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Abstract

This thesis studies the evolving landscape of conversational AI. The main research
objective is to improve the conversational abilities of conversational agents, with
a focus on integrating real-time knowledge and expanding multilingual capabil-
ities.

Integration of External Knowledge The thesis investigates how to incorporate
external knowledge into conversational agents without the need for retraining
the entire model. This aspect is crucial as it deals with the dynamic nature of
information and the need for AI agents to stay updated.

Assessment of Inherent World Knowledge Another critical problem is how
to evaluate the inherent world knowledge that users expect from conversational
agents. This involves benchmarking the agents’ common sense and broad under-
standing of the world, which is essential for natural and relevant interactions.

Refinement of Agent Responses The research also explores refining the agents’
ability to select the most appropriate response from a set of potential replies.

Multilingual Capabilities The thesis recognizes the growing need for conver-
sational agents to be proficient in languages other than English. It examines how
additional datasets can be used to develop agents capable of operating effectively
across a multitude of languages.

Evaluation Metrics Finally, the thesis addresses the challenge of evaluating
conversational agents. Unlike many machine learning applications where a gold
standard or reference exists, conversational agents require metrics that acknowl-
edge the multifaceted and subjective nature of conversations, where multiple
valid continuations exist.

i



ii

Overall, the thesis presents a comprehensive approach to enhancing knowledge-
grounded conversations, emphasizing better access to external and world knowl-
edge, enhancing non-English language capabilities, and developing more effec-
tive evaluation strategies. It synthesizes findings from various interdisciplinary
studies and sets a path for future research in the field of conversational AI.



Samenvatting

Deze thesis onderzoekt het steeds evoluerende landschap van conversational AI.
Het hoofddoel van het onderzoek is het verbeteren van de gespreksvaardigheden
van conversational agents, met een sterke focus op het integreren van real-time
kennis en het uitbreiden van meertalige vaardigheden. Dit omvat het aanpakken
van verschillende relevante onderwerpen.

Integratie van Externe Kennis De thesis onderzoekt hoe continu veranderende
externe kennis geïntegreerd kan worden in conversational agents zonder de
noodzaak om het hele model opnieuw te trainen. Dit aspect is cruciaal om-
dat het te maken heeft met de dynamische aard van informatie en de noodzaak
voor AI agents om up-to-date te blĳven.

Beoordeling van Inherente Wereldkennis Een andere kritische vraag is hoe de
inherente wereldkennis, die gebruikers van conversational agents verwachten,
geëvalueerd kan worden. Dit omvat het benchmarken van het logisch redeneren
van de agents en hun brede begrip van de wereld, wat essentieel is voor natuurli-
jke en relevante interacties.

Verfijning van Agent Reacties Het onderzoek verkent ook het verfijnen van de
vaardigheid van agents om de meest geschikte reactie te selecteren uit een reeks
mogelĳke antwoorden.

Meertalige Vaardigheden De thesis erkent de groeiende behoefte aan conver-
sational agents die bekwaam zĳn in andere talen dan het Engels. We onderzoeken
hoe extra datasets gebruikt kunnen worden om agents te ontwikkelen die effectief
kunnen opereren in een scala van talen.

Evaluatie van Conversaties Ten slotte behandelt de thesis de uitdaging van het
evalueren van conversational agents. In tegenstelling tot veel machine learning

iii



iv

toepassingen waar een gouden standaard of referentie bestaat, vereisen conver-
sational agents metrics die de veelzĳdige en subjectieve aard van gesprekken
erkennen, waar meerdere geldige verlopen van een conversatie.

Over het algemeen presenteert de thesis een uitgebreide aanpak voor het ver-
beteren van knowledge-grounded gesprekken, met de nadruk op betere toegang
tot externe en wereldkennis, het verbeteren van niet-Engelse taalvaardigheden, en
het ontwikkelen van effectievere evaluatiestrategieën. Het synthetiseert bevin-
dingen uit verschillende interdisciplinaire domeinen en zet een pad uit voor
toekomstig onderzoek in het veld van conversational AI.
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Introduction

The greatest enemy of knowledge
is not ignorance, it is the illusion of
knowledge.

Unknown author. Ironically, this
quote is often wrongly attributed to

Stephen Hawking.

The king is dead, long live the king!

Technological evolution often follows a cyclical pattern: one innovation makes
way for another, leading to new paradigms and shifting our perspectives. In the
pre-internet era, our quest for knowledge was largely limited by physical libraries,
personal consultations with experts, and voluminous reference books. Yet, the
rise of the internet, particularly the emergence of search engines like Google,
fundamentally transformed this landscape. What was once a time-consuming
activity became a matter of a few quick keystrokes, placing vast amounts of
information at our fingertips.

Today, we stand on the brink of another transformative era: the age of Large
Language Models (LLMs) such as ChatGPT. These are not mere directories point-
ing to information. They actively engage, respond, and offer insights in a way
similar to human conversation. The change is significant, much like the differ-
ence between passively reading a book and actively talking with a knowledgeable
friend.

This thesis aims not only to shed light on the underlying mechanisms of these lan-
guage models but also to enhance their conversational skills. While the current
generation of agents displays vast knowledge, there remains room for improve-
ment, especially concerning real-time knowledge integration and multilingual
capabilities.

1



2 CHAPTER 1. INTRODUCTION

1.1 Research Questions

Building upon the aforementioned challenges, this thesis focuses on improving
several aspects of conversational agents:

• Although the knowledge embedded in a conversational agent is limited by
the parameters of its model, new information continually emerges. Our
first research question is: How can we integrate external knowledge into a
conversational agent without re-training the model?

• When interacting with a conversational agent, users often expect it to pos-
sess common sense and a broad understanding of the world. How can we
assess or benchmark this inherent world knowledge in large-scale language
models?

• Conversational agents, particularly those based on the Transformer archi-
tecture, are inherently probabilistic models. As such, they can occasionally
produce unexpected or inappropriate outputs. How can we refine these
agents to select the most appropriate response from a set of potential replies,
thereby ensuring consistent and desirable behaviour?

• Most evaluations of Transformer-based conversational agents focus pri-
marily on tasks in English. However, these agents are increasingly utilized
across a spectrum of languages. How can we leverage additional datasets
to develop agents proficient in multiple languages?

• Evaluating conversational agents presents unique challenges. While many
machine learning applications are evaluated against a gold standard or
reference, conversational agents diverge in that multiple valid continuations
exist for any given conversation. How can we formulate a metric that
captures the multifaceted nature of conversations?

1.2 A Brief History of Language Models

Although to the general public, it might appear that ChatGPT emerged as an
overnight success, its foundation rests on years of research in the broader field
of Natural Language Processing (NLP). The following subsections provide a
succinct overview of the historical developments leading to the emergence of
Large Language Models and the technical innovations that made them possible
to power today’s conversational agents.
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1.2.1 Early Days of NLP

The genesis of NLP can be traced back to the 1950s with the advent of digital
computers. During this time there was a keen interest in translating scientific
documents from other nations. The initial machine translation systems, such
as the Georgetown-IBM experiment in 1954, though groundbreaking, were ex-
tremely limited. They often relied on basic word-level look-ups and rule-based
mechanisms to handle inflexions and word order (Manning, 2022). Notably,
the authors of the Georgetown-IBM experiment expressed their confidence that
machine translation would be a solved problem within the next 5 years.1 This
optimism is reminiscent of today’s claims about Artificial General Intelligence
being just around the corner.

1.2.2 Text-based Dialogue Systems

Transitioning from these pioneering efforts, the 1960s and 70s witnessed the rise
of specialized expert systems designed for question-answering. Notable among
these were BASEBALL (Green et al., 1961) and LUNAR (Woods, 1978). These
systems incorporated a core database meticulously crafted by domain experts.
These systems were proficient, even by today’s standards. However, they were
purposely limited to a well-defined domain, contrasting with many modern open-
domain QA systems that can answer questions about a vast range of topics using
a single general model.

1.2.3 Statistical Revolution

In the 1980s and 1990s, the focus transitioned from rule-based systems to statis-
tical models that harnessed the growing abundance of digital text. By learning
directly from data without the need for manual rule creation (Daelemans et al.,
1996; Elman, 1990), these statistical approaches became vital for tasks like speech
recognition and part-of-speech tagging (Manning, 2022). This evolution set the
stage for the empirical machine-learning models that now remain central to NLP.

1.2.4 Transformer Architecture and Self-Attention

Building upon these data-driven techniques, 2017 marked a significant milestone
with the introduction of the Transformer (Vaswani et al., 2017b) architecture.
By improving upon the recurrent layers of models like LSTMs (Hochreiter and

1Georgetown IBM Experiment

https://en.wikipedia.org/wiki/Georgetown%E2%80%93IBM_experiment
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Schmidhuber, 1997; Mikolov et al., 2011; Cho et al., 2014; Sutskever et al., 2014a)
and emphasizing self-attention mechanisms, the Transformer brought a seismic
shift in NLP, starting once again with the purpose of improving translation. This
architectural change, combined with an influx of textual data, gave rise to influ-
ential models such as BERT (Devlin et al., 2019), GPT (Radford and Narasimhan,
2018), and later ChatGPT (OpenAI, 2023). These models exhibited proficiency
across multiple NLP tasks without specialized tuning, signalling a new era of
transfer learning in NLP (Islam et al., 2023).

Architecture The transformer model, at its core, is elegantly simple and can be
represented by the mathematical function 𝑦 = 𝑓 (𝑥). Given a text-based prompt
or conversation 𝑥 as input, it assigns a score to each token of its vocabulary,
predicting the likelihood of the subsequent token. Text generation then becomes a
matter of iteratively applying this function. The preliminary step of transforming
raw text into a numerical representation suitable for 𝑓 (𝑥) is called tokenization.
Byte-Pair Encoding (BPE), originally devised for representing absent words in
machine translation (Sennrich et al., 2016), is the predominant method for this
purpose.

Training As we have seen, a Transformer-based language model assigns a score
to each vocabulary item to predict the next token. Training these models is
performed in the same way: given a large string of text, the model must predict
the next token in the sequence without "seeing" the subsequent tokens, a method
also called teacher forcing (Lamb et al., 2016). For example given the string The
quick brown fox jumps over the lazy dog. The model would first have to predict quick
from only seeing The, then predict brown from The quick, and so on. Thanks to a
clever masking algorithm the model can predict each token in parallel. Despite
the extremely simple training objective, these models can perform an outstanding
number of tasks, sometimes on the fly or given a few examples (Islam et al., 2023).

Data While this method of training is conceptually simple, it requires an enor-
mous amount of data to perform well. Models with the calibre of Llama 2
(Touvron et al., 2023) and GPT-3 (Brown et al., 2020a) excel when trained on
colossal datasets crawled from the web. For example, the Llama 2 models were
trained on 2,000,000,000,000 tokens (2T).2 This is an enormous amount of tokens:
much more than any human could ever read. A human reading 300 words per
minute (Brysbaert, 2019) for a continuous 80 years would be exposed to only 0.4%
of the training data of LLama 2. However, this wealth of data is not without its
pitfalls. Web-based data might carry inaccuracies, causing models to assimilate

2Llama 1 has done only a single pass over its training data, except for Books and Wikipedia.



1.3. LLMS AS KNOWLEDGE RESERVOIRS 5

and perpetuate biases or mistakes (Lucy and Bamman, 2021). Therefore, while
abundant data is advantageous, its quality is pivotal for ethical and faithful NLP
implementations.

Hardware & Scaling Up In retrospect, very little has happened to Transformers-
based language models since their release — except for model size (x300) and
computational power which grew exponentially large in a few years. Modern
advancements in hardware have significantly contributed to the success and fea-
sibility of training large-scale Transformer models. Graphics Processing Units
(GPUs) and Tensor Processing Units (TPUs) have been at the forefront, offering
immense computational power to handle the intense requirements of these mod-
els. For example, while the initial Transformer model (213 million parameters)
required around 576 GPU hours3, the recent Llama 2 (70 billion parameters)
(Touvron et al., 2023) required 1,720,320 GPU hours — around 3,000 times more
training time4.

Black Box Evaluations We understand the mathematics involved in training
Transformer models –– each neuron in a neural network performs simple arith-
metic operations — but we do not have an explanation for why those mathematical
operations result in the behaviours we see. This makes it hard to diagnose prob-
lems such as hallucinations, hard to know how to fix them, and hard to certify that
a model truly knows what it is generating (Bricken et al., 2023). Empirical eval-
uations have consistently highlighted the Transformer’s capabilities in achieving
state-of-the-art performance across diverse NLP benchmarks. However, most of
these analyses treat the model as a black box and focus on the output of the model,
providing no insights into the inner workings of Transformers-based language
models (Chang and Bergen, 2023). Researchers have yet to develop a compre-
hensive theoretical foundation explaining why and how the Transformer works
internally (Geva et al., 2022; Voita et al., 2023; Bricken et al., 2023).

1.3 LLMs as Knowledge Reservoirs

Large Language Models (LLMs) like GPT-4 can be seen as vast reservoirs of
human knowledge, a reflection of the digital corpus from which they were trained.
The voluminous nature of the data these models have processed offers them a
sweeping insight into diverse domains, ranging from scientific facts to cultural
nuances (Chang and Bergen, 2023). However, quantifying the breadth of this

33 days with a single node consisting of eight P100 GPUs
435 days and a cluster of 2,048 A100 GPU
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reservoir is not straightforward due to the non-symbolic storage and distribution
of information in these models. Moreover, while LLMs excel in certain forms
of knowledge representation, they exhibit unique vulnerabilities like knowledge
hallucinations. This section delves into the depth, breadth, and limitations of the
knowledge encapsulated by LLMs, shedding light on their strengths and areas of
caution.

1.3.1 Common Sense & World Knowledge

Unlike humans, language models don’t learn from physical experiences or in-
teractions. Our common sense often arises from the real-world experiences we
have interacting with our environment while growing up. A language model
doesn’t have a body, sensory experiences, or the ability to interact with the phys-
ical world in the way humans do. While humans continuously update their
knowledge and refine their understanding based on new experiences and feed-
back, static language models like GPT-4 cannot learn over time or adjust their
knowledge post-training.

Consider a simple yet intriguing question: "Does water make things wet?" GPT-4
would probably respond affirmatively. This might seem trivial, but it underscores
an important point. GPT-4 does not possess experiential knowledge; it doesn’t
"feel" wetness. Instead, it has been exposed to countless textual references about
water and its properties during its training phase. Through unsupervised training
on vast datasets, language models thus learn a form of common sense reasoning
by correlating recurring patterns in data.

Unfortunately, directly measuring the depth of knowledge and common sense
within LLMs is elusive as Transformer-based models encode their knowledge
non-symbolically, distributing it across their parameters. Hence, gauging their
relative knowledge often involves comparing one model to another on a collection
of static benchmarks.

Chapter 7 probes the world knowledge and common sense acumen of LLMs,
using the game of Twenty Questions. Our analysis highlights GPT-3’s challenges
with size comparisons.

1.3.2 Knowledge Hallucination

Generative models under the Transformers umbrella, like GPT-4, are prone to
"knowledge hallucinations": instances where the model generates seemingly log-
ical, yet unfounded or misleading information (Shuster et al., 2021a; Zhang et al.,
2023; Peng et al., 2023; Agrawal et al., 2023). Such anomalies stem from their
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training objective, which prioritizes word sequence prediction over factual accu-
racy. Consequently, they may occasionally generate coherent or probable, but
factually erroneous outputs.

Knowledge hallucinations are problematic when using these models in a cor-
porate environment where one typically wants to control what the model can
say. For instance, what if the bot offers an unwarranted discount? For these
reasons, retrieval models have gained popularity (Henderson et al., 2020). In-
stead of generating an answer from scratch, the model selects the best possible
answer from a set of pre-defined candidates. While this method provides control,
it’s limited in coping with unforeseen situations. In Chapter 4, we introduce a
Transformer-encoder model designed to select the best possible answer in Dutch.
During its development, we identified a lack of data for pre-training our model to
make optimal selections. Though our approach was effective, scaling it to other
languages proved challenging. To address this, Chapter 5 details our efforts to
leverage FAQs from the web, allowing us to pre-train a model capable of selecting
suitable answers for a question across 21 different languages.

1.3.3 Retrieval Augmented Generation

Retrieval Augmented Generation (RAG) combines the strengths of large-scale
generative models with external retrieval mechanisms (Izacard et al., 2022; Lewis
et al., 2020c; Izacard and Grave, 2020; Borgeaud et al., 2022; Khandelwal et al.,
2019). RAG aims to broaden the scope of purely generative models by equipping
them with tools to extract information from external repositories before, or during
the generation phase.

The conventional RAG framework integrates two core components:

1. Retriever Before crafting a response, the model searches through a vast
corpus to pinpoint pertinent documents or snippets, often assisted by adept
retrieval systems such as Dense Retriever.

2. Generator With the relevant passages at hand, the generative model for-
mulates a comprehensive response, merging the external information with
its intrinsic knowledge.

RAG’s dual-step synergy facilitates responses beyond the model’s pre-training
data limits. For example, if a model’s training data stops at a certain year, the
retrieval component can source information on subsequent events, which the
generator subsequently weaves into its answer.
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Furthermore, RAG can potentially mitigate generative models’ constraints, in-
cluding knowledge hallucinations (Shuster et al., 2021b). By corroborating and
cross-referencing information from external data sources, RAG models stand a
better chance of producing unfounded or inaccurate data.

Chapter 2 unveils a RAG-integrated BART model leveraging Wikipedia passages
to foster knowledge-anchored conversations.

1.4 Evaluation Metrics

This section delves into the metrics utilized to evaluate the efficacy and reliability
of conversational agents. We will discuss various aspects, beginning with the
importance of ’small talk’ in human-machine interaction.

1.4.1 Small Talk

Small talk is of paramount importance to humans: it promotes social cohesive-
ness, reduces inherent threat values of social contact, and helps to structure social
interaction (Coupland, 2003). However, conversationalists tend to view the ability
to do small talk as something not relevant to be studied (Coupland, 2003).

Although literature may have taken small talk for granted, this is not the case in
popular culture. Popular books such as How to Make Friends & Influence People
or How to Talk to Anyone: 92 Little Tricks for Big Success in Relationships provide
insights into improving one’s small talk abilities, especially in a business setting.
These insights could be summarized this way:

• Effective interpersonal communication requires genuine interest and active
listening.

• Encouraging individuals to share their experiences and aligning the dis-
course with their interests deepens the connection.

• Practices such as prolonged eye contact and echoing a speaker’s words
enhance comprehension and engagement.

• Genuine compliments, skilful introductions, and strategic conversation
starters are crucial for cultivating meaningful relationships.

• At the heart of these strategies is the sincere valuation of the conversational
partner, highlighting the importance of authenticity in dialogues.
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However, although these strategies may help humans or serve as guidelines for
a large language model’s prompting, their qualitative nature makes them chal-
lenging to directly translate into quantifiable metrics for evaluating the quality of
small talk.

One-To-Many The fundamental problem of evaluating the quality of a conver-
sation lies in the multi-faceted aspect of conversation. A successful conversation
can be continued in any direction. However, in machine learning, we tend to
evaluate the quality of output with regard to how closely it mimics the "ground
truth". In the case of a conversation, the "ground truth" is the next gold utterance.
This evaluation approach is far from ideal, as it doesn’t account for the diverse
and varied ways in which conversations can naturally unfold.

In human interactions, the richness of conversation comes from the unpredictabil-
ity and the multitude of potential responses. A question like "How was your day?"
can elicit a myriad of valid responses, ranging from detailed recounts of one’s day
to abstract reflections, to simple affirmations or negations. To confine the evalua-
tion of a conversational agent’s response to a single "correct" answer neglects the
essence of human conversation.

In Chapter 3, we used another approach and estimated the probability that a large
language model would continue a given conversation with a negative utterance
as a signal for the quality of the conversation or turn.

1.4.2 Memorization & Generalization

Generalization One of the paramount concerns for conversational agents, and
language models in general, is their ability to generalize. Generalization refers
to the capacity of a model to perform effectively on data it has not seen before.
For instance, consider a conversational agent designed to assist users in booking
flights. While the agent might have been trained on numerous queries like "Book
a flight to Brussels" or "Show me flights on Friday", real-world users might present it
with unconventional queries like "Find me a plane to Zaventem" or "Which flights are
there on the day after tomorrow?". A model that generalizes well would be able to
understand and process these novel inputs without having been explicitly trained
on them. This ability is pivotal because real-world applications are filled with
unpredictable and unique inputs, and only a model that generalizes effectively
can navigate such unpredictability.

Unlike many classical machine learning models, Transformer-based language
models are usually pre-trained on an enormous amount of text data sourced
from the Internet, which can drastically improve the generalization capabilities
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of the model.

Memorization & Contamination A corollary to the aforementioned discussion
on generalization arises: is the model genuinely generalizing or memorizing the
trillions of tokens from its pre-training data? A recent analysis by Grosse et al.
(2023) used influence functions to analyze the contribution of pre-training data
on the text generated by large language models. The main conclusion is that
the larger the model the more sophisticated the generalization patterns: smaller
models stick to lexical similarity while larger models can generalize to more
abstract concepts. Furthermore, the authors studied the output of an AI assistant
and were unable to find instances where the model simply regurgitated instances
from the pre-training data (except in the case of famous quotes or passages
targeting explicit memorization).

As it is impossible to analyze the knowledge and capabilities of language mod-
els directly, we usually resort to analyzing their performance on a variety of
static benchmarks: MMLU (Hendrycks et al., 2021), GSM8K (Cobbe et al., 2021a),
Human-Eval (Chen et al., 2021a), etc. While it is the most straightforward ap-
proach to evaluate and compare these models, this approach is prone to inten-
tional or unintentional contamination depending on which source is included in
the pre-training data. For example, Touvron et al. (2023) found LLama-2 70B to be
substantially better on test set examples with a large overlap with the pre-training
set. More often than not, the pre-training data used to train these large language
models is not publicly available which makes it impossible to test for a possible
contamination issue.

The problem of generalization and contamination does not stop at memorizing the
pre-training data, language models are often fine-tuned for specific tasks. We also
want to know how well a model trained on a given dataset will transfer to instances
which do not resemble the training set. In this case, the distinction between
generalization and memorization is vital because true generalization implies the
ability to extrapolate knowledge and concepts to new, unseen instances, whereas
memorization suggests the model is merely recalling specifics from its extensive
training (Chowdhery et al., 2022a). To make matters worse, several datasets
contain duplicates (or close duplicates) between the training and test set (Lewis
et al., 2021a).

Metrics Current evaluation metrics often struggle to differentiate between a
model’s genuine generalization and memorization. This highlights a need for
improved evaluation techniques that consider the similarity between test and
training data. In chapter 8, we attempted to gauge world knowledge by account-
ing for overlap between training and validation sets, revealing that language
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models indeed perform better on frequently seen topics in pre-training data.

Data Augmentation Using data augmentation techniques exacerbates this prob-
lem. In Chapter 6, we employed large language models to augment the size of a
multilingual intent and slot-filling dataset. As the size of the generated data was
extensive, part of it was also included in the test set. Can we conclude that the
model trained on the augmented dataset is better? To answer this question, we
used logistic regression to measure the performance of both models on the test
set while taking into account the similarity to the training set.

1.5 Multilingual

Conversational agents serve a diverse linguistic audience. Historically, Transformer-
based language models like BERT and GPT were built for English. For multiple
languages, separate models were required: Bertje for Dutch (de Vries et al., 2019),
CamemBERT for French (Martin et al., 2020). If none were available, a multilin-
gual could also be used such as mBERT or XLM-RoBERTa (Conneau et al., 2020;
He et al., 2021). However, the introduction of models like GPT-3 signalled a shift.
Although designed predominantly for English, GPT-3’s training data comprised
around 7% of non-English text. Despite its unsupervised training, GPT-3 exhib-
ited impressive multilingual capabilities, and the trend seems to have continued
with successors like GPT-3.5 and GPT-4.

However, this multilingual approach has its costs. The tokenizers of models like
GPT-3.5 and GPT-4, tailored predominantly for English, require more tokens for
non-English texts, leading to increased costs, latency issues, and limitations in
handling long-term dependencies (Petrov et al., 2023). For example the English
query Book a flight to Brussels requires only 5 tokens as each word belongs to a
token in the vocabulary, Dutch requires 12 tokens which is about 2 times more
expensive, 11 for French, 33 for Russian, and 56 in Thaï — 11 times more expensive
than English. This simple example shows the wide disparity in cost associated
with the use of large language models for non-English languages.

Benefits of Multilingual Models Another possibility is to use multi-lingual
tokenizers, such as the tokenizer from XLM-RoBERTa. Using this tokenizer the
query Book a flight to Brussels only requires 6 tokens for English, Dutch, and
French. Russian and Thai require 7 and 8 tokens respectively. From our experi-
ence, a standard approach for chatbots has been maintaining separate models for
each language. Still, this isn’t cost-effective in the long run and hampers cross-
language learning. An all-encompassing model for all languages would simplify
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operations, allowing for efficient cross-language learning and system mainte-
nance. In Chapter 5 and 6 we used multilingual models to answer frequently
asked questions and perform intent & slot filling using multilingual models. Our
results demonstrated that training in multiple languages at once enhances the
results compared to the single-language approach.

1.5.0.1 Tokenization Issues

Non-spaced Languages The way to train an intent detection & slots filling
model is to annotate existing queries for slots and intents. For example, the query
Book a flight to [destination: Brussels] is annotated with Brussels as the destination.
This approach works universally, even for non-spaced languages such as Chinese
or Japanese. However, things start to break down when the tokenizer is involved
as the boundaries of slots and tokens do not always overlap. We explore this
problem in Chapter 6.

The Underestimated Significance of Tokenizer Quality A surprising revela-
tion in the realm of large models is that despite the vast resources dedicated to
the training of GPT-4, it persists with the same tokenizer as GPT-2, bringing along
its inherent limitations. A striking example of this is its handling of the string
"davidjl". When prompted with Please write the string: "davidjl"., GPT-4 generates
just a single quotation mark. Yet, other word tests appear to pass without hic-
cups. This anomaly can be traced back to "davidjl" being treated as a singular
token in the GPT-2/3/4 tokenizer5. Worryingly, this token frequently surfaced
in contexts of escalating numbers, largely devoid of meaningful content. This
suggests the tokenizer’s exposure to potentially dubious data during training, as
evidenced by its data sources like Reddit, where the user davidjl123 took part in
numeral sequences6. Such revelations underline a pressing concern: the quality
and integrity of tokenizers, often overshadowed by other aspects, deserve more
attention and scrutiny. Apart from this, the tokenizer also grapples with han-
dling nuances in capitalization and spacing. A case in point is the multiple tokens
linked to the word "yes" in the sentence "Yes yes Yes.yes"7.

