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A B S T R A C T   

Background: Understanding the transmission dynamics of Mycobacterium tuberculosis (Mtb) could benefit the 
design of tuberculosis (TB) prevention and control strategies for refugee populations. Whole Genome Sequencing 
(WGS) has not yet been used to document the Mtb transmission dynamics among refugees in Ethiopia. We 
applied WGS to accurately identify transmission clusters and Mtb lineages among TB cases in refugee camps in 
Ethiopia. 
Method and design: We conducted a cross-sectional study of 610 refugees in refugee camps in Ethiopia presenting 
with symptoms of TB. WGS data of 67 isolates was analyzed using the Maximum Accessible Genome for Mtb 
Analysis (MAGMA) pipeline; iTol and FigTree were used to visualize phylogenetic trees, lineages, and the 
presence of transmission clusters. 
Results: Mtb culture-positive refugees originated from South Sudan (52/67, 77.6%), Somalia (9/67, 13.4%). 
Eritrea (4/67, 6%), and Sudan (2/67, 3%). The majority (52, 77.6%) of the isolates belonged to Mtb lineage (L) 3, 
and one L9 was identified from a Somalian refugee. The vast majority (82%) of the isolates were pan-susceptible 
Mtb, and none were multi-drug-resistant (MDR)-TB. Based on the 5-single nucleotide polymorphisms cutoff, we 
identified eight potential transmission clusters containing 23.9% of the isolates. Contact investigation confirmed 
epidemiological links with either family or social interaction within the refugee camps or with neighboring 
refugee camps. 
Conclusion: Four lineages (L1, L3, L4, and L9) were identified, with the majority of strains being L3, reflecting the 
Mtb L3 dominance in South Sudan, where the majority of refugees originated from. Recent transmission among 
refugees was relatively low (24%), likely due to the short study period. The improved understanding of the Mtb 
transmission dynamics using WGS in refugee camps could assist in designing effective TB control programs for 
refugees.   
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1. Introduction 

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is one 
of the world's major causes of death from an infectious agent, with over 
1.5 million deaths per year (WHO, 2022). In Ethiopia, TB is a major 
public health concern, with an estimated TB incidence of 119 cases per 
100, 000, annually (WHO, 2022). The prevalence of MDR-TB is 1.03% 
among new TB patients and 6.52% among previously treated TB patients 
(FMOH, 2022). Although Ethiopia is no longer included in the World 
Health Organization (WHO) list of 30 high MDR/Resistance to Rifam-
picin (RR)-TB burden countries, it is still included in the WHO list of 30 
high TB burden countries (FMOH, 2022; WHO, 2022). 

TB particularly affects poor and vulnerable populations such as ref-
ugees, internally displaced persons, migrants, and other populations in 
humanitarian settings at increased risk of developing TB (WHO-CDC, 
2022). Refugees are especially at high risk of developing TB due to the 
poor living conditions they experience in refugee-hosting countries, 
leading to high TB morbidity and mortality in refugee populations 
(Connolly et al., 2007; Figueroa-Munoz and Ramon-Pardo, 2008; WHO- 
CDC, 2022). Consequently, the incidence and prevalence of TB among 
refugees and migrant populations are higher than those among non- 
refugee populations (Meaza et al., 2022). This can significantly affect 
TB control in refugee-hosting countries by increasing the overall disease 
burden and the cost of health services (Figueroa-Munoz and Ramon- 
Pardo, 2008). At the end of June 2021, Ethiopia was the third-largest 
refugee-hosting country in Africa and hosted 785,322 registered refu-
gees, primarily from neighboring countries such as South Sudan, Sudan, 
Eritrea, and Somalia (UNHCR, 2022). The number of notified TB cases 
among refugees in Ethiopia has increased from 138 cases in 2014 to 588 
cases in 2017 (Legesse et al., 2021). Similarly, a recent study has shown 
that the trend of all forms of TB increased among refugees compared to 
the surrounding communities of Gambella in Ethiopia (Ejeta et al., 
2018). 

