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1 Introduction

The PTA consortium has very recently reported the first positive evidence of a stochastic
gravitational wave background (SGWB) around the nHz frequency [1–9] (see [10–14] for
previous PTA results). One possibility is that this signal is of astrophysical origin and
that it consists of a superposition from super massive black hole binaries [15]. However, it
is interesting to explore the possibility that the background observed at PTAs is actually
of cosmological origin. In this case, this discovery would provide unique new information
about the early history of our Universe. Several works have recently appeared, with the aim
of interpreting this new SGWB signal at PTAs [16–33], for previous studies see e.g. [34–50].
The NANOGrav collaboration has already considered several new physics interpretations
of their dataset as well [1].

In this paper, we focus on the scenario where the detected SGWB is sourced by domain
walls (DWs), namely two-dimensional topological defects that can arise during a phase
transition involving the spontaneous breakdown of a discrete symmetry [51, 52]. DW
networks are predicted in many scenarios of physics Beyond the Standard Model (BSM) and
their signatures have been recently investigated in several works [37, 43, 46, 47, 50, 53–72]
(see [73, 74] for reviews on domain walls).

A DW network in the early Universe can be a powerful source of gravitational waves,
as shown quantitatively in numerical simulations of the corresponding field theory [74–77].
The NANOGrav collaboration has in fact interpreted this signal as coming from a DW
network in the scaling regime, identifying the ranges of temperature and energy density of
the network compatible with the data [1]. We will employ their results in our analysis.
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A scenario where DWs arise naturally is in models of axion-like-particles (ALPs). ALPs
are generalizations of the Peccei Quinn QCD axion solving the strong CP problem [78–81],
and they are common in BSM physics, see e.g. [82–99].

DWs arise naturally in ALP models where the discrete subgroup of the U(1) which is
preserved by the anomaly undergoes spontaneous symmetry breaking. These DWs can be
topologically stable and eventually dominate the energy density of the Universe [52, 100],
in conflict with standard cosmology. This problem can be avoided by introducing a (small)
explicit breaking of the discrete symmetry (the so-called bias), leading to the annihilation
of the network [100–102]. The size of the bias is generally a new independent parameter,
which determines the phenomenology of the network and in particular the emitted SGWB.

As we shall discuss, a natural scenario to motivate the signal from ALP DWs at the
PTA frequencies is the one where the ALP couples to QCD, as already suggested e.g.
in [47, 50, 71, 76, 103], so that the QCD-induced potential itself acts as a bias. In this case,
however, friction from the QCD sector in the thermal plasma is inevitable. Determining
the impact of this friction force for the ALP domain wall interpretation of the PTA data
is the main goal of our study (see [71, 73, 104–106] for previous studies of friction effects
on DW networks). In fact, when friction dominates the network departs from scaling and
the corresponding SGWB can significantly change with respect to the one observed in
numerical simulations [74–77] where plasma effects are not included.

Our main result is that friction acting on the DWs from the QCD sector can in gen-
eral be relevant for a significant part of the parameter space capable of explaining the
NANOGrav signal, and that a departure from the scaling regime (on which the PTA in-
terpretation is based) is possible, even though a more detailed analysis around the QCD
crossover is required to completely settle the issue. We also find parameter space compat-
ible with the SGWB at PTAs where friction can be safely neglected.

Note that our study focusses on a minimal realization of ALP DWs with QCD-induced
bias, where the heavy ALP cannot be the QCD axion. Nevertheless our analysis on friction
effects can apply equally to non-minimal scenarios where the heavy axion is actually the
one responsible to solve the strong CP problem, see e.g. [53, 107, 108].

Additionally, while the study presented in this paper focuses on the unavoidable cou-
pling with QCD, friction could also impact the DW network if other ALP-SM (model-
dependent) couplings are present. For instance, in ref. [71] it was shown that if the ALP
couples to muons1 the resulting friction can actually play a role at PTA frequencies pro-
vided that this interaction has the right strength.

The structure of the paper is as follows. In the next section we review the basics of
ALP domain walls and SGWBs. Then, in section 3 we show that ALP DWs whose bias
is induced by QCD are a natural candidate to explain the PTA signal, by comparison
with the model-independent analysis in [1]. In section 4 we study the impact of friction
from the QCD sector, analyzing the contribution from gluons and pions at high and low
temperatures. In section 5 we present our results showing the relevance of friction for the
ALP parameter space.