1.6 Conclusion

In conclusion, the age of Large Language Models started a new era of conversa-
tional agents that possess the ability to actively engage, respond, and offer insights

5Token id 23282
6https://www.reddit.com/user/davidjl123/
7[5297, 3763, 3363, 13, 8505]

https://www.reddit.com/user/davidjl123/
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in conversations. This development represents a significant shift from the pre-
internet era, where knowledge acquisition was limited to physical libraries and
reference books. However, despite the impressive capabilities of current models,
there are still important challenges to overcome. This thesis aims to tackle some
of these challenges by investigating how to integrate external knowledge into
conversational agents, assess their common sense and world knowledge, refine
their selection of appropriate responses, improve their multilingual capabilities,
and develop metrics that capture the multifaceted nature of conversations.
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BART for Knowledge Grounded

Conversations

This chapter was published in the Proceedings of KDD Workshop on Conversational
Systems Towards Mainstream Adoption (KDD Converse’20). ACM, New York, NY,
USA - ISSN 1613-0073 - 2666(2020), p. 1-6

2.1 Introduction

Large transformer-based language models have shown excellent capabilities in
generating human-like conversations (Adiwardana et al., 2020a; Roller et al.,
2021). While powerful, these models have a major drawback: they cannot expand
their factual knowledge of the world without being trained on new data (Lewis
et al., 2020b). As an example, all models trained before the COVID-19 outbreak
have no knowledge about the coronavirus epidemic.

It should be possible to allow open-domain conversational models to use ad-
ditional external knowledge sources for factual knowledge. Their knowledge
source should be easily extendable with recent information.

Current knowledge grounded open-domain agents limit the external world knowl-
edge to one sentence (Dinan et al., 2019; Roller et al., 2021), or to a single vector
(Fan et al., 2020). We believe limiting models this way is insufficient for open-
domain conversational agents, and show that increasing the number of passages
retrieved from memory leads to more human-like replies from the agent.

15
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2.2 Related Work

Knowledge grounded dialog systems can be described as sequence-to-sequence
models (Sutskever et al., 2014b) conditioned on an external knowledge source.
Grounding a conversation in external knowledge requires two different abilities:
retrieving the right knowledge amongst multiple candidates and effectively using
this knowledge to generate the next utterance.

One way of providing context to the model is to concatenate the chat history with
the knowledge source. (Budzianowski and Vulic, 2019) concatenated the context,
belief state, and database as input to a task-oriented GPT2 model (Radford et al.,
2019). (Wolf et al., 2019b) concatenated the agent’s persona with the previous
chat history. (Liu et al., 2018) find that this approach struggles with handling
longer contexts. (Wang et al., 2019) separate source and context encoding and
interleave source and context attention when decoding.

In some cases, the length of the context may be too large to be concatenated with
the chat history (e.g. multiple Wikipedia articles). (Dinan et al., 2019) introduce
the Transformer Memory Network models, capable of retrieving and attending
to knowledge and outputting a response, either in retrieval or generative mode.
(Fan et al., 2020) present a KNN-based information fetching module that learns
to identify relevant information from external knowledge sources in the context
of a dialogue dataset. The Wizard Generative Model (Roller et al., 2020a) uses a
Poly-encoder (Humeau et al., 2019) to retrieve a single sentence from an external
knowledge source.

Retrieval dialog systems (Weston et al., 2018; Dinan et al., 2019) can also be
framed as knowledge grounded agents where the knowledge source is a fixed set
of utterances and the task is to select the most appropriate utterance given the
context.

In this paper, we expand on the work of (Dinan et al., 2019). We fine-tune a BART
model (Lewis et al., 2019) to retrieve multiple sentences (instead of a single one)
from an external knowledge source, and use it effectively to generate the next
utterance in a conversation.

2.3 Dataset

2.3.1 Wizard of Wikipedia

We use the Wizard of Wikipedia dataset (Dinan et al., 2019) where two partici-
pants engage in chit-chat conversations. One of the participants is the wizard,
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Figure 2.1: BART model adapted for knowledge grounded conversations. 1: The
chat history is tokenized, a 𝑞𝑢𝑒𝑟𝑦 token is prepended, the result is encoded by
the encoder. 2: Each memory passage is tokenized, and prepended with a 𝑘𝑒𝑦
token. The resulting matrix is encoded by the encoder. 3: The 𝑞𝑢𝑒𝑟𝑦 vector is
compared against the 𝑘𝑒𝑦 vectors from the memory with a dot product attention.
The first 𝑘 passages with the highest score are selected. 4: The full sequence of
the chat history and the full sequence from the selected memory passages are
concatenated and given as context to the decoder. 5: Generation of the next
utterance of the Wizard.

and the other the apprentice. The wizard plays the role of a knowledgeable ex-
pert while the other is a curious learner. The goal of the wizard is to inform its
conversation partner about a topic that one of them will choose. The wizard has
access to an information retrieval system that shows paragraphs from Wikipedia
possibly relevant to the conversation. Before each conversation turn, the wiz-
ard can read these paragraphs and then potentially base its next reply on that
observed knowledge.

The authors collected 22,311 conversations with a total of 201,999 turns on 1365
open-domain dialog topics (e.g. commuting, gouda cheese, bowling).

The dataset is divided in a train, validation and test set. The validation and
test sets are sub-divided into seen and unseen. The seen sets share conversation
topics with the training set while the unseen sets do not.

2.4 Model

Our goal with this dataset is to train an agent capable of conversing about any
domain. We use a model to replace the wizard in the conversations. To gen-
erate the next utterance 𝑥𝑡+1, the model has access to the previous conversation
turns 𝑥1 , ..., 𝑥𝑡 and to a hierarchical knowledge source: 𝑀. Each element of the
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knowledge source, 𝑚𝑖 , is composed of a topic and a sentence belonging to that
topic.

Similar to the End-to-End (E2E) Transformer MemNet of (Dinan et al., 2019), we
use an encoder-decoder Transformer (Vaswani et al., 2017b) as our base sequence-
to-sequence model. Instead of pre-training our model on a Reddit corpus, we
use a pre-trained BART model (Lewis et al., 2019). An illustration of our model
is shown in Figure 2.1.

The knowledge source 𝑀 is filtered before each turn using the same procedures
as in (Dinan et al., 2019).

2.4.1 Encoder

While some approaches choose to have a separate encoder for knowledge retrieval
and for conversation modeling (Dinan et al., 2019; Fan et al., 2020), we use a shared
encoder to encode the conversation context 𝑥, and the filtered knowledge source
𝑀. Every 𝑚𝑖 is encoded independently.

We choose to share the encoder because the purpose of an encoder is to under-
stand text, it does not make sense to have two encoders do the same thing but
for different sources (chat history and knowledge memory). This architectural
choices also reduces the model size.

To let the model recognize the difference between a knowledge piece and a con-
versation history, we use segment embeddings (Wolf et al., 2019b). We introduce
three segment embeddings, one for the wizard’s turn, one for the apprentice’s
turn, and one for the knowledge passages. We prepend the conversation context
𝑥 with a special token 𝑞, the query token. We prepend each knowledge source
candidate with another special token 𝑘, the key token. After decoding, the query
and key vectors are projected to a lower dimension using a linear layer.

2.4.2 Knowledge Selection

After the encoding step, our key and query tokens become the key and query
vectors. We concatenate the key vectors 𝑘𝑖 from the knowledge source encoding
into the query matrix 𝐾.

We then train the model to recognize which single knowledge passage (the gold
knowledge) 𝑘𝑖 was selected by the wizard. The query vector 𝑞 from the conver-
sation history is compared against 𝐾 to produce a dot product attention over the
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knowledge source. We train the model to select the gold knowledge passage with
a cross-entropy loss over the knowledge attention.

2.4.3 Decoder

We concatenate the full sequence of the 𝑛 first knowledge candidates 𝑚𝑖 with the
chat history. This context matrix is then given as memory to the decoder. To let
the decoder know that it is generating the next utterance of the wizard, we use
the same segment embedding for the wizard as in the encoding step. We train
the model to minimize the negative log-likelihood of the response utterance 𝑥𝑡+1.

To summarize, our model uses a pre-trained BART model to retrieve relevant
knowledge and to generate the next utterance. We improve on the current meth-
ods in two ways. First we introduce a 𝑘𝑒𝑦 and 𝑞𝑢𝑒𝑟𝑦 token to perform the retrieval
step with a shared encoder, second we allow the model to retrieve multiple full
(i.e. not a vector representation) passages from the memory.

2.5 Experiments

We conduct several experiments to analyze the ability of our model to select and
use knowledge in dialogue.

The model uses the large version of BART (Lewis et al., 2019), which has 12 layers
in the encoder and 12 layers in the decoder and an inner dimension of 1024. The
model has approximately 400M parameters. We use the BART implementation
from HuggingFace (Wolf et al., 2019a).

On top of the original implementation, we add a segment embedding layer and
two additional tokens (query and key token) to the vocabulary. We also add two
linear layers to project the key and query vector to a dimension of 512.

Before each turn, the wizard is presented with a varying number of memory
passages retrieved by an IR system: the visible passages (see Dinan et al. (2019)
for a detailed description). We feed a subset of the visible passages to the model
(40 sentences per utterance). The visible passages can be divided into positive
(gold passage) and negative examples (non-gold passages). We pool together
the negative examples of a single batch to increase the difficulty of the task at
a reduced computational cost (the model has to choose from a larger pool of
already computed 𝑘𝑒𝑦 vectors).

During training, we use a forcing teacher strategy and disregard the results from
the knowledge retrieval step. Instead, we give as context (memory) to the decoder,
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Method Seen Test Unseen Test
R@1 F1 R@1 F1

Random 2.7 13.5 2.3 13.1
IR baseline 5.8 21.8 7.6 23.5
BoW MemNet 23.0 36.3 8.9 22.9
Transformer 22.5 33.2 12.2 19.8
Transformer (+Reddit pretraining) 24.5 36.4 23.7 35.8
Transformer (+Reddit pretraining, +SQuAD training) 25.5 36.2 22.9 34.2
Retrieval Transformer MemNet (no auxiliary loss) 12.9 24.6 14.6 26.3
Gen. E2E Transformer MemNet (no auxiliary loss) 13.4 28.3 11.8 25.9
Gen. E2E Transformer MemNet (w/ auxiliary loss) 21.1 32.8 14.3 22.8
BART 26.0 38.9 19.9 33.9

Table 2.1: Knowledge retrieval performance on the seen and unseen test set.
The BART model outperforms all methods on the seen test set (unigram F1 and
perplexity) and comes close to the best performing methods on the unseen test
set, even though it does not have a separate module specialized in knowledge
retrieval (as the Transformer models). The seen test set shares conversation topic
with the training set, while the unseen test does not.

the first five passages from the gold topic (the gold passage is always the first
one). By feeding it multiple sentences, the model is trained to further select the
relevant piece of information in the decoder. We believe this makes the decoder
more robust to noise coming from the knowledge retrieval step.

We train the model to simultaneously optimize for the knowledge selection task
and the language modeling task for three epochs, with a constant learning rate
of 10−5, linearly increased from zero over 1000 steps.

We did not test using a separate encoder (see 𝑆ℎ𝑎𝑟𝑒𝑑 link in Figure 2.1) as this
would increase the parameters count by 50%.

2.6 Results

We analyze the performance of the model on two axes: knowledge retrieval and
next utterance generation.

2.6.1 Retrieval Task

Similar to (Dinan et al., 2019) we use recall@1 and unigram F1 between the
retrieved knowledge and the gold knowledge item as evaluation metrics. The
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Figure 2.2: Recall metrics on seen and unseen test set. The model retrieves the
right memory passage 26% of the time on the seen test set. When retrieving the
first 10 passages, the gold passage is included in the retrieved results 73% of the
time. These results show the importance of retrieving multiple passages from the
memory.

results are displayed in Table 2.1.

Our model uses a shared encoder to encode the conversation context and to
retrieve the relevant knowledge. It is therefore best compared against the Gener-
ative E2E Transformer MemNet of (Dinan et al., 2019), the other models have a
separate knowledge retrieval module. We show that a shared encoder can achieve
similar performance on this task as specialized modules.

As our model is capable of handling multiple knowledge pieces in the decoder,
we also report recall@5 and recall@10 in Figure 2.2. The first five results contain
the gold passage around 50% of the time.

The difference in retrieval performance between the seen and unseen set could
indicate that the model overfitted the training set, or that the size of the dataset
is too limited to generalize to unseen topics.

2.6.2 Generation Task

The second objective of our model is to use the past conversation and the retrieved
knowledge to generate the next utterance.
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Figure 2.3: Perplexity results per number of passages retrieved.
The inclusion of knowledge has a significant impact on perplexity, on the seen

and unseen test set. The performance of the model gets better as more
knowledge passages are retrieved. There is no trade-off between the number of

included passages and the model’s performance in terms of perplexity.
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Figure 2.4: Unigram F1 results per number of passages retrieved.
The inclusion of knowledge has a significant impact on the model’s performance
in terms of unigram F1. Contrary to Figure 2.3, the model’s performance peaks

at one passage retrieved on the seen test set.
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Method Seen Test Unseen Test
PPL F1 PPL F1

Repeat last utterance 13.8 13.7
E2E Transformer MemNet (no auxiliary loss) 66.5 15.9 103.6 14.3
E2E Transformer MemNet (w/ auxiliary loss) 63.5 16.9 97.3 14.4
Two-Stage Transformer MemNet 54.8 18.6 88.5 17.4
Two-Stage Transformer MemNet (w/ K.D.) 46.5 18.9 84.8 17.3
KIF-Augmented Transformer* 25.9 22.3
BART 12.2 20.1 14.9 19.3

Table 2.2: Next utterance generation performance on the seen and unseen test set.
The BART model outperforms the shared encoder methodologies (E2E) and

non-shared encoder methodologies (Two-Stage) of (Dinan et al., 2019), but falls
short of the KIF-Augmented Transformer (Fan et al., 2020) in terms of unigram
F1. Perplexity number cannot be directly compared because of differences in

vocabulary sizes. *Fan et al. (2020) did not report perplexity numbers.

Although BART was pre-trained on a denoising task, it quickly adapted to dialog
generation.

Similar to (Dinan et al., 2019), we use the perplexity of the gold utterance and
unigram F1 between the generated utterance and the gold utterance as evaluation
metrics, see Table 2.2. The model achieves a better performance than (Dinan et al.,
2019) in terms of unigram F1 but falls short of (Fan et al., 2020). The perplexity
numbers cannot be directly compared between models because of differences in
vocabulary size.

As our model is capable of handling more than one passage of knowledge, we
also report the numbers for 0, 1, 5, 10, 15 and 20 knowledge passages retrieved,
see Figures 2.3 and 2.4. In terms of perplexity, the more passages are retrieved,
the better the performance. The higher the number of passages retrieved, the
higher the probability of it containing the gold passage used by the Wizard to
generate the next utterance (see Figure 2.2 for recall numbers). Hence, the model
is less perplexed by this particular utterance. This phenomenon is true for the
seen and unseen test set.

In terms of unigram F1, the performance reaches a maximum at 1 passage re-
trieved, while the unseen test reaches a maximum at 10. Unigram F1 and per-
plexity tell two different stories: perplexity says it is beneficial to include at least
10 passages, while unigram F1 says one is enough.

(Adiwardana et al., 2020a) show perplexity is correlated with SSA (Sensibleness
and Specificity Average) and state that optimizing for perplexity is a good proxy
for optimizing the human likeliness of a model. Using their result as hypothe-
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sis, increasing the number of passages retrieved from memory results in more
human-like models.

2.7 Future Work

An unsupervised pre-training of the BART model for simultaneous context re-
trieval and generation could help bridge the gap between seen and unseen per-
formance.

The problem of knowledge selection is not one-to-one, but one-to-many. There
are possibly many relevant passages for a single user query. The dataset could
be updated to reflect that fact.

Unigram F1 has no semantic understanding of the generated text. Evaluating the
model with USR (Mehri and Eskenazi, 2020b), a reference-free metric that trains
unsupervised models to measure several desirable qualities of dialog, could help
in the comparison of models.

2.8 Conclusion

In this work, we showed how a BART (Lewis et al., 2019) model can be extended
to make use of an external memory. This model was successfully implemented
in a knowledge grounded conversational setup using the Wizard of Wikipedia
dataset (Dinan et al., 2019).

Current models retrieve only one sentence or vector from the memory (Dinan
et al., 2019; Roller et al., 2020a). Our analysis showed that it is limiting the
potential of current models as retrieving multiple sentences from the memory
diminishes the model’s perplexity to the gold utterance.

We also showed it is not necessary to have a separate encoder for knowledge
retrieval and context encoding. A shared encoder can achieve competitive results
in the knowledge retrieval task, limiting the model size and complexity.
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This chapter was published in the Proceedings of the 29th International Conference on
Computational Linguistics, - ISSN 2951-2093 - Gyeongju, International Committee on
Computational Linguistics, 29(2022), p. 496-504

3.1 Introduction

Despite the recent progress in Natural Language Processing, the automatic eval-
uation of open-domain conversations remains an unsolved problem. It is difficult
to establish criteria to measure the quality of a system. Task-oriented dialog sys-
tems use metrics such as task success or dialog efficiency. However, these do not
apply to open-domain conversational agents (McTear, 2020).

Currently, there are two options for open-domain dialog evaluation: human
evaluation and automated evaluation. Thanks to their understanding of natural
language, humans are able to digest the entire dialog context in order to mean-
ingfully evaluate a response (Mehri et al., 2022). Human evaluation also has its
shortcomings: inconsistency in ratings (the same annotator may give two differ-
ent scores depending on the mood), lack of reproducibility, and cost (Mehri et al.,
2022).

The second option is to use automated evaluation metrics. Methods inherited
from sequence-to-sequence machine translation such as BLEU (Papineni et al.,
2002) evaluate the generated utterance by comparing it to the ground-truth. By
doing so, these methods miss the one-to-many characteristic of conversation: a
conversation may evolve in more than one valid direction.

25
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Figure 3.1: Illustration of our method. We measure the probability (log-
likelihood) that a language model will continue the conversation with a set of
predefined follow-ups. This paper shows that the sum of the individual log-
likelihoods correlates strongly with human evaluations.

To tackle this problem, researchers came up with reference-free evaluation met-
rics: the generated utterance is not compared to a ground truth but evaluated on
its own.

FED (Mehri and Eskenazi, 2020a) is an unsupervised reference-free evaluation
metric. It uses the idea that one can use the next utterance in a conversation
to rate the turn before it. When users speak to a system, their response to a
given system may implicitly provide feedback for the system. FED uses a set of
predefined follow-ups and the log-likelihood from a language model to measure
18 fine-grained attributes in a conversation.

Inspired by the FED metric, we propose a new evaluation method called FULL
(Follow-Up Log-Likelihood). We start by explaining our method and how it
departs from the original FED metric. Next, we explain our choice of language
model and follow-ups. Finally, we demonstrate that our new method achieves the
highest correlation with human evaluations compared to 12 automated metrics.
We open-source our evaluation code1 and publish FULL as a Python package2

for easy usage.

3.2 Related Work

This section reviews the existing literature on evaluation metrics for open-domain
conversations. In the interest of space, we limit ourselves to studying reference-
free methods (methods that do not require a ground truth). The interested reader
is encouraged to read Yeh et al. (2021) for a full review.

GRADE (Huang et al., 2020) and DynaEval (Zhang et al., 2021) use a graph-based
structure to model the dialog-level interaction between a user and a system.

1https://github.com/maximedb/full
2https://pypi.org/project/full/

https://github.com/maximedb/full
https://pypi.org/project/full/
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DynaEval distinguishes between well-formed dialogs from carefully constructed
negative samples. MAUDE (Sinha et al., 2020) is also trained to distinguish a
correct response from a randomly sampled negative response using a contrastive
loss. FlowScore (Li et al., 2021b) evaluates the quality of a dialog using the
dynamic information flow in the dialog history.

USR (Mehri and Eskenazi, 2020c) trains several models to measure different
qualities of dialogs. A masked language modeling head measures the fluency of
the conversation, a retrieval model determines the relevance of a response, and
a fact-to-response model checks whether a response conditions on knowledge.
USL-H (Phy et al., 2020) also has three internal models, although they measure
different attributes: grammatical correctness, sensibleness, and the likelihood of
a given response. Other notable evaluation methods include Ghazarian et al.
(2020); See and Manning (2021); Ghazarian et al. (2022b,a)

FED (Mehri and Eskenazi, 2020a) and HolisticEval (Pang et al., 2020) both use
GPT-like (Radford et al., 2019) models to evaluate conversation on several at-
tributes. FED computes the likelihood of manually designed follow-up utter-
ances to measure multiple dialog qualities without supervision. HolisticEval
uses a GPT-2 model to measure coherence, fluency, diversity, and consistency.

3.3 Method

Our metric FULL (Follow-Up Log-Likelihood) is a reference-free evaluation method
for dialogs inspired by FED (Mehri and Eskenazi, 2020a). Figure 3.1 provides an
overview.

3.3.1 Follow-Up Utterance for Evaluation

Our method uses follow-up utterances to evaluate the quality of a conversation
(Eskénazi et al., 2019). When interacting with a system, users may provide
implicit feedback about the conversation in the semantics of their response. For
example, if a user ends a conversation with It was a pleasure talking to you, we can
reasonably assume it was a pleasant conversation. On the other hand, if a user
ends a conversation with What are you talking about?, we could conclude that the
user is confused about the state of the conversation.
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3.3.2 Log-Likelihood of Follow-Ups

We do not have access to the next utterance in an interactive setting. Instead, we
ask a language model to play the role of a human. We ask the model how likely
it is to generate a fixed set of follow-ups. For example, if the language model is
likely to continue a conversation with the follow-up I don’t understand what you
are saying, we could conclude that the utterance generated by the system does not
make sense.

FULL analyzes the quality of a response 𝑟 in the context of a dialog history ℎ with
a language model 𝑀 and a set of 𝑛 predefined follow-ups 𝐹. For each predefined
follow-up, the language model computes the log-likelihood 𝐷 of a follow-up
utterance 𝑓𝑖 given the dialog history.

𝑛∑
𝑖=1

𝐷(ℎ, 𝑟, 𝑓𝑖) (3.1)

The total score is equal to the sum of the individual log likelihoods. It is worth
reminding that the metric does not mean anything. It is only useful to compare
systems together.

3.3.3 Differences with FED

Our implementation differs from FED (Mehri and Eskenazi, 2020a) in multiple
ways. First, we do not consider fine-grained attributes, only the overall quality
of the turn or dialog.3

Second, FED computes the log-likelihood of the conversation history ℎ, the re-
sponse 𝑟, and the follow-up 𝑓𝑖 . Whereas we only compute the conditional log-
likelihood of the follow-up 𝑓𝑖 . Computing the log-likelihood over the conversa-
tion introduces a bias towards the dataset used in training the language model,
Reddit, in the case of FED. It also favors longer conversations over shorter ones.
Our goal is to estimate the likelihood of the follow-up, not the conversation itself.

Third, FED did not justify its choice of follow-ups, while we studied each candi-
date and only took the most correlated ones making intuitive sense. Fourth, we
also study multiple types of language models (conversational and general).

3Whereas FED considers 18 fine-grained attributes (overall quality included). Our initial ex-
periments revealed that follow-ups assigned to a fine-grained attribute (e.g., engaging) often had a
higher correlation with another unrelated attribute (e.g., correctness). For that reason, we choose
to focus on a single attribute, the conversation’s overall quality and leave the study of fine-grained
attributes for future work.
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3.4 Experimental Settings

This section explains our choices of follow-ups, language models, and conver-
sational data. Our goal is to find the combination of language models and
follow-ups correlating the most with human evaluations.

3.4.1 Follow-Ups

A follow-up is an utterance added after a conversation’s last turn to evaluate the
last turn or the entire dialog. FED defined 63 unique follow-ups in 16 categories
(fine-grained attributes) at the turn level and the dialog level. Appendix A.2 list
the entire list of follow-ups. The authors did not provide any justification for their
choice of follow-ups. Instead of blindly using the list of follow-ups, we attempt to
understand which of these follow-ups have the highest correlation with human
evaluations.

3.4.2 Language Models

We experiment with several language models, both general and conversational.
The goal of the language module is to compute the conditional log-likelihood of
several follow-ups.

BlenderBot v1 is a conversational sequence-to-sequence model (Roller et al.,
2020b) with three sizes: small, large, and extra-large. A distilled version is also
available on HuggingFace.

DialoGPT is a conversational language model (Zhang et al., 2020) with three
sizes: small, medium and large. The authors fine-tuned a GPT-2 model on a large
corpus of Reddit conversations.

GPT-2 is a general language model (Radford et al., 2019). While it was not
trained specifically on conversational data, our experiments revealed its potential
to estimate a conversation’s quality.
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Follow-up Correlation
Turn Dialog

Not really relevant here. 0.48 0.65
You’re really confusing. 0.46 0.67
I don’t understand what you’re saying. 0.46 0.58
That’s not really relevant here. 0.45 0.70
You are so confusing. 0.45 0.64
You’re really boring. 0.44 0.65
That’s not very interesting. 0.44 0.60
That was a really boring response. 0.43 0.63
You don’t seem interested. 0.43 0.61
I am so confused right now. 0.43 0.57

Table 3.1: Top 10 follow-ups ranked by Spearman correlation to human evalu-
ations. All follow-ups exhibit a positive relationship, meaning that the likely
presence of the follow-up (low log-likelihood) entails a low human evaluation
and vice-versa.

3.4.3 Conversational Data

We use the FED dataset (Mehri and Eskenazi, 2020a) for evaluating the set of
follow-ups. It consists of 372 turn-level (124 dialog-level), originally collected by
Adiwardana et al. (2020b). The dataset consists of human-system conversations
(Meena and Mitsuku) and human-human conversations. Mehri and Eskenazi
(2020a) asked annotators to evaluate turn-level and dialog-level conversations on
several attributes. In this work, we only use the evaluation of the overall quality
of the turn or dialog.

3.5 Results

Our objective is to find the best combination of language models and follow-ups.
We start by analyzing which language model correlates the most with human
evaluation. In the second step, we look for the best set of follow-ups.

3.5.1 Choice of Language Model

We are looking for a language model whose log-likelihood of generating the
follow-ups correlates highly with human evaluations. We do so both on a turn-
level and dialog-level. We compare the average absolute correlation of each
follow-up with human judgments. The results are displayed on Figure A.1 in
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Annex A.1. The model standing out is the large Blender model (Roller et al.,
2020b). It has the highest correlation with humans both on a turn-level and dialog-
level. The difference in performance between Blender-3B and Blender-400M is
small. For these reasons, we choose Blender-400M as our default language model.

3.5.2 Choice of Follow-ups

Now that we have identified our model of choice (Blender-400M), we wish to
identify the follow-ups correlating the most with humans. We compute the
Spearman correlation between each follow-up and human evaluation (turn-level
and dialog-level). We present the top-10 follow-ups (by absolute correlation) in
Table 3.1. The full table is available Appendix A.2.

