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SUPPORTED APPROACH SPACES

E. COLEBUNDERS, R. LOWEN

We dedicate this paper to the memory of our dear friend and colleague Horst Herrlich.

Abstract

In this paper we work in the category of approach spaces with contractions [14], the
objects of which are sets endowed with a numerical distance between sets and points.
Approach spaces are to be considered a simultaneous generalization of both quasi-metric
and topological spaces. Especially the fundamental notion of distance is reminiscent of the
closure operator in a topological space and of the point-to-set distance in a quasi-metric
space.

The embedding of the category of topological spaces with continuous maps and of quasi-
metric spaces with non-expansive maps is extremely nice. Every approach space has both
a quasi-metric coreflection as well as a topological coreflection. Different approach spaces
though can have the same topological as well as the same quasi-metric coreflection, in
other words, in general these coreflections do not determine the approach space.

In this paper we investigate approach spaces for which these coreflections, do determine
the approach space. We will call such spaces supported. We prove that in the setting of
compact approach spaces many examples of supported approach spaces can be found.
Thus, compact spaces that are base-regular, which is a weakening of regularity, are always
supported.

An important feature of supported approach spaces is the behaviour of contractions.
On a supported domain contractivity is characterized by the combination of continuity for
the topological coreflection and non-expansiveness for the quasi-metric coreflection. This
result implies that a supported approach space actually is the infimum of its quasi-metric
and its topological coreflection. In the course of our study we also give several more
examples of both supported and non-supported approach spaces.

Keywords: Approach space, uniform approach space, quasi-metric coreflection,
topological coreflection, contraction, closed and open expansiveness, compactness,
regularity, weak adjointness, supported, split.
Mathematics Subject Classification: 54A05, 54C05, 54C10, 54D30, 54E35, 54E40,
54E99.

1. Introduction

In this paper we will work in the category App of approach spaces with contrac-
tions [14]. The objects of App are sets (X, δ) endowed with a numerical distance
δ(x,A) between sets and points (see (1) for the exact formulation of the axioms) and
a map f : (X, δX) → (Y, δY ) is a contraction if ∀x ∈ X, ∀A ⊆ X, δY (f(x), f(A)) ≤
δX(x,A).

For many applications the context of approach spaces with contractions is quite
suitable as was recently shown in the context of probability theory [2] and [3],
hyperspaces [15], functional analysis [16] or complexity analysis [5] and [6]. A first
lax-algebraic description of approach spaces was established by Clementino and
Hofmann in [11]. The category there constructed and its isomorphic description
App became an important example in the development of monoidal topology [12].
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2 E. COLEBUNDERS, R. LOWEN

App contains Met, the category of extended metric spaces with non-expansive
maps, as well as its non-symmetric counterpart, the category qMet of extended
quasi-metric spaces with non-expansive maps, as fully embedded subcategories,
where for a (quasi-)metric d the associated approach structure is the natural dis-
tance δd(x,A) = infa∈A d(x, a). Also the category Top of topological spaces with
continuous maps is fully embedded in App where the distance δT (x,A) associated
to a topology T takes only two values 0 and ∞, depending on whether the point x
belongs to the closure of A or not.

As such approach spaces are to be considered a simultaneous generalization of
both quasi-metric and topological spaces. Especially the fundamental notion of
distance is reminiscent of the closure operator in a topological space and of the
point-to-set distance in a quasi-metric space. However, note that whereas in a
quasi-metric space the distance from a point x to a subset A is calculated from the
distances to the points of A, in an arbitrary approach space such a result does not
hold.

The embedding of Top and qMet in App is moreover extremely nice. Every
approach space (X, δ) has both a quasi-metric coreflection (X, dδ) where dδ(x, y) =
δ(x, {y}), see (30), as well as a topological coreflection (X, Tδ) with closures denoted
by cl(A) = A = {x | δ(x,A) = 0} for A ⊆ X, see (32).