1The other SM fermions are either too weakly coupled (the light ones), or generally too heavy to be
abundant in the plasma at the QCD crossover.
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2 ALP domain walls

We consider domain walls that generically arise in ALP models. We introduce our notation
and setup. We start off by considering a dark QCD non abelian group SU(N) and a
U(1) Peccei-Quinn symmetry anomalous under SU(N). The corresponding pseudo-Nambu-
Goldstone boson, a, plays the role of the ALP in our analysis. The Lagrangian for the ALP
contains the following term

La ⊃ αd

4π

Nd

v
a GdG̃d, (2.1)

where αd is the dark gauge coupling constant, v is the U(1) breaking vev, and Gd is the
dark gauge boson field strength, which is contracted with its dual G̃d. In terms of the
quantities above it is useful to define the ALP decay constant fa as

fa = v

NDW
, NDW = 2Nd. (2.2)

In terms of this quantity the Lagrangian is defined as usual as

La ⊃ αd

8π

a

fa
GdG̃d. (2.3)

For Nd = 1/2 the domain wall number, NDW, is one and the vacuum manifold for the
ALP potential induced by the dark gauge theory is trivial, namely it contains only one
minimum as a = 0 and a = 2πfa = 2πv are to be identified. For NDW > 1 however the
vacuum consists of disconnected points corresponding to a discrete symmetry ZNDW , and
stable domain wall solutions exist interpolating between neighboring minima.

The most important features of the ALP potential are captured by the following shape
that encodes the discrete ZNDW of the ALP Lagrangian with respect to the dark sector:

Vd(a) = m2
af2

a

(
1 − cos

(
a

fa

))
, (2.4)

where ma is the ALP mass. The ALP potential is defined in the range a ∈ [0, 2πv) =
[0, 2πNDWfa) and it then supports NDW − 1 degenerate and inequivalent minima. The
simple cosine potential allows to obtain analytical domain wall solutions,

a(z) = [2πk + 4arctan(emaz)] fa, k = 0, 1, . . . NDW − 1, (2.5)

with energy per unit surface (tension) given by

σDW = 8maf2
a . (2.6)

In general, the ALP potential could differ significantly from the cosine shape if addi-
tional (pseudo) Nambu-Goldstone bosons exist below the dark-QCD confinement scale, as
it is the case for the QCD axion, see e.g. [109]. In any case, the profiles in (2.5) can still
capture most of the relevant physics of the ALP domain wall.2

2Note however that while the cosine potential predicts vanishing ALP self-reflection off the ALP domain
wall, a QCD-like potential was shown to not maintain this property [71].
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Cosmology evolution of DW and SGWB spectrum. We assume that the PQ break-
ing scale v is smaller than the reheating temperature and we focus on the case in which the
domain wall number is larger than one, so that the DW network is stable [100, 110].3 At
the scale of the PQ phase transition global strings associated to U(1) are formed according
to the Kibble mechanism [51], see [115–118] for recent work. Subsequently, when the ALP
potential becomes cosmologically relevant, that is when 3H(Tf) ∼ ma with H the Hubble
parameter, domain walls can be considered formed. The precise relation to determine Tf
should take into account the temperature dependence of the axion potential generated by
the dark-QCD sector. For an ALP decay constant below the Planck scale, one can show
that Tf ≳

√
mafa, so we consider

√
mafa as an estimate of Tf that will anyway play no

important role in our study.
After DW formation, the energy density of the resulting string-wall hybrid network is

soon dominated by the walls [73, 76]. The DWs reach then the so-called scaling regime
where the energy density of the DW network redshifts as ρDW ∼ σH, corresponding to
O(1) DWs per Hubble patch and mildly relativistic average velocity [119–124].

A scaling network of DWs will eventually dominate the energy density of the Universe,
in contrast to standard cosmology [52, 100, 125]. This occurs when ρDW ∼ 3H2M2

Pl, where
MPl = 2.435 × 1018 GeV is the reduced Planck mass, or in terms of temperature

Tdom ≃ 14 MeV
(

σ
1/3
DW

100 TeV

)3/2 (
g∗
10

)−1/4
, (2.7)

where we have assumed radiation domination4 with g∗ the number of relativistic degrees of
freedom, and we have used ρDW = 2σHA with A = 0.8 from numerical simulations [74–77].

In order to collapse the DW network before domination, one may add a bias potential
∆V that breaks explicitly the ZNDW symmetry. We shall then define T∗ as the annihilation
temperature, where T∗ > Tdom for consistency.

Note that the collapse of the DW network may produce a significant amount of pri-
mordial black holes (PBHs), potentially leading to further constraints on the model, see
e.g. [66, 126]. However, the precise estimate of the resulting PBH abundance is still un-
certain and depends on the underlying assumptions regarding the geometry of the DW
configurations, as well as on the dynamics of the collapse. Hence we will not consider PBH
constraints in what follows.

At the time of annihilation, the DW energy density normalized to the total energy
density is given by

α∗ = ρDW
3H2M2

Pl
≃ 0.02

(
σ

1/3
DW

100 TeV

)3 (
T∗

100 MeV

)−2 ( g∗
10

)−1/2
, (2.8)

3For NDW=1 the network is unstable and decays soon after formation [110–114].
4One could go beyond the assumption of radiation domination, i.e. H ∼ T 2/MPl, by defining Tdom as

the temperature when ρDW = ρrad with ρrad the radiation energy density and H ∼
√

ρDW + ρrad/MPl. This
leads to a O(10%) correction in the temperature which we are neglecting here.
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where we assumed radiation domination.5 This definition of α∗ is inspired by analogous
studies of first order phase transitions, see e.g. [127], and it directly relates to the strength
of the GW emission.