The follow-up correlating the most on a turn-level basis is Not really relevant here
with a Spearman correlation of 0.48. The least correlated follow-up is Wow!
That’s really cool! with correlations of 0.04. The follow-up correlating the most on
a dialog-level basis is That’s not really relevant here with a correlation of 0.70. The
least correlated follow-up on a dialog level is Cool! That sounds super interesting!
with a correlation of 0.01.

Most follow-ups exhibit a positive relationship, meaning that the likely generation
of the follow-up by the language model (low log-likelihood) entails a low human
rating and vice-versa. However, all the top follow-ups are negative follow-ups (e.g.,
You’re really confusing), and their likely presence indicates a negative conversation.
On the other hand, the positive follow-ups (e.g., Great talking to you) are not as
highly correlated. On average, negative follow-ups correlate with 0.39, while
positive follow-ups correlate with 0.24. These results indicate that the language
model evaluates a good conversation by the likely absence of negative follow-ups.

Each follow-up brings another forward pass of the model, so ideally, we want to
restrict the number of follow-ups in the final evaluation method. For the final
selection of follow-ups, we combine the rank of the turn-level and dialog-level
correlations and take the top 5.4 The final selection of follow-ups is the following:
Not really relevant here. You’re really confusing. You’re really boring. What are you
trying to say? You don’t seem interested.

3.5.3 Comparison

Yeh et al. (2021) compared 12 evaluation methods on the FED dataset (Mehri and
Eskenazi, 2020a). We compare our method FULL against these 12 other methods

4We arbitrarily choose the number 5. We also removed close duplicates. For example Not really
relevant here. and That’s not really relevant here.
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Turn Level Dialog Level
QuestEval 0.09 0.08
MAUDE -0.09 -0.28
DEB 0.19 -0.01
GRADE 0.12 -0.06
DynaEval 0.32 0.55
USR 0.12 0.06
USL-H 0.19 0.15
DialoRPT -0.09 -0.21
HolisticEval 0.12 -0.30
PredictiveEngage 0.09 0.15
FED 0.09 0.32
FlowScore -0.05 -0.00
FULL (ours) 0.51 0.69

Table 3.2: Comparison of our evaluation method FULL with other automated
methods. FULL achieves the highest correlation on turn-level and dialog-level,
followed by DynaEval. Except for FULL, results are copied from Yeh et al. (2021).

in Table 3.2. The results are clear, FULL achieves the highest correlation both on
a turn-level and dialog-level while being fully unsupervised (except in the choice
of follow-ups). By combining the log-likelihood from 5 follow-ups, the average
correlation on turn-level increases to 0.51, while the average of the individual
correlation equals 0.45.

3.6 Conclusion

This short paper introduces a new automated evaluation method (FULL) for
open-domain conversations. FULL measures the quality of a conversation by
computing the probability that a language model will continue the conversa-
tion with a set of follow-ups (e.g., Not really relevant here, What are you trying to
say?). FULL achieves the highest correlation with human evaluations compared
to twelve other existing methods.

Our experiments revealed that negative follow-ups (e.g., Not really relevant here)
have a higher correlation with human evaluations than positive follow-ups (e.g.,
Wow, interesting to know). It is easier for the model to evaluate a conversation from
its bad angles rather than its good ones.

Future work is needed to know which fine-grained attribute can be measured
using the same technique. Using ever-large models such as GPT-3 (Brown et al.,
2020b) or OPT (Zhang et al., 2022b) could be a direction for future research,
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although the resulting model will likely need to be distilled to be of practical use.
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ConveRT for FAQ Answering

This chapter was published in the Proceedings of BNAIC/BeneLearn 2021 : 33rd Benelux
Conference on Artificial Intelligence and 30th Belgian-Dutch Conference on Machine
Learning, November 10–12, 2021 Belval, Esch-sur-Alzette (Luxembourg) - Luxembourg,
BnL, 2021, p. 312-319

4.1 Introduction

In this paper, we present a Dutch-based FAQ retrieval system trained using a
limited amount of training data.

FAQ answering is the task of retrieving the right answer given a new user query.
It is widely used in chatbots and has been studied for many years (Hammond
et al., 1995a; Sneiders, 1999a; Jĳkoun and de Rĳke, 2005a; Riezler et al., 2007a;
Karan and Šnajder, 2016b; Sakata et al., 2019a), although the attention has shifted
towards extractive question answering more recently (Rogers et al., 2021a), prob-
ably because of a lack of dedicated datasets. FAQ answering systems typically use
retrieval systems (Hammond et al., 1995a; Sneiders, 1999a; Jĳkoun and de Rĳke,
2005a; Riezler et al., 2007a; Karan and Šnajder, 2016b; Sakata et al., 2019a) rather
than generative models grounded on external knowledge (Komeili et al., 2021a;
De Bruyn et al., 2020; Lotfi et al., 2021). The generative approach is more flexible
as it is able to generate new answers. However, these models suffer from knowl-
edge hallucinations (Shuster et al., 2021c), limiting their usefulness in a corporate
environment.

Most previous research focusing on FAQ retrieval and non-factoid question an-
swering were developed for English. ConveRT (Henderson et al., 2019a), a re-
sponse selection module available within Rasa (Bocklisch et al., 2017), caught
our attention as it is effective and does not require a GPU at inference time.

35
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Unfortunately, it is only available in English. Despite having significantly less
conversational training data (400K pairs of utterances) than the original ConveRT
model (727M pairs), we successfully trained the same model for Dutch.

Our contributions are the following:

• We show it is possible to train a ConveRT model for a non-English language
using a limited number of conversation pairs by adopting a two-phase pre-
training approach (general and conversational).

• We show that a Dutch ConveRT model performs better than the response
selector module from Rasa, both in a low and high data regime.

4.2 Related Work

An FAQ dataset consists of pairs of questions and answers. The FAQ retrieval
task involves ranking the available answers for a given user query. There are
three methods available to solve this problem: matching a new user query on
the available questions, the answers, or the concatenation of both. FAQ retrieval
can be broadly divided into 4 categories: lexical, supervised, unsupervised, and
conversational.

Lexical To our knowledge, FAQ-Finder (Hammond et al., 1995a) was the first
to explicitly study the task of FAQ retrieval, it tries to do so by matching user
queries to FAQ questions of the Usenet dataset with TF-IDF. FAQ-Finder was later
improved by including the similarity to the answer (on top of the similarity to
the question) (Tomuro and Lytinen, 2004a). Another improvement comes from
adding a rule-based layer on top of the TF-IDF module (Sneiders, 1999a).

Unsupervised Another approach is to used unsupervised techniques to retrieve
the right FAQ pair given a new user query. One possible way is to use Latent Se-
mantic Analysis (LSA) to overcome the lexical mismatch between related queries
(Kim and Seo, 2008a).

Supervised The first supervised methods were developed using tree kernels
and SVMs (Moschitti et al., 2007a). BERT methods were later developed specifi-
cally for the task of FAQ retrieval (Sakata et al., 2019a).
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Conversational In this paper, we propose a fourth type not yet explored in
the literature: conversational. FAQ retrieval can be treated as a special case of
conversational modeling: retrieving the answer is similar to retrieving the next
utterance in a conversation.

Dual-encoder architectures, pre-trained on response selection, have become in-
creasingly popular in the dialog community due to their simplicity and ease of
control (Henderson et al., 2019b; Cer et al., 2018b). There are two options when it
comes to retrieving the next utterance. One can either encode the two sentences
separately (dual-encoder) (Henderson et al., 2019a), or simultaneously (cross-
encoder) (Damani et al., 2020). Dual-encoders are faster than cross-encoders as
they can cache the answer representations. ConveRT (Henderson et al., 2019a) is
a dual-encoder pre-trained on a large-scale conversational dataset. Thanks to var-
ious design optimizations (such as using single-headed self-attention) ConveRT
can vastly reduce the size of the model.

In this work, we choose to focus on ConveRT as it has a low computational cost
and does not require a GPU for inference.

4.3 ConveRT

In this section, we give a brief overview of the ConveRT (Conversational Repre-
sentations from Transformers) model (Henderson et al., 2019a). The objective of
the model is to generate vector representations for utterances that are as similar
as possible (in terms of dot-product) for a given pair. ConveRT takes as input the
sequence of tokens of the two utterances. Both sequences are tokenized using the
same byte pair encoding vocabulary.

4.3.1 Architecture

The ConveRT architecture (Fig. 4.1) is composed of three distinct parts: the
embedding layer, the Transformer block and the feedforward layers.

4.3.1.1 Embedding

The first element stores the embeddings for the subwords and position tokens.
Embeddings are shared for the input and response representations. Unlike the
original Transformer architecture (Vaswani et al., 2017b), ConveRT uses two po-
sitional encoding matrices of different sizes to handle sequences larger than seen
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Figure 4.1: Illustration of the ConveRT model architecture. The model has three
distinct parts. First, the subword and positional embeddings. Second, a shared
Transformer block followed by a two-headed self-attention. Third, separate feed-
forward networks (3 layers) for the input and responses.

during training. We refer the reader to the original paper for a detailed descrip-
tion (Henderson et al., 2019a).

4.3.1.2 Transformer Block

The next element is the Transformer block. It closely follows the original Trans-
former architecture (Vaswani et al., 2017b) with some notable differences. First,
the model uses a single-headed self-attention using a 64-dimensional projection
for computing the attention weights. Second, the model applies a two-headed
self-attention after the six Transformer layers. The parameters of the Transformer
block are fully shared for the input and response sides. ConveRT uses the square-
root-of-N reduction (Cer et al., 2018b) to convert the embedding sequences to
fixed-dimensional vectors.
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4.3.1.3 Feed Forward

The last elements are a series of feed-forward hidden layers with skip connections.
The parameters are not shared between the inputs and responses side, as there is
a separate feed-forward for the inputs and responses.

4.3.2 Training Objective

The training objective of ConveRT is to select the right response given a question
from a question-answer pair. The relevance of each response to a given input is
quantified with a dot-product between the input and response representation.
Training proceeds in a batch of K pairs of utterances. The objective is to dis-
tinguish between the true relevant responses and irrelevant negative examples
(we use other responses from the batch as negative examples). ConveRT uses
cross-entropy as the loss function. The model is optimized with Adam (Kingma
and Ba, 2015) and L2 weight decay. The learning rate is warmed up over the first
10,000 steps to a peak value and then linearly decayed.

4.4 ConveRT for Dutch

In this section, we explain our approach to training a ConveRT model for Dutch.
To overcome the limited supply of conversational data available in Dutch, we use a
two-stage pre-training: general pre-training on a large open-domain corpus, and
conversational pre-training using a smaller conversational dataset from Reddit.

4.4.1 Data

The original ConveRT model was developed for English using a large-scale con-
versational dataset from Reddit. We did not have access to such a dataset for
Dutch. Instead, we chose to split the problem in two. First, we pre-train the
model on a general Dutch corpus. Second, we use a smaller Dutch conversa-
tional corpus from Reddit.

4.4.1.1 General Dataset

We consider the same Dutch-language corpora as Bertje (de Vries et al., 2019), a
successful Dutch BERT model:



40 CHAPTER 4. CONVERT FOR FAQ ANSWERING

• Books: a collection of contemporary and historical fiction novels

• TwNC (Ordelman et al., 2007): a Multifaceted Dutch News Corpus

• SoNaR-500 (Oostdĳk et al., 2013): a multi-genre reference corpus

• Web news

• Wikipedia

In total, this is about 12GB of uncompressed text.

To match the setup expected by ConveRT (the tokens of a pair of utterances),
we first split each paragraph into sentences. Next, we save pairs of sentences
and treat them as pairs of input and response. To avoid small inputs, we filter
out pairs with less than 64 characters. After transformation, the general corpus
dataset for pre-training has 110M pairs.

4.4.1.2 Conversational Dataset

We also consider a Dutch conversational dataset for which we downloaded com-
ments from around 200 Dutch subreddits. Non-Dutch comments were filtered
out. After filtering for the language we arrive at a size of 400K pairs of utterances.

4.4.2 Pre-training

We followed the training procedure of ConveRT, except for the number of epochs
and the batch size. For the general pre-training, we trained the model for 8
epochs. To facilitate the training, we used other examples from the batch as
negative examples.

To increase the difficulty of the training, we doubled the batch size at every
second epoch. The batch size increased from 128 at the first epoch to 2048 at the
last epoch. The larger the batch size, the harder it is for the model as the model
has to select the correct response amongst more negative examples.

For the conversational pre-training, we trained for 10 epochs with a fixed batch
size of 2048.
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model split 1 split 2 split 4 split 6 split 8 split 10
RASA (baseline) 22% 42% 50% 55% 61% 65%
without pre-training 20% 25% 33% 45% 52% 65%
general pre-training 30% 36% 40% 55% 58% 43%
conversational pre-training 40% 44% 55% 63% 66% 69%
general + conv. pre-training 46% 57% 68% 69% 75% 79%

Table 4.1: Accuracy on the COVID-19 vaccination FAQ dataset per splits of
increasing size. Split one has one training example per answer, while split ten
has ten training examples. Pre-training ConveRT on both a general dataset, as
well as a conversational dataset provides the best results on this task.

4.5 Experiments

In this section, we fine-tune our model on a corpus of FAQs related to the COVID-
19 vaccine. We then perform an ablation study to analyze which part of the pre-
training has the most impact on the downstream performance. To have a better
understanding of how our model would perform in the real world, we study its
performance as the number of training examples increases.

4.5.1 Data

We test the performance of our model on a proprietary dataset. The dataset was
collected while running a COVID-19 vaccination FAQ bot with Rasa. It consists
of 1,200 questions for 76 distinct answers.

4.5.2 Baseline

As our higher objective is to use this model in a Rasa chatbot, we compare our
Dutch ConveRT model to a baseline response retrieval model developed by Rasa.1
All models are trained using the same number of epochs and dropout probability.

4.5.3 Low Data Scenario

When starting out, FAQ bots usually have a one-on-one mapping between the
number of questions and answers (one question for one answer). As the number
of users increases, the number of available questions per answer also increases.

1Rasa does not have a published paper describing their model.
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To evaluate the generalization capabilities of our model in a low data scenario, we
artificially create datasets of increasing sizes, which we call splits. The first split
has one training example per answer (the same as when someone starts a new
FAQ chatbot), the second split has two training examples per answer, and so on
until split ten. We also generate a test set by randomly selecting (and removing
from the training set) one training example per answer.

4.5.4 Results

Results in Table 4.1 confirm our intuition that the baseline accuracy of the Rasa
model radically improves with the number of training examples. In our analysis,
the accuracy increases by a factor of 3 from split 1 to split 10. The results also show
that a ConveRT model without any pre-training underperforms the baseline, on
every split. General pre-training modestly improves the model’s performance,
but the results are not significantly different from the baseline. Conversational
pre-training alone (without any general pre-training) shows a consistent improve-
ment over the baseline. The gain is more visible in the low data regime than in
the high data regime. The Dutch ConveRT model reveals its true power when
pre-trained on a general corpus and a conversational corpus as it outperforms
the baseline by a wide margin on every split.

4.6 Conclusion

We have successfully pre-trained, fine-tuned, and evaluated a Dutch ConveRT
model. This model consistently outperforms a baseline response selector from
Rasa on a COVID-19 vaccine FAQ dataset.

Conversational datasets for non-English languages are scarce. Our two-phase
pre-training procedure bypasses this problem by first pre-training on a general
corpus, then pre-training on a smaller conversational corpus.

In future work, we plan on extending the two-stage training to additional lan-
guages and additional domains.
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5.1 Introduction

Organizations create Frequently Asked Questions (FAQ) pages on their website to
provide a better service to their users. FAQs are also useful to automatically
answer the most frequent questions on different communication channels: email,
chatbot, or search bar.

FAQ retrieval is the task of locating the right answer within a collection of can-
didate question and answer pairs. It is closely related to the tasks of non-factoid
QA and community QA, although it has its own specificities. The total number of
possible answers is generally small (the average FAQ page on the web has 6 an-
swers), and only one is correct. Retrieval systems cannot rely on named entities,
as they are typically shared by many possible answers. For example, three out
of four answers in Table 5.1 share the COVID-19 entity. Lastly, new user queries
are matched against pairs of questions and answers, as opposed to passages for
non-factoid QA.

Since FAQ-Finder (Hammond et al., 1995b), researchers applied different methods
to the task of FAQ retrieval (Sneiders, 1999b; Jĳkoun and de Rĳke, 2005b; Riezler
et al., 2007b; Karan and Šnajder, 2016a; Sakata et al., 2019b). However, since
the advent of deep-learning and Transformers, the interest has somewhat faded
compared to other areas of QA (Rogers et al., 2021b). One possible explanation is
the lack of a dedicated large-scale dataset. The ones available are mostly limited
to English, and domain-specific.
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Example FAQs
Is it safe for my child to get a COVID-19 vaccine? Yes. Studies show that COVID-19
vaccines are safe and effective. [...]
If I am pregnant, can I get a COVID-19 vaccine? Yes, if you are pregnant, you can
receive if COVID-19 vaccine.
What are the ingredients in COVID-19 vaccines? Vaccine ingredients can vary by
manufacturer.
How long does protection from a COVID-19 vaccine last? We don’t know how long
protection lasts for those who are vaccinated. [...]

Table 5.1: Example FAQs about the COVID-19 vaccine from the CDC website.

On the other hand, the task of factoid question answering received the attention
of many researchers. Recently, Transformers encoders such as Dense Passage
Retrieval (DPR) (Karpukhin et al., 2020) have been successfully applied to the
retrieval part of factoid QA, overcoming strong baselines such as TF-IDF and
BM25. However, we show that DPR’s performance on passage retrieval is not
directly transferable to FAQ retrieval. Lewis et al. (2021b) recently released PAQ,
a dataset of 65M pairs of Probably Asked Questions. However, answers are typically
short in PAQ (a few words), which differs from FAQs where answers are longer
than questions.

Another way to answer users’ questions is to use Knowledge Grounded Conversation
models as it does not require the pre-generation of all possible pairs of questions
and answers (Komeili et al., 2021b; De Bruyn et al., 2020). However, at the time
of writing these models can hallucinate knowledge (Shuster et al., 2021b), which
limits their attractiveness in a corporate environment.

In this paper, we provide the first multilingual dataset of FAQs. We collected
around 6M FAQ pairs from the web in 21 different languages. This is significantly
larger than existing datasets. However, collecting data from the web brings its
own challenges: duplication of content and uneven distribution of topics. We
also provide the first multilingual FAQ retriever. We show that models trained
on all languages at once outperform monolingual models (except for English).

The remainder of the paper is organized as follows. We first review the existing
models and datasets available for the task of FAQ retrieval. We then present
our own dataset and apply different models to it. We finally perform some
analysis on the results and conclude. Our dataset and model are available on the
HuggingFace Hub1.

1dataset, model and training script

https://huggingface.co/datasets/clips/mfaq
https://huggingface.co/clips/mfaq
https://github.com/clips/mfaq
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5.2 Related Work

In this section, we review the existing literature on FAQ retrieval. We first start
by reviewing available models and then look at the available datasets.

5.2.1 Models

Since the release of FAQ-Finder (Hammond et al., 1995b; Burke et al., 1997) and
Auto-FAQ (Whitehead, 1995), several methods have been presented. We grouped
them into three categories: lexical, unsupervised, and supervised.

Lexical FAQ-Finder (Hammond et al., 1995b; Burke et al., 1997) matches user
queries to FAQ questions of the Usenet dataset using Term Frequency-Inverse
Document Frequency (TF-IDF). The system tries to bridge the lexical gap between
users’ queries and FAQ pairs by using the semantic network WordNet (Miller,
1995a) to establish correlations between related terms. FAQ-Finder assumes that
the question half of the QA pair is the most relevant for matching to a new query.
Tomuro and Lytinen (2004b) improved upon FAQ-Finder by including the other
half of the QA pair (the answer). Xie et al. (2020) uses a knowledge graph-based
QA framework that considers entities and triples in texts as knowledge anchors.
This approach requires the customization of a knowledge graph, which is labor-
intensive and domain-specific.

Sneiders (1999b) used a rule-based technique called Prioritized Keyword Match-
ing on top of a traditional TF-IDF approach. The use of shallow language under-
standing means that the matching is based on keyword comparison. Each FAQ
entry must be manually annotated with a set of required and optional keywords.
Sneiders (2002, 2009, 2010) brings further developments on the idea. Moreo et al.
(2013) proposes an approach based on semi-automatic generation of regular ex-
pression for matching queries with answers. Yang (2009) integrates a domain
ontology, user modeling, and a template-based approach to tackle this problem.

Unsupervised Kim and Seo (2008b, 2006) presented a clustering-based method
of previous user queries to retrieve the right FAQ pair. The authors used a La-
tent Semantic Analysis (LSA) method to overcome the lexical mismatch between
related queries. Jĳkoun and de Rĳke (2005b) experimented with several combi-
nations of TF-IDF retrievers based on the indexing of different fields (question,
answer, with or without stop words, the full text of the page). Riezler et al. (2007b)
extended this method by incorporating a translation-based query expansion, as
initially investigated in Berger et al. (2000).
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Name Size Lang. Domain Source Q>1 A>1
Usenet (Hammond et al., 1995b) - En Multi-domain Usenet No No
FAQIR (Karan and Šnajder, 2016a) 4,313 En Maintenance Yahoo! Answers Yes Yes
StackFAQ (Karan and Šnajder, 2018) 719 En Web apps StackExchange Yes Yes
InsuranceQA (Feng et al., 2015) 12,887 En Insurance Insurance Library No Yes
CQA-QL (Nakov et al., 2015) 2,600 En Qatar Qatar living forum No Yes
Fatwa corpus (Nakov et al., 2015) 1,300 Ar Quran Fatwa website No Yes
M-FAQ (ours) 6,134,533 Multi Multi Multi No No

Table 5.2: List of the common datasets used in FAQ retrieval. Size is the number
of pairs available. Q>1 denotes if the dataset has multiple available questions for
a single answer (i.e., does the dataset have paraphrases), while A>1 denotes if the
dataset has multiple answers for a given question.

Supervised Moschitti et al. (2007b) proposed an approach based on tree kernels.
Tree kernels can be defined as similarity metrics that compare a query to an FAQ
pair by parsing both texts and calculating the similarity based on the resulting
parse trees. Semantic word similarity can also be added to the computation. Filice
et al. (2016) expanded on this method and achieved first place in the Community
QA shared task at SemEval 2015 (Nakov et al., 2015).

Sakata et al. (2019b) were the first to use BERT-based models (Devlin et al., 2018)
for the specific task of FAQ retrieval. The relevance between the query and the
answers is learned with a fine-tuned BERT model which outputs probability
scores for a pair of (query, answer). The scores are then combined using a specific
method. Mass et al. (2020) also used a BERT model. Their method is based on
an initial retrieval of FAQ candidates followed by three re-rankers. Bruyn et al.
(2021) used a ConveRT (Henderson et al., 2019a) model to automatically answer
FAQ questions in Dutch.

5.2.2 Datasets

In this section, we review the different datasets publicly available. FAQ retrieval
datasets can be evaluated on four axes: source of data (community or organiza-
tional), the existence of user queries (paraphrases), domain, and language. See
Table 5.2 for an overview.

Faq-Finder (Hammond et al., 1995b; Burke et al., 1997) used a dataset collected
from Usenet news groups. FAQs were created on several topics so that newcomers
do not ask the same questions again and again. This dataset is multi-domain.
More recently, Karan and Šnajder (2016a) released the FAQIR dataset. It was
collected from the "maintenance & repairs" section of the QA website Yahoo!
Answers. The StackFAQ (Karan and Šnajder, 2018) dataset was collected from the
"web apps" sections of StackExchange. Feng et al. (2015) collected a QA dataset
from the insurancelibrary.com website where a community of insurance expert

http://www.insurancelibrary.com
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reply to users’ questions. Several authors (for example Filice et al., 2016) also rely
on Sem-Eval 2015 Task 3 (Nakov et al., 2015) on Answer Selection in Community
Question Answering. It contains pairs of questions and answers in English and
Arabic.

There exist few publicly available datasets for organizational FAQs. OrgFAQ (Lev
et al., 2020) is a notable exception. At the time of writing, it is not yet publicly
available.

5.3 Multilingual FAQ dataset

In this section, we introduce our new multilingual FAQ dataset.

5.3.1 Data collection

Instead of implementing our own web crawler, we used the Common Crawl: a
non-profit organization which provides an open repository of the web.2 Common
Crawl’s complete web archive consists of petabytes of data collected over 10 years
of web crawling (Ortiz Suárez et al., 2020). The repository is organized in monthly
bucket of crawled data. Web pages are saved in three different formats: WARC
files for the raw HTML data, WAT files for the metadata, and WET files for the
plain text extracts.

For our purposes, we used WARC files as we are interested in the raw HTML
data. Similar to Lev et al. (2020), we looked for JSON-LD3 tags containing an
FAQPage item. Web developers use this tag to make it easy for search engines to
parse FAQs from a web page.4 The language of each FAQ pair is determined with
fastText (Joulin et al., 2016). We also apply some filtering to remove unwanted
noise.5 Using this method, we collected 155M FAQ pairs from 24M different
pages.

2https://commoncrawl.org/about/
3JavaScript Object Notation for Linked Data
4More information on FAQPage markup
5Questions need to contain a question mark (including the Arabic question mark) to avoid

keyword questions. Question and answer cannot start with a "<", "{", or "[" to remove "code like"
data.

https://developers.google.com/search/docs/advanced/structured-data/faqpage
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5.3.2 Deduplication

A common issue with datasets collected from the web is the redundancy of data
(Lee et al., 2021). For example, hotel pages on TripAdvisor typically have an FAQ
pair referring to shuttle services from the airport to the hotel.6 The only changing
term is the name of the hotel.

Algorithms such as SimHash (Charikar, 2002) and MinHash (Broder, 1997) can
detect such duplicates. MinHash is an approximate matching algorithm widely
used in large-scale deduplication tasks (Lee et al., 2021; Versley and Panchenko,
2012; Gabriel et al., 2018; Gyawali et al., 2020). The main idea of MinHash is to
efficiently estimate the Jaccard similarity between two documents, represented
by their set of n-grams. Because of the sparse nature of n-grams, computing the
full Jaccard similarity between all documents is prohibitive. MinHash alleviates
this issue by reducing each document to a fixed-length hash which can be used to
efficiently approximate the Jaccard similarity between two documents. MinHash
has the additional property that similar documents will have similar hashes, we
can then use Locality Sensitive Hashing (LSH) (Leskovec et al., 2014) to efficiently
retrieve similar documents.

In our experiments, we represented each page as a set of 3 consecutive tokens (n-
grams). We worked with a document signature length of 100, and 20 bands with
5 rows as parameters for LSH. These parameters ensure a 99.6% probability that
documents with a Jaccard similarity of 0.75 will be identified. We subsequently
compute the true Jaccard similarity for all matches.