Nearly 235 million people are estimated to be in need of humani-
tarian assistance and protection globally in 2021. Of these, 26.4 million 
were refugees (WHO-CDC, 2022). The number of refugees in the Horn of 
Africa exceeded 3 million at the end of 2022 (UNHCR, 2022). Migrants 
from the Horn of Africa, particularly from Somalia and Eritrea, have 
been identified as a potential source of transmission of the Mtb strain in 
Europe (Martínez-Lirola et al., 2021). Efforts toward the prevention and 
control of TB in refugee settings would not only promote the health of 
refugees but also the surrounding communities and, thus, the overall 
public health by reducing Mtb transmission. 

Using spoligotyping of isolates from refugees in Ethiopia, we found 
that SIT25, CAS1-Delhi, and L3 were the predominant Mtb strain, family, 
and lineage respectively (Meaza et al., 2023a). Identifying Mtb trans-
mission clusters with WGS is a more powerful approach for investigating 
Mtb transmission dynamics (Alaridah et al., 2019; Asare et al., 2020; 
Perdigao et al., 2017). WGS is becoming the reference method to 
investigate the phylogenetic background of Mtb isolates due to its ability 
of WGS to generate high-resolution data on transmission clusters and its 
potential to define the extent and direction of TB transmission. Imple-
menting WGS for transmission studies can be used to distinguish be-
tween recent transmission, reinfection, and progression to active disease 
in previously infected individuals (Gardy et al., 2011; Meehan et al., 
2019; Walker et al., 2014). The current study aimed to accurately 
identify the transmission clusters and circulating Mtb lineages among TB 
cases in selected refugee camps in Ethiopia using WGS. 

2. Methods 

2.1. Study design and study inclusion 

This study was a secondary analysis of a cross-sectional study of 610 
consecutive refugees presenting for symptoms of TB between February 
and August 2021 in 12 refugee camps in Ethiopia (Mai Ani, Asaita, 

Pugnido-Nuer, Pugnido-Agnwak, Kule, Terkeidi, Sherkole, Bambasi, 
Tongo, Kebribeyah, Sheder, and Melkadida) (Meaza et al., 2022; Meaza 
et al., 2023b). Of the 610 participants, 71 (11.6%) were culture-positive, 
37 (6.1%) were NTM, 96 (15.7%) were contaminated, and 406 (66.6%) 
were culture-negative. 

Of the 71 Mycobacterium Growth Indicator Tube (MGIT) Mtb-posi-
tive isolates, 3 were excluded due to poor growth in the Lowenstein 
Jensen (LJ) subculture. DNA was extracted from 68 Mtb isolates with 
typical growth characteristics (appearance of brown and granular col-
onies on LJ media (Fig. 1). One sample was excluded due to insufficient 
DNA quality, resulting in 67 isolates with WGS data for analysis. 

2.2. DNA extraction and WGS 

DNA was extracted from the LJ sub-cultures of 68 Mtb isolates at the 
Mycobacteriology Research Center of Jimma University using the Qia-
gen DNeasy UltraClean Microbial Kit (lot number: 172046262) (Qiagen, 
2017). The extracted Mtb DNA was shipped to CD Genomics (NY, USA) 
for WGS. Quality control (QC) was performed using both Nanodrop and 
Qubit to determine DNA concentration and quantity. Of the 68 samples, 
67 passed QC (Supporting Material 1). From each sample, 0.3 μg of 
extracted DNA was used as input for library preparation. Genomic DNA 
libraries were constructed using the NEBNextR Ultra™ DNA Library 
Prep Kit (NEB, USA) according to the manufacturer's instructions (Illu-
mina, 2022). Libraries were analyzed for size distribution by an Agilent 
2100 bioanalyzer and quantified using a real-time polymerase chain 
reaction. DNA libraries were then sequenced on an Illumina NovaSeq 
6000 instrument according to standard protocols (Illumina, 2020) 
(Fig. 1). 