Different approach spaces though can have the same topological as well as the
same quasi-metric coreflection. Hence these coreflections, in general, do not deter-
mine the approach space. However in [14] a result (3.2.15) is proved which says that
if the approach space (X, δ) is weakly adjoint [14] and A ⊆ X is relatively compact,
then for any x ∈ X we have δ(x,A) = δdδ

(x,A). As an immediate consequence,
if (X, δ) is compact and weakly adjoint the formula δ(x,A) = δdδ

(x,A) holds for
any A ⊆ X and any x ∈ X. Hence in such a space, via the above formula, the
topological and quasi-metric coreflections together do fully determine the approach
space.

In this paper we investigate this property in detail and we elucidate which types
of spaces satisfy it. We will call such a space (X, δ) supported, meaning that it
is completely determined (supported) by its quasi-metric coreflection (X, dδ) and
its topological coreflection (X, Tδ) via the above formula (see 3.1 for the formal
definition). We give several characterizations of this property and show that quasi-
metric approach spaces as well as topological approach spaces are both supported.
We prove that in the setting of compact approach spaces many examples of sup-
ported approach spaces can be found. Thus, in the presence of base-regularity (see
definition 4.3), which is a weakening of regularity [14], compact spaces are always
supported which strengthens the result on weakly adjoint compact spaces from [14]
mentioned higher up (see 4.9).

An important feature of supported approach spaces is their description of con-
tractions. On a supported domain contractivity is characterized by the combina-
tion of continuity for the topological coreflections and non-expansiveness for the
quasi-metric coreflections. We show that this result implies that a supported ap-
proach space is the infimum of its quasi-metric and its topological coreflection. We
show that in a similar way closed-expansiveness and open-expansiveness are closely
related to the respective properties in terms of the quasi-metric and topological
coreflections.

We answer the question when a given topology and quasi-metric on the same
underlying set, can generate a supported approach space. The result is applied to
construct further examples of supported spaces.
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Finally stability properties of supportedness are studied. We show that although
arbitrary products of compact base-regular approach spaces are supported, support-
edness is not stable under the taking of arbitrary products. Neither do arbitrary
subspaces preserve supportedness. We show that closed subspaces as well as co-
products do preserve supportedness. With respect to maps we prove that closed-
expansive or open-expansive surjective contractions also do preserve supportedness.

2. preliminaries

For more details on concepts and results on approach spaces we refer to [14] or
[13]. We recall terminology and basic results that will be needed in this paper.

Usually an extended quasi-pseudometric on a set X is a function q : X ×X →
[0,∞] which vanishes on the diagonal and satisfies the triangular inequality and if
q moreover satisfies symmetry then it is called an extended pseudometric. In this
paper all such q : X×X → [0,∞] are allowed to take the value∞ and both distances
between two different points can be zero. Hence, for simplicity in terminology we
drop the words “extended” and “pseudo”, so in this respect our terminology differs
from what is commonly used. However, it conforms with the terminology in [14] and
[12]. We denote by qMet the category of all quasi-metric spaces with non-expansive
maps as morphisms and by Met the full subcategory of all metric spaces.

A distance on a set X is a function

(1) δ : X × 2X → [0,∞]

with the following properties:

(D1) δ(x, {x}) = 0, ∀x ∈ X,
(D2) δ(x, ∅) = ∞, ∀x ∈ X,
(D3) δ(x,A ∪B) = min{δ(x,A), δ(x,B)}, ∀x ∈ X, ∀A,B ∈ 2X ,
(D4) δ(x,A) ≤ δ(x,A(ε)) + ε, ∀x ∈ X, ∀A ∈ 2X , ∀ε ∈ [0,∞],

with the enlargement

A(ε) = {x|δ(x,A) ≤ ε}.

A pair (X, δ) consisting of a set X endowed with a distance δ is called an approach
space. From (D4) it follows that

(2) ∀x ∈ X, ∀A,B ⊆ X : δ(x,A) ≤ δ(x,B) + sup
b∈B

δ(b, A).