We follow the approach of NearDup (Lee et al., 2021) and subsequently create a
graph of documents. Each node on the graph is an FAQ page, and they share
an edge if their true Jaccard similarity is larger than 0.75. We then compute all
the independent sub-graphs, each representing a graph of duplicated pages. We
only keep one page per sub-graph.

Using this method, we trimmed the number of FAQ pages from 24M to 1M.

5.3.3 Description

After deduplication, our dataset contains around 6M FAQ pairs coming from
1M different web pages, spread on 26K root web domains.7 This is significantly

6Does Ritz Paris have an airport shuttle? Does Four Seasons Hotel George V have an airport
shuttle?

7We define a root web domain as the last substring before the extension (e.g. TripAdvisor is the
root web domain in fr.tripadvisor.com). In other words, we strip the extension and any subdomain.
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bigger than other FAQ datasets publicly available at the time of writing (see Table
5.2 for comparison).

Our dataset is composed of pairs of FAQs grouped by language and source page
(URL). We collected data in 21 different languages.8 The most common one is
English, with 58% of the FAQ pairs, followed by German and Spanish with 13%
and 8% respectively.

5.3.4 Training and validation sets

For a given language, the target size of the validation set is equal to 10% of
the total number of pairs. However, two features of our dataset call for a more
fine-grained approach.

5.3.4.1 Root domain distribution

Even though we deduplicated the dataset, FAQ pages tend to originate from the
same root domain. As an example, kayak (kayak.com, kayak.es, etc.) is the largest
contributor to the dataset. While this is not a problem for the training set (one can
always restrict the number of pages per domain), it is an issue for the validation
set, as we want to assess the quality of the model on a broad set of topics. Having
several large root domain contributors skews the dataset to these topics. We make
the simplifying assumption that different web domains have different topics of
interest. Research on the true topic distribution is left for future work.

We artificially increased the topic breadth of the validation set by restricting the
contribution of each root domain. In the validation set, a single root domain
can only contribute up to 3 FAQ pages. This method reduces the contribution
of the largest domain from 21% in the training set to 3% in the validation set.
Furthermore, we make sure there is no overlap of root domain between the
training and validation set.9

8We did not target specific languages, however, we removed languages with fewer than 250
pairs. Common languages such as Chinese, Hindi, Arabic and Japanese are missing. Although
we do not have an official reason why, we think it may be because of our initial filtering or the fact
ldjson markup is not widely used in these languages.

9We use the root domain instead of the regular domain name to avoid having help.domain.com
in the training set and domain.co.uk in the validation set
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Figure 5.1: Bucketing of our dataset according to the number of FAQs per page.
To make the validation set more challenging, we started by selecting pages with
a higher number of pairs.

5.3.4.2 Pairs per page concentration

The distribution of the number of pairs per page is highly uneven (see Figure 5.1).
Around 50% of the pages have 5 or fewer pairs per page. Intuitively, we prefer
pages with a higher number of FAQs as it is harder to pick the right answers
amongst 100 candidates than 5. We thus artificially increased the difficulty of the
validation by first selecting pages with a higher number of FAQ pairs per page.
See Figure 5.1 for a comparison between the training and validations set.

5.3.4.3 Cross-lingual leakage

The fact that our dataset is multilingual can lead to issues of cross-lingual leakage.
Having pages from expedia.fr in the training set, and pages from expedia.es in the
validation set can overstate the performance of the models. We avoid such
problems by restricting root domains in the validation associated with only one
language (e.g. expedia would be excluded from the validation set because it is
associated with French and Spanish pages).
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Language Pairs Pages Domains
English 3,719,484 608,796 17,635
German 829,098 117,618 2,948
Spanish 482,818 75,489 1,610
French 351,458 56,317 1,795
Italian 155,296 24,562 685
Dutch 150,819 32,574 1,472
Portuguese 138,778 26,169 608
Turkish 102,373 19,002 580
Russian 91,771 22,643 953
Polish 65,182 10,695 445
Indonesian 45,839 7,910 309
Norwegian 37,711 5,143 198
Swedish 37,003 5,270 434
Danish 32,655 5,279 362
Vietnamese 27,157 5,261 469
Finnish 20,485 2,795 234
Romanian 17,066 3,554 152
Czech 16,675 2,568 182
Hebrew 11,212 1,921 205
Hungarian 8,598 1,264 150
Croatian 5,215 819 99
Total 6,346,693 1,035,649 31,525

Table 5.3: Summary statistics about our dataset.
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5.4 Models

In this section, we describe the FAQ retrieval models used in our experiments.
Let 𝑃 be the set of all user queries and 𝐹 = {(𝑞1 , 𝑎1), ..., (𝑞𝑛 , 𝑎𝑛)} be the set of all
FAQ pairs for a given domain. An FAQ retrieval model takes as input a user’s
query 𝑝𝑖 ∈ 𝑃 and an FAQ pair 𝑓𝑗 ∈ 𝐹, and outputs a relevance score ℎ(𝑝𝑖 , 𝑓𝑗) for
𝑓𝑗 with respect to 𝑝𝑖 . However, our dataset does not contain live user queries (or
paraphrases) 𝑃, we thus use questions 𝑞 as queries 𝑃 = {𝑞1 , ..., 𝑞𝑛} and restrict
the FAQ set to the answers 𝐹 = {𝑎1 , ..., 𝑎𝑛}. The task becomes to rank the answers
𝐴 according to the questions 𝑄.

5.4.1 Baselines

We experimented with several baselines: two unsupervised and one supervised.

5.4.1.1 TF-IDF

The traditional information retrieval method (Salton et al., 1975) uses a vector
representation for 𝑞𝑖 and 𝑎𝑖 and computes a dot-product as similarity relevance
score ℎ(𝑞𝑖 , 𝑎𝑖). We use n-grams of size (1, 3) and fit one model per FAQ page.

5.4.1.2 Universal Sentence Encoder

Encoding the semantics of a question 𝑞𝑖 and an answer 𝑎𝑖 can be achieved with the
Universal Sentence Encoder (Cer et al., 2018a). The model works on monolingual
and multilingual data. We encode each question and answer independently, and
then perform a dot-product of the questions’ and answers’ representations.

5.4.1.3 Dense Passage Retrieval (DPR)

Dense Passage Retrieval (DPR) (Karpukhin et al., 2020) is a state of the art method
for passage retrieval. It uses a bi-encoder to encode questions and passages into
a shared embedding space. We fine-tune DPR on our dataset using the same
procedure described in Section 5.4.2.2.
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5.4.2 XLM-Roberta as bi-encoders

Bi-encoders encode questions 𝑞𝑖 and answers 𝑎𝑖 independently and output a
fixed d-dimensional representation for each query and answer. The encoder
can be shared or independent to generate the representations.10 At run-time,
new queries are encoded using the encoder, and the top-k closest answers are
returned. The representations for the answers can be computed once, and cached
for later use. Similarity is typically computed using a dot product.

5.4.2.1 Multilingual

The state-of-the-art encoders such as RoBERTa (Liu et al., 2019a) and BERT (Devlin
et al., 2018) are trained for English only. As our dataset is multilingual we
opted for XLM-RoBERTa (Conneau et al., 2019), it was trained using masked
language modeling on one hundred languages, using more than 2TB of filtered
CommonCrawl data. This choice allows us to leverage the size of the English
data for less represented languages.

5.4.2.2 Training

Given pairs of questions and answers, along with a list of non-relevant answers,
the bi-encoder model is trained to minimize the negative log-likelihood of picking
the positive answer amongst the non-relevant answers. Non-relevant answers can
be divided into in-batch negatives and hard negatives.

In-batch negatives In-batch negatives are the other answers from the batch,
including them into the set of non-relevant answers is extremely efficient as their
representations are already computed.

Hard negatives Hard negatives are close but incorrect answers to the questions.
Including them improves the performance of retrieval models (Karpukhin et al.,
2020; Xiong et al., 2020). Hard negatives can either come from a standard retrieval
system such as BM25, or an earlier iteration of the dense model (Xiong et al., 2020;
Oğuz et al., 2021). The structure of our dataset, pages of FAQs, facilitates the
search for hard negatives. As an example in Table 5.1, three out of four answers
share the term COVID-19. The model now has to understand the semantic of
sentences instead of matching on shared named entities. By including all the pairs

10We use a shared encoder, which means we use the same network to compute the representation
for questions and answers. DPR uses independent encoders.
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Figure 5.2: Diagram of our architecture. A shared encoder encodes the questions
and the answers independently. Each question’s representation (vector) is com-
pared to each answer’s representation from the same batch using a dot-product.

of the same page in the same training batch, we ensure that in-batch negatives
act as hard negatives.11

Multilingual Although XLM-Roberta is multilingual, we do not expect the
model to perform cross-lingual retrieval (i.e. using one language for the query
and another for the answer). We make sure that each batch is composed of pairs
from the same language. This increases the difficulty of the task. Otherwise, the
model could rely on the language of answers as a differentiating factor.

5.5 Experiments

In this section, we evaluate the retrieval performance of our model on MFAQ. In all
our experiments, we use three metrics to evaluate the performance: precision-at-
one (P@1), mean reciprocal rank (MRR), and recall-at-5 (R@5). For space reasons,

11To create our batches of training data, we incrementally augment the batch with pairs of a
given page. When the batch size reaches the desired size, we start over with the remaining pairs.
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Language TF-IDF USE XLM-R
English 63.8 64.2 82.5
German 58.0 61.8 81.3
Spanish 60.5 61.6 81.7
French 60.6 62.4 80.7
Italian 58.6 55.7 74.7
Dutch 62.9 59.6 81.2
Portuguese 55.8 56.2 77.4
Turkish 59.2 55.7 78.8
Russian 59.2 63.1 82.1
Polish 59.2 59.9 85.2
Indonesia 71.3 62.1 88.5
Norwegian 58.9 36.9 83.1
Swedish 59.3 36.7 83.3
Danish 64.0 42.1 82.7
Vietnamese 73.3 43.2 81.2
Finnish 53.5 33.2 82.6
Romanian 57.8 40.7 83.2
Czech 48.2 26.9 69.0
Hebrew 61.5 26.5 83.6
Hungarian 38.1 28.6 69.7
Croatian 58.1 41.4 83.6

Table 5.4: MRR on MFAQ using various methods. XLM-RoBERTa is a single
model trained on all languages at once.
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we only report on MRR in the main text, the full results are available in the annex.
We used the same parameters for all experiments unless mentioned otherwise.12
We insert a special token <question> before questions to let the shared encoder
know it is encoding a question. Answers are respectively prepended with <an-
swer>. All of our experiments use a subset of the training set: only one page per
domain as this technique achieves higher results. Refer to Section 5.5.3 for more
information.

We start by studying the performance of multilingual models, then compare it
against monolingual models.

5.5.1 Multilingual

We present in Table 5.4 a summary of the results of our multilingual training.
The model is trained concurrently on the 21 available languages. XLM-RoBERTa
achieves a higher MRR on every language compared to the baselines. Low
resource languages achieve a relatively high score which could indicate inter-
language transfer learning.

5.5.2 Monolingual

Next, we attempt to study if a collection of monolingual models are better suited
than a single monolingual model. We use language-specific BERT-like models for
each language. The list of BERT models per language is available in the annex.
We followed the same procedure as described in Section 5.4.2, except for the
encoder which is language-specific.

We limited our study of monolingual models to the ten largest languages of
MFAQ. We choose these languages as they have sufficient training examples, and
pre-trained BERT-like models are readily available. To study the performance of
monolingual models we train models using the same procedure as described in
Section 5.4.2 except for the encoder.

The results in Table 5.5 indicates that a multilingual model outperforms monolin-
gual models in all cases, except for English. These results indicate that leveraging
additional languages is beneficial for the task of FAQ retrieval, especially for lan-
guages with fewer resources available. Interestingly, RoBERTa slightly beats DPR
in English. This underperformance could be explained by the difference in batch

12We used a batch size of 800, sequences were limited to 128 tokens (capturing the entirety of
90% of the dataset), an Adam optimizer with a learning rate of 0,0001 (warmup of 1000 steps).
Dropout of 25%.
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Language Monoligual Multilingual
En. (DPR) 80.5 82.5
En. (RoBERTa) 82.9 82.5
German 81.1 81.3
Spanish 78.0 81.7
French 71.0 80.7
Italian 64.1 74.7
Dutch 70.4 81.2
Portuguese 68.4 77.4
Turkish 76.1 78.8
Russian 71.6 82.1
Polish 73.9 85.2

Table 5.5: MRR of monolingual models versus a single multilingual model. The
multilingual model outperforms monolingual models in all languages, except for
English.

Language Cross-lingual Multilingual
French 78.2 80.7
Hungarian 65.9 69.7
Croatian 71.2 83.6

Table 5.6: MRR results of our cross-lingual analysis. Questions were translated
to English while answers remained in the original language.

size. Because of the dual encoder nature of DPR, we had to reduce the batch size
to 320 compared to 800 for RoBERTa.

5.5.3 Cross-lingual

Our training procedure ensures that the model never has to use language as a
cue to select the appropriate answer. Batches of training data all share the same
language. We tested the cross-lingual retrieval capabilities of our multilingual
model by translating the queries to English while keeping the answers in the
original language. The French performance drops from 80.7 to 78.2, which is still
better than the unsupervised baselines. The full results are presented in Table
5.6.

A subsectionSubset of training data We tested the effect of limiting the number of
FAQ pages per domain by limiting the training set to one page per web domain.
Using this technique, we achieved an average MRR of 80.8 while using all the
training data to reach an average MRR of 76.7. Filtering the training set flattens
the topic distribution and better matches the validation set. Another possible
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approach is to randomly select a given page from a domain at each epoch. This
technique would act as a natural regularization. This is left for future work.

5.6 Qualitative analysis

In this section, we dive into the model’s predictions and try to understand why
and where it goes wrong. We do so by focusing on a single FAQ page from the
admission center of the Tepper School of Business.13 The FAQs are displayed in
Table B.2 in the annex. The multilingual model is correct on 74.07% of the pairs,
with an MRR of 85.49. Our qualitative analysis reveals that the model is bad at
coreference resolution and depends on keywords for query-answer matching.

Coreference Resolution The model makes a wrong prediction in question 4
Can the GMAT or GRE requirement be waived? No, these test scores are required. The
model is unable to guess that test scores refer to GMAT or GRE. By changing the
answer to No, the GMAT or GRE scores are required, the model correctly picks the
right answer.

Paraphrase To study if the model is robust to paraphrasing, we change question
1 from « Are the hours flexible enough for full-time working adults? » to « Is it
manageable if I already have a full-time job? » In this case, the model correctly
identifies the right answer. However, if we remove the full-time cue, the right
answer only arrives in the fourth position. Next, we look at question 15, the
model makes a wrong prediction as opportunities is not mentioned in the answer.
Changing the question to « It’s a part-time online program, but are there any on-campus
[experiences|activities] for students? » leads to a correct prediction.14

Keyword search We replace some questions with a single keyword. We reduced
questions 12, 14, 16 and 20 to cohort, payment plan, soldier veteran and technical
requirements. In all cases, the model guessed correctly, showing the model can do
a keyword-based search.

Although it can cope with some synonyms (activities - experiences), this qual-
itative analysis shows our model is overly reliant on keywords for matching
questions and answers. Further research on adversarial training of FAQ retrieval
is needed.

13It was the first page with less than 25 pairs to end with a .edu extension.
14replacing opportunities with events does not work.
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5.7 Future Work

Important non-Indo-European languages such as Chinese, Hindi, or Japanese
are missing from this dataset. Future work is needed to improve data collection
in these languages. Second, we did not evaluate the model on a real-life FAQ
retrieval dataset (with user queries). Future work is needed to see if our model
can perform question-to-question retrieval, or if it needs further training to do
so. A linguistic study could analyze the model’s strengths and weaknesses by
studying the model’s performance by type of questions, answers, and entities.

5.8 Conclusion

In this work, we presented the first multilingual dataset of FAQs publicly avail-
able. Its size and breadth of languages are significantly larger than other datasets
available. While language-specific BERT-like models can be applied to the task
of FAQ retrieval, we showed it is beneficial to use a multilingual model and train
on all languages at once. This method of training outperforms all monolingual
models, except for English. Our qualitative analysis reveals our model is overly
reliant on keywords to match questions and answers.
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Machine Translation for Multilingual

Intent Detection and Slots Filling

This chapter was published in the Proceedings of the Massively Multilingual
Natural Language Understanding Workshop (MMNLU-22) - ISBN 978-1-959429-
15-9 - Stroudsburg, Association for Computational Linguistics, (2022), p. 69-82

6.1 Introduction

Home assistants are omnipresent in everyday life. We expect to have an assistant
at our disposal at any time using our phone, watch, or car — irrespective of our
language.

Scaling home assistants to multiple languages brings additional challenges to
NLU and ASR components. There are two options: a single model per language
or a shared model for all languages. A single model per language works well
for resource-rich languages such as English. However, lower resource languages
benefit from the cross-lingual knowledge transfer of a single model dealing with
all languages (Conneau et al., 2020). This trade-off applies to any multilingual
system (Zhang et al., 2022a; De Bruyn et al., 2021).

While multilingual intent classification and slot filling datasets exist, their lan-
guage coverage is limited, except for MASSIVE (FitzGerald et al., 2022), a new
dataset focused on multilingual intent detection and slot filling. The authors
translated and localized an English-only dataset in 50 topologically diverse lan-
guages. MASSIVE provides a good base to scale existing intent detection and slot
filling methods to multiple languages.

The traditional way to tackle multilingual intents detection and slot filling is to
use multilingual models such as XLM-R (Conneau et al., 2020), or mT5 (Xue

61
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Figure 6.1: Illustration of our method. We repurpose a translation model for
the task of multilingual intent classification and slot filling. We translate from
utterances into annotated utterances.

et al., 2021). These models are similar to their monolingual counterparts (Liu
et al., 2019b; Raffel et al., 2020a) except for the multilingual data used to train
them.1 This approach has been shown to work in multiple studies (FitzGerald
et al., 2022; Li et al., 2021a). However, MASSIVE has an additional overlooked
aspect: utterances are direct translations of one another.

In this work, we approach the task of intent classification and slot filling as a trans-
lation task: we translate the original utterance into the annotated utterance. For
example, we translate the utterance what is the temperature in new york?
into the annotated utteranceweather_query|what is the [weather_descriptor
: temperature] in [place_name : new york].2

The typical use of translation models for intent detection and slot filling is to
augment the size of an existing dataset (Zheng et al., 2021; Nicosia et al., 2021).
However, we believe the inherent multilingual capabilities of these models make
them excellent candidates for multilingual intent detection and slot filling.

To this end, we leverage the recently released translation model No Language Left
Behind (NLLB) (NLLB Team et al., 2022) capable of translating between 202 pairs
of languages simultaneously using a shared encoder-decoder. We anticipate that
the wide range of languages covered by the model will help us deal with lower
resources languages present in the MASSIVE dataset.

Better modeling is only half the story. Using more data also helps improve perfor-
mance. For example, although the MASSIVE dataset displays a large training set
of more than 500K training examples, the seed data is only around 10K training
examples. Therefore, we used GPT-3 (Brown et al., 2020a) to generate additional
training data using a dual-model approach. We also leveraged a dataset close
to the seed dataset of MASSIVE. As a result, after translating our new training
examples to the 50 remaining languages, our training set contains more than 2M
training examples — 4x the size of the original training set.

1They also have larger vocabularies and may have special training tricks for cross-lingual train-
ing.

2We prepend the slot annotated utterance with the intent.
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Our experiments reveal that translation models such as NLLB are a good fit for
intent classification and slot filling. However, their performance sharply drops
in languages that do not use spaces because of tokenization issues.

Unfortunately, the additional training data significantly overlaps with the MAS-
SIVE test set. As a result, we propose two methods capable of dealing with
overlaps: weighted exact match and logistic regression.

We conclude this introduction by summarizing our contributions:

• We showed that a translation model such as NLLB can complete the task of
intent classification and slot filling

• We demonstrated a method to improve the training data with GPT-3

• We proposed two new evaluation methods taking the training/test set over-
lap into account

We release our model3, utterance translation model4, and generated data5 on the
HuggingFace hub.

6.2 Related Work

The problem of multilingual intent detection and slot filling is not new. (Razu-
movskaia et al., 2022) provides an excellent introduction to the subject. We divide
our related work section into three parts. We start by reviewing the general prob-
lem of task-oriented semantic parsing (i.e., intent detection and slot filling). Next,
we review the models commonly used, and lastly, we review the available multi-
lingual datasets.

6.2.1 Task Oriented Semantic Parsing

Natural Language Understanding (NLU) systems aim to classify an utterance into
a predefined set of intents and label the sequence with a predefined ontology of
slots (McTear, 2020). Since the release of the ATIS dataset (Price, 1990), this
problem has been studied in numerous previous studies (Mesnil et al., 2013; Liu
and Lane, 2016; Zhu and Yu, 2017). However, it has recently been shown that
the flat structure of sequence labeling falls short when a user issues sub-queries,

3maximedb/nllb_massive
4maximedb/massive_en_translation
5maximedb/massive_generated
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or compositional queries, e.g., set up a reminder to message mike tonight6
Gupta et al. (2018) solves that problem by using hierarchical representations
instead.

6.2.2 Translation Models

Previous work tackling multilingual intent detection and slot filling uses multi-
lingual versions of well-known Transformers such XLM-Roberta (Conneau et al.,
2020), mT5 (Xue et al., 2021), or mBART (Liu et al., 2020). We diverge from ex-
isting research and use machine translation models instead. (Fan et al., 2021)
released M2M100, a model capable of translating between pairs of 100 languages
using a single shared encoder-decoder model. Instead of mainly going from and
to English, the authors use a dataset that covers thousands of language pairs.
M2M100 was later improved by the release of No Language Left Behind (NLLB)
(NLLB Team et al., 2022), which follows the same architecture as M2M100 but
covers 202 languages.

6.2.3 Cross-Lingual Task Oriented Semantic Parsing

Although the initial dataset for intent classification and slot filling targeted En-
glish, the number of non-English datasets is growing rapidly. Non-English
datasets fall into two broad categories: non-English monolingual datasets (Meurs
et al., 2008; Castellucci et al., 2019; Bellomaria et al., 2019; Zhang et al., 2017; Gong
et al., 2019; He et al., 2013; Dao et al., 2021) and multilingual datasets. As we
aim to study models capable of handling multiple languages simultaneously,
we focus on the latter kind of datasets. We will now cover the existing multi-
lingual datasets in greater detail. Upadhyay et al. (2018) translated an existing
English dataset (Price, 1990) into Turkish and Hindi, while Susanto and Lu (2017)
translated the same dataset in Vietnamese and Chinese. Schuster et al. (2019)
released a multilingual dataset for task-oriented dialogues in English, Spanish,
and Thai across three domains. (Li et al., 2021a) provides MTOP a new aligned
task-oriented dataset in six languages. MASSIVE (FitzGerald et al., 2022) is the
largest available dataset, covering 51 languages.

6.3 Data

There exist multiple alternative datasets to study multilingual intent detection
and slot filling. However, in this work, we use the largest one available: the

6Two intents compose that query: create a reminder and send a message to mike.
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MASSIVE dataset.

6.3.1 MASSIVE

MASSIVE (FitzGerald et al., 2022) is a dataset assembled by translating and
localizing an existing English-only dataset in 50 topologically different languages.

English Seed MASSIVE is a translation of the English-centric SLURP dataset
(Bastianelli et al., 2020). SLURP is a dataset of non-compositional queries directed
at a home assistant. It covers 18 domains, 60 intents, and 55 slots.

Languages The authors of MASSIVE hired professional translators to translate
the SLURP dataset into 50 topologically diverse languages from 29 genera. Fur-
thermore, to complicate the task, the translators sometimes localized the queries
instead of simply translating them.

6.3.2 English Data Augmentation

As the seed data of MASSIVE is limited in scale (10K training examples), we used
two methods to increase the training set artificially.

6.3.2.1 Generated Data

Generator We first fine-tune a GPT-3 (Brown et al., 2020a) curie (13B) model
on the task of generating an English utterance conditional on the given intent.
For example, we train the model to generate wake me up at nine am given the
prompt alarm_set.

Parser Next, we fine-tune a second GPT-3 curie model on intent detection and
slot filling tasks. Given an utterance, the model must generate the concatenation
of the intent and the annotated utterance. For example, given the prompt what is
the temperature in new york? must generate weather_query|what is the
[weather_descriptor : temperature] in [place_name : new york].
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Dataset We generate 30,000 utterances, equally distributed amongst the 60 in-
tents. After removing duplicates and examples where the two models do not
agree on the intent, we arrive at a final dataset of 22,276 annotated English utter-
ances.

Intent & Slots Distribution Although we generated an equal amount of utter-
ances per intent, removing duplicates skewed the distribution. However, compar-
ing the entropy of both distributions with MASSIVE reveals that our generated
dataset is more equally spread amongst the intents but less equally distributed
relative to the slots.7 See Annex C.1 for a detailed analysis and comparison with
the MASSIVE dataset.

6.3.2.2 Synthetic Data

The SLURP dataset provides a synthetic dataset.8 It is not part of the official
training set, but as it shares the same ontology as MASSIVE, it provides an
excellent extension to our training set. We compare the intent and slot distribution
with MASSIVE in Annex C.1.

6.3.3 Non-English Data Augmentation

We explained in Section 6.3.2 our method to artificially increase the size of the
(English) training set. This section reviews our method to scale this silver training
set to the 50 remaining languages in the MASSIVE dataset.

Using commercial translation systems was not an option as this requires aligning
the slots in the translated utterances — a complicated task. Instead, we fine-tune
a translation model, NLLB (3B), on the task of translating annotated utterances
directly. Using this method, we translate annotated utterances and reconstruct
the utterances by removing the slot annotations from the text. Our translation
model is available on the HuggingFace Hub.9

7Our generated dataset has an intent distribution entropy of 4.02 and a slot distribution entropy
of 3.10 compared to 3.75 and 3.21 for MASSIVE.

8https://github.com/pswietojanski/slurp/tree/master/dataset/slurp
9https://huggingface.co/maximedb/mmnlu_full_v2

https://huggingface.co/maximedb/mmnlu_full_v2
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6.4 Model

This work uses a machine translation model for intent detection and slot filling.
No Language Left Behind (NLLB) (NLLB Team et al., 2022) is a model specifically
targeted at translating between 202 languages using a single encoder-decoder
model based on the M2M100 architecture (Fan et al., 2021). It can translate text
in 40,602 different directions.

Data NLLB uses FLORES-200 as training data, an extension of FLORES-100
(Goyal et al., 2022). The authors of FLORES-200 used LASER3 (Heffernan et al.,
2022) to mine parallel data from the web, resulting in 1.1 billion sentence pairs.