2.3. WGS data analysis 

The generated reads were analyzed using the Maximum Accessible 
Genome for Mtb Analysis (MAGMA) pipeline (Heupink et al., 2023). 
MAGMA is a bioinformatics pipeline that implements the XBS variant 
calling core (Heupink et al., 2021). The MAGMA pipeline is imple-
mented in Nextflow and is available open source on GitHub (https://gith 
ub.com/TORCH-Consortium/MAGMA). Briefly, Illumina FASTQ 
sequence data was quality-controlled and mapped to the H37RV refer-
ence genome. All samples were checked for selection criteria of median 
coverage (>90×), breadth of coverage (>0.90), variant frequency 
(>0.80), and NTM frequency (<0.20) to filter out samples that nega-
tively impact the downstream analysis. As part of the MAGMA pipeline, 
lineage and drug resistance-conferring variants for each sample, SNP, 
and INDEL variants, are analyzed by TBprofiler v. 4.1.1 (Verboven et al., 
2022). The filtered SNP and INDEL variant call format (VCF) files pro-
duced were further processed using the downstream analysis modules to 
construct annotated phylogenetic trees, perform drug-resistant variant 
detection, and transmission cluster analysis (Supporting Material 2). 
Given the high TB incidence of the study setting, a pairwise distance 
cutoff of 5-SNPs was selected to define transmission clusters (Luo et al., 
2014; Oostvogels et al., 2022). A sensitivity analysis using a 12 SNP cut- 
off was also performed. 

2.3.1. Analysis of L9 data 
We compared our L9 sample's (R-192) spoligotype data (Meaza et al., 

2023a) with the spoligotype data of six L9 strains reported to date 
(Coscolla et al., 2021) using the methods described by Kamerbeek et al., 
1997 (Kamerbeek et al., 1997) with a commercially available membrane 
following the manufacturer's instructions (Mapmygenome, India). To 
assess whether the phylogenetic position of the R-192 sample is situated 
within the clade of recently discovered L9 panel strains, a maximum 
likelihood phylogeny was inferred using FigTree v. 1.4.4 for the L9 
sample (R-192) from this study and the six previously identified L9 
strains. The bootstraps were generated using the standard IQtree with a 
bootstrap of 1000 runs. 
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3. Results 

3.1. Demographic and clinical characteristics 

Of the 67 refugees included in the analysis, 52 (78%) originated from 
South Sudan, 9 (13%) from Somalia, 4 (6%) from Eritrea, and 2 (3%) 

from Sudan. Most were male (67%) and age from 19 to 38 years old 
(63%). Fifteen (22.4%) reported a history of TB contact. 

3.2. WGS quality control 

All QC results of the DNA extraction and WGS are provided in sup-
porting materials 2 and 3, respectively. The median coverage of the 
samples ranged from 158 to 330×, and on average, 99% (0.99×) of the 
genomes were covered. Mixed strains were not identified, possibly due 
to the use of subcultures for WGS (Supporting Material 4). 

3.3. Lineage identification 

Most isolates were L3, both overall (52/67, 77.6%) and in samples 
collected from South Sudanese (47/52, 90.4%) and Sudanese (2/2, 
100%) refugees. Eleven (11/67, 16.4%) isolates were L4, and three 
isolates (3/67, 4.5%) were L1. One isolate (R192) from Somali refugee, 
was identified as L9 by TBprofiler (Fig. 2). In total, 14 different sub-
lineages belonging to the major lineages (L1, L3, and L4) were identified 
(Supporting Material 5). 

A comparison of spoligotyping data demonstrated that sample R-192 
has a different spoligotyping pattern (Meaza et al., 2023a) compared to 
the spoligotyping patterns of the six previously reported L9 strains 
(Coscolla et al., 2021) (Fig. 3a). Based on the maximum likelihood 
phylogeny tree, the clade of previously identified L9 strains and sample 
R-192 were phylogenetically closely related and descended from a 
common ancestor (Fig. 3b). The SNP distances of the R-192 sample to 
the previously identified L9 isolates ranged from 86 to 512 SNPs (sup-
porting Material 6). 

3.4. Genotypic DR-causing variant detection 

Most isolates (55/67, 82%) were genotypically pan-susceptible; ten 
(10/67, 15.0%) were resistant to a single anti-TB drug, mainly (8/10) 
streptomycin. All eight samples predicted to be resistant to streptomycin 
(SM) were identified as L3. Resistance to more than one drug was found 
in only two (2/67, 3.0%) samples. Sample R-044 was predicted to be 
resistant to SM and ethionamide (ETM), while sample R-171 was pre-
dicted to be resistant to isoniazid (INH) and ETM. None of the isolates 
collected in this study were identified as MDR-TB, pre-extensively drug- 
resistant (XDR)-TB, or XDR-TB (Table 1). 

