiplying
all the update steps by a factor λ ∈]1, 2[, which experimentally was
shown to halve the required number of iterations. Furthermore, SIRT
can also be seen as a special case of preconditioned gradient descent,
with preconditioner C. It suffices to calculate

∇∥Ax− p∥2R = 2A⊤R (Ax− p) , (1.43)

to see the update step in SIRT and standard gradient descent to be the
same up to the conditioner factor C. SIRT uses heuristically chosen geo-
metrical weighting in R and C, however, the algorithm does not provide
any proven advantages over other established minimisation techniques
[58]. Therefore, algorithms derived from SIRT, such as pSIRT [34], could
also be improved, at least in terms of convergence rate, by using different
optimisation approaches.

Our findings on alternative optimisation of a polychromatic objective
function are presented in Chapter 4. Furthermore, the methods described
in this section are also applied to a different non-linear imaging model
in Chapter 5

1.4 Edge illumination X-ray phase contrast
imaging

In Chapter 5, edge illumination (EI) phase contrast imaging, a different
X-ray imaging modality, will be studied. In this chapter, first, a brief
overview of the technique is given. Next, the standard edge illumination
CT reconstruction pipeline is introduced. Finally, recent developments
in EI reconstructions are discussed.

1.4.1 Differential phase contrast imaging

X-ray phase contrast imaging is an imaging modality based on the
changes in phase of the X-ray wavefront, instead of the attenuation used
in conventional X-ray imaging. In the complex index of refraction of a
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material:

n = (1− δ) + iβ, (1.44)

β is related to attenuation of the beam and δ drives the phase shifts
[59]. The refractive index n is energy-dependent. For X-rays, the contrast
achievable by exploiting the phase shifts can be up to 2 orders of mag-
nitude higher than the contrast achieved by attenuation-based imaging
[59]. The increased contrast available in phase contrast imaging has led
to a variety of applications, from biomedical studies [60, 61, 62, 63] to
non-destructive testing [64], materials science [65, 66] and security [67,
68].

Phase changes have always been present in X-ray imaging, however,
the effects on the measurements in a traditional scanner setup are usually
small to non-existent. A change in phase does not change the intensity
of the X-rays, and detectors do not measure the phase of the wave, only
the intensity. However, a change in phase results in a local change of
the propagation direction of the X-rays, i.e. the X-rays refract with a
certain angle dependent on the real part of the refractive index. The
refraction is dependent on the first derivative of the phase shift. Given
an object with spatial distribution of refractive indices n(x, y, z) =
1−δ(x, y, z)+ iβ(x, y, z), with the z-axis the axis from source to detector,
then the total attenuation µ and resulting angle of refraction along z is
given by [69]:

µ(x, y) = 2k

∫
β(x, y, z)dz

α(x, y) = ∇⃗x,y

∫
δ(x, y, z)dz,

(1.45)

(1.46)

with k the wave number depending only on the wavelength of the X-
rays. To enable differential phase contrast imaging, an X-ray imaging
setup that can measure refraction is required [59]. Since X-ray detectors
measure intensity, the imaging setup needs to make refraction effects
lead to intensity modulation at the detector.

1.4.2 Edge illumination setup

Edge illumination is a differential phase contrast technique in which the
X-ray beam hits the edge of the photon-sensitive part of the detector
pixel. Refraction effects will then cause more or less of the beam to hit
the detector pixel, resulting in the desired intensity modulation due to
refraction. To create an edge illumination imaging setup in a conventional
cone beam X-ray system, two gratings or masks are introduced [70]. The
first mask, the sample mask, splits the cone beam into smaller beamlets,
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with each beamlet fully separated from the neighbouring ones. Each
beamlet corresponds to a single pixel on the detector. The second mask,
the detector mask, blocks the edges between the detector pixels, creating
sensitive and insensitive regions on the detector. Each beamlet is partially
blocked by the detector mask and partially hits the detector pixel. The
setup is shown in Fig. 1.16. When a sample is introduced, the beamlets
undergo both attenuation and refraction effects. Attenuation always leads
to reduced intensity measured on the detector. Refraction effects, on
the other hand, can both increase or decrease the measured intensity,
depending on whether the beamlet gets refracted towards or away from
the center of the detector pixel. A graphical representation of the origin
of differential phase contrast in the edge illumination setup is shown in
Fig. 1.17. Since the masks are constant along one axis of the detector,
refraction can only be measured in the direction orthogonal to the
grating bars [70]. Edge illumination is a technique that is well suited for
laboratory setups, as it provides high angular sensitivity while tolerating
large focal spots and polychromatic radiation [71]. In Fig. 1.18 the edge
illumination setup installed at the FleXCT system at the University of
Antwerp is shown [3, 72].

When an image is acquired using the setup shown in Fig. 1.16, the
effects of attenuation and refractions are mixed. Therefore, to untangle
the different contrast images, multiple radiographs must be acquired.
By laterally translating the sample mask relative to the detector mask,
the fraction of the beamlet blocked by the detector mask changes, the
lateral translation is called phase stepping. The resulting curve obtained
by measuring the intensities as a function of the mask translation is
referred to as the illumination curve (IC). In Fig. 1.19 an example is
shown of two illumination curves measured in the same pixel, with and
without a sample present. If the masks would absorb 100% of the X-rays
and the X-ray source is a perfect point source, then the IC’s would have
a triangular shape. In practice, however, the masks are not perfectly
absorbent, and the focal spot of the X-ray source is finite. The IC is
therefore assumed to approximate a Gaussian shape as a result of these
imperfections. The standard edge illumination workflow is to first sample
the IC by phase stepping and subsequently fitting a Gaussian curve to
each of the sampled ICs.

A Gaussian curve is defined by three parameters: amplitude, mean,
and variance. Comparing the change of these parameters before and
after introduction of the sample gives rise to different contrasts. This
comparison step is also called the phase retrieval. The relative change
in the area under the curve gives the conventional attenuation contrast.
At every phase step, the same percentage of photons is expected to be
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1.4. Edge illumination X-ray phase contrast imaging

(a)

(b)

Figure 1.16. Illustration of (a) a conventional cone beam setup, and
(b) an edge illumination setup.

attenuated. The change in the mean, that is, the position of the peak,
of the Gaussian curve is due to the refraction. It is clear from Fig. 1.17
that as the beam is refracted, the maximum of the IC, which is the point
where the beamlet center and the pixel center align, is moved. Finally,
the change in variance can also be measured, related to a contrast that
has not yet been discussed, called dark field contrast. An increase in
variance means that the beamlet got broader. The broadening is due to
many refraction effects at the sub-voxel scale. Therefore, the dark-field
signal is correlated to the inhomogeneity of the sample at the sub-voxel
scale [59]. By defining a spatial local inhomogeneity coefficient for an
object, σ2(x, y, z), the measured broadening S2 at the detector can be
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Figure 1.17. Illustration of the modulation of intensity by a refracting
object without attenuation in an edge illumination set up.

defined analogously to the attenuation as [69]:

S2(x, y) =

∫
σ2(x, y, z)dz. (1.47)

To retrieve all three contrasts, attenuation, differential phase, and
dark field, at least three measurements on the IC need to be acquired.
With fewer images, the fitting problem becomes underdetermined in
each pixel. Furthermore, since noise is present in each image, the fitting
procedure will be improved by acquiring more than three samples of
the IC. In Fig. 1.20 multiple phase steps of two fiber polymer blocks are
shown with woven fiber bundles, held in place with plastic straws. The
data was acquired at the Advanced X-Ray Imaging Group of Prof. A.
Olivo, University College London. Note how in Fig. 1.20a and Fig. 1.20c
the light and dark fringes are on opposite sides, as the phase steps were
acquired on opposite slopes of the Gaussian IC. In Fig. 1.21 the three
retrieved, flatfielded, contrasts are shown, retrieved from the phase steps
in Fig. 1.20.
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1.4. Edge illumination X-ray phase contrast imaging

(a) (b)

Figure 1.18. The edge illumination set-up on the FleXCT scanner, (a)
technical drawing, (b) real setup. 1. Sample mask case 2. Sample mask
3. Detector mask case 4. Detector mask 5. Newport translation stage 6.
Newort tip/tilt platform 7. Detector mask arm 8. Detector 9. Detector
stage 10. PI hexapod 11. Sample mask bridge 12. Sample stage. [73]
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Figure 1.19. Comparison of measured ICs in one pixel with and without
an object present.

There are multiple options to perform the Gaussian fitting needed for
the phase retrieval. An overview was recently given in [74], where multiple
iterative schemes - gradient descent, quadratic fit, and Gauss-Newton
- and non-iterative phase retrievals based on moments are compared.
No clear best method can be identified, as different methods provide
the highest contrast-to-noise ratio for different contrasts. Furthermore,
iterative methods take a considerable amount of time to run, which could
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(a) −9 µm displacement (b) 0 µm displacement (c) 9 µm displacement

Figure 1.20. Different phase steps of two fiber polymer blocks with
woven fiber bundles, held in place with plastic straws. (b) is the image at
the top of the reference IC, (a) and (c) are measured on opposite sides
of this maximum.

(a) Attenuation (b) Refraction (c) Dark field

Figure 1.21. Retrieved contrasts of two fiber polymer blocks with woven
fiber bundles, held in place with plastic straws.

make the methods directly based on moments more attractive.

1.4.3 Edge illumination CT reconstruction

Each of the retrieved contrasts from images acquired with the edge
illumination setup can be modelled as line integrals through an object.
For attenuation and dark field, the integral equations were defined in
(1.45) and (1.47), respectively. For the angle of refraction a slight change
to (1.46) is required, with the measurable angle α(x, y) now given as [69]:

α(x, y) =
∂

∂x

∫
δ(x, y, z)dz, (1.48)

since the edge illumination setup is only sensitive to refraction in one
direction.
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1.4. Edge illumination X-ray phase contrast imaging

Just as in the conventional X-ray setup discussed in Section 1.1, one
can again acquire edge illumination radiographs from multiple angles
in an attempt to reconstruct the 3D structure of the scanned object.
However, from EI data, three volumes, xµ,xδ,xσ, can be reconstructed,
one for each contrast. The scan times are significantly increased compared
to conventional CT, since for each projection angle, multiple phase steps
must be acquired. After acquisition, a Gaussian fitting is performed to
every pixel separately. The result of the fitting procedure is three separate
sinograms, one for each contrast. Given p the full set of projection data
acquired with EI-CT, define pa,pb and pc as the retrieved amplitude,
mean position, and standard deviation, respectively. As in conventional
CT, a flatfield I0 is acquired before and/or after the EI-CT acquisition.
However, for EI, the flatfield scan also requires phase stepping, such that
after retrieval the flatfield IC parameters I0,a, I0,b and I0,c can be defined.
The three single contrast sinograms pµ,pδ and pσ are then defined as

pµ = − ln

(
pa ∗ pc

I0,a ∗ I0,c

)
pδ = pb − I0,b

pσ = p2
c − I2

0,c ,

(1.49)

with all operations with vectors defined pointwise.

The integral equations for the retrieved contrast described previously
in (1.45) and (1.47) show that, for both attenuation and dark field
contrast, reconstructions from the respective retrieved sinograms can
again be made using FBP with a ramp filter. In order to reconstruct the
real part of the refractive index, there are two options. The first option
is to first numerically integrate the differential sinogram pδ along the
sensitivity axis, leaving a sinogram from which xδ can be reconstructed
using standard FBP with ramp filter. The second option is to reconstruct
xδ from pδ with a filtered back projection directly, however, using a
Hilbert filter [2] instead of the ramp filter. In [75] it was shown that the
Hilbert filter is the theoretically correct filter to use in the case where the
directional derivative of the Radon transform is considered. In Fig. 1.22
reconstructions are shown of the three contrasts made with FBP with a
ramp or Hilbert filter depending on the contrast. The sinograms used
for reconstruction are those of the central slice of an EI-CT dataset of
the sample shown in Fig. 1.21

As an alternative to analytic methods, iterative methods can be used
on each of the contrasts separately. The reconstruction problems are
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(a) Attenuation (b) Phase (c) Dark field

Figure 1.22. Reconstructions from the retrieved contrast sinograms of
the fiber polymer EI-CT dataset.

formulated as:

pµ = Axµ

pδ = DAxδ

pσ = Axσ ,

(1.50)

with A the projection matrix, D a matrix performing discretised differen-
tiation, for example forward or central differences. For reconstructions of
xµ and xσ, one could run any of the iterative reconstruction techniques
discussed so far in this work. For the phase equation, a separate version
of ART has been developed [76]. An effective and easy to implement
candidate for an iterative reconstruction technique would be gradient
descent with Barzilai-Borwein steps, as discussed in Section 1.3.

The reconstruction techniques discussed so far have all required a 2-
step procedure, preprocessing the projection data such that the resulting
sinograms fit well to a linear model. One could also model the entire
image acquisition process and develop a single step joint reconstruction
algorithm, reconstructing multiple contrasts at once. Two benefits of a
joint approach can be identified. First, by combining the reconstruction
and IC fitting steps, the fitting is, in some sense, regularised, as it has to
be consistent between projections, which could add robustness. Second,
the algorithm takes the projections directly as input and, therefore,
no longer requires the IC for each pixel to be adequately sampled at
each projection angle for the fitting. As a result, more flexibility can
be achieved with acquisition schemes, such as single shot acquisitions
where no phase stepping is performed per projection angle [77, 78]. Such
an acquisition would be impossible to use in the 2-step pipeline, as
no Gaussian can be fit to a single point. Although the acquisition can
be made fully flexible, enough information about the IC’s at different
points still needs to be gathered to reconstruct the different contrasts.
For edge illumination, a joint reconstruction algorithm reconstructing
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1.4. Edge illumination X-ray phase contrast imaging

attenuation and phase was presented in [77]. Further improvements
to the method by extending the method to account for offsets in the
sample mask position due to drift or vibrations are presented in [79, 80],
showcasing the increased flexibility of iterative reconstruction methods.
The existing joint reconstruction methods for EI do not include dark
field reconstructions, which can provide additional information on sample
properties [81]. Furthermore, no investigation of optimal solvers for the
objective function was performed in [77]. In Chapter 5 we present a novel
joint reconstruction method for EI, which enables the reconstruction of
all three contrasts from single-shot datasets.
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CHAPTER 2
Discrete reconstructions

from polychromatic X-ray
CT data

This chapter has been published as:
Six, N., De Beenhouwer, J. and Sijbers, J., 2019. poly-DART: A discrete
algebraic reconstruction technique for polychromatic X-ray CT. Optics
Express, 27(23), pp.33670-33682.

Parts of the published method section have been omitted
because the concepts were already introduced in Chapter 1.

2.1 Introduction

X-ray computed tomography (CT) is a well-known imaging method in
which the interior of an object is reconstructed from a set of X-ray
radiographs. High-quality CT imaging generally requires hundreds or
even thousands of radiographs acquired in a circular orbit with a large
angular range. In many applications of X-ray CT, however, there is
a need to lower the amount of radiographs to be acquired, either to
reduce the dose [82, 83, 84] or to shorten the acquisition time [85, 86]. In
time-critical processes [87, 88, 89], for example, the object may change
during the scan, so reducing the number of projections could lead to
improved image quality and / or higher time resolution. Industrial CT
for quality control, specifically in-line inspection, again has a need for
reduced scanning times and, in the case of larger parts, reconstruction
from a less limited angular range [90, 82].