Morphisms between approach spaces are called contractions. A map f : (X, δX) →
(Y, δY ) is a contraction if

(3) ∀x ∈ X, ∀A ⊆ X, δY (f(x), f(A)) ≤ δX(x,A).

The category of approach spaces and contractions is denoted by App.
An approach space X has an approach tower t = (tε)ε∈[0,∞[ where

(4) tε : 2
X → 2X : A 7→ tε(A) = A(ε)

is a pretopological closure operator. At level 0 we have a topology. The distance
can be recovered from the approach tower by

(5) δ(x,A) = inf{ε | x ∈ A(ε)},

for x ∈ X and A ⊆ X. Using suitable axioms for the approach tower and the
morphisms, the category App can be isomorphically described in terms of approach
towers.

An approach space also has an approach system which is a collection (A(x))x∈X

of ideals where

(6) A(x) = {ϕ ∈ [0,∞]X | ∀A ⊆ X : inf
y∈A

ϕ(y) ≤ δ(x,A)}.
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The distance can be recovered from this system by

(7) δ(x,A) = sup
ϕ∈A(x)

inf
y∈A

ϕ(y)

and with the right axioms for the approach system and the morphisms, the category
App can be isomorphically described in terms of approach systems.

An approach space (X, δ) has a gauge, namely the collection of quasi-metrics on
X given by

(8) G = {q | quasi-metric on X, δq ≤ δ},

with

(9) δq(x,A) = inf
z∈A

q(x, z),

whenever A ⊆ X and x ∈ X. The distance can be recovered from the gauge by

(10) δ = sup
q∈G

δq.

A subcollection D ⊆ G stable for finite suprema is called a gauge basis if δ =
supq∈D δq. Here too with the right axioms for a gauge and the morphisms, the
category App can be isomorphically described in terms of gauges.

Convergence in an approach space (X, δ) is described by means of a limit operator
on filters. For a given filter F and a point x ∈ X the value λF(x) is interpreted as
the distance that the point is away from being a limit point of the filter. If FX is
the set of all filters on X and βX the set of all ultrafilters on X, the limit operator
is a function

λ : FX → [0,∞]X .

The transition from the distance to the limit operator is described by

(11) λF(y) = sup
U∈U∈βX,F⊆U

δ(y, U),

for F ∈ FX and y ∈ X. Furthermore, the following formula holds

(12) λF = sup
F⊆U,U∈βX

λU .

Using the following characterization for a map f : (X,λX) → (Y, λY ) to be a
contraction iff

(13) λY f(F)(f(x)) ≤ λXF(x),

for every F ∈ FX and x ∈ X and with f(F) the filter generated by {f(F ) | F ∈ F},
with suitable axioms for the limit operator, the category App can be isomorphically
described in terms of limit operators. The limit operator is very useful when de-
scribing the initial lift of a source (fi : X → (Xi, λi))i∈I . The limit operator of the
initial lift is given by

(14) λF = sup
i∈I

λi(fi(F)) ◦ fi.

The adherence operator for a filter F and x ∈ X can be derived from the value
of λ on ultrafilters U ∈ β(X),

(15) αF(x) = inf
F⊆U,U∈βX

λU(x).

The adherence operator and the distance are related by

(16) αF(x) = sup
F∈F

δ(x, F ).

The tower and the limit operator are related by

(17) λF(x) ≤ ε ⇔ F → x in the pretopology tε,
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for all F ∈ FX, x ∈ X and ε ∈ [0,∞[. The tower and the adherence operator are
related by

(18) αF(x) = sup
F∈F

inf{ε ∈ R
+|x ∈ tε(F )}.

The gauge and the limit operator are related by

(19) λF(x) = sup
d∈G

inf
F∈F

sup
y∈F

d(x, y).