3.5. Transmission clusters 

Of the 67 samples analyzed in this study, 16 (16/67, 23.9%) 
belonged to one of eight putative transmission clusters with a ≤ 5 SNP 
distance cut-off (Fig. 2). The pairwise maximum genetic distance be-
tween samples in putative transmission clusters ranged from zero to two 
SNPs (Supporting Material 7). Five of the clusters were pairs of South 
Sudanese refugees; two clusters were pairs of Somali refugees; and one 
cluster was a pair of Sudanese refugees. Contact investigation demon-
strated that our clusters had epidemiological links, either family history 
or social interaction within the refugee camps and with neighboring 
refugee camps (Supporting Material 8). In a sensitivity analysis using a 
12 SNP cutoff, the same 8 clusters were identified as compared to the 5 
SNP cutoff. 

4. Discussion 

This study aimed to use WGS to accurately investigate the TB 
transmission dynamics and circulating lineages among refugees residing 
in refugee camps in Ethiopia. 

Four human-adapted lineages (L1, L3, L4, and L9) of Mtb were 
identified. Most Mtb isolates in this study were identified as L3, and one 
sample from a Somalian refugee was identified as L9, making this the 
first additional report of L9 sample since the discovery of the lineage in 

Isolates(n=3)
excluded due to
non-typical growth
characteristics

Isolates (n=68)
typical growth
characteristics

Subculture in
LJ

DNA(n=1), the
sample did not
pass QC

Library
Preparation
(n=67)

WGS, Illumina
NovaSeq (n=67)

Confirmed
Mtb isolates
(n=71)

DNA
Extraction
(n=68)

Presumed
TB cases
(n=610)

Fig. 1. Laboratory investigation process diagram. Typical growth characteris-
tics: Mtb on LJ media appears as brown, and granular colonies. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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2021 (Coscolla et al., 2021). Eight Mtb clusters, representing 23.9% of 
the study population, were identified and confirmed by epidemiological 
links. 

The lineage distribution of the Mtb isolates in the 12 refugee camps in 
Ethiopia was different from the distribution of Mtb lineages in the gen-
eral population of Ethiopia. In contrast to the dominance (77.6%) of L3 

Fig. 2. Phylogeny tree showing lineages of Mtb isolates [circle 1], country of origin [circle 2], refugee camps [circle 3] and clusters (Clus) [circle 4] identified in our 
samples. Camps and country of origin: AST-Asaita, and MAI-MaiAni (Eritrea), KBY-Kebribeya, MLD-Melkadida and SDR-Sheder (Somalia), KUL-Kule, PUA-Pugni-
doAgnwak, PUN-PugnidoNuer, and TRK-Terkedi (South Sudan), SRK-Sherkole (Sudan). 

Fig. 3. a. Spoligotyping patterns and their country of origin of our L9 sample (R-192) and six samples from previously described by Cosccola et al. b. a maximum 
likelihood phylogeny tree showing the phylogenetic position of R-192 in the context of a previously described panel of six L9 strains by Coscolla et al. The 
phylogenetic rectangular tree was midpoint rooted using FigTree v.1.4.4 and further visualized automatically on the nodes using iTol, version 6. The tree has two 
major branches with seven leaves and the bootstraps was generated using the standard IQtree with a bootstrap of 1000 runs. 
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in our study of refugees, L4 is the dominant Mtb lineage in the general 
population of Ethiopia, as shown by two recent systematic reviews (L4 in 
62.3% and 64.8%) (Mekonnen et al., 2019; Tulu and Ameni, 2018). 
Similarly, 74.7% of 91 Mtb isolates belonged to L4 in an Ethiopian na-
tional TB survey (Getahun et al., 2015). In contrast, studies in Sudan and 
Eritrea showed that the dominant lineage is L3 (Eldirdery et al., 2015; 
Elegail et al., 2018; Mesfin et al., 2021). Our results show that the dis-
tribution of Mtb lineages among the refugees reflects the distribution of 
Mtb lineages in their countries of origin, which suggests limited trans-
mission between refugees and the Ethiopian population. These data 
highlight the challenges of TB control in unstable regions and the 
importance of cross-border TB surveillance, especially in areas of intense 
migration. 