Unfortunately, lowering the number of projections to reduce the dose
or decrease the acquisition time directly corresponds to a reduction of the
sampling density in projection domain, which, if no precautions are taken,
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2. Discrete reconstructions from polychromatic X-ray CT data

leads to undersampling artefacts in the reconstructed CT image. Indeed,
when only a few projections are available, the inverse problem of image
reconstruction becomes severely underdetermined, causing streaking
artefacts in the reconstructed image. By including prior knowledge about
the sample, this underdetermination can be reduced to increase the
quality of the reconstructed image.

One of the ways prior knowledge about the object to be imaged can
be enforced, is Discrete Tomography, in which the number of possible
materials in the sample is assumed to be known (and limited). For an
overview of the mathematical background of discrete tomography, and
several applications in medicine, we refer to [44]. The Discrete Algebraic
Reconstruction Technique (DART) [47] is a practical discrete tomography
algorithm which, if the sample consists of only a few materials, has been
shown to generate reconstructions of much better quality than those
from conventional reconstruction methods. The method has been applied
in a variety of imaging domains, such as X-ray CT [48, 50, 51, 49],
Electron tomography [91, 92, 93], Optical Diffraction Tomography [94],
and Magnetic resonance imaging [95].

Many variations of the DART algorithm have been researched. SDART
[96] and DART-ALBM [97], for example, focus on improving robustness
against noise. rmwDART [98] specifically targets reduction of missing
wedge artefacts. In PDART, the discreteness assumption on the whole
sample is relaxed to local areas, making DART applicable to samples
that are only partially discrete [93, 99]. In PDM-DART, the grey values
corresponding to the different materials are estimated in an automated
way [100]. ADART [101] gradually reduces the number of unknowns in
each iteration, and MDART [102] follows a multi-resolution approach.
EOD-DART [90], EDART [103] and TVR-DART [104] add additional
prior knowledge about the sample to further improve the reconstruction
quality.

All of the above DART based methods rely on the same linearised
acquisition model as most classical techniques: it assumes that the log-
corrected normalised projection is the sum of attenuation values along
a ray. This is an adequate model for monochromatic but not polychro-
matic X-ray sources. As the X-ray beam travels through the sample,
the low-energy photons are attenuated more easily than those with high
energy. This results in the absorption along a ray from a polychromatic
source being a non-linear function of sample thickness. Reconstructing
such a dataset with a linear reconstruction technique will lead to well-
known beam hardening (or cupping) artefacts [1]. At the same time, a
single material no longer has a single defined attenuation value, as this
value is energy dependent. Beam hardening artefacts and the inability
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to select a clear singular attenuation value for each material, lead to
inaccurate reconstructions when DART is used in combination with poly-
chromatic projections. One of the current methods for reducing beam
hardening artefacts consists of placing metal filters in front of the source,
to pre-harden the beam. However, the pre-hardened spectrum is still
polychromatic. Moreover, the filtering decreases the number of photons
available for imaging and hence lowers the SNR of the reconstructed
image.

We propose a new discrete tomographic method for polychromatic
X-ray CT, which incorporates a polychromatic forward model. Such
an approach has previously successfully been introduced to extend a
classical algebraic reconstruction method (SART [5]) to handle polychro-
matic X-ray data, referred to as pSART (polychromatic Simultaneous
Algebraic Reconstruction Technique) [34, 105]. In this paper, we propose
a discrete reconstruction method that combines the best of both worlds:
accounting for polychromaticity while exploiting the strength of DART
to substantially reduce undersampling artefacts.

The paper starts with a brief overview of DART. Next, we explain
the poly-DART algorithm and the polychromatic model that is used.
Finally, different discrete reconstructions from polychromatic datasets
are compared to demonstrate the improvements of the proposed method.
These datasets include Monte Carlo simulated data using the GATE
framework [106], as well as an experimental dataset.

2.2 Method

We propose a new algorithm based on the principles of DART [47] and
pSIRT [34], aiming to exploit the benefits of both methods. Both methods
were described in detail in Section 1.2.2. In the first phase of the algorithm,
an initial reconstruction x(0) is generated by performing a small number
of pSIRT iterations. From this reconstruction and the attenuation values
at the reference energy, the optimal grey values and thresholds are
estimated by minimising the projection difference (i.e., the difference
between the polychromatic forward projection and the projection data) in
a mean squares sense. This is a polychromatic extension of the projection
distance minimisation (PDM) algorithm of van Aarle et al [100]. It allows
to correct for small errors in the assumed attenuation coefficients and/or
in the estimated spectrum.

Next, the initial reconstruction is segmented with the estimated
segmentation parameters. Based on the segmented result, the pixels are
classified into boundary or non-boundary pixels. All boundary pixels and
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Figure 2.1. Flowchart for the poly-DART algorithm.

a set of random pixels are marked ’free’ and will be updated in the next
reconstruction step. The other pixels remain fixed to their segmented
value. Then, the line lengths through each material for the fixed pixels
are precomputed to be used in the reconstruction, as these will not
change until the next segmentation step. Masked pSIRT iterations are
then performed, which only update the free pixels. Furthermore, these
local iterations are relaxed by a parameter λ, equal to the percentage
of free pixels, as the much lower amount of free pixels (compared to
a conventional update over all pixels) would otherwise lead to high
fluctuations in each step of the reconstruction. Hence, the (internal)
poly-DART update step becomes:

x(k+1) = x(k) − λCA⊤R
(
polyProj(x(k))− p

)
, (2.1)

Lastly, this reconstruction is segmented again and the previous steps are
repeated until a stop criterion is met. A flowchart of poly-DART can be
found in Fig. 2.1. The algorithm was implemented in Matlab, making
use of the DART framework of the ASTRA toolbox [107].

2.3 Experiments

2.3.1 Monte Carlo simulations

To validate the proposed algorithm, two simulation experiments were set
up, with the phantoms shown in Figs. 2.2(a) and 2.2(b). Both phantoms
consist of two materials, plexiglass and aluminium, suspended in air. The

46



2.3. Experiments

attenuation values at different energy levels were used from the National
Institute of Standards and Technology [35]. To avoid inverse crime, the
phantom was analytically defined in the simulation framework, GATE
[106]. For both phantoms, 300 fan-beam polychromatic projections were
created using GATE. The simulated source was a 75 kVp X-ray source
with a tungsten anode, of which the spectrum is shown in Fig. 2.2(c).
Spekcalc was used to generate the source spectrum [108]. The projection
angles were chosen in the interval [0, 2π] using golden angle sampling,

which means that the subsequent projections are 1+
√
5

2 π radians apart
from each other. The detector pixel size was 0.375mm and the scanner
set up had a magnification factor of 4. The reconstructed pixel size was
0.09375mm. The detector was modelled as a photon counting detector
with 400 pixels made of silicon, with a minimal activation energy of 5 keV.
The detector was idealised in the sense that no cross-talk or blurring
between pixels was present. As the projections were created using a
Monte Carlo method, Poisson noise is present in the images. We simulate
different noise levels by varying the number of photons from 4 ∗ 105 to
2∗107 photons for each projection, which is on average between 1000 and
50000 photons per pixel. For the experiments where varying noise levels
were not taken into account, we chose the dataset with 10000 photons per
detector pixel. To further simulate a real experiment, the tube spectrum
(S) and detector response (D) were estimated with two step wedges.
These wedges, one in plexiglass and one in aluminium, were also defined
in GATE. Multiple projections were taken orthogonal to the steps and
then averaged to reduce the effects of noise in the measurements. We used
a maximum likelihood expectation maximisation (MLEM) algorithm to
estimate the product S(ϵ)D(ϵ) of the tube spectrum and the detector
response from these measurements. The four characteristic peaks of a
tungsten anode source spectrum were added manually to the initial guess
for the MLEM iterations.

From the simulated polychromatic projection data, images were recon-
structed with the following methods: pSIRT, SIRT, DART with manually
optimised grey levels and poly-DART with automatically optimised grey
levels. For the selection of the grey values for DART, the values with
the lowest reconstruction error in the case of full angular sampling were
chosen. Poly-DART was also compared to (segmented) SIRT and pSIRT.
The segmentation for SIRT was performed with the same global threshold
as DART. The segmentation for pSIRT was performed with the first set
of estimated segmentation parameters that were obtained from the PDM
step in the poly-DART algorithm. These automatically optimised grey
values are only dependent on the initial pSIRT reconstruction and the

47



2. Discrete reconstructions from polychromatic X-ray CT data

(a) Analytically defined
’Pac-Man’ phantom con-
sisting of air (black),
Plexiglass (grey) and
aluminium (white).

(b) Analytically defined
Derenzo phantom con-
sisting of air (black),
Plexiglass (grey) and
aluminium (white).

(c) Polychromatic spec-
trum of a 75 kVp X-ray
source.

Figure 2.2. The Pac Man (a) and Derenzo (b) phantom, as well as the
employed X-ray spectrum (c).

projection data, and are more accurate than using the attenuation values
at the reference energy.

All poly-DART reconstructions were performed with 20% random free
pixels, 50 initial and 5 inner iterations of pSIRT. The same settings were
used for DART. The percentage of free pixels was chosen as advised in
[47]. For the polychromatic reconstruction methods, the spectrum shown
in Fig. 2.2(c) was rebinned to 70 bins. A reference energy of 55 keV was
chosen emperically as optimal for pSIRT in terms of convergence speed
and reliability [34]. The same reference energy was used for poly-DART.
When testing the influence of the number of angles and the level of noise,
2000 (p)SIRT iterations were performed for all methods and the minimal
achieved error over these iterations was then retained. That is, for both
converging and diverging methods, the best reconstruction (minimal
error) is retained.

2.3.2 Experimental dataset

Following the Monte Carlo simulations, a similar test was performed
on an experimental dataset. The used phantom, called the Barbapapa
phantom [109], consists of plexiglass with inserted aluminium rods and is
shown in Fig. 2.3. A phantom with the same materials as in the simulation
study was used to more easily compare the simulation results to the
experimental results. A tube voltage of 130 kVp was employed. The
phantom was scanned over 2400 equiangular projections in the interval
[0, 2π).
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Figure 2.3. Barbapapa phantom used to generate the experimental
dataset. The phantom is a smoothly shaped Plexiglass object, with three
inserted aluminum rods and two air columns.

To estimate the spectrum, the same technique as in the simulation case
was used. For this experiment, a PVC step wedge with 11 steps, ranging
from approximately 1mm to 18mm in thickness, was scanned. Next, the
same MLEM spectrum estimation method as in the Monte Carlo case
was performed, with 130 keV as maximum energy used as a boundary
condition. From the central slice of the Barbapapa dataset, images
were reconstructed with the same methods: pSIRT segmented, SIRT
segmented, DART, and poly-DART. All poly-DART reconstructions
were performed with 10% random free pixels, 50 initial, and 10 inner
iterations of pSIRT. The same settings were used for DART. A reference
energy of 55 keV was chosen for pSIRT as well as for poly-DART. Since
for real data no ground truth image is available, a pSIRT reconstruction
from 2400 equiangular projection within [0, 2π] was segmented using
Otsu thresholding [110] and the result was regarded as the ground truth
reconstruction. When testing the influence of the variable number of
angles, 2000 (p)SIRT iterations were performed for all methods and the
minimal achieved error over these iterations was retained. The error
measure is the rNMP calculated based on the golden standard segmented
reconstruction. For both the simulated and real data, all parameters (e.g.
percentage of free pixels, number of inner iterations and reference energy
level) were either chosen empirically or in accordance with the literature.
All reconstructions were performed using the ASTRA toolbox [107].

2.4 Results

To quantify the performance of poly-DART against DART, segmented
SIRT, and segmented pSIRT, we computed the relative number of mis-
classified pixels or rNMP [100]. The rNMP is calculated as the number
of pixels in the reconstruction that have a different grey value compared
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(a) Plot of rNMP vs. (p)SIRT-
iterations on 100 projections.

(b) Plot of rNMP vs. number of projec-
tion angles, taken in [0, 2π) with golden
angle sampling.

Figure 2.4. Plots showing the change in error by varying (a) number of
iterations and (b) number of projection angles on the simulated Pac-Man
phantom.

to those of the corresponding ground truth image, divided by the total
number of non-background pixels in the ground truth image.

2.4.1 Monte Carlo simulations

Pac-Man phantom

In Fig. 2.4(a), the rNMP of the different methods is shown as a function
of the number of (p)SIRT iterations, for 300 projection angles between 0
and 2π. The rNMP for (p)SIRT was calculated at every iteration, whereas
the rNMP for (poly-)DART was calculated at every DART iteration,
i.e. every 5 (p)SIRT iterations. From Fig. 2.4(a), one can observe that
both DART and poly-DART converge. However, poly-DART does so
to a solution with a significantly lower error, whereas DART increases
the error from its start point to its converged solution. The continuous
methods, SIRT and pSIRT, have a best solution after a low amount of
iterations and start to diverge from that point onwards. This is a known
problem for continuous methods, as they tend to overfit to the noise in
the projection data.

Next, the effect of varying amounts of projection angles on the rNMP
was studied. These results are shown in Fig. 2.4(b). Again, poly-DART
outperforms the other methods in terms of rNMP, reaching a lower rNMP
for each number of projection angles. This suggests that poly-DART
benefits from both the beam hardening correction property of pSIRT
and the imposed discreteness. Note that because the minimal error for
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(a) SIRT (b) pSIRT (c) DART

(d) SIRT segmented (e) pSIRT segmented (f) poly-DART

Figure 2.5. Comparison of the different reconstruction techniques with
40 projection angles on the simulated Pac-Man phantom.

the methods over all iterations is compared, this is the best-case scenario
for SIRT and pSIRT, as they reach a minimum at some a priori unknown
point. For down to about 150 projection angles, poly-DART and pSIRT
have a comparable error. However, at lower amounts of projections,
poly-DART outperforms pSIRT.

A comparison of the different reconstruction methods for 40 pro-
jections can be found in Fig. 2.5, where each method was run for 250
(p)SIRT iterations. From this figure, it can be observed that the poly-
DART algorithm shows the least reconstruction artefacts, with the other
methods showing beam hardening artefacts and streaks due to the low
amount of projection angles. Furthermore, the homogeneous interior of
the object is well reconstructed with poly-DART, while pSIRT shows
many misclassified (black) pixels.

Finally, we tested the influence of noise on the reconstructions. Dif-
ferent levels of noise were simulated by varying the number of photons
emitted by the source. The amount of photons ranges from, on average,
1000 to 50000 photons per detector pixel. The minimal achieved rNMP
over 2000 iterations is plotted as a function of the number of photons. In
Figs. 2.6(a) and 2.6(b) this rNMP is plotted for all methods for 10 and
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(a) Plot of rNMP vs. photon count on
10 projection angles.

(b) Plot of rNMP vs. photon count on
100 projection angles.

Figure 2.6. Plots showing the influence of noise on the reconstruction
error for the simulated Pac-Man phantom.

100 projections, respectively. From these plots, it can be observed that
poly-DART consistently outperforms the other techniques, especially for
low amounts of photons.