The gauge and the approach tower are related by

(20) G = {d quasi-metric | ∀A ⊆ X, ∀ε ≥ 0 : tε(A) ⊆ {δd(·, A) ≤ ε}}.

An approach space X is called uniform if the gauge G has a basis consisting of
metrics.

The following approach space P = ([0,∞], δP) is an initially dense object in App.
It is defined by

(21) δP(x,A) =

{

x⊖ supA A 6= ∅

∞ A = ∅,

where we use the notation x⊖ y = (x− y) ∨ 0.
An alternative approach structure on [0,∞] gives us the space PE = ([0,∞], δE)

where

(22) δE(x,A) =











0 x = ∞, A unbounded

∞ x = ∞, A bounded

infy∈A |x− y| x ∈ [0,∞[.

For an approach space (X, δ) the class Lδ of lower regular functions, is defined
by

(23) Lδ = {f : (X, δ) → ([0,∞], δP) | f contractive}.

The class is stable for taking suprema and finite infima. The function

(24) δ(·, A) : X → [0,∞],

for A ⊆ X, is a lower regular function and with θA the function which takes the
value 0 on A and ∞ elsewhere, we have

(25) δ(·, A) = l(θA)(·),

where l(θA)(·) stands for the largest lower regular function below θA, called the
lower regular hull.

The distance can be recovered from the lower regular functions by

(26) δ(x,A) = sup{ρ(x)|ρ ∈ L, ρ|A = 0},

for x ∈ X and A ⊆ X.
Using the following characterisation for a map f : (X,LX) → (Y,LY ) to be a

contraction iff

(27) ρ ◦ f ∈ LX ,

whenever ρ ∈ LY , and suitable axioms for the lower regular function class, the
category App can be isomorphically described in terms of lower regular functions.
The lower regular functions are very useful when describing the final lift of a sink
(fi : (Xi,Li) → X)i∈I . The final lift has lower regular functions

(28) L = {µ ∈ P
X | ∀i ∈ I, µ ◦ fi ∈ Li}.

The category App constitutes a framework wherein other important categories
can be fully embedded. The embedding of qMet is given in the usual way that one
defines a distance δq between points and sets in a metric space as in (9).
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The gauge of (X, δq) is given by

(29) Gδq = q ↓ .

qMet is embedded as a concretely coreflective subcategory. The concrete qMet

coreflection of a given approach space X with distance δ is given by the quasi-
metric space (X, dδ) where

(30) dδ(x, y) = δ(x, {y}),

for x, y ∈ X.
Top is embedded as a full concretely reflective and concretely coreflective subcat-

egory. The embedding of topological spaces is determined by associating with every
topological space (X, T ) (with closure of A written as clA or as A) the distance

(31) δT (x,A) =

{

0 x ∈ clA

∞ x 6∈ clA.

Every approach space (X, δ) has two natural topological spaces associated with
it, the topological coreflection, and the topological reflection. In this paper we will
only deal with the coreflection which is the topological space (X, Tδ) determined
by the closure

(32) x ∈ clA ⇔ δ(x,A) = 0 ⇔ x ∈ A(0).

Tδ coincides with the topology at level 0 of the approach tower. If (A(x))x∈X is
the approach system of the space then the neighborhood system (V(x))x∈X of the
topological coreflection is given by

(33) V(x) = {V ⊆ X | ∃ε > 0 and ϕ ∈ A(x) such that {ϕ < ε} ⊆ V }.

When (X, δ) is an approach space notions such as closure, open and closed
will always refer to the topological coreflection. For f : (X, δ) → (Y, δ′), a map
between approach spaces, continuity will always refer to the topological coreflections
of (X, δ) and (Y, δ′). The same holds for properties such as, compact, T1 or T2 when
applied to an approach space (X, δ). What is meant is that the topological space
(X, Tδ) has the respective property. Other approach properties like regularity are
not equivalent with the corresponding property of the topological coreflection, we
will recall their definitions in the sequel, when and where they are used.