Tokenization NLLB uses a sentencepiece tokenizer (Kudo and Richardson,
2018) with a vocabulary size of 256,000. To ensure low-resource languages are
well-represented in the vocabulary, the authors downsample high-resource and
upsample low-resource languages.

Architecture NLLB’s architecture is based on the Transformer model (Vaswani
et al., 2017a). NLLB is trained on several translation directions at once, utilizing
the same shared model capacity. This architecture can lead to beneficial cross-
lingual transfer between related languages at the risk of increasing interference
between unrelated languages. The authors also present a Sparsely Gated Mixture
of Experts (MoE) (Almahairi et al., 2016; Bengio et al., 2013). However, we did
not experiment with this variant.

Distillation The authors distilled a 54 billion parameter model using MoE into
smaller dense models of 1.3 billion and 615 million parameters using online
distillation (Hinton et al., 2015). The student model is trained on the training data
but with an additional objective: to minimize the cross-entropy to the word-level
distribution of the teacher model. We use the distilled 615M parameter model as
the base model for intent classification and slot filling.

6.5 Experiments

This section describes our experiments in applying NLLB to the task of intent
classification and slot filling. NLLB is a translation model. While we could
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Model Train. Set Intent Acc (%) Slot F1 (%) Exact Match (%)
High Low Avg High Low Avg High Low Avg

XLM-R M 88.3 77.2 85.1 83.5 63.3 73.6 70.1 55.8 63.7
mT5 Enc. M 89.0 79.1 86.1 85.7 64.5 75.4 72.3 57.8 65.9
mT5 M 87.9 79.0 85.3 86.8 67.6 76.8 73.4 58.3 66.6
NLLB M+G 89.3 79.2 87.3 85.9 66.3 77.0 74.1 57.8 68.3
NLLB M+G+S 94.5 84.5 93.4 82.9 69.6 82.9 89.2 65.0 78.5

Table 6.1: Modelling results on the MASSIVE test set. NLLB trained on the
MASSIVE training set (M), our generated dataset (G) and the synthetic training
set from SLURP (S) achieve the highest scores. However, as we show in a later
section, this outperformance is due to a large overlap with the MASSIVE test set.

repurpose NLLB to the task of intent classification and slot filling directly, we
choose to first pre-train it on a translation task.

6.5.1 Pre-training

As NLLB is, at its core, a translation model, we start by teaching it to translate
between the aligned pairs of the MASSIVE dataset. Instead of translating be-
tween the utterances of two languages, we translate between the utterance and
the annotated utterance. For example, the model must translate "tell me the
time in moscow," to the French annotated utterance datetime_query|donne moi
l’heure à [place_name: moscou]. We take special care in avoiding localized
utterances, as this would confuse the model. For example, we avoid predicting
datetime_query|donne moi l’heure à moscou bordeaux.

6.5.2 Fine-tuning

In a second step, we fine-tune the model on the task of translating between
the utterance and the annotated utterance in the same language. For exam-
ple, we translate the utterance what is the temperature in new york? into
the annotated utterance weather_query|what is the [weather_descriptor :
temperature] in [place_name : new york].

6.5.3 Technical Details

We use the NLLB-200 (600M) model for all experiments.10 We wrap each en-
coder input according to the following formula: <s>...</><language_code>.

10facebook/nllb-200-distilled-600M
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We prepend each decoder input with the target language code. We train for
50,000 steps during pre-training and fine-tuning with a learning rate of 1e−4 and
1e−5, respectively. We use Pytorch (Paszke et al., 2019), the HuggingFace Trainer
(Wolf et al., 2020) and DeepSpeed (Rajbhandari et al., 2020).

6.6 Results

This section presents a high-level analysis of our results. Table 6.1 compares our
results against the baselines provided by the authors of MASSIVE.

Our experiments reveal that NLLB performs similarly to mT5 on intent detection
and slot filling tasks. Furthermore, our two data augmentation strategies improve
the results on the MASSIVE test set. First, training with our generated training
set improves the locale average exact match from 66.6 to 68.3. Second, training
with the generated and synthetic data boosts the exact match as it improves from
68.3 to 78.5. As we show in the next section, this performance boost is mainly
due to a large overlap between the training and test set.

6.7 Training & Test Set Overlap

This section analyses the similarity between the training sets and the MASSIVE.
Next, we look for evaluation methods capable of correcting for the overlap be-
tween the training and test set.

Exact Duplicates An analysis of the data reveals problematic overlaps between
the training sets and the MASSIVE test set. However, this overlap is unequal
across the training sets and languages. Table 6.2 shows the percentage of examples
in the MASSIVE test set, which are also present in our three training sets. The
English subset of the MASSIVE test set overlaps highly with the synthetic training
set described in Section 6.3.2.2. Localization and translation somewhat reduce
the exact match overlap when looking at all languages, although it remains high.
The MASSIVE and generated training sets also have a non-zero overlap with the
MASSIVE test set.

Close Duplicates Some examples may not be exact duplicates but close du-
plicates. For example, call the dentist and olly please call the dentist
now. We use character n-grams to measure the similarity between two utterances
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Training Set en-US (%) All Locales (%)
MASSIVE 0.7 5.9
Generated 5.6 6.4
Synthetic 49.0 12.8

Table 6.2: Exact duplicate analysis. Percentage of examples in the MASSIVE test
set, which are also present in the training set of MASSIVE, our generated training
set, and the synthetic training set. Translation reduces the overlap of the synthetic
dataset compared to the English-only figures. However, it is the opposite for the
MASSIVE test set, where the overlap is higher for all locales compared to English
only.
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Figure 6.2: Box plot of the maximum similarity between examples in the MAS-
SIVE test set with the training set of MASSIVE (M), Generated (G) and Synthetic
(S), for the English part and the entire dataset (all locales). The English synthetic
(S) training set overlaps highly with the MASSIVE test set. Translation and local-
ization reduces this overlap in the all-locales dataset.

as similarity metric between two utterances. We search for the most similar train-
ing example for each example in the test and record their n-gram similarity.11
Figure 6.2 shows the distribution of maximum similarity between the test set and
our three training sets for the English subset and across all locales. It is clear
from Figure 6.2 that the English synthetic dataset overlaps significantly with the
English MASSIVE test set. However, as for the exact duplicates, the translation
and localization process reduces this overlap but does not eliminate it.

A naive solution would be to remove training examples that overlap with the test
set. However, how does one decide what is a close duplicate? Furthermore, as
the training set grows, some overlap with the test is inevitable. We argue that the
problem is not the training data but the evaluation metric. We need an evaluation
metric capable of controlling for the overlap between the test and training sets.

11We do this search on a per-language basis.
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Training S. 𝛽0 𝛽1 𝑅2

M+G -0.96±0.03 3.31±0.06 0.07
M+G+S -0.69±0.03 3.14±0.06 0.08

Table 6.3: We report the logistic regression results for two NLLB models fine-
tuned on the training set of MASSIVE (M), generated (G), and synthetic (S). We
report the point estimate and the 95% confidence interval for each parameter.
After correcting for any overlap between the training and test set, the second is
statistically better than the first.

6.7.1 Logistic Regression

Instead of looking at the simple exact match accuracy, we want to express the
exact match accuracy as a function of the test/train similarity. One potential
solution is to use logistic regression with similarity as the independent variable
and exact match as the dependent variable.

𝑝(𝑥) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥)

(6.1)

Where 𝑝(𝑥) represents the probability of an exact match, 𝛽0 represents the inter-
cept and 𝛽1 the slope. Using this method, we can compare both models at the
same level of similarity.

Results Table 6.3 presents a summary of the logistic regression results. We
report the point estimate and confidence interval for both 𝛽0, 𝛽1 and the pseudo
𝑅2 given by statsmodels (Seabold and Perktold, 2010). Using Equation 6.1, we
can estimate the performance of both models at multiple levels of similarity, as
shown in Figure 6.3.

According to Table 6.3 and Figure 6.3, the model trained on the three training
datasets is better than the one trained only on two — taking the overlap into
account. However, these numbers also indicate that both models struggle with
utterances dissimilar to the training set. Moreover, they achieve an exact match
accuracy lower than random chance on dissimilar utterances — casting doubt on
their abilities to generalize to unseen utterances.

6.7.2 Weighted Average

Another possibility is to give less importance to test examples similar to the
training set.
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Figure 6.3: Exact match probability at three levels of similarity: 0, 0.5, and 1.0.
We used Equation 6.1 with the estimated parameters from Table 6.3. Model
two is better than model one on dissimilar utterances. However, the difference
diminishes when the similarity increases.

Training Set Weighted Average (%)
M+G 59.2
M+G+S 67.2

Table 6.4: We report the weighted average results for two NLLB models fine-
tuned on the training set of MASSIVE (M), generated (G), and synthetic (S). The
second model is better than the first even after correcting for its high overlap with
the training set.
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Language Intercept Num. Token Split R-Squared
ja-JP 0.85* -0.16* 0.013
zh-CN 0.58* -0.15* 0.006
zh-TW 0.11 -0.03 0.000

Table 6.5: Logistic regression of exact match accuracy explained by the number
of split token. The number of split token negatively influence the capability of
the token to correctly parse the slots for ja-JA and zh-CN. The coefficient are not
significantly different than zero for zh-TW. Starred numbers (*) are statistically
different than zero with a p-value of 0.05

𝑛∑
𝑖=1

𝑤𝑖 ∗ 𝑒𝑥𝑎𝑐𝑡_𝑚𝑎𝑡𝑐ℎ𝑖∑𝑛
𝑖=1 𝑤𝑖

(6.2)

where 𝑤𝑖 = 1 − 𝑠𝑖𝑚𝑖 .

Results Table 6.4 displays the results according to the weighted average metric.
According to this metric, the second model outperforms the first one. This metric
is easy to understand. However, it does not tell us anything about the performance
of dissimilar queries.

6.7.3 Summary

According to our overlap-aware evaluation metrics, the model trained on the
synthetic datasets is the most performant, even after correcting for its high overlap
with the test.

6.8 Error Analysis

6.8.1 Tokenization

Our formatting of input and output consists of surrounding slots with brackets
along with the slot name (e.g., [place_name : new york]. This method implies
that slots’ boundaries align with tokenization. Otherwise, the model cannot
correctly place the opening or closing bracket — unless it uses a different token
than the ones in the source utterance. See Figure 6.8.1 for an example.
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Figure 6.4: Our method does not scale well to non-space delimited languages.
For example, in the utterance above, the time slot ends in the middle of a token.
To correctly parse the utterance, the model must replace token 20202 (時に) by
tokens 249229 (時) and 5954 (に).
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Figure 6.5: Exact match probability at three levels of similarity: 0, 0.5, and 1.0.
We used Equation 6.1 with the estimated parameters from Table 6.3. Model
two is better than model one on dissimilar utterances. However, the difference
diminishes when the similarity increases.

We identified three languages for which this problem occurs: ja-JP in 66% of the
test set, zh-CN in 66% of the test set, and zh-TW in 69% of the test set. These are
three languages that do not use spaces between words.

Similar to Section 6.7.1, we ran a logistic regression to explain the exact match
performance by the number of split tokens. Table 6.5 shows the results. We iden-
tified a statistically significant relationship between the number of split tokens
and the exact match performance for ja-JP and zh-CN. The performance of zh-TW
is low regardless of the number of split tokens.

6.8.2 Generalization

Section 6.7.1 demonstrated that models struggle to generalize to utterances dis-
similar to the training set. In this section, we decompose this conclusion by
languages. Figure 6.5 decomposes Figure 6.3 by languages. It shows the prob-
ability of an exact match on the test set by increasing levels of similarity to the
training set. Figure 6.5 shows a wide distribution of probabilities for low similar-
ity utterances (6% standard deviation), while the distribution for highly similar
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utterances is more concentrated (3% standard deviation). Some languages do
better than others. For example, km-KH achieves an exact match probability of
44% at a similarity of 0.0 while vi-VN only achieves a an exatch match probability
of 15%. We list the full details of Figure 6.5 in Appendix C.2.

6.9 Future Work

In this work, we estimated the similarity between two utterances using charac-
ter n-grams. However, while this captures lexically similar utterances, it fails
to capture utterances semantically similar but lexically different. For example,
these two utterances are highly similar, although they only share a single com-
mon token: what time is it? and tell me the time. Future work can tackle
this by using multilingual sentence encoders such as LASER3 (Heffernan et al.,
2022), Multilingual Universal Sentence Encoder (Yang et al., 2020), or multilingual
models on Sentence Transformers (Reimers and Gurevych, 2020).

This work did not explicitly address cross-lingual training and instead relied
on the cross-lingual pre-training of the translation model. Future work could
combine a translation model with cross-lingual training methods such as xTune
(Zheng et al., 2021), or X-Mixup (Yang et al., 2022).

Section 6.8.1 showed the limitation of subword tokenization methods. Future
work could explore methods which do not uses subword tokenization such as
byT5 (Xue et al., 2022).

6.10 Conclusion

In this work, we showed that a translation model such as NLLB can perform the
task of intent classification and slot filling. Because of tokenization issues, it is,
however, suboptimal with non-spaced languages.

Moreover, we showed that artificially increasing the training sets’ size leads to
improved performance. Unfortunately, we also show that this added data can
overlap with the existing test set, distorting the true evaluation of these models.
The normal way to overcome this problem is to remove the overlap from the
training set. However, deciding on what constitutes an overlap remains an open
question. Therefore, we argued that the data overlap is not the problem —
the evaluation metric is. As a result, we proposed two evaluation metrics that
control the training/test overlap. Both metrics reveal that the model trained on
overlapped data improves the results on non-overlapped data. However, our
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analysis also reveals that these models struggle to beat random chance when
evaluated on utterances dissimilar to the training set.
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Is It Smaller Than a Tennis Ball?

Language Models Play the Game of
Twenty Questions

This chapter was published in the Proceedings of the Fifth BlackboxNLP Analyzing
and Interpreting Neural Networks for NLP - ISBN 978-1-959429-05-0 - Stroudsburg,
Association for Computational Linguistics, 2022, p. 80-90

7.1 Introduction

Generative language models achieve strong performance on multiple NLP tasks
by using an unsupervised training objective: predicting the next token in a string
of text (Brown et al., 2020a; Chowdhery et al., 2022b; Zhang et al., 2022b).

Despite the simple training objective, these models capture a significant amount
of world knowledge (Roberts et al., 2020; Jiang et al., 2020; Talmor et al., 2020).
However, we can quickly uncover some limitations by asking simple questions.
For example, GPT-3 (Brown et al., 2020a) is more likely to complete the following
sentence question: is a kettle smaller than a tennis ball? answer: with yes than no.
While trivial for a human, GPT-3 has trouble comparing the size of a kettle and a
tennis ball.

We can use the let’s think step by step method to look into the chain of reasoning
of GPT-3 (Kojima et al., 2022): question: is a kettle smaller than a tennis ball? answer:
let’s think step by step. [...] a tennis ball is about 6 inches in diameter [...] a typical kettle
is about 8-10 inches tall and has a diameter of about 4-5 inches. So, a kettle is smaller
than a tennis ball. According to this example, GPT-3 predicts that a tennis ball is
twice its actual size, leading to the wrong conclusion that a kettle is smaller than
a tennis ball.

77
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Figure 7.1: Example Twenty Questions game: a human must discover the hidden
entity (a keyboard) by asking yes/no questions to the language model. In this
case, the model needs to know about the shape, composition, and purpose of a
keyboard to correctly answer all questions. While trivial for humans, our results
show that this is not the case for most language models, except for GPT-3, which
displays fantastic world knowledge on all questions except size-related questions.

In this work, we try to analyze the world knowledge of language models through
the game of Twenty Questions. We collected a dataset of 2000+ questions and tried
to understand the strength and weaknesses of language models by classifying
questions into nine categories of knowledge.

Our results show that GPT-3, a 175 billion parameters language model, can play
Twenty Questions thanks to a consistent world knowledge on all categories iden-
tified, except for size & shape questions (e.g., is it bigger than a foot). Unfortunately,
we also show that smaller models do not display the same consistency. However,
leveraging the web improved the knowledgeability of T0 by 10% and brought it
to a level competitive with GPT-3, despite having 16 times fewer parameters.
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Our contributions are the following:

• We release the first dataset consisting of Twenty Questions games.

• We show that very large language models have a consistent world knowl-
edge, while smaller models do not.

• We provide a method to improve the knowledgeability of smaller models
using background information from the web.

We publicly release our dataset on HuggingFace (Wolf et al., 2020).1 We also
present Twentle, a website to interactively test the world knowledge of language
model by playing the game of Twenty Questions.

7.2 Related Work

Although analyzing the capabilities of language models through the game of
Twenty Questions is new, researching the amount of general knowledge and
common sense of language models is not.

Unfortunately, the knowledge stored by language models is not symbolic. There-
fore, we cannot look into the model and inspect its knowledge. Instead, previous
work relied on multiple proxy tasks.

One option is to use regular reading comprehension datasets in a closed-book
format. Roberts et al. (2020) follow this approach. They evaluate how much
knowledge can be stored inside the weights of a text-to-text T5 model (Raffel
et al., 2020b). The authors repurposed three reading comprehension datasets
to closed-book question answering: Web Questions (Berant et al., 2013), Trivia
QA (Joshi et al., 2017) and Natural Questions (Kwiatkowski et al., 2019). They
concluded that T5 performs on par with specialized machine comprehension
models. GPT-3 (Brown et al., 2020a) was also evaluated on the same closed-
book question-answering datasets. The largest model (175B parameters) achieved
state-of-the-art results on TriviaQA despite not being trained for the task.

Unfortunately, it has been demonstrated later by Lewis et al. (2021a) that the
datasets used by Roberts et al. (2020) and Brown et al. (2020a) suffer from a
considerable overlap between the training and test set, invalidating the authors’
conclusion based on these datasets. Furthermore, when the overlap between the
training and test set is removed, the performance of BART (Lewis et al., 2020a)

1https://huggingface.co/datasets/maximedb/twentle

https://huggingface.co/datasets/maximedb/twentle
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diminishes from 26.7% to 0.8% on TriviaQA (Joshi et al., 2017), suggesting that
the model is unable to generalize to previously unseen questions.

To overcome the previously mentioned overlap problem, Wang et al. (2021) re-
purposed SQuAD (Rajpurkar et al., 2016), a popular reading comprehension
dataset, as a closed-book question answering dataset. They evaluated the perfor-
mance of BART on this new dataset and concluded that it was still challenging
for generative models to perform closed-book question answering.

Another approach is to look at how a language model fills in blanks (i.e., masking).
One can estimate what the language model knows by carefully analyzing the
model’s suggestion. This is the approach followed by Petroni et al. (2019). The
authors introduce a new dataset LAMA to test the factual and commonsense
knowledge in language models. It provides a set of cloze tasks, e.g., ravens can

with the associated answer fly.

The oLMpic Games (Talmor et al., 2020) tests the symbolic reasoning of language
models through eight synthetic tasks. While very similar to our work, the dataset
uses masking to probe the language model. Mask tokens are only applicable to
encoder language models, while we are interested in generative language models.

Previous studies have shown that providing generative language models with
background information improves their performance. (Borgeaud et al., 2021;
Lewis et al., 2020c; Komeili et al., 2022; De Bruyn et al., 2020; Lazaridou et al.,
2022) Similar to Lazaridou et al. (2022), we find that including external knowledge
improves the language model’s performance, however, we obtain better results
by restricting the source of knowledge to Wikipedia instead of the entire Internet.

To summarize, we are the first to analyze the world knowledge of generative
language models through the game of Twenty Questions. We depart from the
work of Roberts et al. (2020) and Wang et al. (2021) in several ways. First, we only
have yes/no answers, which simplifies the evaluation and removes the surface-
form problem (Holtzman et al., 2021). Second, using generic questions allows
disentangling the understanding of the object and the question.

7.3 Data

This section presents our dataset based on the Twenty Questions game — the
first boolean closed-book question answering dataset regarding world and com-
monsense knowledge. We start this section by introducing the Twenty Questions
game. We then explain our data collection process. Finally, we analyze the type
of knowledge required to perform well on this dataset.
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Twenty Questions
Questions 2,832
Generic questions 915
Entities 126
Words (per question) 6.8
Yes 35%
No 65%

Table 7.1: Summary of the Twenty Questions dataset. We collected 2,832 ques-
tions from 126 different entities. We make the distinction between generic and
regular questions. Generic questions refer to the entity as "it" (e.g. does it [a rake]
have a seat). Generic questions are asked multiple times over different entities
(on average 3). We use this unique feature to disentangle the understanding of
the question and the entity.

7.3.1 Twenty Questions Game

Wikipedia describes Twenty Questions as a spoken parlor game that encourages
deductive reasoning and creativity. In the traditional game, one player (the an-
swerer) chooses a subject and does not reveal it. The other players are questioners
and must find the hidden entity by asking yes/no questions.

Previous research focused on playing the questioner (Hu et al., 2018; Chen et al.,
2018), however, we are interested in the role of the answerer — the player re-
sponsible for answering the yes/no questions using his knowledge of the world.
According to our research, this is the first attempt at playing the role of the
answerer.

7.3.2 Akinator

Instead of organizing games using Amazon Mechanical Turk, we used Akinator2
to collect many questions. Akinator is an online game where users can play
games of Twenty Questions against a probabilistic model.

Users first pick an entity (without revealing it), and Akinator will then ask yes/no
questions to find the hidden entity. It can guess animals, objects, or characters.
The player can answer with 5 possible options: yes, no, probably yes, probably not,
and don’t know. Although the original Twenty Questions game used a maximum
of 20 questions, Akinator will ask questions until it finds the correct entity. We
provide examples of questions and entities in Table 7.2. We were pleasantly
surprised by the quality of the Akinator model. It was able to find our hidden

2https://akinator.com/
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Generic Question Entity Answer
Is it bigger than a foot? Padlock No
Does it work with electricity? Magnifying glass No
Does it have a seat? Forklift Yes
Does it work with the feet? Lawn mowner No
Can it be made of wood? Rake Yes
Is it mostly for girls? Belt No
Does it have a relationship with school? Wallet No
Can it be read? Worldmap Yes
Is it made of rubber? Balloon Yes
Is it bigger than a foot? Saw Yes

Table 7.2: Example questions in our dataset. Akinator does not know the entity
when asking the question, and refers to the entity using "it". To avoid any bias
toward a specific culture we only used well-known objects as hidden entities. We
did not use animals or characters.

entities in most instances. We removed questions from the few instances where
it was not capable of finding the correct entity.

Question Entities
Is it bigger than a foot? 68
Does it go into the mouth? 67
Is it something we wear? 56
Can we buy it? 55
Is it a toy? 50
Is it made of metal? 48
Is it soft? 45
Can it be opened or closed? 42
Is it electronic? 34
Can it be found in a kitchen? 31

Table 7.3: Most common generic questions in the dataset.

7.3.2.1 Generic Questions

Akinator does not know the entity when asking the question and refers to the
entity using "it". Because of its probabilistic nature, Akinator will likely ask the
same generic question for multiple entities. We list the most common generic
questions in Table 7.3. For example is a rake bigger than a foot and is a tennis ball
bigger than a foot are two different questions but share the same generic question
is it bigger than a foot. The average generic question (e.g., is it bigger than a foot)
is asked for three different entities. However, the distribution is highly skewed,
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with many specific questions asked only once.

7.3.2.2 Choice of Entities

We restricted our choice of entities to objects, as we think characters and animals
are too culture-dependent to be deemed general knowledge. As much as possible,
we tried to choose objects which are not specific to a particular place or culture.

7.3.2.3 Post-processing

As we are interested in yes/no questions, we remove all questions with probably
yes, probably not, or don’t know as answer. We use simple regex rules to inject
entities into generic questions. We removed all questions about sex or the user’s
personal experience (e.g., do you have one at home?) as these require personal
knowledge.

7.3.3 Knowledge Category

In order to understand the reasoning abilities of the language model, we need to
understand the type of knowledge required to answer each question correctly.

After carefully reviewing the questions in our dataset, we classified each question
into one of the following nine categories: usage, size & shape, location, composi-
tion, description, relatedness, appearance, functioning, and purpose. Finally, we
provide an overview with examples in Table 7.4.

Shape and Size To answer this kind of question, the model should understand
an object’s shape and be able to compare it with others. For example, is it bigger
than a foot?

Usage The model should know how an object is used in everyday life to answer
these questions. For example, the model should know that a question like is it
something we wear? applies to a pair of sunglasses, but not a forklift.

Location The model must know in which place or circumstances an object is
used. For example, can we find it in a bathroom or, is it outside.
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Composition These questions require knowing the composition of an object.
For example, is it liquid, or is it made of glass.

Description The model should know how humans describe this object with
adjectives. For example, is it heavy, or is it sticky.

Relatedness To answer these questions, the model must be able to relate two
categories of objects or concepts together. For example, does it have a relation with
water, or is it a toy.

Functioning These questions require knowing how an object works. This cat-
egory is broad and includes questions such as can it be opened or closed, or does it
work with electricity.

Appearance This category is related to the description category but focuses on
how an object looks. For example, it includes questions such as does it have a seat,
or does it have eyes.

Purpose This kind of question focuses on the purpose of objects. It is related to
the usage category but focuses on why we use objects instead of how. It includes
questions like is it useful to sleep, or do we use it for travel.

Object Knowledge Example Question Percentage
Shape and Size Is it bigger than a foot? Is it flat? 12.7
Usage Is it something we wear? Do we use it for a sport? 15.5
Location Can it be found in houses? Is it outside? 10.9
Composition Is it liquid? Is it made of glass? 7.8
Description Is it heavy? Is it sticky? 7.1
Relatedness Does it have a relation with water? Is it a toy? 14.5
Functioning Does it work with electricity? Can it be opened or closed? 14.8
Appearance Does it have eyes? Does it have a seat? 6.9
Purpose Is it useful to sleep? Do we use it for travel? 7.4

Table 7.4: We classified each question of the dataset into nine categories depend-
ing on the type of knowledge required to answer the question.

7.3.4 Human Agreement

Answering yes/no question is not always straightforward. A single question can
be approached in multiple ways. For example, some people answer the question,
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" is a DVD smaller than a tennis ball with yes because the height of a DVD is smaller
than that of a tennis ball, while others look at the diameter and answer no. We
asked four annotators to answer 100 randomly sampled questions. On average,
they share the same answer as the one in the dataset 94% of the time. The
inter-annotator agreement is good, with a Cohen’s Kappa score of 0.76 (Cohen,
1968).

7.4 Language Models

In this section, we review the subjects of this work: generative language models.
Language models come in all forms and shapes. However, we focus on two types:
encoder-decoder and decoder-only models.

7.4.1 Encoder-Decoder Models

Encoder-decoder models treat every NLP task as a text-to-text problem using
an encoder-decoder Transformer. When this framework is applied to question
answering, the model is trained to generate the literal text of the answer in a
free-form fashion (Roberts et al., 2020).