Derenzo phantom

The rNMP is not a suitable error measure for the Derenzo phantom, as
every misclassified pixel contributes equally to the error. Of more interest
in this phantom is to what extent the different cylinders can be discerned.
Therefore, we visually show reconstructions for all methods as functions of
different numbers of projections to illustrate the level of visibility. These
reconstructions, all after 450 (p)SIRT iterations, are shown in Fig. 2.7.
From Fig. 2.7, similar reconstruction results of the Derenzo phantom as
for the Pac-Man phantom can be observed. Even when a large number
of projections is available, two artefacts arise as before, beam hardening
and overfitting to noise. Both SIRT and DART suffer from the beam
hardening artefacts. For 50 projections and less, these beam hardening
artefacts, coupled with undersampling, make it increasingly more difficult
to see the cylinders at any resolution. Neither the poly-DART nor pSIRT
reconstructions show significant beam hardening artefacts. Even with a
large number of projections, pSIRT shows artefacts due to overfitting
to noise, though the cylindrical features can still be discerned at every
resolution. As the number of projections decreases, both the size and the
placement of the cylinders become harder to distinguish from the pSIRT
reconstruction. The poly-DART reconstructions are more accurate for
each number of projections, most notably when less than 50 projections
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Figure 2.7. Comparison of the different reconstruction techniques on
the Derenzo phantom. Techniques in the columns from left to right: SIRT,
SIRT segmented, DART, pSIRT, pSIRT segmented and poly-DART. (a-f)
300 projections, (g-l) 50 projections, (m-r) 25 projections.

are present. Both position and size of the cylinders more closely match
those of the phantom image in Fig. 2.2(b).

2.4.2 Experimental dataset

Based on the experimental data, two experiments were performed. First,
the effect of varying amounts of projection angles on the rNMP was
studied. As can be observed from Fig. 2.8(a), poly-DART outperforms
the other methods in terms of misclassified pixels, reaching a lower rNMP
at any number of projection angles. The plot looks similar to the one in
Fig. 2.4(b), indicating that the results obtained with the Monte Carlo
framework are consistent with the experimental data. Reconstructions
with the different methods on the data of 40 projection angles after 450
(p)SIRT iterations are shown in Fig. 2.9.

Secondly, we studied the effect of a missing wedge in the projection
data, i.e. a dense sampling of the object, but over a limited range
[α, π−α]∪ [π+α, 2π−α], α ∈ R. For the full sampling, 400 equiangular
projections were taken from the dataset. From the previous experiment,
it is clear that this is a sufficiently dense sampling for all methods to
generate high-quality reconstructions. Next, a number of projections were
deleted symmetrically around both 0 and π. For the created missing wedge
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(a) rNMP vs. number of projection
angles.

(b) rNMP vs. missing wedge.

Figure 2.8. Plots of the effect of (a) varying number of projection angles,
equally spaced in [0, 2π) and (b) a missing wedge in the projection data,
on the rNMP for the experimental dataset.

(a) SIRT (b) pSIRT (c) DART

(d) SIRT segmented (e) pSIRT segmented (f) poly-DART

Figure 2.9. Comparison of the different reconstruction techniques with
40 projection angles of the experimental data.

54



2.5. Conclusion

datasets in this experiment, α ∈ [0, π4 ] was used. As before, the minimal
error over 2000 iterations was plotted in Fig. 2.8(b). The DART algorithm
outperforms SIRT from about 15◦ of missing wedge and outperforms
pSIRT after around 25◦. The proposed poly-DART algorithm reaches the
lowest reconstruction error of all the tested methods at any of missing
wedge angle. This shows that the imposed prior knowledge is able to
compensate for the missing data.

2.5 Conclusion

Many objects consist of a limited number of materials. Using discrete
tomography, this prior knowledge can be exploited in the reconstruction
of images from X-ray projection data to reduce undersampling arte-
facts. Current discrete tomography methods, however, do not account
for polychromaticity of X-ray sources, leading to various reconstruction
artefacts and limiting their applications. In this paper, poly-DART was
proposed, a discrete tomography method that exploits the sparseness in
the attenuation values, while taking a polychromatic projection model
into account. Reconstruction experiments on both simulated and ex-
perimental data from polychromatic sources revealed that poly-DART
results in substantially improved image reconstruction quality compared
to DART or segmented versions of SIRT or pSIRT for polychromatic
X-ray data. This allows DART, which has been successfully used in a
monochromatic setting in different applications, to be extended to data
acquired with polychromatic lab sources.
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CHAPTER 3
Dynamic update strategy
for discrete tomography

methods

The work presented in this chapter was performed in collabor-
ation with Daniel Frenkel. This chapter has been published as:
Frenkel, D., Six, N., De Beenhouwer, J. and Sijbers, J., 2022. Tabu-
DART: a dynamic update strategy for efficient discrete algebraic recon-
struction. The Visual Computer, pp.1-13.

Parts of the published method section have been omitted
because the concepts were already introduced in Chapter 1.

3.1 Introduction

In X-ray Computed Tomography (XCT), the interior of an object is
commonly visualised by reconstructing an image from a large number of
radiographs, equiangularly acquired over 180 or 360 degrees. If scan time
restrictions or geometrical constraints during scanning apply, only a small
number of radiographs or a set of radiographs distributed over a limited
angular range will be available, respectively. In such ill-posed limited
data problems, conventional reconstruction methods, such as Filtered
Back Projection (FBP) or the Simultaneous Iterative Reconstruction
Technique (SIRT) [111], lead to images with severe artefacts [47] and
semi-convergent behaviour [112].

Including prior knowledge about the scanned object into the recon-
struction process is a well-known strategy to compensate for limited
data in XCT [113, 114, 115]. A specific type of prior knowledge is ex-
ploited in Discrete Tomography (DT) [46], where the object is assumed
to be composed of only a few materials. The variety of work on discrete
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tomography is vast [45, 116, 117, 118], with several algorithms developed
to improve robustness with respect to noise [96, 104, 119, 120], handle
partially discrete images [121, 122], and polychromatic data [123, 124].

Despite their strengths, practical DT methods are computationally
intensive, as they primarily rely on iterative reconstruction. To increase
speed, divide-and-conquer strategies are often employed, in which only a
part of the image is updated in each iteration [121, 125, 46]. Amongst
the practical DT algorithms that rely on such division strategies, the
Discrete Algebraic Reconstruction Technique (DART) [47] is well known
for producing high-quality reconstructions of objects composed of few
different materials, even in cases with a limited number of projections or
projections acquired in a limited angular range [126]. DART has been
successfully applied in various imaging domains [51, 91, 93, 95] and is
a common benchmark method to compare new DT algorithms with
[127, 128, 129, 130]. New reconstruction methods based on the DART
methodology are still being introduced [123, 131, 132, 133].

Despite the benefits of DART, its computational complexity is high.
One of the causes is that the update rules in DART are predetermined and
hence do not change over the course of the reconstruction [134, 135]. As a
result, already well-reconstructed image regions continue to be updated,
leading to redundant computation. This problem has been addressed in
theoretical DT, where Tabu-search theory has been combined with other
DT methods such as combinatorial optimisation approaches based on
Ryser’s algorithm [136, 137] and with binary reconstruction based on
Gibbs priors [46]. However, these approaches are infeasible for large-scale
problems, due to both memory requirements and computation time.
Heuristic methods such as DART have better scalability than theoretical
DT methods, but still suffer from long computation times, partly caused
by redundant computation.

To reduce redundant computation of DART-like methods, we pro-
pose a framework of dynamic update rules, which combines concepts
from Tabu-search theory with update strategies. We introduce a prob-
ability map that adapts based on feedback received during subsequent
reconstruction steps. By expressing update rules as changes to this prob-
ability map, dynamic update strategies during the reconstruction are
implemented. The initialisation of this map was based on the entropy
of the reconstruction, a measure used before in discrete tomography
in the context of optimal projection angle selection [138] and in the
non-discrete case to measure the uncertainty of the grey value [139]. As a
proof-of-concept, we present such a framework for DART. Furthermore,
we describe an estimation procedure for the initial state of the probability
map based on image uncertainty.
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3.2 Method

In Section 3.2.1, a brief overview of Tabu-search and related concepts is
presented, together with potential implications of using memory struc-
tures in DART. In Section 3.2.2, the DART update step is generalised as
a framework that introduces a probability map to function as a memory
structure for the partitioning step (step 2) inside the algorithm. The
proposed Tabu-DART algorithm is described, in which the probability
map is adapted based on a dynamic set of rules and feedback received
from the segmentation step. Finally, in Sections 3.2.3 and 3.2.3, the map
initialisation and feedback loop are explained for Tabu-DART.

3.2.1 Memory structures and Tabu-search

Tabu-search is a variations strategy for mathematical optimisation tech-
niques that rely on local search. The nature of local search methods
makes them vulnerable to local optima. Tabu-search aids in finding the
global optimum through adaptive memory structures and reaches parts
of the solution space that would otherwise be left unexplored. It allows
to escape from local optima and intensifies searches inside a specific
region around a solution. In the next paragraph, a summary of the
Tabu-search concepts is given to clarify our contribution. For a more
in-depth description, we refer to [140].

There are four main factors which describe the memory structure used:
recency and frequency based memory, quality, and influence. Recency-
based memory stores information on recent solutions explored, and aids
in preventing already visited solutions in favour of exploring worse but
yet unvisited solutions. Frequency-based memory stores information on
the number of times a certain attribute has appeared in recent solutions.
Quality relates to the ability to differentiate between characteristics of
good and bad solutions, while influence stores the impact of changes in
structure of the solution. It is infeasible to store multiple solutions for
large 3D volumes. Hence, recency-based memory has limited function
for algebraic reconstruction with DART. The frequency of favourable
attributes relating to good reconstruction can, however, be stored and
exploited to improve DART. For this reason, our approach relies on
frequency-based memory. The use of quality and influence metrics is lim-
ited to a feedback loop, which adapts the memory structure we propose
for DART. When many reconstructions with a low error share an attrib-
ute, exploring locations in the reconstruction space where this attribute
will be present increases the probability of finding a reconstruction that
minimises the error. Image features, such as which pixels still change
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their grey value or whether or not the boundary between different grey
values has stopped evolving, are valuable attributes that can be tracked
in frequency. In Section 3.2.3, we describe how changes with respect to
such a feature can be tracked to adapt the partitioning step (step 2) in
the DART algorithm and make it more efficient over time.

3.2.2 The probability map framework

In DART, the partitioning rules decide which pixels in the image are
updated, and hence they have a significant impact on the quality of
the resulting reconstruction. The following probability map functions as
frequency based memory for the partitioning step inside DART:

P : Rnvol → [0, 1]nvol ,x 7→ px. (3.1)

Instead of one parameter p describing the probability that an interior
pixel is updated in the next iteration, a probability pxi is linked to each
pixel xi, which decides whether or not to update that pixel in the next
iteration. The map functions as a tracker of the frequency of change
for any metric that distinguishes between pixels that are likely to be
correctly classified and those that are not.

To correctly incorporate the update probability map, certain steps
are different from the original DART algorithm. First, an initial state
for the probability map is created after the initial SIRT reconstruction.
This state is based on any available or calculated image uncertainty
measure. If a region in the reconstructed volume is well-resolved, the
probabilities in that region can be lowered to reduce redundancy. During
each partitioning step, a random number ri is drawn from a uniform
distribution between 0 and 1, for each pixel xi. If ri < pxi , the pixel is
selected for update. This samples a binary probability distribution in
each pixel xi, with probability pxi to be free. Hence, the creation of the
fixed and free partitions depends entirely on the probability map. At
the end of each DART iteration, a feedback loop is introduced, which
updates the probability map based on the current reconstruction data.
A flow chart of the Tabu-DART algorithm is shown in Fig. 3.1.

3.2.3 Probability map initialisation

An initialisation scheme is presented for the probability map to eliminate
the need for the parameter p in the original DART algorithm. Initialisa-
tion is based on a generalisation of local image uncertainty as proposed by
Varga et al. for binary reconstruction [141]. Each pixel can only attain a
value in R and the probability of being equal to ρi is spatially dependent.
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A formula for generating the probability for theoretical DT (illustrated
in Fig. 3.2) is given by

P (xj = ρi) =
#{s ∈ {ρ1, ..., ρk}nvol | As = p, sj = ρi}

#{s ∈ {ρ1, ..., ρk}nvol | As = p}
, (3.2)

Hence, each pixel xj can be linked to a probability vector vxj ∈ [0, 1]k,
where k is the number of distinct gray values in the image. The entropy,
defined as

H(xj) = −v⊤
xj

logk vxj , (3.3)

translates this vector to a single value representing uncertainty of the
gray value of pixel xj . The logarithm logk is applied pointwise on the
different components of the vector vxj .

Since it is infeasible to calculate the probabilities for large images
directly, we propose an extension of the approximation introduced by
Varga et al. [141]. For the pixel xj of the initial ARM reconstruction, let

dxj =

[
1

|xj − ρ1|
, ...,

1

|xj − ρk|

]
vxj =

dxj

∥dxj∥1
.

(3.4)

The values H(xj) are used to initialize the probability map. Note that
one of the denominators in (3.4) may become zero if xj ∈ R, e.g. if the
condition xj ≥ 0 is enforced during SIRT reconstruction possibly causing
xj to be set to ρ1. To avoid division by zero, a lower bound was selected
for the denominators in dxj .

Dynamic update rules

As the final part of Tabu-DART, the following set of update rules is
introduced to track a stability metric based on changes between grey
values for individual pixels: Define cx, bx ∈ Rn such that

c(ℓ+1)
xj

=

{
0, if s

(ℓ+1)
j = s

(ℓ)
j

1, otherwise

b(ℓ+1)
xj

=

{
1, if s

(ℓ+1)
j is boundary

0, otherwise

Then, the new probability map p
(ℓ+1)
x is given by

p
(ℓ+1)
x = min

(
1

2
p
(ℓ)
x + c

(ℓ+1)
x + b

(ℓ+1)
x ,1nvol

)
(3.5)
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Figure 3.1. A flowchart of the Tabu-DART algorithm. After initial
reconstruction and segmentation (upper part), the probability map is
initialised. The map is used to label the image into free and fixed pixels
(middle). The fixed pixel contribution is removed from the original
projection data (left). The free pixels are then updated from the residual
projection data (bottom) followed by another segmentation step. If the
stopping criterion is satisfied, the output is a discrete reconstruction.

(a) Theoretical estimation of grey value
uncertainty.

(b) Approximation of grey value
uncertainty.

Figure 3.2. Theoretical (a) and approximate (b) uncertainty calculations
in a single pixel. In (a), the exact entropy is found by counting all
possible binary solutions to the projection problem. In (b), this entropy
is approximated based on a SIRT solution, by using the distance between
the reconstructed grey value and the a priori known grey values.
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These update rules halve the probabilities of all non-boundary pixels
that, when segmented, have the same grey value ρi as in the previous
iteration. Otherwise, the probabilities are set to 1.

3.3 Experiments

Two sets of experiments were conducted. First, simulation experiments
were performed to test the validity of our approach on four discrete
phantoms from previous DART articles [47, 101, 134] before evaluating
the accuracy of Tabu-DART on a polychromatic dataset of a plexiglass
object [109]. The simulation experiments are described in 3.3.1 and the
plexiglass dataset is introduced in 3.3.2.