The annihilation temperature may be estimated by balancing the curvature pressure
with the energy difference induced by the bias, namely ∆V ∼ σDW/R ∼ ρDW, where R is
the correlation length of the network, R ∼ H−1 in the scaling regime. One finds

T∗ ≃ 270 MeV
(

σ
1/3
DW

100 TeV

)−3/2(
∆V 1/4

100 MeV

)2 (
g∗
10

)−1/4
, (2.9)

where we used the more precise condition ∆V = Cann ρDW with Cann ≃ 2 from numerical
simulations [74–77]. The bias is in principle a free parameter6 that should be added to
the model, and the phenomenology of the DW network can change completely depending
on its size. On the other hand, the size of the bias and the corresponding phenomenology
can be actually predicted if it is generated dynamically. In the next section we will in fact
explore the possibility that such bias is generated by QCD.

The DW network in the scaling regime has been proven by numerical simula-
tions [74, 76, 77] to generate a large SGWB Ωgw(f) with broken power law in frequency.
The signal is dominated by the last moment of emission, so it depends explicitly on T∗.
The signal redshifted today has the form

Ωgw(T∗, f) = Ωpeak ×


(

f
fpeak

)3
if f ≤ fpeak(

f
fpeak

)−1
if f > fpeak

(2.10)

with

Ωpeak ≃ 1.64 × 10−6
(

ϵ̃gw
0.7

)( A
0.8

)2 (g∗(T )
10

)(
g∗s(T )

10

)−4/3 (Tdom
T∗

)4
(2.11)

fpeak ≃ 1.15 × 10−9 Hz
(

g∗(T )
10

)1/2 (g∗s(T )
10

)−1/3 ( T∗
10 MeV

)
, (2.12)

where g∗s is the effective number of entropy degrees of freedom and we have normal-
ized the numerical coefficient to the values obtained in numerical simulations, with
ϵ̃gw = 0.7 [74–77]. The SGWB spectrum of DW is determined by two parameters, the
tension (see eq. (2.7)) and T∗.7 Eq. (2.11) shows that the later the DW network annihi-
lates, the larger the GW signal is. As we can see, the best T∗ for PTA frequencies is in the
ballpark of the QCD scale.

5Similarly as in footnote 4, one could consider H ∼
√

ρDW + ρrad/MPl, but since the relevant temperature
ranges for our model are consistent with values of α∗ < 0.5 (i.e. ρDW < ρrad) as we show in figure 1, it is
safe to assume annihilation happens in a radiation dominated regime.

6One may for instance expect a bias term to arise from quantum gravity effects that make the starting
U(1) global symmetry only approximate [128–135].

7There is also a mild dependence on NDW which is encoded in O(1) modifications of the numerical
coefficient A [136].
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3 The QCD potential as the natural bias for DWs at PTAs

Let us now consider the effect of the QCD-induced potential on the ALP model illustrated
above. This comes from the anomalous coupling between the ALP and the gluons,

La ⊃ αs

4π

Nc

v
GG̃, (3.1)

where Nc is the color anomaly from fermions charged under QCD. In general, Nc and Nd

are two independent numbers. Whenever these numbers are coprime, the degeneracy in
the vacuum manifold is lifted and domain walls become metastable.

The contribution to the ALP potential from QCD at low energy can be captured
within chiral perturbation theory, see e.g. [109, 137]. One finds the following leading-order
potential for the ALP-pion system:

V (a, π0) = − f2
πm2

π

mu + md

[
mu cos

(
a

2f ′
a

− π0
fπ

)
+ md cos

(
a

2f ′
a

+ π0
fπ

)]
, (3.2)

with
f ′

a ≡ Nd

Nc
fa. (3.3)

Notice that since f ′
a ̸= fa, the periodicity of the QCD potential is generally misaligned

with respect to the one of the dark-QCD potential. The interactions in (3.2) follow from
an ALP-dependent rephasing of the light up and down quarks that removes the ALP
from the topological term, q → q exp

(
iγ5

a
2fa

Qa

)
and Qa proportional to the identity with

Tr Qa = 1. Notice that this choice generates no derivative interaction between the ALP
and the pions at the leading order, at the price of keeping a linear mixing between the ALP
and the π0 from the potential (3.2).