T5 is a text-to-text model pre-trained on multiple tasks simultaneously: trans-
lation, summarization, classification, reading comprehension, and an unsuper-
vised span corruption task (Raffel et al., 2020b). We experiment with the 11 billion
parameters version.

T0 further trains T5 on 1700 English datasets (Sanh et al., 2022). The resulting
model outperforms GPT-3 (Brown et al., 2020a) on several tasks despite being 16x
smaller. We use the T0pp version with 11 billion parameters. Conveniently, T0 has
already been pre-trained on BoolQ (Clark et al., 2019), a reading comprehension
dataset with boolean answers.

7.4.2 Decoder Models

Decoder models use the decoder part of the original Transformer (Vaswani et al.,
2017a) model. These models were not trained for a specific task but with an
unsupervised objective: predict the next token in a piece of text. Due to their
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extensive training corpora, these models have already seen many examples of
Trivia style questions.

GPT-3 is an auto-regressive language model (Brown et al., 2020a). The largest
version has 175 billion parameters. The model weights are not publicly available,
although the model’s predictions are available through a paid API.3

GPT-J is a 6 billion parameters autoregressive language model (Wang and Ko-
matsuzaki, 2021) trained on the Pile (Gao et al., 2021).

GPT-Neo-X is a 20 billion parameters autoregressive language model (Black
et al., 2022) trained on the Pile (Gao et al., 2021).

OPT is a similar model to GPT-3, but the models’ weights were publicly released
(Zhang et al., 2022b), except for the largest version (175 billion parameters), which
is available upon request. Similar to GPT-J, it was trained on the Pile along with
data from Reddit. We experiment with the 30 billion parameters version.

7.5 Experiments

In this section, we report on our experiments using our dataset of Twenty Ques-
tions. We experimented with three setups: zero-shot, few-shot, and zero-shot
with knowledge augmentation. We use these results in the section to understand
the scale of the world knowledge stored by language models.

7.5.1 Experimental Settings

Our experiments do not require any training, we use language models as-is
without fine-tuning. We use the entirety of our dataset for evaluation. We
measure the probability of the yes answer by summing the probability of the yes,
Yes, true, and True tokens. The same is done for the no answer with no, No, false
and False. Our dataset contains 65% of no answers, we use F1 (binary) as primary
evaluation metric and also report accuracy.

3https://openai.com/api/
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Model Size F1 Accuracy
Majority - - 65.0
GPT-J 6B 48.6 49.0
T5 11B 24.6 68.4
T0 11B 68.5 81.9
GPT-Neo-X 20B 51.8 34.9
OPT 30B 52.8 38.2
GPT-3 13 B 59.4 60.2
GPT-3 175B 66.4 81.3

Table 7.5: Result of the zero-shot evaluation. Best performance is achieved by
GPT-3 and T0. The other models struggle to reach the majority vote baseline.

7.5.2 Zero-shot

In the zero-shot setting, models answer the question with only a textual descrip-
tion of the task. We expect T5 and T0 to perform well in this setup as they
were pre-trained using the same setup, while this is not the case for decoder-only
models.

Prompt We use the same prompt for both encoder-decoders and decoder-only
models.

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}
Answer:

Results We report the results of our zero-shot experiment in Table 7.5. As
expected, T0 achieves the best results with an F1 of 68.5% and an accuracy of
81.9%. GPT-3 also performs nicely in this setup, with 16x more parameters than
T0. However, all the other models show an accuracy lower than the majority vote
baseline.

7.5.3 Few-shot

In the few-shot setup, models receive identical instructions as in the zero-shot
setup, in addition to a few examples. This setup benefits decoder-only models
as they can now learn the task on the fly using in-context learning (Beltagy et al.,
2022).
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Model Size F1 Accuracy
Majority - - 65.0
GPT-J 6B 57.7 57.7
T5 11B - 65.8
T0 11B 6.7 65.8
GPT-Neo-X 20B 58.4 58.3
OPT 30B 60.4 71.6
GPT-3 13B 58.2 60.2
GPT-3 175B 83.0 87.9

Table 7.6: Result of the few-shot evaluation. GPT-3’s F1 improves by 9% to
reach 83%. The performance of OPT barely improves compared to the zero-
shot reasoning, while as expected the performance of encoder-decoder models
plummets.

Prompt We augment the zero-shot prompt with four examples. There are two
examples with yes and two with no. We randomly select examples from different
entities and generic questions.4

You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question_example_1 }}
Answer: {{ answer_example_1 }}
...
Question: {{ question_example_n }}
Answer: {{ answer_example_n }}
Question: {{ question }}
Answer:

Results We provide an overview of the few-shots results in Table 7.6. As ex-
pected, the performance of decoder-only models increases, while the performance
of encoder-decoder decreases5. For example, GPT-3’s F1 increased from 66.4%
to a record 83.0%. Unfortunately, these results also show that (relatively) smaller
decoder-only models do not reach T0’s performance in a zero-shot setup.

7.5.4 Zero-shot with Knowledge Augmentation

The performance of GPT-3 is exceptional. However, it comes at a steep computa-
tional and environmental cost. Moreover, as T0 has fewer parameters than GPT-3,

4This setup is similar to the start of a Twenty Questions game where the model does not have
previous examples for the same entity.

5These models were zero-shot inference, not few-shot.



7.5. EXPERIMENTS 89

Model Size F1 Accuracy
T0 (ZS) 11B 68.5 81.9
T0 (Bing) 11B 69.7 75.7
T0 (Wiki) 11B 79.3 86.0
GPT-3 (FS) 175B 83.0 87.9

Table 7.7: Augmenting T0 with background information improves its F1 score by
10% and brings it to a competitive level with GPT-3.

it has less "space" to store world knowledge. In this section, we try to augment T0
with external knowledge to help it bridge the performance gap with GPT-3. We
use two sources of background knowledge: the entire Internet using Bing search
and the Wikipedia page of the entity.

Prompt We follow the same prompt as in the zero-shot analysis. In addition,
we augment it with a space for background knowledge.

Text: {{ background_knowledge }}
You are playing a game of 20 questions.
Answer the following question with yes or no.
Question: {{ question }}
Answer:

Bing We run a bing search for every question and only keep the text snippet
returned by Bing. We compare each text snippet to the question using a cross-
encoder from Sentence Transformers (Reimers and Gurevych, 2019). We then
keep the snippet with the highest score. We do not restrict Bing, so it can also
choose to return pages from Wikipedia.

Wikipedia We chunk the Wikipedia page of each entity into passages of around
256 tokens. Then, we re-rank the passages using the same cross-encoder.

Results We provide an overview of the few-shots results in Table 7.7. The Bing
search results are disappointing. The F1 score barely improves by 1%. On the
other hand, the Wikipedia search results are outstanding: F1 improves by over
10% and accuracy by 4%.

This section concludes that GPT-3 (few-shot) is the best model for playing the
answerer in a game of Twenty Questions. However, GPT-3 is computationally and
environmentally costly. We showed that incorporating background knowledge
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from Wikipedia can improve T0’s performance to a competitive level with GPT-3
despite having 16 times fewer parameters.

7.6 World Knowledge Analysis

We now use the results of the previous section to analyze the world knowledge
of the three best models: GPT-3, T0, and T0 Knowledge Grounded (KG).

7.6.1 Knowledge Category

We list the accuracy by category of knowledge in Table 7.8. The most striking
result is the low performance of the three models in the Shape & Size category.
For example, GPT-3 has a difference of 20% between the worst category (Shape &
Size) and the second-worst category (Usage).

On the other hand, GPT-3 and T0 can answer questions relating to two objects or
concepts exceptionally well (e.g., is it related to water or is it a toy). Intriguingly,
incorporating knowledge into the prompt diminishes the score on relatedness for
T0-KG.

We now dig deeper into size & shape questions and try to understand if there
are specific kinds of questions mishandled by the language models. We list the
average accuracy by questions in the Shape & Size category in Table 7.9. We notice
that questions 1, 3 & 4 are not specific enough. On which dimension should we
compare the size of the tennis ball? 6 The inter-annotator score on Shape & Size
question is 0.75, almost equivalent to the global inter-annotator score of 0.76. We
believe humans have enough common sense to decide on which dimension to
evaluate the size of objects.

7.6.2 Entities

Inspired by previous research (Razeghi et al., 2022), we look for a correlation
between the average accuracy of an entity and its frequency in the pre-training
data.7 We do not find any significant correlation, except a small 0.05 correlation
for T0. We believe the conclusion would be different with lesser-known objects.

6Is a DVD smaller than a tennis ball because of its thickness?
7We use the first 10 billion tokens of the C4 dataset (Raffel et al., 2020b) to estimate the frequency

of entities in the pre-training data.
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Knowledge Type GPT-3 T0 T0-KG OPT
Shape & Size 66 56 69 60
Usage 86 82 86 75
Location 88 74 89 60
Composition 90 78 78 69
Description 81 69 73 65
Relatedness 95 94 88 79
Functioning 87 79 74 71
Appearance 91 83 83 89
Purpose 91 88 82 75

Table 7.8: Accuracy (%) by category of knowledge. GPT-3 outperforms T0 on
every knowledge type. Shape & Size questions stand out as a weak spot for
GPT-3 and T0.

Question GPT-3 T0 T0-KG
Is it smaller than a tennis ball? 50 55 60
Is it globe-shaped? 55 77 77
Is it bigger than a foot? 60 47 67
Can we transport it in a pocket? 62 50 50
Is it flat? 66 55 61
Is it round? 68 43 69
Is it long? 71 28 57
Is it rectangular? 72 81 72
Is it taller than a man? 78 78 71
Does it have a square shape? 80 80 100
Is it pointed? 85 71 71
Is it bigger than a bus? 100 100 100

Table 7.9: Accuracy (%) of GPT-3, T0, and T0-KG on Shape & Size questions.
GPT-3 struggles with comparing the size of entities with the size of a tennis ball.
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We notice that ambiguous entities such as a rule8 and a racket9 are not well managed
by all models for understandable reasons.

7.6.3 Knowledge Augmentation

In this section, we try to understand why Wikipedia is a much better source of
background knowledge than Bing’s search over the Internet.

Knowledge Source We manually reviewed and compared the background
knowledge provided by Bing and Wikipedia. We found that the knowledge
returned by Bing can be specific, whereas the game of Twenty Questions requires
general knowledge. For example, when asked does a printer have a seat, the obvious
answer is no. However, Bing returns a text saying [...] each used printer takes one li-
cense seat. [...] confusing the model into thinking printers do have seats. Another
example is the question is a litter box a weapon. The correct answer is no. Bing,
however, returns a text saying [...] cat litter box used as a weapon in fight over prescrip-
tion drugs [...] confusing the model into thinking a litter box is a weapon. In both
instances, the knowledge returned by Wikipedia is the introductory paragraph
describing the entity.

Knowledge Category According to Table 7.8, incorporating background knowl-
edge helps in Location (+15%) and Usage (+13%) questions. On the other hand,
it hurts performance on Relatedness questions (-6%).

This section concludes that GPT-3 performs consistently on all categories of ques-
tions, except Shape and Size. Although competitive, T0 does not show the same
consistency as GPT-3, even when augmented with background information.

7.7 Twentle

We present an interactive website to let anyone test the world knowledge of T0-KG
by playing the game of Twenty Questions. Inspired by Wordle, we named our
website Twentle, available at twentle.com.

8As in a 30 cm rule/ruler
9As in a tennis racket

https://twentle.com
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7.8 Future Work

Reducing the world to yes/no questions is not an easy task. Our human agree-
ment section demonstrates that humans do not agree on all answers. Future
work is needed to compare the agreement of humans and language models by
category of question. In this study, we limited ourselves to the study of the an-
swerer. However, GPT-3 could potentially also play the role of the questioner.
Future work is needed to study the knowledgeability of language models on
lesser-known objects. In this case, we anticipate that large models will also need
to leverage the web for information.

7.9 Conclusion

In this work, we analyzed the world knowledge of language models through the
game of Twenty Questions. Our analysis reveals that most language models do
not have the world knowledge required to play this game. GPT-3 is a notable
exception. It displays impressive world knowledge on all categories of questions
identified, except for shape & size questions — is it smaller than a tennis ball.
Furthermore, we showed how grounding smaller models on information from
the web improves their knowledgeability. Through this work, we demonstrated
the need for more clarity on which model architecture and pre-training method
best captures world knowledge.

7.10 Limitations

We intentionally limited our analysis to well-known objects. We anticipate a lower
performance on lesser-known objects. Furthermore, our work uses well-defined
questions with little noise, whereas real-world questions by humans could be
more challenging for language models to understand. The dataset we collected
could contain biases already present in our society. Unfortunately, the same is
true for the answers given by the language model.
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20Q: Overlap-Free World Knowledge

Benchmark for Language Models

This chapter was published in the Proceedings of the 2nd Workshop on Natural Language
Generation, Evaluation, and Metrics (GEM) - ISBN 978-1-959429-12-8 - 2022, p. 494-
508

8.1 Introduction

Transformers are omnipresent in today’s Natural Language Processing. Using
a simple training and inference procedure, they reach human-level performance
on numerous benchmarks.

The scale of these models is hard to grasp. The most recent one, PaLM (Chowdh-
ery et al., 2022c), has 540 billion parameters. It has sixteen times more parameters
than all words on Wikipedia, or sixty-eight times more parameters than the total
population on Earth (Roser et al., 2013).

Much previous work focused on what these models can do: question-answering,
mathematics, translation, or code generation (Wei et al., 2022; Chen et al., 2021b;
Cobbe et al., 2021b; NLLB Team et al., 2022; Lewkowycz et al., 2022). Another
exciting area of research is to focus on what these models know: common sense,
world knowledge, or biases (Kejriwal et al., 2022; Kadavath et al., 2022b; Lucy and
Bamman, 2021; Abid et al., 2021).

Transformers (Vaswani et al., 2017a) models do not store knowledge symbolically
— they distribute the knowledge within their weights. As a result, researchers
have to use proxy tasks to study it. Previous research used closed-book question-
answering datasets to study how much knowledge language models can store

95
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Topic Question Answer
Gorilla Is it alive? Yes
Ball Can we eat it? No
Anchor Is it heavy? Yes
Pen Can it fly? No
Car Can you drive it? Yes
Satellite It it furniture? No

Table 8.1: Example questions and answers in our 20Q benchmark. We use simple
questions to compare the amount of world knowledge between different language
models. Despite its apparent simplicity, this benchmark is challenging for even
the largest language models — GPT-3 makes a wrong prediction about 20% of
the time.

(Roberts et al., 2020). They concluded that language models perform similarly
with or without external information, thanks to a broad embedded knowledge.

Unfortunately, Lewis et al. (2021a) later demonstrated that these datasets suffer
from a significant overlap between the training and test set. For example, who has
scored more goals in the premier league shares the same answer with most goals scored
by a premier league player. Training on the first and evaluating on the second does
not make sense. As a result, T5’s (Raffel et al., 2020b) performance dramatically
dropped when Lewis et al. (2021a) removed the overlap – invalidating the conclu-
sion that these models performed equally with or without external knowledge.
Our analysis reveals commonsense reasoning benchmarks also display major
overlap between the training and test sets. Commonsense QA 2.0 Talmor et al.
(2022) and Com2sense (Singh et al., 2021) have exact or close-to-exact duplicates
between the training and test set.

In this work, we propose a new benchmark, free of any lexical and semantic
overlap between the training and test set, to evaluate the world knowledge of
large language models using the game of Twenty Questions – a popular yes/no
guessing game. See Table 8.1 for example questions and answers.

We test two hypotheses using this benchmark. First, we test whether large models
possess more world knowledge that smaller models. Second, we test our intuition
that world knowledge is correlated with the frequency of the topic in language
models’ pre-training data.

Despite the massive size of GPT-3, it only reaches an F1 score of 82% on our bench-
mark. It is however much better than its smaller variants, which validates our
first hypothesis that larger models possess more world knowledge than smaller
models.

Our dataset’s unique feature — a generic question and a topic — is ideal for testing
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our second hypothesis: does world knowledge correlate with topic frequency.
Again, the results show our hypothesis is true as the bottom quartile of topics is
associated with higher variability, whereas the other quartiles are not.

We conclude this introduction by summarizing our main contributions:

• We release a new benchmark to study the world knowledge of language
models. It is free of any overlap between the training and test set.

• We show that large models possess more knowledge than smaller ones.
However, the relationship is not linear.

• We show that the knowledgeability of language models on a specific topic
depends on the relative frequency of the topic in the pre-training data.

We release our benchmark on the HuggingFace dataset hub (Lhoest et al., 2021)
for anyone to use.1

8.2 Related Work

Before the rise of deep learning, NLP stored commonsense and world knowledge
using semantic networks such as WordNet (Miller, 1995b) and later ConceptNet
(Speer et al., 2017). These graphs have the advantage of using symbolic represen-
tations, facilitating their analysis. Contrary to Transformers-based models, they
perform equally well on lower-frequency topics.

Commonsense and world knowledge of Transformers’ based models is harder
to evaluate, researchers resort to using proxy tasks to evaluate it. Several pre-
vious works studied the commonsense abilities of language models in multiple
areas: pronoun resolution (Levesque et al., 2012; Sakaguchi et al., 2021), natural
language generation (Lin et al., 2020), story understanding (Mostafazadeh et al.,
2016), reading comprehension (Zhang et al., 2018; Huang et al., 2019; Ning et al.,
2020), physical and social intelligence (Bisk et al., 2020; Sap et al., 2019), temporal
reasoning (Zhou et al., 2019), numerical knowledge (Dua et al., 2019; Ravichander
et al., 2019), and global commonsense reasoning (Singh et al., 2021; Talmor et al.,
2022, 2019).

The remainder of this section focuses on two datasets evaluation the common-
sense knowledge of language models using yes/no questions: Commonsense
QA 2.0 (Talmor et al., 2022) and Com2Sense (Singh et al., 2021). For both of
these datasets, we review the overlap between the training and test set and find
troubling examples.

1https://huggingface.co/datasets/clips/20Q



98
CHAPTER 8. 20Q: OVERLAP-FREE WORLD KNOWLEDGE BENCHMARK FOR

LANGUAGE MODELS

8.2.1 Commonsense QA 2.0

Talmor et al. (2022) provide a dataset of 14,343 yes/no questions on several
commonsense skills: numerical reasoning, causal reasoning, world knowledge,
temporal understanding. The authors used a human-in-the-loop approach to
create a challenging benchmark for language models. We partially share the
same seed data (AllenAI, 2018) as Commonsense QA 2.0, however we follow a
stricter pre-processing and split formation procedure.

Overlap Analysis The authors split the training and test sets according to the
topic of questions.2 Our qualitative review of the overlap between the training
and test reveals problematic examples. Some examples are almost duplicates: «
an electron holds a positive charge » and, « an electron holds a positive charge and [sic]
», while others are lexically different but semantically similar: « most happy meals
include a toy » and, « happy meals almost always come with a toy ». We provide more
examples in Appendix E.1.

8.2.2 Com2sense

Com2sense (Singh et al., 2021) provides a comprehensive commonsense bench-
mark to test language models’ understanding of everyday events and entities by
answering yes/no questions. The authors classify their dataset on three axes:
knowledge domain (physical, social, or temporal), reasoning scenario (compara-
tive or causal) and numeracy.

Overlap Analysis The authors do not take any special care in the division of
the data. However, a key feature of the dataset introduces a high overlap between
the two. The authors use a simple technique to double the size of the dataset:
edit a few words of each sentence to flip the answer: to read books see stars at
night, one should turn on the lights. Our qualitative review of the overlap between
the training and test reveals highly problematic examples. First, we found exact
duplicates between the training and test sets. Second, some examples in the test
set are simple negations of examples in the training set. For example « [...] opening
the blinds will help you see » and, « [...] opening the blinds will not help you see ».
Third, some examples only change one term between the test and training set,
but are semantically similar. We provide more examples in Apppendix E.1.

2For example the question « an uncle has to have a brother or sister » has the topic uncle even though
it also is about the brother topic.
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Dataset Train Valid. Test No Overlap Focus Example
CQA2.0 9,264 2,541 2,473 ✗ Multiple A bus has at least two steering wheels.

Com2sense 804 402 2,779 ✗ Multiple As the weather was very cold
he put on his jacket to protect himself.

20Q (ours) 815 - 2,500 ✓
World

Knowledge Can [an acquittal] cheer you up?

Table 8.2: Comparison of 20Q with other similar benchmarks. 20Q focuses solely
on world-knowledge and is free of any overlap between the training and test set.

8.2.3 Overlap Analysis Summary

Our qualitative review reveals both of these benchmarks do not properly check
for training and test set overlap.

Unfortunately, Lewis et al. (2021a) demonstrated that a high overlap between the
training and test set can inflate the true performance of language models.

To summarize, we provide the first commonsense reasoning benchmark focused
exclusively on world knowledge. Contrary to existing benchmarks, we take
extensive measures to ensure there is no overlap between the training and test
set. We compare 20Q against alternative benchmarks in Table 8.2.

8.3 Data

Data is a double-edged sword. On the one hand, more data is usually good.
However, on the other hand, more data can also complicate the study of the gen-
eralization abilities of the model as it gets harder to find uncorrelated validation
data.

Regarding world knowledge and common sense, two factors can contaminate the
validation data: the training and pre-training data. Large language models can
memorize their pre-training data. The bigger the model, the larger the probability
of memorization (Chowdhery et al., 2022c).

In this work, we take a novel approach and analyze the inner knowledge of large
transformers models through the game of Twenty Questions — a popular yes/no
guessing game. We take extra care to avoid lexical and semantic overlap between
the training and validation sets.
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8.3.1 Twenty Questions Game

Wikipedia describes Twenty Questions as a game that encourages deductive
reasoning and creativity. In the traditional game, the answerer chooses a topic
and does not reveal it to the questioners, whom themselves must find the hidden
entity by asking yes/no questions to the answerer. Humans can play this game
(or a variant of it like Guess Who) from a young age.

8.3.2 Twenty Questions Dataset

We do not generate a dataset ourselves. Instead, we rely on an existing dataset of
Twenty Questions games developed by AllenAI, where they had humans play the
game of Twenty Questions on Amazon Mechanical Turk. In total, they collected
78,890 questions in the style of Twenty Questions. The dataset is available on
Github (AllenAI, 2018).3

8.3.2.1 Generic Questions

As the questioner does not know the topic, he mainly refers to the entity using
"it". Therefore, we term these "generic questions." This disentangling of question
and topic is helpful in two regards. First, we can use it to ensure no semantic
and lexical overlap between the training and validation sets for both topics and
questions. Second, we can measure the topic’s knowledge by type of word,
domain, or relative frequency in the pre-training data.

8.3.2.2 Fine-grained Answers

Reducing the world to yes and no can be challenging, even impossible. Instead of
answering with yes or no, annotators4 must answer with fine-grained answers:
never, rarely, sometimes, usually, or always. Three annotators answer each question.
With a Kappa score of 57%, the disagreement between annotators is high. How-
ever, converting the answers to yes or no instead of fine-grained answers resolves
any disagreement between annotators. Using a binary answer also facilitates the
analysis.

3https://github.com/allenai/twentyquestions
4We want to stress that we are referring to the annotation of the original dataset (AllenAI, 2018).
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8.3.2.3 Quality Score

Annotators provide a quality score for each question and flag potential problems:
questions that are not answerable by yes or no, questions that are not playing the
game, or questions that refer to another turn. We only retain questions with the
highest quality score (85% of the dataset).

8.3.3 Pre-processing

As with all data generated by humans, it can be noisy. The original dataset
contains many sentences with orthographic errors, or even questions unrelated
to the Twenty Questions game. Our goal is to understand the knowledge stored
inside the language models, not their capacity to deal with noise. Therefore, we
take extensive pre-processing steps to clean the dataset. We give further insight
into our pre-processing in Annex E.2. First, we remove all questions below the
maximum score of three (-15%). Next, we remove all questions which do not use
"it" (-12%). Finally, we remove all duplicate questions (-3%) and answers where
the topic is not in WordNet (-3%). Our pre-processing removes 34% of the initial
dataset.

8.3.4 Training Set

The original authors performed a random split of questions into training, val-
idation, and test set. The authors deal with training/test overlap by flagging
questions where the topic is also present in the training set. We take a much
stronger stance on train/test overlap and include the semantic overlap between
topics and questions.

Our objective is to test the existing knowledge of language models — not to
provide new knowledge. Therefore, the priority should be the size of the test
set, not the training set. Our training set consists of 815 questions (500 generic
questions) on 707 different topics.

8.3.5 Similarity Metrics

Before removing the overlap between the training and test set, we must first
decide which similarity metric to use.

We use three methods to compute the similarity between two topics (words) or
questions (sequence of words).
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Bag-of-words The simplest method to compare two words or sequences of
words is their bag-of-words representations. We first tokenize, remove stop-
words, and finally stem the words. This method typically identifies close lexical
duplicates such as is it animal & is it an animal.

WordNet Our second method uses the semantic graph WordNet (Miller, 1995b).
WordNet excels at identifying synonyms. For example, it will identify that bike is
a synonym of bicycle.

Sentence Transformers Our last method uses Sentence Transformers (Reimers
and Gurevych, 2019). It uses pre-trained encoder networks to compute vector
representations of sentences (it also works for single words). We can compare
the similarity of two sentences (resp. words) by looking at the cosine similarity
of their vector representations. We use three different models.

8.3.6 Test Set

We follow three steps before including an example in the test set:

1. We ensure that the bag-of-words representation of the question and the
topic is not present in the training set.

2. We check if the topic of the question is not a synonym of any topic in the
training set.

3. Our last step removes any example with a cosine similarity larger than 0.8
with any topic or question in the training set.

After all these steps, we arrive at a test set of 4,201 examples. Given the high cost
of evaluating very large language models, we only keep the first 2,500 examples.
Given the limited size of the validation set, we did not implement a test set.
Additional statistics about the dataset are available in Table 8.3. Our validation
consists of only 4% of the clean dataset. However, as there is no overlap between
the training and validation set, we can make safe conclusions on the generalization
abilities of language models.

8.4 Overlap Exploration

Lewis et al. (2021a) demonstrated the devastating effect of an uncontrolled overlap
between the training and validation set. Therefore, this section uses different
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Training Test
Questions (total) 815 2,500
Generic Questions 500 1,250
Topics 707 1,436
Words 5.3 5.2
Yes 46% 42%
No 54% 58%

Table 8.3: Descriptive statistics. Our goal is not to learn new knowledge but to
test existing knowledge. As a result, the training set is small compared to the
validation set.

techniques to inspect the most similar items between the training and validation
set.

8.4.1 Topic Overlap in 20Q

We start by analyzing the overlap in topics. For example, we want to avoid having
questions about cars in the training set and about automobiles in the validation set.

N-grams Character n-grams are a good way to retrieve words sharing almost
the same lexical form.5 We show the five most similar pairs of topics between
the training and validation set in Table E.2 in Annex E.3. The most similar topics
according to this method are account and accountant. This technique does not
reveal problematic overlap between the two sets.