3.3.1 Simulation experiments

Fig. 3.3 shows the phantoms that were used for the simulation experi-
ments, which are identical to those used in previous DART publications
[47, 104, 101]. The size of each phantom is 512× 512 pixels. With the
ASTRA toolbox [142, 107], projections were simulated following a parallel
beam geometry with 512 detector values for each angle. Two cases of
limited data were studied: In the first case, the acquisition range was
[0◦, 180◦] and the number of projections was varied from 2 up to 90. To
maintain a uniform angular sampling distribution while studying the
performance of Tabu-DART as a function of the number of projections,
the latter were generated using a golden ratio angular sampling [143],

which means that subsequent projections are 1+
√
5

2 π radians apart from
each other. In the second case, 90 projections were uniformly simulated,
after which an increasing wedge was removed.

To infer whether the update probability parameter p can be avoided
with our approach, we compared the Tabu-DART algorithm with the
DART algorithm with a total of 12 choices for p. The best performing
value for p for a specific case is denoted by best p. The other DART
parameters were chosen according to the literature [47, 123] and have
been kept constant throughout the experiment. These are shown in Table
3.1.

3.3.2 Experimental data: Barbapapa plexiglass phantom

The goal of the real data experiment is twofold. First, to provide evidence
that Tabu-DART combines well with other augmentations of the original
DART algorithm. Second, to study how the relaxation of the inner ARM
iteration influences the overall reconstruction quality compared to DART.
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Table 3.1. The values of the parameters used for DART and Tabu-DART
for the basic simulation experiment.

Parameter Value

# Initial SIRT iterations 100
# Intermediate SIRT iterations 10

The smoothing parameter 0.1
# DART iterations 100

(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Figure 3.3. The four phantoms that were used for the simulation
experiments.

We reconstruct the central slice of the Barbapapa experimental dataset
[109], which consists of a plexiglass block with two drilled cylindrical
holes. Three aluminium rods were inserted into the block, amounting to
a total of three different materials present: air, plexiglass, and aluminium.
A picture of the object is shown in Fig. 3.4. A total of 2400 cone beam
projections were measured over the full 360◦ range with a tube voltage
of 130 kVp. To account for the polychromaticity of the X-ray beam, our
Tabu-search framework was combined with a polychromatic version of
DART, called poly-DART [123]. We refer to this polychromatic Tabu-
DART algorithm as TP-DART. To this end, the polychromatic spectrum
was first estimated. This was done by scanning a PVC step-wedge with
steps ranging in thickness from 1 mm to 18 mm. The spectrum was then
estimated using the Maximum Likelihood Expectation Maximisation
algorithm as explained in [123]. A missing wedge experiment was set
up, starting from 400 equiangularly distributed projections over a 360◦

range. Reconstructions are made from subsets of these projections with
an increasingly larger missing angular wedge. These subsets consist of
all projections in the range [α, 180◦ − α] ∪ [180◦ + α, 360◦ − α] with α
varying from 10◦ to 60◦. The parameters of poly-DART and TP-DART
are given in Table 3.2.

The run-time parameters resulted in a total of 500 SIRT/pSIRT
iterations being performed for each method. For this experiment, the
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Table 3.2. Parameter values within poly-DART and TP-DART for the
Barbapapa central slice reconstruction.

Parameter Value

# Initial (p)SIRT iterations 50
# Interior (p)SIRT iterations 10

Smoothing 0.3
# DART iterations 45
Update probability [0.05, 0.1, 0.2, 0.5]

Figure 3.4. The Barbapapa plexiglass phantom.

relaxation factor λ for each run of DART was estimated empirically as
follows: At every missing wedge (10◦ stepsize), the projection data was
reconstructed with 50 choices for λ. The relative Number of Misclassified
Pixels (rNMP), i.e. the ratio between the pixels belonging to the wrong
class and the total nonzero pixels, was calculated for each λ. The best λ
in terms of the rNMP was kept for each choice of p and TP-DART, which
yields a table for interpolation of λ for the intermediate missing wedge
α. Additionally, the data was reconstructed with TP-DART, where

λ = β
Number of free pixels

Total number of pixels
(3.6)

is the relaxation factor and β controls the ratio between system size and
relaxation. We hypothesise that since TP-DART iteratively lowers the
system size, scaling the relaxation appropriately could lead to better
results. An interpolation table was also created for β. The results of
scaled relaxation for TP-DART were collected separately and denoted
with TP-DART scaled.
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3.4 Results

Two metrics were calculated to evaluate the performance of the algorithms
in each experiment: the rNMP and a measure for the computational
efficiency. The latter metric is expressed as either the total CPU time
of the SIRT iterations inside one DART iteration, or as the size of the
linear system. The system size is equal to the number of free pixels and
expressed as a percentage.

3.4.1 Simulation results

First, DART with different values of p was compared to Tabu-DART in
terms of rNMP, for both the few-view and the missing wedge case. This
experiment has been repeated ten times with different seeds. Fig. 3.5
and Fig. 3.6 show the mean rNMP for each choice of parameter p and
Tabu-DART for increasing number of projections and increasing missing
wedge, respectively. For phantoms 2 and 3 in the few-view case, Tabu-
DART performs noticeably better than the other three DART algorithms
in terms of rNMP in the case with varying angles, when the number of
projections is very limited. For the other two phantoms, Tabu-DART
remains competitive towards DART with the best performing value of p.

The missing wedge experiment (Fig. 3.6) yields shows that Tabu-
DART performs comparable to the best choice for p, especially when the
missing wedge is high. Three specific missing wedges (small, medium,
and large) were selected for each phantom for an in-depth study, and for
those, the experiment was repeated 50 times with different seeds for the
random number generator. Fig. 3.7 shows the box plot data of the rNMP
for DART and Tabu-DART for the small and medium wedge choices. A
lower rNMP and lower variance is observed for Tabu-DART compared to
DART. Both DART and Tabu-DART start from a different initial map,
and this map is constant per algorithm in each of the 50 seeded repeats.
Our approach consistently feeds back data and dynamically changes the
set of pixels to be updated, while DART has no feedback loop. This
leads to the higher variance on the rNMP for DART, as the free pixel
selection is largely influenced by random chance. The difference in visual
quality between DART with the worst and best performing value for p
is shown in Fig. 3.8. The contrast between the best and worst choice is
evident, which emphasises the importance of a good parameter choice
for these experiments. Tabu-DART, on the other hand, yields a superior
visual quality without relying on the p parameter.

Fig. 3.9 shows the average CPU time of 10 SIRT iterations in seconds
for varying angles. As very little of the background is selected in the case
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Figure 3.5. The rNMP for Tabu-DART and DART with four different
choices of p as a function of the number of projections.

of p = 0.01, it is not surprising that this choice for p leads to the fastest
algorithm. However, our approach is comparable in speed. This is due to
the feedback procedure, which iteratively removes already stable regions
from the reconstruction. Hence, the average size of the linear system
decreases, yielding the observed low computation time together with a
high reconstruction quality in terms of the rNMP. We conclude that our
approach outperforms the DART algorithm both in rNMP and visual
quality for different types of noiseless scenarios. A final remark is that
earlier simulation studies [47, 134] show that lower values of p lead to a
lower rNMP. In practice, once noisy data is involved, the higher values
of p tend to yield a lower rNMP. We show evidence for this claim in the
next experiment.

3.4.2 Barbapapa plexiglass phantom

Fig. 3.10a shows the rNMP of all methods tested for the different choices
of λ. Fig. 3.10b shows the rNMP of TP-DART for varying scaling factor
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Figure 3.6. The rNMP for Tabu-DART and DART with four different
choices of p for increasing missing wedge.

Table 3.3. The relaxation values λ and scaling factors β which comprise
the interpolation table for the Barbapapa plexiglass reconstruction.

Missing wedge α 10 20 30 40 50 60

λ for p = 0.05 0.1 0.1 0.12 0.12 0.92 1.0
λ for p = 0.1 0.16 0.18 0.2 0.2 0.76 1.0
λ for p = 0.2 0.24 0.34 0.32 0.3 0.94 1.0
λ for p = 0.5 1.0 0.96 0.66 1.0 1.0 1.0

λ for TP-DART 0.1 0.14 0.16 0.18 0.66 0.96
β for TP-DART 2.0 2.5 2.5 2.5 5.0 10

β. It can be observed that DART with lower p-values has a better defined
minimum compared to high values of p. The same occurs for TP-DART
and TP-DART scaled. The common trait that low p-values and TP-
DART share is the lower number of freed pixels. Hence, we reason that
this sensitivity to the relaxation factor is related to the system size. A
lower system size implies an increased sensitivity of each pixel to noisy
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(b) Phantom 1, α = 90◦
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(c) Phantom 2, α = 50◦
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(d) Phantom 2, α = 80◦
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(e) Phantom 3, α = 80◦
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(f) Phantom 3, α = 100◦
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(g) Phantom 4, α = 100◦
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(h) Phantom 4, α = 110◦

Figure 3.7. Box plots of the rNMP for different missing wedge α.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3.8. Missing wedge reconstructions of the simulation phantoms
1 (a-c), 2 (d-f), 3 (g-i), and 4 (j-l) for the worst and best performing p
(left and center) compared to the reconstruction made with Tabu-DART
(right). The missing wedge corresponds to a choice shown in Fig. 3.7: for
phantom 1-4, α is 90◦, 80◦, 100◦ and 110◦, respectively.

data, due to increased convergence speed. Relaxation is necessary to
counteract semi-converging behaviour. However, over-relaxation lowers
convergence speed. The higher choices of p are innately more resistant to
semi-convergent behaviour, and hence the impact of relaxation is lower
since their convergence rate is slower. When additional projection data
is removed, the reconstruction error increases due to lack of data instead
of noise. Therefore, less relaxation is necessary, which results in a higher
choice for λ in (1.21). The entries in Table 3.3 support this since the best
performing values for λ and β increase as the missing wedge increases.
This also means that smaller choices of p benefit more from relaxation.
The final argument is that the best λ for poly-DART with p = 0.5 is
almost exclusively λ = 1.0. In summary: The lower the choice of p for
poly-DART, the more important the selection of the correct relaxation
factor becomes. Furthermore, optimal λ selection for TP-DART is similar
to the optimal choice for poly-DART with a small p.

The reason for only introducing a scaling factor β for the relaxation
in TP-DART is because poly-DART relies on the same update rules
as DART, which on average frees 100p percent of the pixels plus the
boundary. The change in system size for poly-DART iterations is negli-
gible compared to TP-DART, which makes the scaled relaxation with a
scaling factor identical to the relaxation with a different fixed λ.

Fig. 3.11a shows the rNMP of the reconstructed images for varying
missing wedge. All methods have very similar rNMP when the missing
wedge is low, which was also the case for the simulation experiments. The
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(a) Phantom 1
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(b) Phantom 2
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(c) Phantom 3
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(d) Phantom 4

Figure 3.9. The average CPU time for 10 SIRT iterations when varying
the angles for each phantom. We observe that Tabu-DART has a low
average CPU time due to the probability map feedback procedure.

choice of p has negligible effect if there is sufficient data to reconstruct
the object. For large values of α, TP-DART shows a consistently lower
rNMP than poly-DART. Overall, TP-DART scaled has the lowest rNMP
for each value of α with a system size of the same order as poly-DART
with p = 0.05 (Fig. 3.11b).

Despite real-world projection data, the lower choices for p yield a lower
rNMP for this object. For the Barbapapa phantom, the optimal relaxation
parameter λ, with respect to the rNMP, was chosen, (cfr. Table 3.3).
This implies that there exists a cut-off where relaxation stops benefiting
the DART algorithm. Our experiments provide evidence that this cut-off
depends on both the amount of projection data and the choice p. Table
3.3 shows a large jump for λ once α ≥ 50◦. It is also from this point on
that p = 0.05 outperforms higher choices of p.
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Figure 3.10. (a) The rNMP for varying relaxation λ for the Barbapapa
plexiglass phantom. (b) The rNMP for Tabu-DART with changing relax-
ation with scaling factor β.
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Figure 3.11. The rNMP (a) and the percentage of free pixels (b) as a
function of missing wedge α for the Barbapapa plexiglass phantom.

Two conclusions can be drawn from the results. The first is that
estimating λ based solely on system size will yield poor results if the
available projection data is insufficient. Second, relaxation based on
system size with a scaling factor β dependent on the amount of data
available is indispensable towards the proper functioning of TP-DART
for experimental projection data. Even in the case of polychromatic
data, our approach based on Tabu-search showed favourable results
with respect to DART. The reconstructed image for a missing wedge of
40◦ is shown in Fig. 3.12. Due to the large missing wedge, the pSIRT
and SIRT reconstructions show large streak artefacts, which drastically
influence the quality of the segmentation (Fig. 3.12b up to Fig. 3.12f).
The initial probability map used in TP-DART captures these artefacts
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(a) Reference re-
construction

(b) Initial pSIRT (c) Final pSIRT (d) Final pSIRT
segmented

(e) Final SIRT (f) Final SIRT seg-
mented

(g) Initial probab-
ility map

(h) TP-DART
scaled reconstruc-
tion

Figure 3.12. pSIRT, SIRT and TP-DART reconstructions for the miss-
ing wedge experiment with α = 40◦. TP-DART yields highly increased
visual quality. The final number of (p)SIRT iterations for each method
was 500.

(Fig. 3.12g), but the final TP-DART output contains no missing wedge
artefacts. In fact, the TP-DART reconstruction is very similar to a
reference reconstruction created with pSIRT for the entire dataset of
2400 projections (Fig. 3.12a). This implies that the feedback structure of
the algorithm is able to correct errors created during the initial SIRT
reconstruction.

When considering visual quality of the reconstructions, no clear best
method emerged.

3.5 Discussion and outlook

In summary, the proposed probability map plays the role of frequency-
based memory and aids in choosing more optimal regions for further
reconstruction. It is able to retain which regions are already stable and
uses this information to completely remove them from the reconstruction
problem, increasing the efficiency and speed of the DART iterations over
time. The initialisation procedure suggested above eliminates the need
for the update probability parameter p.
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3. Dynamic update strategy for discrete tomography methods

Table 3.4. FLOP counts for operations occurring during a SIRT itera-
tion.