Assuming that the QCD contribution is very small compared to the dark QCD one
(mπfπ ≪ mafa), the size of the bias is generically given by |∆Vk| ∼ m2

πf2
π . However, the

bias can become parameterically small when the two sectors are almost aligned,

|∆Vk| ∼ ϵ2m2
πf2

π , (3.4)

where ϵ quantifies the alignment. For instance, a case of extreme alignment with ϵ ≪ 1
can be realized by taking Nc/Nd = 1 + ϵ. In general, there is no one-to-one correspondence
between the ratio Nc/Nd and the resulting bias, and we therefore keep ϵ as a free parameter
in our analysis. We however notice that scenarios with ϵ ≪ 1, where the life time of the
network gets parameterically enhanced, require somewhat large or fine-tuned values of Nc

and Nd.
Let us now turn to discuss how temperature corrections modify the size of the QCD-

induced ALP potential. At very high temperatures above QCD confinement, the ALP
potential is expected to behave as [109, 137–140]

V (a; T ) = χ(T )
[
1 − cos

(
a

f ′
a

)]
= χ0

(
T

150 MeV

)−n [
1 − cos

(
a

f ′
a

)]
, (3.5)

– 6 –



J
H
E
P
1
1
(
2
0
2
3
)
1
6
9

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0
-2.0

-1.5

-1.0

-0.5

0.0

Figure 1. One and two sigma contours for the DW interpretation of the signal as provided by
the [1] collaboration (blue and yellow dots). The prediction of a DW network with QCD induced
bias (∆V ∼ ϵ2m2

πf2
π) are displayed as lines with varying DW tension.

with n ≃ 7 and χ
1/4
0 ≃ 75.6 MeV, even though some uncertainty on these parameter still

remains (see e.g. [140] and references therein). Similarly to the low-temperature case,
some approximate alignment between QCD and the dark-QCD can lead to a parametric
suppression of the natural bias |∆Vk|(T ) ∼ χ(T ) to

|∆Vk|(T ) ∼ ϵ2χ(T ) . (3.6)

In our analysis we consider as a bias eq. (3.4) for T ≲ 150 MeV and eq. (3.6) for T ≳
150 MeV.

From this simple estimate we can already draw some conclusions in the light of the
recent PTA results. In ref. [1], the collaboration has performed a bayesian analysis on
the NANOGrav data for the DW interpretation. The results were displayed in a two
dimensional plane of T∗ vs α∗ as 1 and 2 sigma contours, as shown in figure 1, for the case
of DWs as the only source contributing to the GW signal.

In order to compare the NANOGrav contours with the scenario we are discussing, we
can first use equations (2.8) and (2.9) to relate directly the fraction of energy density to
the annihilation temperature, for a given bias potential,

α∗ ≃ 0.15
(

∆V 1/4

100 MeV

)4 (
T∗

100 MeV

)−4 ( g∗
10

)−1
. (3.7)

Plugging in ∆V ∼ ϵ2m2
πf2

π in the equation above we obtain a line in the T∗ vs α∗ plane.8
Notice that each point on this line corresponds to a specific domain wall tension.

8In the region relevant for NANOGrav the network annihilates below T = 150 MeV in our model, so
that it is consistent to use the temperature independent potential (3.4).
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We display in figure 1 the lines of two representative cases for ϵ, showing how the
QCD-induced bias can accommodate the NANOGrav data. Notice that since ϵ ≤ 1 in
this minimal realization, we cannot access the entire region favoured by the NANOGrav
analysis in this model.

The results from the NANOGrav collaboration are obtained in a model-independent
way assuming that the DW network is in the scaling regime at annihilation. In the follow-
ing section, we shall investigate whether this assumption is compatible with the natural
QCD bias.

4 The impact of friction from QCD

In this section we study the friction acting on the ALP domain wall as a consequence of
the reflection of particles in the plasma. In particular, we are interested in friction effects
close to the annihilation temperature of the network in the range relevant for figure 1. If
friction dominates before annihilation, the DW network is not in scaling and the predictions
for the GW spectrum can change significantly [71, 104], possibly jeopardizing the PTA
interpretation. The irreducible friction on ALP domain walls in scenarios with the QCD
bias comes from gluons and in general from hadrons at low temperatures.

The effect of friction is usually parameterized by defining a friction length ℓf which
feeds in the total damping scale of the network ℓd as

1
ℓd

= 3H + 1
ℓf

, (4.1)

where H is the Hubble parameter and

1
ℓf

= ∆P

vwσDW
. (4.2)

Here vw is the average velocity of the network, and ∆P is the pressure on the wall from
interactions with the plasma. The definition above takes into account that one generally
expects ∆P ∝ vw, at least for moderate velocities.

The pressure can be computed from an integral over the particle thermal distribution
involving the reflection coefficient [71, 141], R(pz),

∆P = 2g

(2π)2

∫ ∞

0
dpzp2

zR(pz) 1
βγa

[
2βγpzvw − log

(
f(−vw)
f(vw)

)] ∣∣∣∣
E=

√
p2

z+m2
, (4.3)

where γ =
√

1 − v2
w , a = ±1 for FD or BE statistics respectively, pz is the particle

momentum in the direction orthogonal to the wall, β is the inverse temperature, g counts
the number of d.o.f, and f(v) is the thermal distribution in the wall rest frame

f(v) = g

eγ(v)β(E+pzv) ± 1
. (4.4)

The reflection coefficient R(pz) can be computed by solving the quantum mechanical re-
flection for a particle scattering off the ALP wall. For temperatures such that 1/ℓf ≳ 3H

– 8 –



J
H
E
P
1
1
(
2
0
2
3
)
1
6
9

the DW network deviates from scaling and enters a friction dominated regime, where one
expects suppressed GW signals [71, 104]. Indeed, by considering only the velocity one-scale
(VOS) estimate as done in ref. [71], the GW signal would be suppressed by a factor v5

w,
showing that it is unlikely we could explain the large amplitude seen at PTAs.