3. Supported approach spaces

In this section we formally introduce the notion of an approach space being
supported. As already mentioned in the introduction, if (X, δ) is compact and
weakly adjoint the formula δ(x,A) = δdδ

(x,A) holds for any A ⊆ X and any x ∈ X
[14]. Hence in such a space the topological and quasi-metric coreflections together
do determine the approach space via the above formula.

In an arbitrary approach space however such a result does not necessarily hold,
i.e. the space need not be fully determined by its topological and quasi-metric
coreflections.

For example, let X be an infinite set equipped with the approach structure δ
with tower

tε =











discrete ε ∈ [0, 1[

T ε ∈ [1, 2[

indiscrete ε ∈ [2,∞[

where T is any T1 topology on X. Then Tδ is discrete and dδ is two-valued with
dδ(x, y) = 2 if x 6= y irrespective of which T1 topology one considers.
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Hence, this gives us an infinite collection of different approach spaces all with
the same topological and (quasi-)metric coreflections.

A supported approach space however will be completely determined by its quasi-
metric coreflection and its topological coreflection as in the following definition.

3.1. Definition. An approach space (X, δ) with quasi-metric coreflection (X, dδ)
and topological coreflection (X, Tδ) for which for any A ⊆ X and x ∈ X we have

δ(x,A) = δdδ
(x,A),

with A the closure in Tδ, will be called supported.

Remark that always

(34) δ(x,A) = δ(x,A) ≤ inf
y∈A

δ(x, {y}) = δdδ
(x,A).

There are several ways in which a supported approach space can be characterized.

3.2. Proposition. The following are equivalent:

(1) (X, δ) is supported.

(2) For any A ⊆ X and ε ≥ 0 we have A
(ε)
δ = A

(ε)

dδ
.

(3) For any filter F we have αδF = αdδ
F .

(4) For any ultrafilter F we have αδF = αdδ
F .

Proof. (1) ⇔ (2): This is clear. (1) ⇒ (3): Let F be a filter on X and x ∈ X. By
(18) we have

αdδ
F(x) = sup

F∈F
inf{ε ∈ R

+|x ∈ F
(ε)

dδ
}

= sup
F∈F

inf{ε ∈ R
+|x ∈ F

(ε)
δ }

= αδF(x).

(3) ⇔ (4): We only have to prove that (4) implies (3). Let F be a filter on X, then
for every ultrafilter F ⊆ U we have F ⊆ U and αdδ

F ≤ αdδ
U and by (15)

αdδ
F ≤ inf

F⊆U
αdδ

U = inf
F⊆U

αδU = αδF .

(3) ⇒ (1): For any A ⊆ X and x ∈ X applying (16) we have

δdδ
(x,A) = αdδ

[A](x) = αδ[A](x) = δ(x,A).

�

Next, as expected, we show that topological approach spaces and quasi-metric
approach spaces both are supported. We also show that the initially dense object P
in App, (21), is supported. Actually all these spaces are special cases of a particular
type of space which we now define. We recall that θW stands for the function which
takes the value 0 on W and ∞ elsewhere.

In the next definition we use the description of an approach space in terms of
the approach system (6).

3.3. Definition. We will call an approach space (X, δ) split if X can be written as
the disjoint union of two subsets Xt and Xm whereby

(1) for all x ∈ Xt there exists a filterbasis W(x) on X such that the collection
{θW | W ∈ W(x)} is a basis for the approach system A(x) in x.

(2) for all x ∈ Xm there exists a function ϕx : X → [0,∞] such that {ϕx} is
a basis for the approach system A(x) in x.
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If necessary, to be precise we shall say that (X, δ) is split by (W(x))x∈Xt
and

(ϕx)x∈Xm
.

The idea of this definition being that a split space consists exactly of a set of
points where the approach structure is purely topological in nature (part (1) in 3.3)
and a complementary set of points where it is purely metric in nature (part (2) in
3.3).