Operation FLOP count

x− y n

x⊤y 2n− 1
Ax (sparse) O(sn)

dx (diagonal D) n

3.5.1 Complexity analysis based on floating point
operations

The experiments show that our update strategy reduces the system size on
which the SIRT algorithm is run. A good measure for iterative algorithms
is the number of FLOating Point operations (FLOPs) needed to perform
an iteration. In this section, each addition, subtraction, multiplication,
and division is counted as one FLOP. A theoretical speedup can be
measured by counting FLOPs for the SIRT algorithm. Let x,y ∈ Rn.
Let A ∈ Rm×n be s-sparse, i.e. |A| = s. Let d ∈ Rn×n be any diagonal
matrix. The FLOP counts for different matrix/vector operations present
in SIRT are summarised in Table 3.4 [144]. In practice, the entries of A
are calculated on the fly, resulting in additional overhead depending on
the number of pixels in the image and the number of non-zero entries
in A. The complexity of multiplying a vector by A is hence O(sn). The
only operation in SIRT which is not yet accounted for, is the creation of
the R,C matrices, which are diagonal matrices that have the inverses
of the row and column sums on their diagonal, respectively. To create a
matrix of the form:

R =


1∑m

j=1 a1j
1∑m

j=1 a2j

. . .
1∑m

j=1 amj
,

 (3.7)

the entry 1∑m
j=1 aij

requires n− 1 additions and 1 division, which totals n

FLOPs when counting divisions as one operation. This is repeated for
each row of the m-by-n matrix which means m times n FLOPs for a
total of mn. The SIRT update step can be decomposed into a sequence
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of matrix-vector multiplications with costs:

x1 = Ax(k) cost: O(sn)

x2 = p− x1 cost: m

x3 = Rx2 cost: m

x4 = A⊤x3 cost: O(sn)

x5 = Cx4 cost: n

x6 = x(k+1) + x5 cost: n

(3.8)

Since the creation of matrices C and R only happens once per sequence
of SIRT updates, the cost is omitted in further complexity calculation.
From (3.8) it is trivial to find that the total complexity in terms of
FLOPs is of O(sn+m). However, the s non-zero entries of A are spread
equally across each column since each ray i that passes through a pixel
j yields a non-zero value aij . If instead n− k pixels are removed from
reconstruction in the masking step, a total of n− k columns is removed
from A. This leads to a linear decrease in the number of remaining
entries sk < s and hence the new complexity becomes O(skk +m). A
study on DART performed earlier [101] pointed out that if enough pixels
are set fixed, certain rays only pass through vacuum and fixed pixels.
These zero rays lead to zero rows in the matrix A. Hence, the number
of non-zero detector readings is lowered to a value mk < m. The final
complexity of masked SIRT becomes O(skk + mk) which is certainly
higher than a linear reduction considering m ≪ n in typical discrete
tomography applications.

3.5.2 Memory requirements

The gain in computational efficiency comes at the price of storage memory.
To run the Tabu-DART algorithm we presented, two additional image-
sized matrices need to be stored. The first one is for the probability map.
This cost cannot be avoided, since the entire purpose of the map is to
serve as a memory for the algorithm. The second matrix is required to
store the segmentation from the previous DART iteration. This allows
to track changes in grey values between two iterations. Since grey value
classes of the previous iteration can be represented by integer numbers
representing the class, the memory demand can be reduced by working
with short bit integers at the cost of extra processing.

75



3. Dynamic update strategy for discrete tomography methods

3.5.3 Outlook

The criteria for dynamic update rules are not limited to image stability.
Our approach can utilise metrics such as the Reconstructed Residual
Error [145], image stability [134], or image uncertainty [141]. Algorithms
such as MDART [102] and ADART [101] can be easily represented with
a probability map, illustrating that our proposed technique is, in fact, a
generalisation of the original DART approach to a dynamic framework.
The development of additional dynamic update strategies based on image
uncertainty is a point of reference for future work.

3.6 Conclusion

A generic framework based on Tabu-search was proposed to aid divide-
and-conquer strategies for algebraic discrete tomography methods. Our
framework relies on a probability map that functions as a memory
structure, which can be adapted through feedback obtained during the
run-time of the algorithm. This concept was applied to DART, for which
we introduced new dynamic update rules and a stronger initialisation
phase based on local image uncertainty. The method was subjected to a
simulation study using different discrete phantoms and an experimental
polychromatic dataset of a plexiglass block with aluminium rods. The
experiments provided evidence of increased visual imaging quality as well
as lower rNMP rates and lower average computation time compared to
the original DART algorithm. The generic nature of our approach makes
it ideal to be combined with other discrete algebraic methods that rely
on divide-and-conquer strategies.
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CHAPTER 4
Quasi-Newton methods for

polychromatic X-ray CT

This chapter has been published as:
Six, N., Renders, J., Sijbers, J. and De Beenhouwer, J., 2021. Gauss-
Newton-Krylov for reconstruction of polychromatic X-ray CT images.
IEEE Transactions on Computational Imaging, 7, pp.1304-1313.

Parts of the published method section have been omitted
because the concepts were already introduced in Chapter 1.

4.1 Introduction

Computed tomography (CT) is a non-destructive imaging technique to
reconstruct the interior of an object from multiple X-ray radiographs.
Classical reconstruction methods, such as the filtered back projection
(FBP) and the simultaneous iterative reconstruction technique (SIRT) [2],
rely on a linearised acquisition model, assuming that the log-corrected
normalised projection is the sum of attenuation values along a ray. This
is an adequate model for monochromatic X-ray beams, for example those
employed at synchrotron facilities. However, most lab X-ray sources are
polychromatic with a broad spectrum. As the X-ray beam travels through
the sample, the low-energy photons are attenuated more easily than those
with high energy, causing the effective energy of the beam to shift upward
as it passes through more material, which is known as beam hardening.
As a result, the absorption along a ray from a polychromatic source is
a non-linear function of the sample thickness. Reconstructing such a
dataset with a method based on a monochromatic inversion formula will
lead to artefacts in the reconstruction. These artefacts are usually in the
form of cupping, when attenuation values toward the middle of an object
are undervalued and the values at the edges are overvalued, as well as
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4. Quasi-Newton methods for polychromatic X-ray CT

dark streaks between different regions of higher attenuating materials
separated by lower attenuating materials [1].

In an attempt to remove or reduce beam hardening artefacts, nu-
merous techniques have been developed, both in hardware and software.
Common practice on the hardware side is placing thin metal filters in front
of the source to pre-harden the beam [31]. However, the pre-hardened
spectrum is still polychromatic. Moreover, filtering decreases the number
of photons available for imaging, and hence lowers the signal-to-noise
ratio of the reconstructed image. Another option is to use a dual-energy
X-ray setup, where an object is scanned using two different X-ray spec-
tra, with distinct effective energies[146]. The attenuation coefficients can
then be reconstructed with specialised algorithms. These algorithms are
application specific, but have been successfully used for bone mineral
density measurements [147], reduction of polychromatic artefacts from
dense inclusions in non-organic material [148] and to more accurately
measure body composition [149].

Algorithmically, beam hardening artefacts can be reduced by lin-
earising the data, i.e. by mapping the polychromatic projections to
monochromatic projections [33, 32]. Alternatively, the inherent polychro-
maticity of the beam can be modelled in the reconstruction algorithm
itself. One class of algorithms that follow this approach is the statistical
beam hardening reduction methods [150, 151, 27], where polychromati-
city is modelled and the reconstruction problem is solved through a
maximum likelihood algorithm. A simpler algorithm was described in
[34], where the authors propose a polychromatic variant of SIRT. The
proposed polychromatic model in [34] does not require segmentation,
unless a contrast agent is used, and models each voxel as a mixture of
two neighbouring basis materials. The reconstruction problem is solved
heuristically by substituting polychromatic forward model for the lin-
ear projection in SIRT but leaves the other parts of the update step
unchanged. The forward model has thus been changed, but the backpro-
jection, which returns these errors to reconstruction space, is still the
same linear model.

We propose using a quasi-Newton method to solve the polychromatic
reconstruction problem arising from the model proposed in [34]. We have
considered Gauss-Newton-Krylov (GNK)[54], limited memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS)[152, 153] and Gradient Descent
with Barzilai-Borwein steps (GD-BB) [52]. The backprojection in SIRT
can be viewed as the transpose of the Jacobian of the system of equations,
through which SIRT is seen to be a gradient descent method with a
particular choice of step size. The proposed method uses the transposed
Jacobian of the polychromatic model, which can be interpreted as the
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polychromatic backprojection. Quasi-Newton methods are used to minim-
ise an objective function consisting of the polychromatic projection error
term and optional regularisation terms. The proof of principle of this
idea was recently demonstrated on simulated data at ICIP 2020 [154]. In
this work, we give a broader overview of the theoretical aspects, as well
as more reconstruction experiments, including reconstructions from an
experimental X-ray CT dataset. To highlight the practical applicability
of the method, both the simulated and the experimental dataset have
noisy projections, and the spectral information of the source was estim-
ated using projections of a step wedge phantom. Another approach, only
considering L-BFGS [152, 153], was proposed in [155]. In [155] a different
forward model for the polychromatic image formation was employed, the
log-corrected version of the model used in IMPACT [150], which uses less
exact material information than the one proposed in [34]. Furthermore,
only perfect synthetic data was considered in [155], without noise, and
with perfect spectral and material information. We will present results
of our method on realistically simulated Monte Carlo data as well as real
data.

4.2 Method

4.2.1 Jacobian of the polychromatic model

We wish to minimise the polychromatic projection error term, with
optional regularisation term R(x):

Obj(x) =
1

2
∥polyProj(x)− b∥22 + λR(x) (4.1)

with b ∈ Rnproj the log-corrected measured polychromatic projection data,
polyProj the projection operator defined in (1.19), and λ ∈ R a weighting
term. To calculate the gradient of (4.1) or the Hessian approximation of
(1.35), the Jacobian matrix of polyProj(x) is needed. In this section, this
Jacobian will be described. All parts of the polychromatic forward model
in (1.17) are differentiable, except for the triangular functions Mm(x).
We can create differentiable variants of these functions by convolving
them with a continuous function. We chose to use a triangular function
Tε defined as follows:

Tε(x) =


0 if x ̸∈ [−ε, ε]
x+ε
ε if x ∈ [−ε, 0]

ε−x
ε if x ∈ [0, ε]

. (4.2)
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The convolutions Tε ∗Mm, which we will call TM ε
m, are differentiable

with derivative
d

dx
(TM ε

m) =

(
d

dx
Tε

)
∗Mm. (4.3)

It is furthermore trivial that limε→0 TM ε
m = Mm. The TM ε

m functions
will be substituted for the Mm in the objective function (4.1). The
parameter ε was empirically set at an optimal value of 10−4 for all
experiments in this paper. With this substitution, one arrives at the
following gradient of the objective function:

∇Obj(x) = J⊤
poly(x) (polyProj(x)− b) + λ∇R(x), (4.4)

with Jpoly(x) the Jacobian matrix of the polyProj function in x. This
Jacobian matrix can be seen to be equal to the following:

Jpoly(x) = D3

ne∑
e=1

I(e)D1

nm∑
m=1

AD2µm(e) (4.5)

where

D1 = diag

(
exp

(
−

nm∑
m=1

ATM ε
m(x)µm(e)

))
D2 = diag

(
TM ε

m
′(x)

)
,

D3 = diag
(
exp(−polyProj(x))−1

)
with diag operating on k-dimensional vectors and turning them into k×k-
diagonal matrices. Thus D1,D3 ∈ Rnproj×nproj and D2 ∈ Rnvol×nvol . As
mentioned earlier, for implementation only a method handling multiplica-
tion with a vector needs to be made. In such an implementation, multiplic-
ation with D1,D2 or D3 is done as a pointwise multiplication of vectors
instead. Multiplication with the Jacobian or the transposed Jacobian re-
quires, respectively, nm forward or backward projections. This gives each
application with the Jacobian a complexity of O(nm ∗max(nvol, nproj)).

4.2.2 Regularization

Any regularisation term R(x) can be added to the model, as long as its
gradient and Hessian can be calculated. In this paper, we have used a
differentiable version of anisotropic total variation (TV) regularisation
as an example in some of the experiments. The anisotropic TV of a 2D
image x is defined as:

TVa(x) =
∑
i

∑
j

|x(i+ 1, j)− x(i, j)|

+ |x(i, j + 1)− x(i, j)| .

(4.6)
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There exists a matrix D such that, if x is now considered in vectorized
form, TVa(x) =

∑
i(
√
(Dx)2)i. Anisotropic TV is not a differentiable

function, so we will use the following differentiable approximation, for
β ∈ R, β > 0:

TVa(x) ≈
∑
i

(
√
(Dx)2 + β)i. (4.7)

We will denote this approximation as TV (x). The gradient and Hessian
of this regularisation term are:

∇TV (x) = D⊤
(

Dx

TV (x)

)

HTV (x) = D⊤diag

(
β

TV (x)
3
2

)
D. (4.8)

All methods were implemented in MATLAB, making use of the
ASTRA toolbox to handle forward and backward projections on the
GPU [142, 107]. The implementation of the methods, as well as the
Monte Carlo dataset described in Section 4.3.1, are available on GitHub
and archived in Zenodo[156].

4.3 Experiments

To validate and compare the different reconstruction approaches, a Monte
Carlo simulation and a real data experiment were set up.

4.3.1 Monte Carlo data

A Monte Carlo simulation was performed with the Pie phantom shown
in Fig. 4.1(a). The phantom consists of two materials, plexiglass and
aluminium, suspended in air. The attenuation values at different energy
levels were obtained from the National Institute of Standards and Tech-
nology [35]. To avoid the inverse crime, the phantom was analytically
defined in the simulation framework, GATE [106]. Polychromatic fan-
beam projections were simulated with GATE. A 75 kVp X-ray point
source with a tungsten anode was simulated, of which the spectrum is
shown in Fig. 4.1(b). Spekcalc [108] was used to generate the source spec-
trum. The projection angles, 300 in total, were chosen using golden angle

sampling, which means that subsequent projections are 1+
√
5

2 π radians
apart. The detector pixel size was 375µm and the scanner setup had
a magnification factor of 4. The reconstructed pixel size was 93.75µm.
The detector was modelled as an idealised photon counting line detector
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(a) Analytically defined ’Pie’ phantom
consisting of air (black), plexiglass
(grey) and aluminum (white).

(b) Polychromatic spectrum of a
75 kVp X-ray source.

Figure 4.1. Ground truth data employed in GATE for the simulation
experiments: the Pie phantom (a) and the X-ray spectrum (b).

with 400 pixels made of silicon, with a minimal activation energy of
5 keV. Charge sharing between the pixels was not simulated. As the
projections were created using a Monte Carlo method, the generated
data is Poisson distributed. For each projection 8 × 106 photons were
simulated, which is on average 20k photons per pixel. Both absorption
and scattering of the photons were simulated. To further simulate a real
experiment, the spectrum I0(ϵ) was estimated with two simulated step
wedges, one of plexiglass and one of aluminium. Multiple projections
were taken orthogonal to the steps and then averaged to reduce the
effects of noise in the simulation measurements. A maximum likelihood
expectation maximisation (MLEM) algorithm [157] was used to estimate
the spectrum I0(ϵ) on 70 energy bins. The four characteristic peaks of a
tungsten anode source spectrum were added to the initial guess for the
MLEM iterations, based on prior knowledge.

From the simulated polychromatic projection data, images were re-
constructed with the following methods: pSIRT, gradient descent with
Barzilai-Borwein steps (GD-BB), Gauss-Newton-Krylov (GNK), limited-
memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), nonlinear con-
jugate gradients (NCG) and the polychromatic maximum likelihood
maximisation technique IMPACT. All methods used the same four basis
materials: vacuum, plexiglass, aluminium, and iron. The same polychro-
matic projection error term was used for GD-BB, GNK, L-BFGS, NCG,
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and pSIRT. IMPACT employs a different polychromatic model and, as
such, mimics a different objective function. Next, the effect of the chosen
number of inner iterations for GNK is examined. Then, we investigated
the effect of a different choice of basis materials. In this experiment, we
used a basis of vacuum, water, and iron. Lastly, the methods directly
compatible with regularisation, GD-BB, NCG, L-BFGS, and GNK, were
compared when reconstructing the same data with TVmin regularisation.
The regularisation term had empirically chosen parameters λ = 1 and
β = 10−7 × µmax(er), with µmax the attenuation coefficients of the most
attenuating basis material. A reference energy of 55 keV was chosen as
optimal for pSIRT in terms of convergence speed and reliability [34].
The same reference energy was used for the other techniques. Unless
otherwise specified, L-BFGS was run storing the two last image and
gradient updates, and the Gauss-Newton-Krylov methods used 5 Krylov
iterations in each Newton iteration.