The temperatures of interest for PTA are in the ballpark of the QCD crossover, mak-
ing the computation of the friction from QCD effects rather difficult. We face this issue
following a very minimal strategy,9 and we study two regimes of temperatures above and
below the QCD scale:

• For T ≳ 2 GeV we compute friction by considering the scattering of gluons off the
ALP DW through the interaction (3.1).

• For T ≲ 60 MeV we employ chiral perturbation theory, and the main source of friction
is induced by scattering of pions off the ALP DW.

Even if we cannot compute the friction in the intermediate temperature regime, we will
still be able to draw interesting conclusions concerning the DW dynamics around the QCD
crossover.

4.1 Friction from gluons

At high temperatures, the contribution to ∆P comes from gluons reflecting off the ALP
domain wall. We stress that this effect is unavoidable in the scenario in which QCD provides
the bias collapsing the network.

In the simplified picture of friction as coming from one-to-one particle reflection off
the ALP wall, we can neglect as a first approximation the gluon self interactions and work
at the linear order in the field fluctuations. In this limit, one recovers independent abelian
equations of motion for each gluon degree of freedom. Additionally, when the ALP wall
comes from the simplest cosine potential, a reasonable approximation for the reflection
coefficient can be obtained analytically [144] (see also [105]). The reflection probability
for a negative helicity gluon is given by

R−(ρ) = 1 + cos(π
√

1 + bρ)
cos(π

√
1 + bρ) + cosh(4πρ)

, (4.5)

where ρ = pz/ma, with pz the gluon momentum in the direction orthogonal to the wall, and

b = 4Nc

πNd
αs. (4.6)

The reflection for positive helicity gives a quantitatively very similar result as in (4.5) in
the case of interest. At momenta much below the inverse width of the domain wall, ρ ≪ 1,
particles have a finite probability of being reflected ∝ b2.

9This should be seen as a first approximation to the problem of hadrons scattering off axionic DWs. A
more detailed analysis, for instance along the lines used for thermal axion production in [142, 143], is left
for future work.
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The pressure induced by this type of interaction may be computed according to (4.3)
and grows with the temperature as

∆P = vw g
3

32π2 b2T 4, T ≪ ma, (4.7)

where g = 2 · 8 for gluons. For temperatures T ≳ ma an even larger fraction of particles is
simply transmitted and the ∝ T 4 behavior is tamed to a much slower increase ∝ T ,

∆P = 2 · 10−5 · vw g b2m3
a T, T ≫ ma. (4.8)

Our calculation of the friction at low temperatures is of course limited by QCD becoming
non-perturbative. In our analysis we will push this description down to T ≳ 2 GeV, keeping
in mind that corrections should be expected at the low end of this region.

Notice also that there is a source of model dependence given by the ratio of the QCD
and dark-QCD anomaly, Nc/Nd. Clearly, when Nc → 0 the ALP is decoupled from QCD
and indeed (4.7) and (4.8) yield a vanishing contribution. In the following we shall take
Nc/Nd = O(1), as decoupling the ALP from QCD is anyway not compatible with the
generation of the required bias term.

Let us finally notice that the pressure from gluon reflection is generally much bigger
than the high-temperature bias induced by the QCD instantons in (3.6). This crucially
implies that the network can consistently reach a friction-dominated regime well before
annihilation begins.

4.2 Friction from pions

In order to evaluate the friction from pions we refer to chiral perturbation theory and
consider the potential in (3.2). Let us first notice that in the scenario of interest where the
QCD contribution is not aligned with the potential induced by the dark QCD, the pion
mass will change in the different vacua. This simply signals that the ZNDW degeneracy has
in fact been removed by the QCD potential. Taking this into account, the pressure from
the pions is expected to be the same order of the potential bias.

This pressure is however not what we are interested in, as it would only determine the
velocity of the domain walls during the collapse, very similarly to the case of a first order
phase transition (see e.g. [141]). Instead, the question we wish to address is whether the
ALP interaction with pions could in principle turn a scaling network (where the bias is by
definition irrelevant) into a friction-dominated evolution.

We shall then evaluate the pion pressure in a system in which the QCD potential
and the dark-QCD potential are chosen to be aligned. This ensures that the pressure we
are evaluating receives no contribution from the bias term (which is vanishing due to the
alignment), and it can therefore be interpreted as the friction that would be acting on
scaling domain walls. The only contribution comes then from pion reflection, with the
pion mass being the same on both sides of the ALP wall. This can also be seen as a lower
bound on the actual friction from hadrons.