One sample originating from a Somalian refugee was identified as L9. 
This L9 Mtb strain was phylogenetically closely related to the six pre-
viously reported L9 strains (Coscolla et al., 2021), indicating that these 
strains descended from a common ancestor. The identification of a L9 
strain from a Somalian refugee confirms previous findings that L9 is 
currently geographically primarily restricted to Somalia (Coscolla et al., 
2021; Silva et al., 2022). The identification of the L9 sample (R-192) in 
this study adds to the limited set of sequenced L9 Mtb strains and can 
support studies aimed at identifying the phylogenetic markers and 
phenotypic data of L9 Mtb strains. 

The vast majority (82%) of the 67 isolates were pan-susceptible by 
WGS, and only 12 (18%) contained one or more DR-causing variants, 
mostly to streptomycin. No MDR-TB or pre-XDR-TB isolates were iden-
tified. Recently, the WHO removed Ethiopia from the list of high MDR/ 
RR-TB countries, highlighting the successful implementation of an 
effective TB control program in the country (FMOH, 2022; WHO, 2022). 
Compared to the findings of this study, the WHO global TB report (WHO, 
2022) shows a higher proportion [1.6 to 4.4%] of MDR/RR-TB among 
new cases in the four refugee countries of origin (Eritrea, Somalia, South 
Sudan, and Sudan), with Somalia having the highest (4.4%) estimated 
MDR/RR-TB prevalence. Interestingly, WGS failed to detect rifampicin 
resistance in a sample (R-171) that was rifampicin resistant on pheno-
typic drug susceptibility testing (Meaza et al., 2023a). This could be due 
to culture bias introduced by the sub-culture on LJ performed prior to 
DNA extraction. 

In this study, 23.9% (16/67) of the isolates belonged to one of eight 
phylogenetic clusters. Other studies among refugees, albeit not in 
refugee camps, have reported varying proportions of recent trans-
mission. A study among immigrants in Switzerland reported a lower 
proportion (6.5%, 26/401) of immigrants belonging to transmission 
clusters (Stucki et al., 2016). In contrast, a cross-border transmission 
study from Canada showed that a very high proportion (87.5%, 28/32 in 
6 clusters) of Mtb isolates were grouped in a phylogenetic cluster 

(Guthrie et al., 2019). Similarly, in a study from Sweden, 56% (52/93 in 
18 clusters) of isolates originating from immigrants and homeless in-
dividuals were part of phylogenetic clusters (Alaridah et al., 2019). The 
lower clustering proportion in our study could be due to differences in 
sampling methods, SNP cut-off used to define a cluster difference, or the 
short sampling period of 6 months compared to the studies in Canada 
and Sweden, where samples were collected over a period of ten years. A 
long sample collection period has been shown to be required to accu-
rately determine the number of secondary TB cases produced by a pri-
mary infectious TB case (Basu et al., 2009; Liao et al., 2012). 

Epidemiological contact tracing coupled with WGS data is important 
to understand TB transmission (Alaridah et al., 2019). In our study, all 
genomic clusters identified were supported by the epidemiological links 
from contact investigations. Similar findings were reported in other 
studies (Abascal et al., 2019; Alaridah et al., 2019; Stucki et al., 2016). In 
contrast, no epidemiological links were found in the clustered cases in 
the study in Canada (Guthrie et al., 2019). The epidemiological links we 
found for all clusters in the refugee camps highlight the importance of 
contact tracing for early diagnosis and treatment of missed cases to slow 
the spread of TB infection. 

We observed discrepancies in six samples in lineage classification by 
WGS and spoligotyping. WGS classified three samples as L3, which 
spoligotyping identified as L4 in two samples and L1 in one sample. WGS 
identified L4 and L1 for each sample that had been identified as L3 and 
L2, respectively, by spoligotyping. The sample classified as L9 by WGS 
was classified as L4 by spoligotyping (Meaza et al., 2023a). This is likely 
due to the higher discriminatory power of WGS to identify Mtb lineages 
compared to spoligotyping (Napier et al., 2023; Oudghiri et al., 2018). 