WordNet We use WordNet to compute the distance between two topics by
following the hypernym or hyponym chain. Table E.3 in Annex E.3 shows this
technique’s most similar pair of topics. None of the retrieved pairs show a
significant semantical or lexical overlap.

Sentence Transformers We finish our qualitative review of the topic overlap
using Sentence Transformers. Table E.4 in Annex E.3 shows the five most similar
pairs of topics. The most similar pairs are costume with halloween, chlorophyll and
chrysanthemum, bracelet and pendant. All of these words are related, but none are
synonyms of one another.

5We use a character tri-grams
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Train Topic Validation Topic
Does it have a one time function? knocker Does it need to be one student at a time? lettering
Would a parent want their child to do it? soloist Is it a category response, like parent or child? cornea
Can the human population fit on it? earth Would it fit in the palm of a human hand? keyboard
Does it rock? brim Is it some sort of precious, rare stone or rock? emerald
Is it a turn? heron Is it something you turn on? dice

Table 8.4: Qualitative review of the most similar pair of questions computed
using BM25. Questions usually share a similar word (e.g., child or rock), however,
it is used in a different context each time. Moreover, the topics are completely
unrelated, reducing the risk of overlap even more.

8.4.2 Question Overlap in 20Q

An overlap in terms of topics is only part of the story. We also want to avoid
evaluating models on the same kind of answers used to train them. Therefore,
we perform the same procedure to avoid lexical and semantic overlap between
the questions in the training and validation set. The task is trickier than for topics.
For example, Does it make you cry and Does it make you laugh only differ in a single
token, but their meaning is opposite.

BM25 We use BM25 to retrieve similar questions between the two sets. The two
most similar questions are Can the human population fit on it? and Would it fit in
the palm of a human hand?. These questions share two important tokens: fit and
human, but they do not have the same meaning. See table 8.4 for more examples.
This clearly shows how semantically inequivalent even the most similar sentences
in the train and validation set are.

Sentence Transformers Next, we perform the same analysis with Sentence
Transformers. The most similar questions between the two sets are does it have a
steering wheel? and does it have gears or screws?, indicating a sufficient amount of
dissimilarity between the questions in the training and test set.

8.4.3 Comparison with Existing Benchmarks

We finish this section by comparing the train/test overlap of 20Q with two exist-
ing benchmarks presented in Section 8.2: Commonsense QA 2.0 and Com2sense.
For each question in the test set, we look for the most similar one in the train-
ing set using Sentence Transformers. We summarize the results in Figure 8.1.
The results are striking, 20Q has significantly less overlap with the training set
than Com2sense and Commonsense QA 2.0. Our qualitative analysis of these
results reveal dangerously close duplicates between the training and test of these



8.5. LANGUAGE MODEL 105

20Q COM2SENSE CQA20
0.2

0.4

0.6

0.8

1.0

to
p-

1
si

m
ila

rit
y

Figure 8.1: Distribution of top-1 similarity between examples in the training and
test set. 20Q has the lowest similarity between the two (by design).

F1 NLL
Model Size Z-S F-S F-T Z-S F-S F-T
GPT-3 2.7B 58.77 58.02 58.04 112.9 82.64 66.46
GPT-3 6.7B 58.45 54.53 66.35 140.5 80.56 55.41
GPT-3 13B 59.65 48.88 74.48 79.87 65.52 55.63
GPT-3 175B 61.10 67.14 82.50 69.86 62.23 41.16

Table 8.5: Results per model size and inference method: zero-shot (Z-S), few-shot
(F-S), and fine-tune (F-T). According to F1 and NLL, the best method is the largest
GPT-3 fine-tuned on our training set.

two benchmarks. Even less expected, we uncover exact duplicates between the
training and test of Com2sense. We provide a more detailed analysis in Annex
E.1.

To summarize, our benchmark is free of any semantic and lexical overlap between
the training and validation set regarding topics and questions. Moreover, despite
the strict separation constraints, both sets stay semantically diverse.

8.5 Language Model

After reviewing that data, we review the language models. Although previous
work used text-to-text models such as T5 (Raffel et al., 2020b), T0 (Sanh et al., 2022),
and BART (Lewis et al., 2020a), in this work, we stick to GPT-3 (Brown et al., 2020a),
a general-purpose decoder-only Transformers language model. By sticking to a
single model, we can ensure that the only differentiating factor between the
models is the network size, not the pre-training data or model architecture.
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8.5.1 GPT-3

GPT-3 (Brown et al., 2020a) is an auto-regressive language model developed by
OpenAI. The model weights are not publicly available, although the model’s
predictions are available through a paid API.

Size GPT-3 comes in four sizes: 2.7B, 6.7B, 13B and 175B. We use this feature to
understand how the size of a model influences the amount of world knowledge
it can store.

Pre-training Data The authors of GPT-3 did not release the pre-training data
used to train the model. So instead, we use C4, the dataset used to train T5 (Raffel
et al., 2019), as a proxy to estimate the frequency of each topic in our benchmark.

Prompting GPT-3 was never trained to answer yes/no questions. Instead, its
objective is to predict the next token in a piece of text. The standard way to query
a large language model is to use in-context learning, where one provides a few
examples of the task in the prompt and asks the language model to complete the
last example.

8.6 Experiments

Our experiments aim at understanding which models possess the best world
knowledge. We believe large language models are ineffective at querying their
internal knowledge using in-context learning. For this reason, we also fine-tune
each model on the training set for a single epoch. The goal is not to teach new
knowledge but to guide the model into learning the task. As we meticulously
assembled our training and validation splits, we are sure any performance gain
will not come from the knowledge acquired during fine-tuning.

8.6.1 Zero-shot

The zero-shot approach is the simplest way to evaluate the knowledge of the
language model. The model must predict the next token without any prior
examples. We record the probability of the yes token and no token.
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Prompt

You are playing a game of 20 questions.
Answer the following question
about with yes or no.

Topic: {{ question_topic_1 }}
Question: {{ question_example_1 }}
Answer:

8.6.2 Few-shot

This approach improves upon the previous one by providing multiple examples
to steer the model in the right direction. The model learns the task on the fly using
examples from the training set. We record the probability of the yes token and
no token.

Prompt

Topic: {{ topic_example_1 }}
Question: {{ question_example_1 }}
Answer: {{ answer_example_1 }}
...
Topic: {{ topic_example_n }}
Question: {{ question_example_n }}
Answer:

Settings We provide four examples in a random order (two positives and two
negatives) from the training set.

8.6.3 Fine-tuning

Understanding the task of answering yes/no questions using on the fly examples
is hard. Therefore, we also tested another approach where we fine-tuned models
on our training set.

Prompt
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Figure 8.2: Box-plot of negative-likelihood (NLL) per model size.
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Figure 8.3: Scatter plot of NLL by topic frequency for the 13B (blue) and 175B
(green) models.

Topic: {{ topic_example }}
Question: {{ question_example }}
Answer:

Settings Each model is trained on a single epoch of the training set.

8.7 Results

We run all experiments and report binary-F1 and Negative Log-Likelihood (NLL)
to the ground-truth answers in Table 8.5. We start by reviewing the effect of fine-
tuning and then analyze our two hypotheses.
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8.7.1 Fine-tuning

The benefit of fine-tuning is clear: fine-tuned models are systematically better
than few-shot and zero-shot across model size and evaluation metrics. Moreover,
thanks to our detailed review of the overlap, we can safely assume the out-
performance does not come from learning any new knowledge but is due to
better use of the world knowledge already present in the language models.

8.7.2 Size Effect

In theory, the larger the model, the more space it has to store world knowledge.
Therefore, we expect to see better performance for large models. Figure 8.2 shows
a box-plot of the negative log-likelihood of the fine-tuned results by the model
size.

The results are somewhat unexpected. Although the median negative log-
likelihood is steadily declining with the model size, the variability also increases
with the model size, except for the largest one, which breaks the trend with a
low median loss and low variability. In other words, the model’s ability to know
what it does not know diminishes with model size.

8.7.3 Frequency Effect

Previous research showed that the frequency of tokens in the pre-training data
influences the ability of large language models to do numeric reasoning (Razeghi
et al., 2022). We hypothesize that the same is true when it comes to world
knowledge. Language models should have a harder time answering questions on
topics they have rarely encountered during pre-training. Therefore, we collected
the frequency count of each topic in a large pre-training corpus: C4 (Raffel et al.,
2020b). Our experiments revealed the high correlation of topic frequency with
the perplexity of GPT-2 (XL) to generate the word. We use this metric as it scales
to different word forms and is easier to collect. 6

Figure 8.3 clearly shows the frequency effect. Topics associated with a lower
frequency quartile have more variability in negative log-likelihood than higher
quartiles. This effect is especially strong on the 13B model.

6We use the cross-entropy loss (using a sum reduction) from a GPT-2 XL model as a measure
of frequency
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8.7.4 Question Bias

In this section, we try to uncover whether language models use statistical cues
in the question rather than their internal knowledge to answer questions. To this
end, we run the fine-tuned model (explained in Section 8.6.3) without the topic
in the prompt. If language models use statistical patterns in questions, it should
not matter whether the subject is present or not. The F1 score of GPT-3 (175B)
drops from 82.50% to 59.40%, just over the performance of the smallest GPT-3
model. We conclude that language models use their internal knowledge rather
than statistical cues in the questions.

8.8 Conclusion

Previous research (Lewis et al., 2021a) showed that language models do not have
enough world knowledge to rival open-domain question-answering systems. We
update this claim using larger models and a novel benchmark, 20Q. We find two
factors influencing the world knowledge of language models: the model’s size
and the topic’s frequency in the pre-training data. Thanks to careful attention
to the overlap between the training and validation set, we can safely conclude
that fine-tuning provides a better picture of the world knowledge possessed by
language models. Our benchmark shows that even the largest language models
(175 billion parameters) have room for improvement regarding world knowledge.
We propose several areas of improvement for coping with a rapidly changing
world as future work.
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Conclusion

This thesis investigated several interdisciplinary domains to enhance knowledge-
grounded conversations using large language models. The ultimate goal was to
improve conversational agents, emphasizing better access to external knowledge
and world knowledge, enhancing capabilities in non-English languages, and
developing more effective evaluation metrics. This final chapter synthesizes our
findings and proposes directions for future research.

9.1 External Knowledge

In Chapter 2, we tackled the challenge of integrating external knowledge into
pre-trained language models without incurring prohibitive retraining costs. Our
approach merged a non-parametric external database of Wikipedia with a mod-
ified BART model, tailored for knowledge-infused dialogues using the Wizard
of Wikipedia dataset. This departure from the traditional single-piece knowl-
edge retrieval method of BART encourages the retrieval and fusion of multiple
knowledge pieces.

Our system’s capability for autonomous sourcing and integration of knowledge
enhances the model’s efficacy and sets it apart from other Retrieval Augmented
Generation (RAG) systems like FiD. The distinguishing feature lies in the in-
corporation of knowledge pieces within the encoder rather than the decoder.
Future work could shed light on the performance differences between these two
approaches.

With the increasing interest in large-scale language models such as GPT-3/4, it
becomes evident that the incorporation of external knowledge in language models
is essential. This necessity is underscored by the high costs of fine-tuning, making
the embedding of knowledge within prompts a critical approach to minimizing
instances of hallucination.

111
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However, increased computational and latency costs go hand in hand with the
integration of more external knowledge pieces into our system. Future research
could investigate the use of lightweight adapters, like QLoRA (Dettmers et al.,
2023), for incorporating external knowledge. While this is feasible in a supervised
fine-tuning setup, how this could be achieved with Reinforcement Learning from
Human Feedback (RLHF) trained models remains unclear.

9.2 Open-Domain & Task-Oriented Chatbots

The inherent unpredictability of open-domain dialogues poses significant eval-
uation challenges. Traditional evaluation methods, such as BLEU or semantic
overlap, are often insufficient due to the one-to-many nature of these dialogues.

We proposed a novel reference-free evaluation method, the Follow-Ups Log-
Likelihood (FULL), in response to the shortcomings of gold-standard evaluation
methodologies. This method measures the likelihood of a large language model
responding with a fixed set of negative utterances. FULL provides a more accurate
assessment of open-domain dialogues and correlates more closely with human
evaluations than twelve other existing methods.

Nevertheless, FULL does not provide a rationale for why one utterance outper-
forms another – it merely indicates the superior response. There is a striking
resemblance to reward models in Reinforcement Learning from Human Feed-
back (RLHF). Future work could explore using FULL as a reward model to train
conversational models with RLHF. This could improve the quality of smaller lan-
guage models and decrease the costs associated with collecting human feedback.

Recognizing a lack of conversational search datasets for non-English languages,
we extended the ConveRT model to Dutch by pre-training it on Dutch conversa-
tions from Reddit. ConveRT is an efficient, lightweight retriever model using a
dual-tower approach. Thanks to several optimizations, this lightweight ConveRT
model can easily run on a CPU. One of its limitations, however, is its inability to
mix information bits from multiple answers.

Instead of pre-training on Reddit, we also collected a large number of questions
and answers from FAQ pages on the web. This resulted in a unique dataset of
its kind. The rationale was to pre-train our model on all of these questions and
answers before applying them to a more specific use case, such as answering
questions on COVID-19 vaccination. In our experiments, we found that simul-
taneously training an XLM-RoBERTa across all languages yielded better results
compared to individual language models. There were, however, two problems
with this approach. First, we only mapped questions to FAQ answers, whereas
we could also leverage the similarity of the user query with the FAQ question.
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Second, the questions in the dataset were clean and did not reflect the noise of
real-life user queries.

We also explored multilingual task-oriented models. Here, we successfully re-
purposed a translation model for intent detection and slot filling, enabling us to
target more languages than traditional encoder-decoder models. However, we
identified the need for improved tokenization methods for non-spaced languages
like Japanese, where slot boundaries and tokenization do not always align. This
misalignment makes the task harder for the model as it has to break tokens apart
to be able to insert slot boundaries. One of the main challenges in multilingual
task-oriented chatbots is coping with the linguistic nuances of each language. For
instance, a Chinese user may not ask for the same artist or restaurant as a Dutch
user. Future work could investigate novel ways to automatically localize English
datasets to other languages using the latest large language models.

9.3 Common Sense & Background Knowledge

Users of large language models expect a certain level of common sense. A lack
of it can quickly lead users to perceive the agent as "dumb." However, measuring
common sense is a challenging task. We evaluated the world knowledge of
language models using the game of Twenty Questions. We found that language
models of all sorts do possess some world knowledge. However, the larger the
model, the more world knowledge it has. Our experiments revealed it is possible
to enhance their world knowledge by leveraging an external search engine. We
also found that language models, especially GPT-3, struggle to compare the size
of objects.

In several common sense and world knowledge datasets, there is an overlap be-
tween the training set and the test set, which artificially increases the performance
of models on these tasks. To overcome this, we created a new benchmark that is
free of any lexical and semantic overlap between the training and test sets. Our
findings indicated that a model’s size and the topic frequency in pre-training data
significantly impact its performance on world knowledge tasks.

A potential way to improve the world knowledge of a language model is to
incorporate a vision component. We also noticed that language models struggle
with infrequent topics. Upsampling these topics in the pre-training data could
potentially help improve the world’s knowledge of language models.
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9.4 Final Thoughts

The challenge of discerning when a language model knows or does not the answer
to a query is the missing piece of our research. Interestingly, this issue is not
unique to machines, as humans often exhibit overconfidence in their knowledge
as well. Identifying the bounds of a model’s knowledge has several potential
benefits, including:

• Efficient deployment of larger models only when necessary, leading to sig-
nificant energy savings.

• Enhanced trustworthiness of model outputs by detecting and mitigating
hallucinations.

• Improvement in training datasets by pinpointing knowledge gaps.

While in classical machine learning, such as classification, the logit probabilities
can act as a confidence score, the scenario is more intricate with generative models.
Although generative models effectively employ a form of classification during
each token generation, the uncertainty associated with token generation does not
necessarily reflect the model’s overall uncertainty. This might be because such
uncertainties capture both the model’s semantic and lexical uncertainty (Lin et al.,
2022).

A common approach to gauge a model’s semantic certainty is by generating
multiple samples and assessing the coherence among them (Manakul et al., 2023;
Kadavath et al., 2022a; Agrawal et al., 2023). The thinking is that if the model has
semantic uncertainty, not only lexical uncertainty the answers will diverge a lot,
however, if the model only has lexical uncertainty they won’t diverge semantically.
However, this method has limited applicability in practice, mainly because it
requires invoking expensive language models multiple times, increasing latency
and cost.

The fundamental problem lies with the traditional way of training language
models with teacher forcing and cross-entropy. This method is not well suited to
teaching models to express uncertainty as it would require knowing in advance
what a model knows or does not know. This is not an easy endeavour and
remains an open area of research. Recent developments with Reinforcement
Learning from Human Feedback (Ouyang et al., 2022) could help in the pursuit
of having language models express uncertainty. One could align the model with
the simple idea that an uncertain answer is better (i.e., has a higher reward) than a
wrong or hallucinated answer. This method could potentially teach the language
model to express uncertainty without access to its internal knowledge. Since the
reward and language model often share the same base model (Touvron et al.,
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2023), in theory, the reward could "know" what the language model knows or not
(i.e., is it hallucinating or not).

Another potential approach is to use the latest mechanistic analysis of Transform-
ers models and highlight from within when a language model knows or does not
know the answer to a particular query.

In conclusion, while large language models like Transformers continue to revolu-
tionize diverse domains, there remains an ever-pressing need for deeper insight
into their underlying mechanisms. This insight could be pivotal in addressing
the longstanding challenge of discerning the boundaries of a model’s knowledge.
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A.1 Appendix: Comparison of Models

We present in Figure A.1 the average absolute correlation to human evaluations
per model.

A.2 Appendix: List of Candidate Follow-ups

Table A.1 list the entire list of follow-ups considered.

Follow-up Category Level Type Level Dialog
X Not really relevant here. specific turn neg 0.48 0.65
X You’re really confusing. error recovery dialog neg 0.46 0.67

I don’t understand what you’re saying. correct turn neg 0.46 0.58
That’s not really relevant here. specific turn neg 0.45 0.70
You are so confusing. coherent dialog neg 0.45 0.64

X You’re really boring. informative dialog neg 0.44 0.65
That’s not very interesting. interesting turn neg 0.44 0.60
That was a really boring response. interesting turn neg 0.43 0.63

X You don’t seem interested. inquisitive dialog neg 0.43 0.61
I am so confused right now. error recovery dialog neg 0.43 0.60
I’m so confused! understandable turn neg 0.43 0.59
I don’t really care. That’s pretty boring. engaging turn neg 0.43 0.61
I want to talk about something else. engaging turn neg 0.43 0.65
That’s not even related to what I said. relevant turn neg 0.42 0.58

X What are you trying to say? understanding dialog neg 0.42 0.68
I am so confused right now! correct turn neg 0.42 0.57
That makes no sense! appropriate turn neg 0.42 0.56
I don’t understand at all! understandable turn neg 0.41 0.54
That’s really boring. interesting turn neg 0.41 0.54
I don’t like you. likeable dialog neg 0.40 0.58
I’m so confused right now! fluent turn neg 0.40 0.56
Don’t change the topic! relevant turn neg 0.40 0.58
You’re not understanding me! correct turn neg 0.40 0.62
That’s a very generic response. specific turn neg 0.39 0.50
You don’t really know much. informative dialog neg 0.39 0.52
You’re not very nice. likeable dialog neg 0.38 0.56
You’re not very fun to talk to. likeable dialog neg 0.37 0.55
Is that real English? fluent turn neg 0.37 0.49
That’s a lot of questions! inquisitive dialog pos 0.36 0.52
Why are you repeating yourself? diverse dialog neg 0.35 0.50
You’re making no sense at all. coherent dialog neg 0.35 0.43
You ask a lot of questions! inquisitive dialog pos 0.35 0.54
Let’s change the topic. engaging turn neg 0.35 0.45
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Table A.1 continued from previous page
Follow-up Category Level Type Level Dialog
You don’t ask many questions. inquisitive dialog neg 0.35 0.54
Why are you changing the topic? relevant turn neg 0.34 0.51
Stop saying the same thing repeatedly. diverse dialog neg 0.34 0.50
Do you know how to talk about something else? flexible dialog neg 0.33 0.49
You’re changing the topic so much! coherent dialog neg 0.33 0.47
You know a lot of facts! informative dialog pos 0.32 0.48
Tell me more! engaging turn pos 0.32 0.34
I like you! likeable dialog pos 0.31 0.43
Wow that’s a lot of information. informative dialog pos 0.31 0.38
Stop changing the topic so much. depth dialog neg 0.31 0.44
What does that even mean? understandable turn neg 0.30 0.35
I don’t want to talk about that! flexible dialog neg 0.29 0.50
That’s not what you said earlier! consistent dialog neg 0.29 0.37
You have a good point. appropriate turn pos 0.29 0.43
I see, that’s interesting. specific turn pos 0.28 0.31
Stop contradicting yourself! consistent dialog neg 0.28 0.36
You’re very easy to talk to! flexible dialog pos 0.28 0.40
Stop repeating yourself! diverse dialog neg 0.27 0.40
That’s good to know. Cool! specific turn pos 0.25 0.30
That’s a good point. specific turn pos 0.25 0.34
Wow you can talk about a lot of things! flexible dialog pos 0.23 0.27
I’m really interested in learning more about this. engaging turn pos 0.22 0.26
That makes sense! appropriate turn pos 0.21 0.21
Thanks for all the information! informative dialog pos 0.21 0.15
You’re super polite and fun to talk to likeable dialog pos 0.17 0.23
Wow that is really interesting. interesting turn pos 0.17 0.14
That’s really interesting! interesting turn pos 0.16 0.11
Great talking to you. likeable dialog pos 0.15 0.10
Cool! That sounds super interesting. interesting turn pos 0.08 - 0.01
Wow! That’s really cool! engaging turn pos 0.04 - 0.08

Table A.1: List of candidate follow-ups along with their category (fine-grained attribute), positivity (negative
of positive follow-up) and correlation with a human evaluation of the overall quality of the turn/dialog. All
follow-ups and static data is from Mehri and Eskenazi (2020a).
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BLD S BLD L DGPT S DGPT M DGPT L GPT2 S GPT2 M GPT2 L GPT2 XL

20

30

40

Per Turn Entire Dialog

Figure A.1: Average absolute correlation with human evaluations for several lan-
guage models. We use Blender-400 (BLD S) as language model because of its high
correlation with human evaluations. For space reasons, Blender is abbreviated
as BLD and DialoGPT as DGPT.
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Language Random TF-IDF USE XLM-Roberta
(1 page per domain)

XLM-RoBERTa
(full training set) Monolingual

P@1 MRR R@5 P@1 MRR R@5 P@1 MRR R@5 P@1 MRR R@5 P@1 MRR R@5 P@1 MRR R@5
English 5.9 18.9 29.7 53.9 63.8 79.8 52.6 64.2 83.0 74.9 82.5 93.5 72.5 80.7 92.5 75.6 82.9 93.5
German 5.8 18.3 28.8 48.0 58.0 74.8 49.8 61.8 81.6 73.0 81.3 93.7 69.0 78.2 92.0 72.5 81.1 93.6
Spanish 7.3 22.3 36.7 49.2 60.5 78.9 49.3 61.6 82.0 72.8 81.7 94.5 68.9 78.6 93.2 68.6 78.0 92.3
French 6.1 19.4 30.3 49.9 60.6 78.0 50.2 62.4 82.5 72.2 80.7 93.3 68.9 78.0 91.8 60.5 71.0 87.4
Italian 5.2 16.8 26.2 49.0 58.6 74.4 44.1 55.7 75.2 65.9 74.7 88.6 60.2 70.2 85.6 53.3 64.1 81.6
Dutch 5.3 17.3 26.5 53.2 62.9 78.6 47.7 59.6 79.2 73.0 81.2 93.2 69.8 78.6 91.7 60.1 70.4 86.8
Portuguese 5.3 17.0 26.6 45.5 55.8 72.7 44.1 56.2 75.8 68.5 77.4 90.3 65.6 74.8 88.8 58.3 68.4 84.6
Turkish 6.2 19.0 31.0 49.3 59.2 75.2 43.5 55.7 76.4 70.2 78.8 91.6 64.5 74.5 89.6 65.7 76.1 91.4
Russian 7.1 21.7 35.7 48.5 59.2 76.7 49.8 63.1 83.8 73.5 82.1 94.4 68.9 78.7 93.1 61.0 71.6 88.3
Polish 6.1 19.4 30.4 49.9 59.2 74.9 47.4 59.9 81.2 77.6 85.2 96.0 73.2 81.6 94.6 64.0 73.9 89.8
Indonesian 8.0 23.8 40.1 61.8 71.3 86.4 49.3 62.1 83.5 82.2 88.5 97.2 76.6 84.3 95.4 - - -
Norwegian 5.5 17.8 27.5 48.8 58.9 75.9 25.3 36.9 57.4 76.5 83.1 93.7 70.6 79.4 93.3 - - -
Swedish 5.0 16.1 25.0 49.1 59.3 76.1 25.7 36.7 56.3 75.6 83.3 94.6 72.0 80.5 93.1 - - -
Danish 5.6 18.1 27.8 54.3 64.0 80.6 30.4 42.1 63.3 75.4 82.7 92.9 71.5 79.5 91.8 - - -
Vietnamese 11.3 30.6 56.6 62.7 73.3 90.6 28.4 43.2 70.7 73.9 81.2 92.5 69.8 78.3 91.6 - - -
Finnish 5.6 18.3 28.2 43.9 53.5 70.0 21.8 33.2 53.7 74.9 82.6 93.9 68.5 76.8 89.7 - - -
Romanian 6.4 20.3 32.1 48.6 57.8 73.0 29.3 40.7 62.0 76.9 83.2 91.5 66.6 75.4 88.2 - - -
Czech 3.8 12.9 19.0 38.3 48.2 64.0 18.3 26.9 42.4 59.6 69.0 83.5 50.1 60.2 77.2 - - -
Hebrew 8.6 25.1 42.8 49.3 61.5 81.3 14.5 26.5 50.7 75.3 83.6 95.5 68.8 78.7 93.7 - - -
Hungarian 4.1 13.3 20.4 30.3 38.1 52.1 21.0 28.6 41.4 60.6 69.7 83.7 54.1 64.1 80.5 - - -
Croatian 4.9 15.9 24.5 49.4 58.1 73.0 32.8 41.4 56.7 78.2 83.6 92.6 71.8 79.4 91.4 - - -

Table B.1: Results of our experiments on MFAQ. XLM-RoBERTa (1 page per
domain) is consistently better than the rest, except for English where a RoBERTa
model achieves a higher MRR. P@1 = Precision-at-1 (accuracy), MRR = Mean
Reciprocal Rank, R@5 = Recall-at-5, One page per domain = subset of the training
set.