We then set fa = f ′
a only for this specific calculation to ensure the alignment, and

we additionally assume a large hierarchy between the ALP and the pion mass, ma ≫ mπ.
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This allows us to neglect the backreaction of the pion (and in general of the QCD sector)
on the ALP domain wall solution (2.5), which is in fact obtained considering only the
dark-QCD potential. In addition, this mass hierarchy allows us to neglect the effect of
ALP excitations. We shall therefore treat the ALP field as a non-dynamical z-dependent
background given by (2.5), and study the motion of the π0 around it.

Firstly, one has to take into account that the ALP background induces a z-dependent
background on the π0 as well, given as the solution of

−π′′
b (z) + ∂V (a(z), π0)

∂π0

∣∣
π0=πb(z) = 0. (4.9)

The boundary conditions for πb(z) at z = ±∞ can be derived from the structure of the
vacua in eq. (3.2), considering that a(−∞) = 0 and a(+∞)/fa = 2π. One then finds:

πb(−∞)/fπ = 0, πb(+∞)/fπ = −π. (4.10)

According to the assumed hierarchy ma ≫ mπ, the ALP background varies on scales
much shorter than the inverse pion mass. We can therefore set a(z < 0) = a(−∞) and
similarly for positive z, and split eq. (4.9) on the two sides of the ALP wall as

−π− ′′
b

(z)
fπ

+ m2
π sin

(
π−

b
(z)

fπ

)
= 0 z < 0,

−π+ ′′
b

(z)
fπ

− m2
π sin

(
π+

b
(z)

fπ

)
= 0 z > 0.

(4.11)

Once the solution π−
b (z) is obtained, π+

b (z) is simply given by π+
b (z) = −πfπ + π−

b (−z).
The equations of motion for πb(z) are similar to the ones of the sine-Gordon model but

they are not quite the same, given that sine-Gordon potential would be ∝ cos(π0/fπ) for
both positive and negative z. This, together with the different boundary conditions of the
present case, implies that contrary to the sine-Gordon model, where particle excitations
are exactly (self) reflectionless, pions can have a non-zero reflection coefficient.

The profile πb(z) can be obtained by solving numerically the equation of motion. To
this end we employ a relaxation algorithm taking the ALP profile to be a step function as
in (4.11), as well as considering the realistic ALP solution (2.5) with mπ/ma = 0.1. We
find that, as long as the ALP mass is hierarchically larger than mπ, the solution for πb(z)
is practically independent of ma. Qualitatively, one has

πb(z)/fπ ∼ −2 arctan (emπz) , mπ ≪ ma, (4.12)

even though corrections are clearly visible in figure 2 (left panel), as (4.12) does not in fact
solve the equation of motion. Notice that the resulting ALP- π0 domain wall has structure
at two different scales, m−1

a and m−1
π , similarly to the case of η′–π0 domain walls in pure

QCD [145].
As a cross check, we have used the same relaxation algorithm to the full ALP- π0

potential including (2.4) and (3.2), thus taking into account the QCD contribution to the
ALP domain wall modifying the shape in (2.5). The resulting profiles for the ALP and the
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ℛ

Figure 2. Left: results for the pion profile πb(z) (blue) in the presence of a realistic ALP
background (orange) as given in (2.5) with mπ/ma = 0.1 obtained numerically with a relaxation
algorithm. The dashed red line shows the qualitative behavior discussed in the text. The pion
profile varies on a scale ∼ m−1

π much larger than the ALP background ∼ m−1
a . Right: reflection

probability for the pion self-scattering as a function of the incoming momentum.

π0 agree very well with the solution of the simplified one-field problem in (4.11) (shown
in figure 2), confirming the intuition that for a heavy ALP the pion backreaction can be
safely neglected.

Given our background solution for the pion field, we can calculate the reflection prob-
ability for particle fluctuations around it. We will follow a similar strategy as the one
employed to evaluate the pion background in the presence of the ALP profile and con-
sider the pion as the only dynamical field, given our assumption that mπ ≪ ma. Writing
π0 = πb(z) + δπ0(x), and δπ0(x) = f(z)eiEt−ikxx−ikyy, we obtain the following equation of
motion:

f ′′(z) +
[
k2

z + m2
π − ∂2V

∂π2
0

(a(z), πb(z))
]

f(z) = 0. (4.13)

Notice that the second derivative of the potential equals m2
π at z = −∞, so that the

incoming particle is described by a plane wave.
The reflection coefficient is evaluated by solving (4.13) numerically, and the result is

shown in the right panel of figure 2. Similarly to the previous discussion, the reflection
probability is practically unchanged when moving from the step-function approximation for
a(z) to a realistic profile as long as mπ ≪ ma. For large incoming momenta pz ≳ mπ, we
are able to identify an exponential drop in the reflection probability, as expected when the
momentum of the scattering particle is of the same order of the inverse wall width ∼ m−1

π .
Notice however that this kinematic region is not particularly relevant for our analysis, as
we apply the pion Lagrangian only at temperatures T ≲ 60 MeV, where high-momentum
excitations are Boltzmann suppressed.