While this is the first study applying WGS to study the molecular 
epidemiology of TB in refugee camps, our results should be interpreted 
in light of its limitations. First, the short study duration (6 months) likely 
resulted in an underestimation of Mtb transmission in refugee camps. 
Future studies should extend the duration of data collection to more 
comprehensively capture transmission. Second, we only studied the 
transmission dynamics within refugee camp populations and not the 
neighboring communities. To optimally design interventions, future 
studies should expand to investigate TB transmission within a broader 
context that also includes the communities surrounding refugee camps. 
Third, performing WGS on an LJ subculture could have resulted in 
culture bias. Future studies should perform WGS directly on the primary 
MGIT culture or, when this becomes feasible, directly on a sputum 
sample. 

5. Conclusion 

In conclusion, our results highlight the importance of WGS for 

Table 1 
Drug resistance variants among DR-TB isolates (n = 12) and lineages (L3 & L4) by WGS. 

anti-TB drug
ID L RMP INH EMB PZA SM FQ AGS KAN AMK CAP ETM P-

AGS

CLO LZD BQ DM

R-002 3 S S S S R S S S S S S S S S S S

R-012 3 S S S S S S S S S S R S S S S S

R-044 3 S S S S R S S S S S R S S S S S

R-061 4 S S S S S S S S S R S S S S S S

R-171 3 S R S S S S S S S S R S S S S S

R-256 3 S S S S R S S S S S S S S S S S

R-273 3 S S S S R S S S S S S S S S S S

R-316 3 S S S S R S S S S S S S S S S S

R-382 3 S S S S R S S S S S S S S S S S

R-456 4 S S S S S S S S S R S S S S S S

R-517 3 S S S S R S S S S S S S S S S S

R-551 3 S S S S R S S S S S S S S S S S

AGS-Aminoglycosides AMK-Amikacin, BQ-Bedaquiline, CAP-Capreomycin, CLO-Clofazimine, DM-Delamanid EMB-Etham-
butol, ETM-Ethionamide, FLQ-Fluoroquinolones, INH-Isoniazid, KAN-Kanamycin, LEV-Levofloxacin, LZD-Linezolid OFL- 
Ofloxacin, P-AGA-Para-aminosalicylic acid, PZA-Pyrazinamide, RIF-Rifampicin, SM-Streptomycin, L-lineage, R-Resistant, S- 
Susceptible. 
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improved understanding and surveillance of TB in refugee camps. We 
identified the distribution of lineages that represent the country of origin 
of the refugees, the occurrence of an L9 Mtb strain from a Somalian 
refugee, and a low level of DR. We also observed a relatively low pro-
portion of transmission clusters, which were confirmed by epidemio-
logical links that generated important evidence. This evidence can be 
used to design effective interventions to reduce the burden of TB in 
refugee camps. The findings highlight the value of cross-border sur-
veillance and the need for increased efforts to prevent transmission in 
the vulnerable refugee population. 
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Alaridah, N., Hallbäck, E.T., Tångrot, J., Winqvist, N., Sturegård, E., Florén- 
Johansson, K., Jönsson, B., Tenland, E., Welinder-Olsson, C., Medstrand, P., 2019. 
Transmission dynamics study of tuberculosis isolates with whole genome sequencing 
in southern Sweden. Sci. Rep. 9 (1), 4931. 

Asare, P., Otchere, I.D., Bedeley, E., Brites, D., Loiseau, C., Baddoo, N.A., Asante- 
Poku, A., Osei-Wusu, S., Prah, D.A., Borrell, S., 2020. Whole genome sequencing and 
spatial analysis identifies recent tuberculosis transmission hotspots in Ghana. Front. 
Med. 7, 161. 

Basu, S., Friedland, G.H., Medlock, J., Andrews, J.R., Shah, N.S., Gandhi, N.R., Moll, A., 
Moodley, P., Sturm, A.W., Galvani, A.P., 2009. Averting epidemics of extensively 
drug-resistant tuberculosis. Proc. Natl. Acad. Sci. 106 (18), 7672–7677. 

Connolly, M.I.A., Gayer, M., Ottmani, S.-E., Organization, W. H, 2007. Tuberculosis care 
and control in refugee and displaced populations: an interagency field manual. 
World Health Organization. 

Coscolla, M., Gagneux, S., Menardo, F., Loiseau, C., Ruiz-Rodriguez, P., Borrell, S., 
Otchere, I.D., Asante-Poku, A., Asare, P., Sánchez-Busó, L., 2021. Phylogenomics of 
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