4.3.2 Experimental data

Following the Monte Carlo simulations, a similar test was performed on
the central slice of an experimental cone beam dataset. The Barbapapa
phantom [109], consists of plexiglass with inserted aluminium rods and is
shown in Fig. 4.2. A phantom with the same materials as in the simulation
study was used to more easily compare the simulation results to the
experimental results. The phantom was scanned over 300 equiangular
projections in the interval [0, 2π). The detector rows have 968 pixels,
each pixel has a size of 149.6µm. A magnification of 4.28 was achieved,
resulting in a voxel size of 34.95µm. A tube voltage of 130 kVp was
employed.

To estimate the spectrum, the same technique as in the simulation
case was used. For this experiment, a PVC step wedge with 11 steps,
ranging from approximately 1mm to 18mm in thickness, was scanned.
Next, the same MLEM spectrum estimation method as in the Monte
Carlo case was performed, with 130 keV as maximum energy constraint.
From the central slice of the dataset, images were reconstructed with
the same methods: pSIRT, GD-BB, GNK, L-BFGS, NCG and IMPACT.
All methods used the same four basis materials: vacuum, plexiglass,
aluminium, and iron.

83



4. Quasi-Newton methods for polychromatic X-ray CT

Figure 4.2. Barbapapa phantom used to generate the experimental
dataset. The phantom is a smoothly shaped plexiglass object, with three
inserted aluminum rods and two air columns.
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Figure 4.3. Plots of the objective function for the simulated data for all
considered methods against number of (inner) iterations and computation
time. Note that IMPACT uses a different model and thus minimises a
different objective function.

4.4 Results

4.4.1 Monte Carlo data

To quantitatively compare the results of the different methods, we com-
puted the objective function at each iteration. Note that pSIRT does
not have convergence theorems guaranteeing it minimises any error, so it
does not have any true objective function, instead we used the first term
of (4.1), which is the same objective function as the other non-regularized
methods use, with the exception of IMPACT. IMPACT uses a different
polychromatic model and as such has a different objective function, this
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Figure 4.4. Plots of MSE with the ground truth for the simulated
data for all considered methods against number of (inner) iterations and
computation time.
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Figure 4.5. Plots of MSE with the ground truth for the simulated data
for differing numbers of inner iterations against number of iterations and
computation time.

makes it difficult to compare IMPACT with the other methods with this
metric. However, this is a comparable measure for all methods on how
fast they converge to a solution of the system. The error was then plotted
as a function of the number of iterations as well as computation time. For
Gauss-Newton-Krylov, since it works on an inner-outer iteration scheme,
the number of performed inner iterations was chosen for a fair compar-
ison. Convergence in a more mathematical sense can be seen in the plots
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Figure 4.6. Plots of MSE with the ground truth for the simulated data
for an alternative material basis, consisting of vacuum, water and iron,
against number of iterations and computation time.
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Figure 4.7. Plots of different error measures for the simulated data for
regularized methods.

comparing error to number of iterations, however, as computation time is
a more important factor for real world applications, it is our main focus.
The methods were all timed in MATLAB for the plots as functions of
computation time. The full runtime for 1000 iterations was timed, and
the errors, calculated after each iteration, were plotted assuming that
each iteration takes an equal amount of time. Only the multiplication
with the projection matrix was performed on GPU with the ASTRA tool-
box [142, 107]. Furthermore, since this is synthetic data, the error with
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4.4. Results

Figure 4.8. Comparison of the different reconstruction techniques on
simulated data, after 3 seconds of reconstruction time. From top left to
bottom right: pSIRT, GD-BB, NCG, IMPACT, L-BFGS, GNK.

Figure 4.9. Comparison of the different reconstruction techniques on
simulated data, after 10 seconds of reconstruction time. From top left to
bottom right: pSIRT, GD-BB, NCG, IMPACT, L-BFGS, GNK.

respect to the ground truth was calculated. The ground truth was defined
analytically in GATE, so it was recreated from the analytical definitions
on the same 400× 400 grid as the reconstruction for these calculations.
These error measures are shown in Fig. 4.3 and Fig. 4.4. Based on the
plots against iteration in Fig. 4.3 it is clear that IMPACT converges
the slowest, followed by pSIRT, GD-BB and finally NCG, L-BFGS and
GNK all tied as fastest. However, in the plot against computation time
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4. Quasi-Newton methods for polychromatic X-ray CT

it becomes clear that on a time scale NCG performs poorly. This is
easily explained, as it is the only method that requires strong Wolfe
conditions for the line search. Furthermore, GD-BB performs comparable
to L-BFGS on a time scale, while GNK slightly outperforms the other
methods. Lastly, we note that IMPACT reaches the lowest objective
from all methods, but it is a different objective function, which makes it
difficult to compare to the other methods. In Fig. 4.4 the mean squared
error against the ground truth, a measure for the reconstruction quality,
is shown. All methods show semi-convergence, which is to be expected
due to the presence of noise in the measurements. We also note that
IMPACT has the highest minimum in MSE with the ground truth. All
other reconstruction techniques reach a similar minimal error with the
ground truth. On a time scale, this minimum is reached first by GNK,
then GD-BB and L-BFGS, then by pSIRT and finally by NCG. The
reconstructions are compared in Fig. 4.8 and Fig. 4.9, after letting each
reconstruction technique run for 3 and 10 seconds, respectively. The
reconstructions show very little beam hardening artefacts, as expected.
Only IMPACT still has some darker streaks visible after 10 seconds.
In Fig. 4.8 it is clear that GNK has reached a good reconstruction the
fastest. The low time reconstruction of L-BFGS shows some peculiar
dark ring artefacts around the metal cylinders, however, these artefacts
are removed after a longer runtime. After 10 seconds, all methods reach
similar reconstructions, with L-BFGS and GNK showing the strongest
overfitting artefacts due to the noise in the projection data.

Next, the influence of the chosen number of inner iterations in GNK
was examined. When few iterations of the Krylov method are run, the
solution is too far removed from the Newton step, too many iterations
and the resulting step can be overfitted. In Fig. 4.5 the ground truth
MSE error is compared for different choices of number of inner iterations.
All choices between 3 and 10 lead to a similar minimum in error. From
comparison of the plots one sees that for these choices the minimum is
achieved after a similar amount of inner iterations, however, on a time
plot the choices drift more apart. This is because in GNK the line search
step only happens once per outer iteration. We conclude that the choice
of number of inner iterations is important, but the method is not overly
sensitive to it.

Then, the influence of a different choice of basis materials was in-
vestigated. In the other experiments, we use a basis that is as close as
possible to the actual materials in the phantom. In this experiment, we
chose vacuum, water, and iron as basis. This means that the plastic and
aluminium parts need to be estimated as a combination of water and iron.
The ground truth MSE of the reconstruction with this alternative basis
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is shown in Fig. 4.6. The plot shows that the minimally achieved error is
higher with this new basis, which is to be expected as the real materials
are now represented as a combination of water and iron. Interesting to
note is that, in contrast to the results with the exact basis, NCG and
pSIRT no longer reach the same minimum as the quasi-Newton methods.
We conclude that the quasi-Newton methods still perform well when less
prior material knowledge is included.

Lastly, the effect of regularisation with TV was investigated. The
results are shown in Fig. 4.7. The regularised versions converge slower
than the unregularized methods. This was to be expected, as they are
also minimising a more complex objective function. In the comparison
to the ground truth, the regularised methods reach a lower MSE than
the unregularized methods and show vastly reduced semi-convergence.
As with the unregularized reconstructions, NCG is a slower method,
while GNK, GD-BB and L-BFGS are comparable. However, all methods
converge to the same error.

4.4.2 Experimental data

A similar reconstruction experiment was run on the experimental dataset.
However, since there is no ground truth image, we can only compare
the objective and the reconstructed images. The changes in objective
function of the different methods are shown in Fig. 4.10. From these plots,
one can observe that again pSIRT, GD-BB, L-BFGS and GNK seem to
converge to a comparable objective. NCG converges to a higher objective
and IMPACT converges to a lower error, however, we note again that
IMPACT uses a different objective function. In terms of convergence
compared to iteration, very comparable results to the simulated data are
seen. On a time scale, there is more difference between GD-BB, L-BFGS
and GNK compared to the simulated data, with GNK and GD-BB
clearly outperforming L-BFGS and GNK slightly outperforming GD-BB.
Reconstructions after 10 seconds are shown in Fig. 4.11. The comparison
between the methods at this point is more similar to the reconstructions
of the simulated dataset after 3 seconds. This is not surprising, as
the experimental dataset has over six times more unknowns than the
simulated dataset.

4.5 Conclusion

Beam hardening artefacts reduce the quality of X-ray CT images. By
including a polychromatic model in the reconstruction framework, these
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Figure 4.10. Plots of the objective function values for the experimental
data for all considered methods against number of (inner) iterations and
computation time. Note that IMPACT uses a different model and thus
minimizes a different objective function.

Figure 4.11. Comparison of the different reconstruction techniques on
experimental data, after 10 seconds of reconstruction time. From top left
to bottom right: pSIRT, GD-BB, NCG, IMPACT, L-BFGS, GNK.

effects can be mitigated. In this work quasi-Newton solvers are con-
sidered to minimise the polychromatic objective function arising from a
recently proposed polychromatic model in [34]. This approach is math-
ematically justified and facilitates regularisation. To allow the use of
quasi-Newton solvers, the Jacobian of the polychromatic model was
first derived and presented. Multiple methods were compared: pSIRT,
gradient descent with Barzilai-Borwein steps, limited-memory Broy-
den–Fletcher–Goldfarb–Shanno, Gauss-Newton-Krylov, non-linear con-
jugate gradients and a statistical reconstruction method IMPACT. Res-
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ults on Monte-Carlo simulated data and on experimental data were
shown. In all cases, GD-BB, L-BFGS and GNK were the best performing
methods when taking reconstruction time into account, with GNK being
the best. The results show that quasi-Newton methods in general and
GNK in particular should be considered as a practical alternative to
other beam hardening correction algorithms, algebraic or statistical.
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CHAPTER 5
Joint multi-contrast CT for

edge illumination X-ray
imaging

This chapter has been published as:
Six, N., Renders, J., De Beenhouwer, J. and Sijbers, J., 2024. Joint
multi-contrast CT for edge illumination X-ray phase contrast imaging
using split Barzilai-Borwein steps. Optics Express, 32(2), pp.1135-1150.

5.1 Introduction

X-ray phase contrast imaging (XPCI) offers complementary contrasts to
conventional X-ray absorption: differential phase or refraction contrast,
which relates to the refraction of the X-ray beam, and a scatter or
dark-field contrast, which relates to scattering caused by sub-voxel micro
structures [158]. Compared to absorption contrast, these contrasts have
demonstrated the ability to generate higher contrast in soft tissue and
enable the visualization of sub-voxel structures, such as those found
in composite materials [59]. The applications of XPCI have expanded
beyond biomedical studies [60, 61, 62, 63] to non-destructive testing [64],
materials science [65, 66], and security [67, 68].

Among the emerging XPCI techniques, edge illumination (EI) is
particularly suitable for use with lab-based X-ray sources that have a large
focal spot and a polychromatic spectrum [69, 59]. In this technique, the
phase information can be retrieved by displacing two strongly absorbing
masks relative to each other, with the object positioned in between.
Conventionally, multiple images at a single view angle are acquired, one
for each mask displacement. In every detector element, in every projection,
this results in a curve, called the illumination curve. Subsequently, a
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5. Joint multi-contrast CT for edge illumination X-ray imaging

Gaussian curve is fitted to the illumination curves of each pixel in each
projection, both before and after the introduction of a sample. From
the two fitted Gaussians, three complementary contrasts are retrieved:
absorption, refraction, and scatter. This step is called phase retrieval.
Finally, for each of those contrasts, an image is individually reconstructed
using filtered backprojection (FBP) or iterative reconstruction techniques.

Unfortunately, EI XPCI requires adequate sampling of the illumina-
tion curve at every detector pixel, resulting in long scan times, particularly
in computed tomography (CT) imaging. Furthermore, in CT imaging,
millions to billions of Gaussian curve fits need to be performed for the
contrast retrieval, resulting in a lengthy preprocessing step. Addition-
ally, there is no direct information sharing between the contrasts during
reconstruction, limiting their potential synergies.

An alternative to the conventional two-step-approach, in which phase
contrast images are reconstructed after phase retrieval, is a one-step-
approach, in which phase contrast images are directly reconstructed
from the measured X-ray data. In this approach, different contrasts are
reconstructed simultaneously, without a separate fitting and retrieval step.
In grating based Talbot-Lau interferometry (GBI), statistical approaches
to one-step joint reconstruction have been proposed [159, 160], where a
likelihood function is minimized. These approaches were also shown to
help reduce scan times as greater freedom in the scanning geometry is
allowed [78]. Unfortunately, these techniques cannot be directly applied
to EI setups due to the different nature of the measurements between
GBI and EI. Both the hardware components as well as the way X-ray
refraction affects the measurements, differ. In GBI the resulting changes
in interference patterns are compared, while in EI the deflection of the
center of the beamlet is considered. Consequently, the forward models
developed for GBI are not applicable to EI data.

Recently, an EI reconstruction method was presented in [77] that
reconstructs refraction and absorption contrasts separately in a joint
reconstruction using line searches. This method achieves a similar flexib-
ility in acquisition setup for EI as reported in [78] for GBI. However, this
method does not include scatter reconstructions, which can provide addi-
tional information on sample properties [81]. Moreover, no investigation
into different suitable solvers for the objective function was performed in
[77].

In this work, we propose a novel joint reconstruction method using
a full EI forward model without retrieval, enabling the simultaneous
reconstruction of all three contrasts. The proposed approach reduces
reconstruction times, as the retrieval step is skipped and allows more
flexible acquisition schemes. We demonstrate the effectiveness of the
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Figure 5.1. (a) overview of an EI setup and (b) flatfield and measured
IC.

proposed method through reconstructions of both simulated and experi-
mental datasets, showing results on single-shot datasets which cannot be
reconstructed with the two-step method.