Using our numerical result for the reflection coefficient and (4.3), we can straightfor-
wardly evaluate the pressure from pion reflection in the alignment limit under consideration.
The resulting pressure is approximated by the following analytical expression:

∆Pπ ∼ 10−3 · vw gπ m3
π T e−mπ/T , T < mπ ≪ ma, (4.14)
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where we have included gπ = 3 expecting a similar contribution from the charged pions as
well. When presenting our results in section 5, we will nevertheless use the full numerical
result instead of (4.14).

5 Implications of friction for PTAs

In this final section we summarize our results by indicating the ALP parameter space where
deviations from the scaling regime of the DW network are to be expected at temperatures
around annihilation, thus possibly affecting the corresponding SGWB.

For temperatures 60 MeV < T < 2 GeV the pressure from the hadronic sector is not
calculable within our simple approach. However, to gain information on this intermediate
temperature range we can look at the pressure at higher temperatures above 2 GeV (from
gluons) and at lower temperatures below 60 MeV (from pions). Notice that for T < 60 MeV
we consider the pressure from pions that would be acting on the ALP domain walls as if
annihilation had not happened. In practice, the NANOGrav data suggests annihilation
temperatures T∗ > 60 MeV for our model with the QCD bias, so that the would-be pion
pressure is only useful for the purpose of the extrapolation in the intermediate range.

In particular, if both the gluon and the would-be pion pressure were to dominate in
their temperature range of validity, we would conclude that annihilation at some interme-
diate temperature is very likely to occur during friction domination. On the other hand, if
friction dominates in only one of the two calculable temperature regimes, a more detailed
analysis around the QCD crossover is needed to determine whether annihilation occurs or
not in the scaling regime.

We now illustrate this strategy by presenting in figure 3 two benchmark points charac-
terized by representative choices of the model parameters. The left panel shows a bench-
mark for which the signal from scaling domain walls and QCD-induced bias can explain the
PTA data, indicated by α∗ = αobs. As we can see, the network does actually enter friction
domination around T ∼ 100 GeV, driven by gluon scattering. Friction remains dominant
also at T ∼ 2 GeV, which we take as the edge for the validity of the gluon calculation.
However, at temperatures T ∼ 60 MeV the would-be pressure from the pions is insufficient
to drive the DW network away from scaling. Therefore, it is possible that the period of
friction domination ends somewhere inside the gray region where neither of our calculation
is applicable, and the DW network goes back to scaling just before annihilation, which
in this benchmark is predicted around Tann ∼ 65 MeV. Points of this type are shown in
figure 4 in the purple region labelled as “gluon friction”, where we suggest that a more
refined analysis is needed in order to establish their viability to explain the PTA signal.10

In the right panel of figure 3 we show instead a benchmark point for which the gluon
and would-be pion pressure are both satisfying the friction domination condition in their
relevant temperature range. In this case, it is very likely that the domain walls collapse
without ever going back to the scaling regime, with strong implications for the emitted
GWs. However, points of this kind where friction dominates in both our calculable regions

10In fact, even if plasma effects become unimportant for T > Tann, the network will still take a finite time
to go back to the scaling regime.
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Figure 3. Benchmark points illustrating our friction-domination analysis. Left: friction domination
starts at temperatures T ∼ 100 GeV due to the gluon scattering, as the properly normalized pressure
(blue line) overcomes Hubble (green line). At lower temperature, the would-be pion pressure is
however unable to drive friction domination. Whether the network will have enough time to go
back to scaling at Tann remains uncertain. If this is the case, this benchmark point can explain the
PTA signal (α∗ = αobs). Right: gluon and would-be pion pressure are both capable of inducing
friction domination, and thus it is very likely that the network never goes back to scaling above the
annihilation temperature, identified as the crossing between the properly normalized bias (orange
line) and Hubble. Points of this kind, however, require a relatively small domain wall tension and
would not be able to explain the PTA signal, even if they were to annihilate in the scaling regime
(α∗ < αobs). The anomaly coefficients have been chosen as Nc/Nd = 3/2.

require a relatively small tension, and therefore cannot explain the GW signal observed
at PTAs, even if the network were to annihilate in the scaling regime (emphasized in the
right panel of figure 3 as α∗ < αobs). Points of this kind are found in the “pion and gluon
friction” region in figure 4.

Let us now comment on our overall results shown in figure 4 as a scan over the (ma, fa)
parameter space. Additionally to the regions mentioned in the previous paragraphs, we see
that there exists parameter space for ma < 2 GeV where only the would-be pion friction is
able to induce friction domination, while gluons do not. This is understood by noticing that
the gluon reflection becomes more and more suppressed as ma is lowered, see e.g. eq. (4.7).
On the other hand, as long as ma ≫ mπ the would-be pion pressure is independent of
ma. This, combined with the fact that gluons need to face a faster Hubble expansion at
higher temperatures, leads to the “only pion friction” region in figure 4. Notice also that
our scan does not extend to points with ma < 1 GeV as the approximation ma ≫ mπ used
in section 4.2 would break down.