ID Question Answer
0 Are international students eligible for the MSBA program? Yes, international students are eligible for the MSBA program. Please review the International Applicants page for specific requirements.
1 Are the hours flexible enough for full-time working adults? Yes, the MSBA program accommodates students working full-time. Required weekly live sessions, lasting 75 minutes, are held in the evening, and the three

residential components, two strongly recommended and one optional, take place over weekends. Students complete all other coursework on their own schedule,
but must adhere to deadlines and be prepared to participate in weekly live sessions.

2 Can I take a course from a third-party provider, like Lynda
or Coursera, to prepare for the programming requirements
of this program?

Our goal is to make sure that everyone entering the program has the necessary background to be successful. We strongly recommend that applicants who feel
they need additional preparation in programming languages take a for-credit course from an accredited two- or four-year institution.

3 Can I transfer credits into the program? No, the Tepper School does not accept transfer credits.
4 Can the GMAT or GRE requirement be waived? No, these test scores are required.
5 Do I have to maintain a certain GPA in the program to grad-

uate?
Yes, MSBA degree candidates must maintain a minimum cumulative GPA of 3.0 to graduate.

6 Do you offer the opportunity to preview courses in your
program to get a feel for what they are like?

Yes we do. To preview one of our courses, please visit our Virtual Class Visit page. You’ll be able to register to virtually participate in a course of your choosing.

7 How do I learn more about the online learning environ-
ment?

To preview one of our courses, please visit our Virtual Class Visit page. You’ll be able to view upcoming courses and register to virtually attend a course of your
choosing.

8 How many hours per week should be dedicated to course-
work?

Students take two classes at a time and should expect to spend at least 10 hours on each course, or 20 hours total for the week. Coursework includes live synchronous
meetings, assignments, projects, readings, and quizzes.

9 If I need to withdraw from the program, will I get a refund? If I need to withdraw from the program, will I get a refund?
10 If I’m already proficient in basic programming and proba-

bility/statistics, do I have to take these courses?
Yes, the 46-880 Introduction to Probability and Statistics and 46-881 Programming in R and Python courses are required for all MSBA students. These courses
ensure that all students have the necessary skills and knowledge to succeed in courses that follow. For more information, visit the Curriculum page on our website.

11 Is the MSBA offered exclusively on campus? No, the MSBA degree is offered only online, with three optional on-campus experiences. Though they all are optional, we strongly recommend that students
attend the BaseCamp and Capstone Project experiences, which occur at the beginning and end of the degree program.

12 Is the MSBA program structured in cohorts? Yes, the part-time, online MSBA is structured in cohorts to optimize student interaction and success in the program.
13 Is the Tepper School participating in the Yellow Ribbon Pro-

gram?
Yes, the Tepper School is participating in the Yellow Ribbon Program. For more information, please visit the Tuition page or contact Mike Danko at uro-
vaedbenefits@andrew.cmu.edu.

14 Is there a Tuition Payment Plan available? Yes, for more information about a monthly payment plan and debt minimization services, please review our payment options.
15 It’s a part-time online program, but are there any on-campus

opportunities for students?
We have three on-campus experiences. The first is an orientation basecamp, where the students are introduced to the program, interact with faculty, and learn
about their cohort. The second, an immersive analytics experience led by top CMU faculty, takes place mid-program. [...]

16 I’m an active duty soldier/veteran. Am I eligible for an
application fee waiver?

Yes, as a GMAC military-friendly business school, we waive the $125 application fee for active duty U.S. military personnel, veterans and retirees. Please contact
Mike Danko at uro-vaedbenefits@andrew.cmu.edu to discuss the fee waiver.

17 Must international students come to campus? We recommend attendance at the on-campus experiences, but students who are unable to attend may participate remotely and still meet the requirements of the
program. Please note that because the program is delivered online, enrollment in the MSBA will not qualify students for a student visa to enter the United States.

18 What are some examples of roles a graduate could pursue
after the program?

Business analytics professionals hold a range of positions across sectors and industries. They have titles such as business intelligence analyst, operations research
analyst, market research analyst and statistician. Other job titles for these professionals are available here.

19 What are the programming languages that I should have
experience in before applying to the program?

Basic programming knowledge in a modern language is required for admission. You do not need to be familiar with any specific language or build advanced
programming skills before applying to the MSBA program. Your courses in the program will introduce you to relevant languages and provide hands-on experience.

20 What are the technical requirements for the MSBA program? All students must have access to the following technologies in order to participate in the program: Laptop with the following requirements: - Windows – Intel
Core i5 processor or higher; 8GB RAM, 256+ hard drive capacity - Macintosh [...]

21 What career resources are available for MSBA students and
alumni?

The Master’s Career Center helps students develop strategies focused on their career needs through a variety of services. For example, the career center hosts
workshops and webinars in job search fundamentals, such as resume writing, interviewing, and networking. [...]

22 What happens if I need to defer starting or withdraw from
the program?

Deferrals are granted only if an applicant must complete military service or has an extreme emergency. Deposits are refunded in these instances. Students are
re-admitted the following year and must submit their deposit before the deadline for their start date. [...]

23 What is the average Quant and Verbal scores for the GRE
and GMAT?

There is no average score expectation. The test scores are simply one component of the multifaceted admissions process that we consider when making an
admissions decision.

24 What separates the Tepper School of Business’ online MSBA
program from other MSBA programs, either online or on-
campus?

The Tepper School of Business is globally renowned for its analytical approach to business problem solving. It is an integral part of Carnegie Mellon University, a
top-tier research university that has become the center for disciplines including data science, robotics, business intelligence and additive manufacturing. [...]

25 What time(s) do the synchronous sessions take place? The weekly live sessions are in the evening (U.S. Eastern Time) and typically last 75 minutes.
26 What types of financial aid or scholarships are available to

online students?
Students may be eligible to take out federal and/or private education loans to cover tuition and other education-related costs. Please view our Tuition page for
details. At this time, the Tepper School does not provide scholarships for the MSBA program.

Table B.2: FAQ pairs from the Tepper School of Business.
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Appendix Chapter 6

C.1 Distribution of Intents & Slots

We list in Table C.1 the distribution of intents across the three datasets. Table C.2
shows the distribution of slots across the three datasets.

C.2 Logistic Regression by Languages

We list the results of the logistic regression by language in Table C.3.
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Intent MASSIVE Generated Synthetic
calendar_set 7,0% 2,6% 3,6%
play_music 5,5% 2,2% 3,3%
weather_query 5,0% 2,0% 3,0%
calendar_query 4,9% 2,2% 2,4%
general_quirky 4,8% 1,7% 5,2%
qa_factoid 4,7% 2,0% 8,3%
news_query 4,4% 2,1% 2,5%
email_query 3,6% 2,2% 12,0%
email_sendemail 3,1% 2,4% 11,1%
datetime_query 3,0% 1,5% 1,4%
calendar_remove 2,7% 2,1% 1,1%
play_radio 2,5% 2,1% 1,5%
social_post 2,5% 2,4% 8,7%
qa_definition 2,3% 2,2% 3,7%
transport_query 2,0% 2,3% 1,1%
cooking_recipe 1,8% 2,2% 1,2%
lists_query 1,7% 1,5% 1,0%
play_podcasts 1,7% 1,5% 1,0%
recommendation_events 1,7% 2,0% 0,9%
alarm_set 1,6% 1,8% 0,6%
lists_createoradd 1,5% 1,7% 0,6%
recommendation_locations 1,5% 2,3% 0,9%
lists_remove 1,4% 1,7% 0,9%
music_query 1,3% 1,3% 0,6%
iot_hue_lightoff 1,3% 1,3% 0,6%
qa_stock 1,3% 2,5% 2,7%
play_audiobook 1,3% 2,0% 0,3%
qa_currency 1,2% 2,2% 3,3%
takeaway_order 1,2% 2,1% 0,4%
alarm_query 1,1% 1,3% 0,2%
email_querycontact 1,1% 2,0% 3,3%
transport_ticket 1,1% 1,8% 0,6%
iot_hue_lightchange 1,1% 2,1% 0,7%
iot_coffee 1,1% 1,2% 0,5%
takeaway_query 1,1% 1,8% 0,5%
transport_traffic 1,0% 1,8% 0,4%
music_likeness 1,0% 1,5% 0,5%
play_game 1,0% 1,7% 0,7%
audio_volume_up 1,0% 1,2% 0,1%
audio_volume_mute 1,0% 1,5% 0,3%
social_query 0,9% 2,0% 2,8%
transport_taxi 0,9% 1,9% 0,5%
iot_cleaning 0,8% 1,4% 0,4%
alarm_remove 0,7% 1,8% 0,2%
qa_maths 0,7% 1,7% 0,8%
iot_hue_lightup 0,7% 1,3% 0,4%
iot_hue_lightdim 0,7% 1,4% 0,4%
general_joke 0,6% 1,3% 0,3%
recommendation_movies 0,6% 2,0% 0,4%
email_addcontact 0,5% 1,3% 1,4%
iot_wemo_off 0,5% 0,8% 0,2%
datetime_convert 0,5% 1,6% 0,2%
audio_volume_down 0,5% 1,1% 0,1%
music_settings 0,4% 0,9% 0,2%
iot_wemo_on 0,4% 1,0% 0,2%
general_greet 0,2% 0,2%
iot_hue_lighton 0,2% 1,0% 0,1%
audio_volume_other 0,2% 0,6% 0,0%
music_dislikeness 0,1% 0,9% 0,1%
cooking_query 0,0% 0,0% 0,0%

Table C.1: Distribution of intents across the three datasets. Generated represents
the utterances generated by GPT-3, while synthetic represents the synthetic train-
ing set of SLURP.
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Intent MASSIVE Generated Synthetic
date 16,0% 10,8% 10,7%
place_name 9,6% 10,6% 8,0%
event_name 8,8% 4,3% 5,5%
person 7,6% 5,4% 17,2%
time 7,0% 5,8% 4,1%
media_type 4,2% 5,4% 9,5%
business_name 3,4% 5,7% 7,6%
weather_descriptor 2,8% 1,1% 1,5%
transport_type 2,8% 5,0% 1,2%
food_type 2,6% 4,2% 1,4%
relation 2,2% 2,3% 4,8%
timeofday 2,1% 2,0% 1,3%
artist_name 2,0% 0,8% 1,2%
device_type 2,0% 3,4% 1,1%
definition_word 2,0% 2,0% 3,5%
currency_name 1,9% 3,8% 5,7%
house_place 1,7% 3,8% 0,8%
list_name 1,7% 1,8% 0,9%
business_type 1,7% 2,8% 0,8%
news_topic 1,6% 0,7% 1,1%
music_genre 1,6% 0,9% 1,0%
player_setting 1,4% 2,1% 0,5%
radio_name 1,2% 1,1% 0,9%
song_name 1,1% 0,3% 0,7%
order_type 0,9% 1,6% 0,3%
color_type 0,9% 1,7% 0,4%
game_name 0,8% 1,3% 0,6%
general_frequency 0,7% 0,3% 0,4%
personal_info 0,7% 1,2% 2,0%
audiobook_name 0,6% 0,9% 0,2%
podcast_descriptor 0,6% 0,6% 0,3%
meal_type 0,6% 0,4% 0,4%
playlist_name 0,5% 0,1% 0,3%
podcast_name 0,5% 0,4% 0,3%
time_zone 0,5% 1,1% 0,2%
app_name 0,4% 0,3% 0,1%
change_amount 0,4% 0,9% 0,1%
music_descriptor 0,4% 0,2% 0,2%
joke_type 0,3% 0,8% 0,2%
email_folder 0,3% 0,2% 0,9%
email_address 0,3% 0,4% 1,4%
transport_agency 0,3% 0,5% 0,2%
coffee_type 0,2% 0,2% 0,1%
ingredient 0,2% 0,1% 0,1%
cooking_type 0,1% 0,1% 0,1%
movie_name 0,1% 0,1% 0,1%
movie_type 0,1% 0,2% 0,0%
transport_name 0,1% 0,1% 0,1%
drink_type 0,1% 0,1% 0,0%
alarm_type 0,1% 0,1% 0,0%
transport_descriptor 0,1% 0,0% 0,0%
audiobook_author 0,1% 0,2% 0,0%
sport_type 0,0% 0,0% 0,0%
music_album 0,0% 0,0%
game_type 0,0% 0,0% 0,0%

Table C.2: Distribution of slots across the three datasets. Generated represents the
utterances generated by GPT-3, while synthetic represents the synthetic training
set of SLURP.
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language 𝛽0 𝛽1 𝑅2 𝑓 (𝑥 = 0) 𝑓 (𝑥 = 0.5) 𝑓 (𝑥 = 1)
all -0.69 3.14 0.08 0.33 0.71 0.92
af-ZA -0.98 4.01 0.11 0.27 0.74 0.95
am-ET -0.46 3.09 0.06 0.39 0.75 0.93
ar-SA -0.58 3.01 0.07 0.36 0.72 0.92
az-AZ -0.55 3.24 0.08 0.37 0.75 0.94
bn-BD -1.27 3.71 0.10 0.22 0.64 0.92
cy-GB -0.66 3.37 0.08 0.34 0.74 0.94
da-DK -0.95 4.13 0.12 0.28 0.75 0.96
de-DE -0.65 3.58 0.09 0.34 0.76 0.95
el-GR -0.92 3.64 0.09 0.28 0.71 0.94
en-US -1.45 4.93 0.21 0.19 0.73 0.97
es-ES -0.60 2.99 0.07 0.36 0.71 0.92
fa-IR -0.96 2.70 0.06 0.28 0.60 0.85
fi-FI -0.86 3.80 0.10 0.30 0.74 0.95
fr-FR -0.37 2.65 0.05 0.41 0.72 0.91
he-IL -0.72 3.44 0.08 0.33 0.73 0.94
hi-IN -0.76 3.10 0.08 0.32 0.69 0.91
hu-HU -0.55 3.25 0.08 0.37 0.75 0.94
hy-AM -1.05 3.35 0.08 0.26 0.65 0.91
id-ID -0.67 3.33 0.08 0.34 0.73 0.93
is-IS -0.56 3.19 0.07 0.36 0.74 0.93
it-IT -0.46 2.82 0.06 0.39 0.72 0.91
ja-JP -0.48 2.77 0.06 0.38 0.71 0.91
jv-ID -0.34 2.95 0.06 0.42 0.76 0.93
ka-GE -0.46 2.59 0.06 0.39 0.70 0.89
km-KH -0.23 1.62 0.03 0.44 0.64 0.80
kn-IN -0.94 2.55 0.05 0.28 0.58 0.83
ko-KR -0.49 3.42 0.08 0.38 0.77 0.95
lv-LV -0.81 3.62 0.09 0.31 0.73 0.94
ml-IN -1.39 3.64 0.10 0.20 0.61 0.90
mn-MN -0.79 3.32 0.07 0.31 0.70 0.93
ms-MY -0.77 3.55 0.08 0.32 0.73 0.94
my-MM -0.97 4.12 0.08 0.27 0.75 0.96
nb-NO -0.72 3.65 0.09 0.33 0.75 0.95
nl-NL -0.80 3.71 0.10 0.31 0.74 0.95
pl-PL -0.52 2.65 0.06 0.37 0.69 0.89
pt-PT -0.56 3.05 0.07 0.36 0.72 0.92
ro-RO -0.36 3.00 0.06 0.41 0.76 0.93
ru-RU -0.47 3.12 0.07 0.38 0.75 0.93
sl-SL -0.63 3.25 0.08 0.35 0.73 0.93
sq-AL -0.54 3.04 0.07 0.37 0.73 0.92
sv-SE -0.51 3.53 0.09 0.37 0.78 0.95
sw-KE -0.89 3.26 0.08 0.29 0.68 0.91
ta-IN -0.70 3.20 0.07 0.33 0.71 0.92
te-IN -0.65 2.18 0.04 0.34 0.61 0.82
th-TH -0.66 2.61 0.06 0.34 0.66 0.88
tl-PH -1.12 3.72 0.09 0.25 0.68 0.93
tr-TR -0.71 3.53 0.09 0.33 0.74 0.94
ur-PK -0.80 3.30 0.08 0.31 0.70 0.92
vi-VN -1.72 3.78 0.10 0.15 0.54 0.89
zh-CN -0.42 2.35 0.06 0.40 0.68 0.87
zh-TW -0.56 1.97 0.05 0.36 0.61 0.80

Table C.3: Logistic regression results by language
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Appendix Chapter 7

D.1 Computing Infrastructure

We ran all our experiments on a server running 8 NVIDIA GPU (12GB) with
128GB of RAM and 24 CPU. All models ran in parallel using the device_map
argument of the from_pretained method.

D.2 Hyperparameter Search

We did not engage in a hyperparameter search. Future research could look for
the optimal prompt, and the balance of yes and no examples.

D.3 Correlation With Token Frequency

We display the correlation between the average accuracy of an entity and its
relative frequency in the pre-training data in Table D.1.

Model Correlation P-value
GPT-3 -0.02 0.35
T0 0.05 0.01
T0-KG -0.01 0.45

Table D.1: Spearman correlation of the average accuracy of an entity with its
frequency in the pre-training data.
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Appendix Chapter 8

E.1 Detailed Overlap Analysis

In this section, we review the most similar pairs of questions between the training
and test for Commonsense QA 2.0, Com2sense, and 20Q (our benchmark). We use
Sentence Transformers (Reimers and Gurevych, 2019) to compute the similarity
between all pairs of questions in the training and test set.

E.1.1 Commonsense QA 2.0

The authors of Commonsense QA 2.0 used a topical split to divide the training
and test set. We list the top 15 most overlapping questions between the training
and test set in Table E.6. A quick analysis of the table reveals a number of
problematic pairs such as « an electron holds a positive charge and » is an almost
duplicate to « an electron hold a positive charge ».

E.1.2 Com2sense

Our overlap analysis of com2sense reveals three exact duplicates between the train-
ing and test set of Com2sense. A number of examples are close duplicates and
only differ in one word or punctuation. For example « if it is dark outside, opening
the blinds will not help you see » and « if it is dark outside opening the blinds will help
you see ». We list the top fifteen overlapping pairs in Table E.7.
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Figure E.1: UMAP projection of the Sentence Transformers representation of the
questions. Blue dots belong to the training set, red dots belong to the validation
set.

Figure E.2: UMAP projection of the Sentence Transformers representation of the
topics. Blue dots belong to the training set. Red dots belong to the validation set.

E.1.3 20Q

Our overlap analysis of 20Q does not reveal any overlap thanks to our strict
pre-processing pipeline. We list the top fifteen overlap pairs in Table E.5.

E.1.3.1 UMAP

Figure E.1 and E.2 provide a 2 dimension projection of the semantic of questions
and subject in 20Q.

E.2 Pre-processing

The original Twenty Questions dataset is generated by humans, and is thus ex-
tremely noisy. In this section, we expand upon Section 8.3.3 and go into the
details of our pre-processing steps. We detail our pre-processing steps and the
percentage of questions removed in Table E.1.
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Step Size (abs) Size (%)
Initial dataset 78,890 100
Low scores -12,396 -15.7
Do not use "it" -9,665 -12.3
Duplicates -2,708 -3.4
WordNet -2,312 -2.9
Clean dataset 51,809 65.7

Table E.1: Pre-processing of the original dataset. We are aggressive in our pre-
processing as we prefer a small dataset of high quality to the reverse. First, we
remove all questions with a score of 2 (the maximum is 3). We then remove all
sentences that do not use "it." Next, we use a stemmed bag-of-words represen-
tation to remove close duplicates. Finally, we remove all questions where the
answer is not in WordNet.

E.2.1 Quality Score

We start our pre-processing by removing all sentences with a score below three.
These are questions which are not answerable with yes or no, or questions which
are not playing the game of Twenty Questions. For example, questions such as
« so not an object, but tangible. is it edible » which references the previous turn, or
simple one word questions such as « mountain? »

E.2.2 Use of it

Our goal is to understand the world knowledge of language models. For some
models such as T0 or T5, it may be easier to answer the question if the topic is part
of the question, instead of having two separated parts. For example it is easier to
answer: « does a rock float » than « subject: rock, question: does it float ». To make
sure all questions are equally easy or difficult in terms of lexical information, we
only keep questions of the latter format.

E.2.3 Duplicate Questions

Some questions may be close, but not exact, duplicates. We want to avoid such
questions in the training or test set as these add very little information while
artificially inflating the size of the dataset. We use a stemmed bag-of-words
approach to detect these questions. For example, questions such as « is it animal
» and « is it an animal ».
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Train Validation Sim.
Account Accountant 0.84
Thinking Thing 0.79
Constitution Institution 0.78
Extraction Traction 0.78
Attraction Traction 0.78

Table E.2: Most similar pairs of topics between the training and validation set
using a character tri-gram method.

E.2.4 WordNet Filtering

We want to avoid having questions where the subject is not orthographically
correct. We remove all questions where the subject is not present within WordNet.
In effect, this will remove words such as trex, chldren, voiceing, or acronym words
such as potus or 49ers.

E.3 Topic Overlap Exploration

In this section, we show the list the overlapping topics according to three different
metrics.

E.3.1 N-grams

We show the five most similar pairs of topics between the training and validation
set in Table E.2.

E.3.2 WordNet

We use WordNet to compute the distance between two topics by following the
hypernym or hyponym chain. Table E.3 shows this technique’s most similar pairs
of topics.

E.3.3 Sentence Transformers

We finish our qualitative review of the topic overlap using Sentence Transformers.
Table E.4 shows the five most similar pairs of topics.
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Train Validation Sim.
Vegetation Galaxy 0.33
Purifier Pendulum 0.33
Lambskin Squirrel 0.33
Foil Steel 0.33
Repellent Menthol 0.33

Table E.3: Most similar pairs of topics between the training and validation set
using the WordNet method.

Train Validation Sim.
Costume Halloween 0.60
Chlorophyll Chrysanthemum 0.60
Housekeeper Groomsman 0.60
Bracelet Pendant 0.60
Forearm Ankle 0.60

Table E.4: Most similar pairs of topics between the training and validation set
using the Sentence Transformers method.

Test Set Training Set
would it [a granite] be of rock material? can it [a rock] be molded?
is it [a window] see through? does it [a curtain] cover a window?
is it [a sweat] produced by the human
body? does it [an exercise] involve sweating?

does it [a hyacinth] have red flowers? does it [a chrysanthemum] have a long
stem?

is it [a ring] jewlery? does it [a treasure] go on engagement
rings?

is it [a bridge] larger than a car? is it [a bumper] a bridge?
is it [a refuge] a type of campsite? is it [a campground] the mountains?
is it [an ant] bigger than a honeybee? does it [a honeybee] collect nectar?
is it [a marsupial] a kind of bear? is it [a bear] long?

does it [a hyacinth] have white flowers? does it [a chrysanthemum] have a long
stem?

is it [a pendant] jeweled? does it [a treasure] go on engagement
rings?

does it [a hyacinth] have yellow flowers? does it [a chrysanthemum] have a long
stem?

is it [a ship] larger than a whale? does it [a whale] have fins?
is it [a hurdle] made of stone or rock? can it [a rock] be molded?
is it [a fly] a bug? does it [an insect] have antennae?

Table E.5: Top fifteen most similar pairs of questions between the training and
test set of 20Q.
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Test Set Training Set
an electron holds a positive charge and an electron holds a positive charge.
happy meals almost always come with a
toy. most happy meals include a toy.

april is larger than february april is smaller than march
sunlight on the skin causes eye cancer sunlight causes almost all skin cancer

thunder sounds before lightning strikes noise of thunder is heard before the light-
ning.

the beginning of a story is part of the end a story has a beginning and an end.
is there a feminine french word for a city
hall?

in french is it true that there are feminine
and masculine words for a city hall?

europe is considered to be the most
wealthy and richest continent.

europe has the richest countries in the
world

a grapefruit is a fruit larger than a wa-
termelon? is a watermelon smaller than an apple?

tree is always part of forest trees are never part of forests
someone of the male gender cannot give
birth. an adult male cannot give birth

if you add two plus two you will always
get four.

two plus two unfortunately cannot ever
add up to anything but four.

you can return items to a store only if
you have a receipt.

an item can be returned from a store only
if it is sold by that store.

private is another way to say public private almost never means public.

a letter can be written with invisible ink. writing cannot be read if you use invisi-
ble ink.

Table E.6: Top fifteen most similar pairs of questions between the training and
test set of Commonsense QA 2.0.
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Test Set Training Set
john leaves work at 6 pm so that he is an
unlikely suspect for theft that happened
in the office at 8 pm.

john leaves work at 6 pm so that he is an
unlikely suspect for theft that happened
in the office at 8 pm.

while in a windy rainstorm, you should
always point your umbrella away from
the wind.

while in a windy rainstorm, you should
always point your umbrella away from
the wind.

while in a windy rainstorm, you should
always point your umbrella into the
wind.

while in a windy rainstorm, you should
always point your umbrella into the
wind.

since i want to improve my golf skill
quickly, i spend 2 hours on the course
every day.

since i want to improve my golf game, i
spend 2 hours on the course every day.

if it is dark outside, opening the blinds
will help you see.

if it is dark outside opening the blinds
will not help you see.

because it was halloween eve and we had
no candy, i decided to open the door and
turn the porch light on.

because it was 6pm on halloween and we
no candy, i decided to open the door and
turn the porch light on.

having to teach a night class in thirty
minutes, he should cook a three-course
dinner instead of heating a frozen meal.

having to teach a night class in thirty
minutes, he should make a three-course
dinner instead of a frozen meal.

danny smokes a lot and drinks thirty
beers per week while sarah doesn’t
smoke and doesn’t drink, sarah will
probably live longer.

danny smoke a lot and drink thirty
beer per week while sarah dont smoke
and dont drink, sarah will probably live
longer.

if it is dark outside, opening the blinds
will not help you see.

if it is dark outside opening the blinds
will not help you see.

because it was halloween eve and we had
plenty of candy, i decided to open the
door and turn the porch light on.

because it was 6pm on halloween and we
had plenty of candy, i decided to open
the door and turn the porch light on.

having to teach a night class in thirty
minutes, he should heat a frozen meal
instead of cooking a three-course dinner.

having to teach a night class in thirty
minutes, he should make a frozen meal
instead of a three-course dinner.

danny smokes a lot and drinks thirty
beers per week while sarah doesn’t
smoke and doesn’t drink, danny will
probably live longer.

danny smoke a lot and drink thirty beer
per week while sarah dont smoke and
dont drink, danny will probably live
longer.

a spoon is more suitable for eating soup
than a fork.

a spoon might be more suitable for eat-
ing soup than a fork.

it is easier to run one mile in 5 minutes
than a half mile in 10 minutes.

it is easier to run two miles in five min-
utes than it is to run one mile in ten min-
utes.

a fork is more suitable for eating soup
than a spoon.

a spoon might be more suitable for eat-
ing soup than a fork.

Table E.7: Top fifteen most similar pairs of questions between the training and
test set of Com2sense.
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