5.2 Method

5.2.1 Edge illumination CT forward model

In EI imaging, the refraction of the X-rays in the object is quantified by
incorporating two gratings, called the sample and detector mask, into
the traditional X-ray setup, as depicted in Fig. 5.1a. The X-ray beam
is split into smaller beamlets by the sample mask, with each beamlet
corresponding to a pixel on the detector. These beamlets are partially
blocked by the detector mask. By performing a phase stepping procedure,
which involves lateral translation of the sample mask relative to the
detector mask, the fraction of the beamlet blocked by the detector mask
changes. The resulting curve obtained by measuring the intensities as
a function of the mask translation is referred to as the illumination
curve (IC), shown in Fig. 5.1b. The IC is assumed to approximate a
Gaussian shape. After the introduction of a sample, three contrasts can
be retrieved by measuring the changes in the IC, in a step called phase
retrieval : absorption, refraction, and scatter. The change of area under
the IC is a measure of the absorption of the sample, the shift of the peak
of the IC measures the refraction of the beamlet by the sample, and the
broadening of the IC corresponds to the scatter contrast.

We represent the vectors corresponding to absorption, refraction, and
scatter reconstructions as xµ, xδ, and xσ, respectively, where each vector
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has dimensions n× 1. To combine these vectors into a single vector, we
define x ∈ R3n. We assume a Gaussian model for the IC, such that the
flatfield intensity p0, as function of the phase step ξ, can be modeled as:

p0(ξ) = a0 exp

(
−(ξ − b0)

2

2c20

)
, (5.1)

with a0, b0, c0 the amplitude, mean and standard deviation, respectively.
These parameters can be found by fitting a Gaussian to the measured
flatfield data. In this paper, only a single fit is performed, namely on the
mean illumination curve obtained by spatial averaging the intensities of
each (phase stepped) flat field. That is, only three parameters are fitted
in the preprocessing step.

We now consider models that describe the effects of the introduction
of the object x on the beamlets. The absorption of the object, with
absorption coefficients xµ, is modeled by the Beer-Lambert law in X-ray
CT as:

I(xµ) = I0 exp (−Axµ), (5.2)

with I the measured intensity, I0 the flatfield intensity, and A ∈ Rm×n

the discretized X-ray CT projector. In the case of EI, the area under
the IC is considered to decrease caused by absorption. Therefore, we
employ the same equation as (5.2), but where now I and I0 represent
the integral of the measured and flatfield IC, respectively. Refraction of
the object, which is based on the real part of the refraction index (δ),
causes the mean of the measured IC to shift as follows:

s(xδ) = DAxδ, (5.3)

with D ∈ Rm×m a discrete differential operator. In what follows, D is
the forward differences operator, which has been shown to be a good
choice for X-ray phase contrast applications in [161]. Lastly, the dark-field
contrast models scattering in the object due to the presence of sub-voxel
structures. This shows as broadening of the IC, which we model this
as the convolution of the IC with a normal distribution N (0,Axσ). As
such, we obtain the following joint forward projection model, where
all operations with vectors are pointwise, except for the matrix-vector
products with A and D:

p(x, ξ) = exp (−Axµ)
a0c0√

c20 +Axσ

exp

(
−(ξ − b0 −DAxδ)

2

2
(
c20 +Axσ

) )
. (5.4)

Analogously to the construction of x, we can still represent p as a vector
when multiple phase steps ξi per projection angle are considered, by
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concatenating the different p(x, ξi) to create a single vector, which we
denote as p(x, ξ).

5.2.2 Jacobian of the model

Given the forward model in (5.4) and some measured data b, the recon-
struction problem can be seen as a non-linear minimization problem of
the following least-squares objective function:

f(x) =
1

2
||p(x, ξ)− b||22 , (5.5)

with the reconstruction x̃ being defined as:

x̃ = argmin
x

f(x). (5.6)

Non-linear optimization problems of the form of (5.6) can be solved
in a variety of ways [4]. In this work, versions of gradient descent and
quasi-Newton methods were considered. A key advantage of the proposed
approach is that, unlike the conventional two-step method of reconstruct-
ing after phase retrieval, solving (5.6) does not necessitate fully sampled
illumination curves for every pixel in each projection. This property was
demonstrated in [77] for absorption and refraction contrast.

For the solvers considered in this work, the Jacobian of p(x, ξ) with
respect to x is required. We will denote this Jacobian of p with respect
to x in a point x0 as Jx

p (x0). Given this Jacobian, the gradient of f in
(5.5) can be written as [4]:

∇x f |x0
= Jx

p (x0)
⊤(p(x0, ξ)− b). (5.7)

Furthermore, for quasi-Newton methods such as Gauss-Newton and
Levenberg-Marquardt [162], the required Hessian matrix of a least-squares
problem can be approximated using the Jacobian matrix as:

H ≈ J⊤J . (5.8)

The Jacobian Jx
p can be seen as a block matrix consisting of the Jacobians

with respect to the separate contrasts considered in the model:

Jx
p =

[
J

xµ
p Jxδ

p Jxσ
p

]
(5.9)
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In the case of a single phase step per projection angle, one can calculate
the Jacobian of (5.4) with respect to the different contrasts as follows:

J
xµ
p (x0) = −diag (p(x0, ξ))A

Jxδ
p (x0) = diag

(
R(x0, ξ)

S(x0)
p(x0, ξ)

)
DA (5.10)

Jxσ
p (x0) = diag

(
1

2S(x0)

(
R(x0, ξ)

2

S(x0)
− 1

)
p(x0, ξ)

)
A,

where

R(x0, ξ) = ξ − b0 −DAx0,δ, (5.11)

S(x0) = c20 +Ax0,σ.

with all operations between vectors being executed pointwise, multiplica-
tions between matrices being standard matrix-multiplication and diag
the operator transforming a vector into a diagonal matrix. If multiple
phase steps per projection angle would be acquired, the resulting Jac-
obian is the sum of the Jacobians of the form described in (5.10) at each
of the phase steps. This Jacobian matrix is typically too large to store in
memory in real CT use cases, so instead functions are implemented that
directly calculate the result of matrix multiplication with this Jacobian,
based on the formulas in (5.10). All multiplications with the system
matrix A or its transpose are performed on the GPU using the ASTRA
toolbox [107].

5.2.3 Split gradient descent

Gradient descent is a widespread iterative method for solving optimization
problems of the form of (5.6), where the next iteration is found from the
previous as [4]:

x(k+1) = x(k) − α(k)∇x f |x(k) . (5.12)

Analogous to the Jacobian, the gradient of (5.5) with respect to x can
be divided into partial gradients:

∇xf =
[
∇xµf

⊤ ∇xδ
f⊤ ∇xσf

⊤]⊤ , (5.13)

For finding a suitable value of α(k) in (5.12) multiple options exist [4].
In this paper, we used the Barzilai-Borwein scheme [52] to calculate the
step size in iteration k:

α(k) =

(
x(k) − x(k−1)

)
· (∇x f |x(k) −∇x f |x(k−1))

(∇x f |x(k) −∇x f |x(k−1)) · (∇x f |x(k) −∇x f |x(k−1))
. (5.14)
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(a) Absorption (b) Refraction (c) Scatter

Figure 5.2. Different contrast channels, (a) absorption, (b) refraction
and (c) scatter, of the ground truth phantom used for the simulation
experiments.
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Figure 5.3. Box plots showing the variation, by using different relative
scaling of the contrasts, in minimally achieved projection error (a) and
MSE with respect to the ground truth (b) for different optimizers of the
EI objective function.

In addition to using this method to find a single step size α(k), we also
considered a split gradient descent method where three separate step sizes

α
(k)
1 , α

(k)
2 , α

(k)
3 are calculated for the partial gradients shown in (5.13).

This allows the step size of the three contrasts to vary independently,
with the hypothesis being that this would alleviate the need to find
scaling parameters between the different contrasts.
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Algorithm Time per iteration Total time

Gaussian fitting & phase retrieval 0.0142 s 2560 s
Reconstruction after retrieval 0.0595 s 119 s

Joint reconstruction 0.111 s 221 s

Table 5.1. Table of total times and time per iteration of the phase
retrieval, reconstruction after phase retrieval and joint reconstruction on
the full dataset with five phase steps. Time per iteration for the phase
retrieval algorithm is the time per pixel. Reconstruction algorithms were
run for 2000 iterations, phase retrieval was performed on 500× 360 =
180000 pixels.

5.3 Results & discussion

To assess the effectiveness of the proposed joint reconstruction method,
we conducted evaluations on both simulated and experimental datasets.
For the simulated dataset, we employed multiple optimizers and assessed
their performance based on two metrics: projection error, which is also
the value of the objective function, and the mean squared error (MSE)
with respect to the ground truth. To ensure a fair comparison, gradient
descent with Barzilai-Borwein steps was implemented for use with each
of the separate contrasts after phase retrieval, using the same forward
operators, A and DA, as the joint reconstruction model.

5.3.1 Simulated data

A simulation experiment was set up to select an appropriate optimization
algorithm and to compare the joint reconstructions to the conventional
two step workflow of reconstruction after phase retrieval. A phantom
was defined on a 2000× 2000 pixel grid, with a pixel size of 60 µm. The
different ground truth contrast channels of the phantom are shown in
Fig. 5.2. A total of 360 fan beam projection angles were considered, evenly
distributed over a 360◦ range. For each projection angle, five projections
were obtained with varying simulated sample mask displacements at
−13.5,−9, 0, 9 and 13.5 µm, resulting in a total of 1800 fan beam projec-
tions The magnification factor was 1.25. The projections were created
using the forward model in (5.4). To avoid using the same model in
both simulation and reconstruction, the projections were computed on a
2000× 2000 pixel grid, but reconstructed on a 500× 500 pixel grid. It
should be noted that, for the purpose of comparing with the conventional
workflow, the model in (5.4) simulates Gaussians, which benefits the
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(a) Projection error.
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(b) MSE with respect to ground truth
absorption.
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(c) MSE with respect to ground truth
refraction.
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(d) MSE with respect to ground truth
scatter.

Figure 5.4. Plots of reconstruction quality as a function of the number
of iterations for the simulated dataset, comparing the two-step method
with GD-BB optimization and the joint reconstruction method with
split-GD-BB optimization. Two error measures are shown: (a) projection
error, measuring how well the simulated projection of the reconstruction
fits with the measured data and (b-d) MSE with respect to the ground
truth for each contrast channel separately.

Gaussian fitting process.

In the first experiment, we compared the performance of different
optimizers for the joint reconstruction approach, on the full dataset. The
same reconstructions were performed with gradient descent with Barzilai-
Borwein steps (GD-BB) [52], split gradient descent with Barzilai-Borwein
steps (split-GD-BB), Gauss-Newton-Krylov (GNK) [4] and Levenberg-
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(a) (b) (c)

(d) (e) (f)

Figure 5.5. Reconstructions of the simulated dataset with 5 phase steps
per projection. (a-c) two-step reconstruction method with GD-BB and
(d-f) joint reconstruction method with split-GD-BB. Different contrast
per column, left to right: absorption, refraction, scatter.

Marquardt-Krylov (LMK) [162]. Each contrast channel in the joint
model can be scaled individually, which corresponds to changing the
unit of the reconstructed values. These different potential scaling factors
can have an impact on convergence speed and reconstruction quality.
Therefore, the three different contrasts were each multiplied with scaling
factors in {10−4, 10−3, 10−2, 10−1, 1, 10}, resulting in 63 = 216 different
reconstructions for each method. The GD-BB and split-GD-BB were run
for 500 iterations, GNK and LMK were run for 50 outer iterations with
10 inner Krylov iterations in each outer iteration. Two measures of the
error are considered: projection error and mean squared error (MSE) with
respect to the ground truth. For the projection error the reconstructed
images are projected again using (5.4) and MSE with the measured
data is calculated. For the MSE with respect to the ground truth, the
MSE of the reconstruction with respect to each ground truth contrast
channel is calculated separately. The box plots in Fig. 5.3 illustrate the
minimum achieved projection error and ground truth MSE. It can be
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observed that the reconstruction quality varies significantly depending
on the scaling factors employed, except in the case of split-GD-BB.
This can be attributed to the fact that split-GD-BB computes different
step sizes for each contrast, making it less sensitive to relative scaling.
Notably, the minimum achieved error in an outlier for GD-BB, GNK, and
LMK, different for each one, is slightly lower compared to the split-GD-
BB error. However, split-GD-BB offers the advantage of not requiring
the determination of optimal parameters. The determination of scaling
factors severely limits the practical application of the other optimizers
for real reconstruction problems. Even when found, the GD-BB, GNK
and LMK methods with optimal parameters do not output noticeably
improved reconstructions over split-GD-BB without optimal parameters.
Therefore, in the following experiments, only split-GD-BB was used as
the optimizer for the proposed the joint reconstruction method.

Next, the reconstruction quality and convergence speed was compared
between the joint reconstruction method with split-GD-BB optimizer
and the two-step method with GD-BB optimizer. In both cases three
step sizes were calculated with the BB formula for a single update of each
contrast. Of both methods, 2000 iterations were performed and timed.
For the two-step method, Gaussian curves were first fitted to each of the
360×500 = 180.000 ICs, using MATLAB’s built-in lsqcurvefit function
with trust region approach. The plots showing different errors, projection
error and ground truth MSE, as function of number of iterations are
shown in Fig. 5.4. The reconstructions after 2000 iterations are shown in
Fig. 5.5. The total time and time per iteration are shown in Table. 5.1.
From these figures, it is clear that the differences on the full dataset
between the two reconstruction methods are minimal. The ground truth
phantom is faithfully reconstructed, with the exception of some light
streaking artefacts, for both methods. Comparing the difference images
with the ground truth (not shown here), reveals that there are some
additional weak artefacts at the interfaces between the materials, again
of the same magnitude for both methods, which is likely due to the
downsampling of the projection data. The joint reconstruction method
reaches a lower projection error although differences in ground truth MSE
are negligible. As both methods converge to the same reconstructions, the
proposed joint reconstruction method has the benefit of providing this
reconstruction faster, as it does not require a lengthy Gaussian fitting
preprocessing step.

Additionally, the stability of the reconstructed values when noise is
present in the projection data was investigated. The above experiment
was repeated after Poisson noise was added to the projection data, for a
flatfield intensity of 100000 photon counts per detector element. Twenty
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(a) Bias, two-step (b) Bias, joint

(c) Std deviation, two-step (d) Std deviation, joint

Figure 5.6. Bias (a-b) and standard deviation (c-d) maps of the
scatter contrast for the simulated dataset from twenty repeated noise
experiments.

independent noise realisations were considered and bias and standard
deviation maps for both methods and for each contrast were calculated.
For absorption and refraction both methods performed virtually identic-
ally. The bias and standard deviation maps for scatter are shown in
Fig. 5.6. It can be seen that the standard deviation of the proposed
method for scatter is significantly lower than that of the conventional
two-step method. A possible explanation is that errors due to noise made
in the IC fitting procedure propagate through, leading to less predictable
reconstructions for the two-step method.

Lastly, the method was tested as a single-shot reconstruction al-
gorithm. For each projection angle, a single projection at one mask
displacement was acquired (i.e., no phase stepping at any projection
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(a) Projection error.
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(b) MSE with respect to ground truth
absorption.
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(c) MSE with respect to ground truth
refraction.
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(d) MSE with respect to ground truth
scatter.