Together with the colored regions indicating the impact of friction, we also show in
(dark) gray the parameter space where domain walls come to dominate the energy of the
Universe before annihilation for the choice ϵ = 0.26 (ϵ = 1) for the bias in eq. (3.4).

The parameter space that can fit the NANOGrav data assuming that the network
annihilates during the scaling regime is shown by the light blue band for ϵ = 1 and by the
narrower orange band for ϵ = 0.26. These signal bands follow straightforwardly from the
results shown in figure 1. As we can see, both these regions are not too far from domain
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Figure 4. Scan over the (ma, fa) parameter space summarizing the results of our analysis. The
light blue (orange) band indicates the parameter space that is compatible with the NANOGrav data
in the ALP model with a QCD bias considered here with ϵ = 1 (ϵ = 0.26), for which the annihilation
temperature range is T∗ = [100 − 126] MeV (T∗ = [63 − 68] MeV). As the observed GW background
is rather large, both our signal bands are not too far from domain wall domination, shown in the
upper right corner by the dark gray (gray) region for ϵ = 1 (ϵ = 0.26). The other colored regions
highlight the relevance of friction. The purple region corresponds to the parameter space where
gluon friction dominates over Hubble at T = 2 GeV, where we take αs = 0.2 and Nc/Nd = 3/2.
This is the lowest temperature where the gluon computation can be trusted, see also figure 3. The
would-be pion pressure is evaluated at T = 60 MeV and provides information about friction in the
confined phase, see text for details. The region where the would-be pion pressure can induce friction
domination is shown in yellow, and its intersection with the gluon friction region is shown by the
orange color. The implication for the ALP domain wall interpretation of the PTA data is as follows:
for relatively light ALPs with ma < 10 GeV it is fair to assume that the network annihilates in the
scaling regime, so that the signal bands shown here can indeed explain the NANOGrav data. On
the other hand, for ma > 10 GeV friction is shown to be important at least to the right of the QCD
crossover, and a more detailed analysis is required to assess the viability of this interpretation. The
red and blue stars correspond to the benchmark points shown in figure 3.

wall domination. This is expected given that the preferred values for the (normalized)
network energy density at annihilation are rather large, α⋆ ∼ 0.1.

The intersection of these signal bands and our friction regions provides the main result
of our analysis, which we now summarize. Most of the parameter space compatible with the
NANOGrav data implies friction domination from gluons at high temperatures. However,
the would-be pion pressure at low temperatures is not big enough to conclude that the
network will be friction dominated at annihilation as well. We nevertheless suggest that a
more detailed analysis is needed to ensure viability of these points. On the other hand, for a
relatively light ALP with ma < 10 GeV we find no evidence for friction domination around
the QCD crossover, and thus these regions of parameter space can be viable candidates to
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explain the PTA data. Even though our analysis cannot extend for ma < 1 GeV, we expect
this conclusion to apply also for lighter ALPs.

Before concluding this section, let us mention again that our results only take into
account the inevitable friction on the DW network in scenarios with a QCD bias, and
that additional, although model-dependent, interactions with the other SM particles can
provide important sources of friction as well (see [71]).

6 Conclusions

The results from PTAs have opened a new era of exploration of the Universe by providing
the first evidence of a stochastic background of gravitational waves. One possible cosmo-
logical explanation for this signal is a network of DWs annihilating around the temperature
of the QCD crossover.

An important class of DWs arising in BSM theories is the one connected to models
including ALPs. Moreover, as the data suggest annihilation temperatures around the QCD
crossover, it is very natural to consider the case in which the bias annihilating the DW
network comes in fact from the anomalous ALP-gluon coupling, contributing to the ALP
potential precisely around the QCD confinement. Considering the standard prediction for
the SGWB produced by DWs in the scaling regime, this natural scenario is indeed capable
of explaining the signal observed at PTAs.

However, any deviation from scaling, e.g. due to particle friction, can affect the GW
signal from DWs and therefore the viability of this interpretation. Our main observation in
this regard is that the natural scenario where annihilation is induced by QCD comes with
an unavoidable source of friction exerted by hadronic states scattering off the ALP DWs,
and it is therefore important to take this effect into account.

Our results are summarized in figure 4, where we have identified the portion of the
ALP parameter space where friction can be relevant, even though for values of the domain
wall tension that are capable of explaining the NANOGrav data we cannot firmly conclude
whether friction will be dominant at the annihilation temperature. This is mainly because
of the lack of calculability around the QCD crossover within our simplified approach, and a
more refined analysis would be required. On the other hand, we have identified the region
of ALP parameter space corresponding to ma ≲ 10 GeV where friction is negligible and the
ALP DW interpretation of the NANOGrav signal is unaffected by particle friction.
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