Figure 5.7. Plots of reconstruction quality as function of number of
iterations for the simulated dataset with one phase step per projection,
comparing the two-step method with GD-BB optimization on the in-
terpolated data and the joint reconstruction method with split-GD-BB
optimization on both the interpolated data and the single shot data: (a)
projection error (b-d) MSE with respect to the ground truth, for each
contrast channel separately.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.8. Reconstructions of the simulated single-shot data with
360 projections: (a-c) two-step method on the interpolated single-shot
data, (d-f) joint reconstruction split-GD-BB on interpolated single-shot
data, (g-i) joint reconstruction split-GD-BB on single-shot data. Different
contrast per column, left to right: absorption, refraction, scatter.

angle). When moving to the next projection angle, the sample mask was
stepped only once, to the next displacement in the full range of phase
steps: −13.5− 9, 0, 9 and 13.5 µm, returning to −13.5 µm at the end of
the list. This sampling method is similar to the cycloidal CT presented
in [163], where the sample undergoes a lateral displacement following
each rotational step. The simulated dataset acquired this way for 360
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.9. Reconstructions of the simulated single-shot data with
180 projections: (a-c) two-step method on the interpolated single-shot
data, (d-f) joint reconstruction split-GD-BB on interpolated single-shot
data, (g-i) joint reconstruction split-GD-BB on single-shot data. Different
contrast per column, left to right: absorption, refraction, scatter.

uniformly distributed projections is a subset of the simulated dataset
described before, with only 20% of the data available.

For the joint reconstruction method, the above described projection
data can be reconstructed directly. However, for the conventional two-
step method, this is not possible, as no Gaussian fitting can be performed
to a single point in each projection pixel. To allow for a comparison
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with the two-step method from the same dataset, the available data was
interpolated to recreate 5 phase steps per projection. The data available
at each mask displacement was used to fill in the missing projection
angles at that displacement, using cubic interpolation. The two-step
method was subsequently performed on this interpolated dataset. The
joint reconstruction method was performed on both the original single-
shot data and the interpolated dataset. The same single-shot methodology
was also followed on a subset of the simulated data where only half of
projection angles are taken.

The error measurements of this experiment are shown in Fig. 5.7
and reconstructions after 2000 iterations for each method are shown in
Fig. 5.8. From the plots in Fig. 5.7, it can be observed that the proposed
method on the non-interpolated data converges to a much lower projection
error than the two-step method on the interpolated dataset, while the
proposed method on the interpolated data converges to a slightly higher
projection error. Furthermore, the different ground truth MSE plots show
that both methods exhibits semi-convergent behaviour when performed
on the interpolated data. However, the joint reconstructions on the
single-shot data without interpolation do not show this semi-convergent
behaviour. Although the methods on the interpolated data have a low
MSE with respect to the ground truth after a low amount of iterations,
the reconstruction here is extremely blurry and still has a high projection
error. From the qualitative comparison in Fig. 5.8, it can be seen that
both methods suffer from artefacts due to the subsampling. However,
the reconstructions on interpolated data are unable to reconstruct the
fine details, as they are lost in rotational blurring from the interpolation,
which is especially visible in the checkerboard part of the phantom. In
the reconstructions, a slight improvement of the reconstruction quality
of the scatter contrast can be observed for the joint reconstruction on
interpolated data, compared to the two-step method. The proposed joint
reconstruction method on the data without interpolation still reconstructs
most of the interior faithfully. When the number of single-shot projections
is halved, it can be observed again in Fig. 5.9 that the quality of the
reconstructions with the proposed method degrades much less severely
than for the ones with the two-step method on interpolated data. This
is to be expected, as the lower the number of single-shot projections, the
more error is introduced by the interpolation method. In summary, the
proposed method provides more accurate reconstructions without the
need of a preprocessing step consisting of interpolation, Gaussian fitting
and phase retrieval.
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Figure 5.10. Plot of projection error as function of iterations for the
experimental dataset, comparing the two-step and joint reconstruction
methods.

5.3.2 Experimental dataset: fiber polymer

To further evaluate the performance of the joint reconstruction method
and to confirm the conclusions from the simulation results of section
5.3.1, reconstructions from an experimental dataset were compared.
The data consists of the central slice of a cone beam edge illumination
dataset, acquired at the Advanced X-Ray Imaging Group, University
College London. The imaged object was a fiber polymer block with fiber
bundles woven in two orthogonal directions, held in place by plastic
straws. Over a 360◦ range, 6250 projections were acquired, from 1250
uniformly spaced angles, with 5 phase steps per projection angle. From
this fully sampled dataset, two reconstruction experiments were set up.
First, reconstructions were made from all available data using both the
conventional two-step method as well as the proposed joint reconstruction
method. As no ground truth was available for this dataset, only the
projection error was computed for this experiment. Next, subsets of the
data were taken to simulate a single-shot dataset of the same object. Both
the full range with 1250 and a subsampled range with 500 projections
were considered. For this experiment, the MSE with respect to the
reconstruction found in the first experiment is calculated, considering
this as the best guess for the ground truth object. As undersampling
artefacts in the background would be the main contributor to this MSE,
the MSE with respect to the ground truth is calculated only in the region
where the object is present. For the two-step method, reconstructions
were again computed using GD-BB on the retrieved sinograms. As the
simulation results in section 5.3.1 suggest that split-GD-BB performs
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well and has less parameters that need to be tuned, only this optimizer
was used for the joint reconstruction method for the experimental data.
For both methods the optimizer was run for 500 iterations.

In Fig. 5.10, the evolution of the projection error over iterations is
shown for the fully sampled dataset. The joint method reaches a lower
projection error compared to the two-step method. The reconstructions
made with the joint reconstruction method are therefore more faithful to
the projection data. Erratic behaviour can be observed in the projection
error curves, however, this is known behaviour of gradient descent when
using Barzilai-Borwein steps [53]. In Fig. 5.11 the reconstructions after
500 iterations are shown. The reconstructions are again visually very
similar on the full dataset, which is in line with the simulation results.

Next, the results of the single-shot experiment were compared. In
Fig. 5.12, the evolution of the MSE with respect to the ’ground truth’
reconstruction is shown and in Fig. 5.13the reconstructions are qualitat-
ively compared. The joint method reaches a lower MSE with respect to
the ground truth reconstruction compared to the two-step method on
interpolated data in almost all cases. There is one exception: in refraction
contrast with all 1250 projections, the measured error for the two-step
method is slightly lower than the joint reconstruction method. In general,
this is again in line with the simulation results, showing that the joint
reconstruction method is able to compute accurate reconstructions from
single-shot datasets. In Fig. 5.13, the reconstructions can be compared.
The reconstructions with the joint method on the single-shot data are
sharper than the two-step reconstructions on the interpolated data. The
reconstructions of the interpolated data tend to have less background
artefacts, as everything gets smoothed out slightly due to the rotational
blurring. It is important to note that this blurring effect is not due to
the two-step method, but inherent to the interpolation. Therefore, if
the blurred reconstruction would qualitatively be preferred, the joint
reconstruction method can also be employed on the interpolated dataset.
This would result in similar reconstructions, without the need for a
preprocessing step, as in the full data case studied before.

Future work building upon the proposed work can be envisioned
in multiple fronts. To use the greater freedom in acquisition schemes,
one could investigate ideal sampling schemes with varying rotational,
dithering [163] and phase steps, as well as varying exposure times, using
the proposed method. In modeling, more accurate physics models can be
investigated, extending the forward model to include for example effects
of polychromatic sources and directionality of scatter. Other choices for
the differential operator for refraction contrast can also be considered.
Furthermore, regularisation terms for the different contrast channels, as
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well as joint regularisation using data from multiple contrast channels
at once could be considered. Additionally, the forward model proposed
here can also be used as the model for iterative statistical reconstruction
methods, by adjusting the objective function according to a chosen noise
model.

(a) (b) (c)

(d) (e) (f)

Figure 5.11. Cropped reconstructions of the fiber polymer block. (a-c)
two-step method of the full dataset, (d-f) joint reconstruction method
on the full dataset. Columns from left to right: absorption, refraction,
and scatter contrasts.

5.4 Conclusion

Conventional EI-based phase contrast reconstruction employs a two-
step procedure: the fitting of a Gaussian function to the IC of each
detector pixel to retrieve absorption, refraction, and scatter contrast,
followed by the reconstruction of each of these contrasts. Significant
drawbacks of this approach are the lengthy preprocessing of the data
required before reconstruction and the necessity for complete sampling
of each IC at every projection angle. In our paper, we introduced a
joint reconstruction method capable of simultaneous reconstruction of
all three contrasts: absorption, refraction, and scatter. We furthermore
investigated different optimizer choices and concluded that gradient
descent with a split Barzilai-Borwein scheme performed the best in terms
of convergence speed and reconstruction quality with little scaling of
the objective function needed. We showed that the proposed method
reconstructs equally reliably as the state-of-the-art two-step procedure
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absorption.
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refraction.
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Figure 5.12. (a-c) Plots of reconstruction quality as function of num-
ber of iterations for the experimental dataset with one phase step per
projection, comparing the two-step method and the joint reconstruction
method MSE with respect to the ground truth, for each contrast chan-
nel separately. The results on both 1250 and 500 projection angles are
compared. (d) ROI where the MSE is calculated.

when using the same datasets, but without the need of performing
Gaussian fitting and phase retrieval. Furthermore, the method allows for
more freedom in acquisition schemes, as we showed that images can also
be reconstructed from single-shot datasets that cannot be reconstructed
with the two-step procedure without additional interpolation.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.13. Cropped reconstructions of the fiber polymer block. (a-c)
two-step method on 1250 single-shot projections, (d-f) joint reconstruc-
tion method on 1250 single-shot projections, (g-i) two-step method on
500 single-shot projections, (j-l) joint reconstruction method on 500
single-shot projections. Columns from left to right: absorption, refraction,
and scatter contrasts.
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CHAPTER 6
Conclusions and future

perspectives

X-ray CT is a non-invasive imaging modality in which projections of
an object are used to reconstruct its internal structure. The algorithms
most commonly used to perform the reconstruction step, such as FBP
and SIRT, can suffer from a wide range of artefacts. Reconstruction
artefacts appear due to either undersampling, that is, lacking sufficient
projections to solve the reconstruction problem, or due to a mismatch
between the real process of image formation and the forward model
used in the reconstruction algorithm. In this thesis we present multiple
algorithms aiming to improve reconstruction quality in situations where
the algorithms based on the standard Beer-Lambert model do not provide
adequate results. In this thesis, we have attempted to incorporate more
accurate physics models in the reconstruction algorithms to improve
performance.

In Chapters 2 and 3, the combined problem of projections from poly-
chromatic sources and undersampling is investigated. Starting from an
existing heuristic discrete tomographic method, DART, that works on
undersampled monochromatic data, we proposed a variation, called poly-
DART, where the polychromaticity of the source and the energy depend-
ence of the attenuation were included in the reconstruction method. Next,
we proposed an improvement to the heuristic partitioning step underlying
all DART-based methods, updating the partitioning rules throughout
the algorithm. The resulting Tabu-DART framework is applied on the
proposed poly-DART algorithm, further improving performance. Ex-
periments on simulated and experimental data show that the included
polychromatic forward model drastically improves the performance of
discrete tomography on datasets from polychromatic sources.

In Section 1.3 we see that although SIRT is widely used and many
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new algorithms are adapted from it, it is not a particularly efficient
optimisation algorithm. Therefore, in Chapters 4 and 5 we investigated
the use of different optimisation techniques for non-linear CT problems. In
Chapter 4 different optimisation techniques are compared to reconstruct
polychromatic data, with the same forward model as used in Chapter 2.
The investigation shows that quasi-Newton methods outperform existing
heuristic solvers, in particular a proposed polychromatic SIRT algorithm.
At the same time, gradient-based methods are much more easily extended
to adapt to any additional modelling or regularisation. Finally, a similar
approach was used in Chapter 5, where we examine a different X-ray CT
imaging modality: edge illumination phase contrast imaging. Here, we
combined the three physical sources of contrast in one differentiable model
and applied different quasi-Newton and gradient descent methods to the
combined least-squares problem. The resulting optimisation algorithm
has slightly improved performance compared to the state-of-the-art two-
step reconstruction approach, while allowing much higher freedom in
acquisition.

The work presented here shows that by using more accurate X-ray
acquisition models, reconstructions can be achieved with little artefacts.
In general, there is a trade-off between the accuracy of the modelling
and the time required for reconstruction. We have shown that by em-
ploying quasi-Newton techniques the convergence speed can be improved,
however, reconstructions will still take longer than with a simple SIRT
algorithm.

Multiple ways forward from the presented research can be identified.
Both for the conventional and EI CT models extensions of the presented
model have to be considered, modelling, for example, source and detector
effects, scatter, motion, etc. However, one must be vigilant that the re-
construction model does not end up being so complex that reconstruction
time becomes unacceptable. Furthermore, although many quasi-Newton
methods were compared, it is likely that there exist other numerical
optimisation methods that have the potential to perform better on the
presented models.

The work presented on polychromatic data required a priori known
weights for the spectrum. The weights represent a multiplication of the
emitted source spectrum and the spectral response of the detector. The
spectrum estimation methods can be improved, and for better modelling,
the source spectrum and the detector response should separately be
estimated. Since the energy distribution of the X-ray beam changes as it
passes through a sample, the spectral weight as used in the methods now
does not fully capture the real effects. Given a separate source spectrum
and spectral detector response, the outgoing spectrum along each ray
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could easily be modelled and then multiplied with the detector response,
resulting in more accurate simulated polychromatic images.

We saw that by changing models in the ARM step of DART, the
discrete tomography method could be used on data that did not follow
a linear acquisition model. Furthermore, in edge illumination we saw
undersampling issues with the single-shot method. It would be interesting
to attempt to perform discrete tomography on edge illumination datasets.
Particularly interesting is, given the same number of total projections,
whether it is ideal to take more phase steps with fewer projection angles
or fewer phase steps with more projection angles. A challenge for applying
a DART-like algorithm on EI data would be the lack of clear estimations
for the expected grey value in the dark field signal, as there are still
unexplained effects in the contrast, for example a flattening of the
expected straight curve at higher sample thickness as shown in [164].
The undersampling issue can also be addressed with compressed sensing
techniques, such as adding a total variation regularising term to the
method presented in Chapter 5.

An interesting combination of the presented work would be to in-
clude polychromatic modelling of the edge illumination set up in the
reconstruction algorithm, as polychromaticity has different effects on
all contrasts. Some advances in modelling polychromaticity have been
made in [165]. The equations in [165] show that the polychromatic effects
described at the level of the retrieved contrast after Gaussian fitting are
very complex, due to the mixing of multiple effects, suggesting that using
an extension of the joint reconstruction method proposed in this work
could be more successful than methods after phase retrieval. Further-
more, if we compare to the polychromatic model used in Chapter 4, a
reconstruction method that accurately employs a similar model for EI
can only be a joint reconstruction method, as the dependency can only
be accurately described at the material level and not at the projection
level. Particularly challenging would be the dependence of the linear
dark field coefficients on energy, as experimentally verified values do not
yet exist. In such a model the transmission through the grating bars,
resulting in an offset in the projections, could also easily be modelled
more accurately. As the X-rays first travelled through the grating bars,
their spectrum is a heavily filtered version of the source spectrum.
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[138] G. Lékó, S. Domány and P. Balázs. Uncertainty based adaptive
projection selection strategy for binary tomographic reconstruc-
tion. In International Conference on Computer Analysis of Images
and Patterns, pages 74–84, 2019.

136



Bibliography
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