3.4. Example. Any topological approach space, any quasi-metric approach space
and the spaces (P, δP), (21) and (P, δE), (22) are examples of split spaces.

(1) In the case of a topological approach space we have that Xt = X and
Xm = ∅.

(2) In the case of a quasi-metric approach space we have that Xt = ∅ and
Xm = X.

(3) In the cases of (P, δP) and (P, δE) the topological part reduces to {∞} and
the quasi-metric part is [0,∞[.

3.5.Proposition. If an approach space (X, δ) is split by (W(x))x∈Xt
and (ϕx)x∈Xm

then it is supported. Moreover, W(x) is a basis for the neighborhoodsystem in
x ∈ Xt of the topological coreflection (X, Tδ), (31), and ϕx = dδ(x, ·) for x ∈ Xm,
where (X, dδ) is the quasi-metric coreflection, (30).

Proof. Let A ⊆ X and x ∈ X.
First suppose x ∈ Xt. The inequality δ(x,A) ≤ δdδ

(x,A) holds in any space
(34), hence we only need to show the other inequality. By (7) have

δ(x,A) = sup
W∈W(x)

inf
z∈A

θW (z) =

{

0 ∀W ∈ W(x) : W ∩A 6= ∅

∞ ∃W ∈ W(x) : W ∩A = ∅

Hence it follows from (32) that

δ(x,A) = 0 ⇒ x ∈ A ⇒ δdδ
(x,A) = 0

which proves that δdδ
(x,A) ≤ δ(x,A). Furthermore, if V(x) is the neighborhoodsys-

tem of the topological coreflection, then from (33) clearly W(x) ⊆ V(x) and if
V ∈ V(x) there exists ε > 0 and W ∈ W(x) such that

W = {θW < ε} ⊆ V

hence W(x) is indeed a basis for V(x).
Second, suppose that x ∈ Xm, then note by (30) that for any y ∈ X

dδ(x, y) = δ(x, {y}) = ϕx(y)

hence by (7)

δ(x,A) = δ(x,A) = inf
y∈A

ϕx(y) = inf
y∈A

dδ(x, y) = δdδ
(x,A).

�

3.6. Corollary. (1) For a topological space (X, T ) the approach space (X, δT )
as in (31) is supported.

(2) For a quasi-metric space (X, d) the approach space (X, δd) as in (9) is
supported.

(3) The approach spaces (P, δP) and (P, δE) defined in (21) and (22) are sup-
ported.

3.7. Proposition. If (X, δ) is an approach space such that the topology Tδ is dis-
crete then the approach space is quasi-metric, meaning δ = δdδ

if and only if it is
supported.
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Proof. One implication is clear from (2) in 3.6. For the other one observe that for
A ⊆ X and x ∈ X we have

δ(x,A) = δdδ
(x,A) = δdδ

(x,A).

�

Remark that a characterization as in 3.2 by the limit operator does not hold.

3.8. Example. On the real line R consider the topology T = TdE
for the Eu-

clidean metric dE, and the topological approach space (R, δT ). We know from 3.6
that (R, δT ) is supported. Consider the neighborhoodfilter VT (0) then

λδT VT (0)(0) = 0.

However for the discrete quasi-metric coreflection (X, dδT ) applying (19) we have

λdδT
VT (0)(0) = λdδT

VT (0)(0) = inf
V ∈VT (0)

sup
y∈V

dδT (0, y) = ∞.

4. Compact spaces

In this section we restrict ourselves to compact approach spaces, in the sense
that the topological coreflection is compact. We show that in the presence of
a weakening of regularity, namely base-regularity, compact spaces are supported.
This also strengthens the result on weakly adjoint compact spaces from [14].

4.1. Compactness and base-regularity. Regularity of an approach space is an
important notion in approach theory. Its role was demonstrated for instance in
[1], [8] and [9]. Its meaning in a monoidal setting was treated in [4], [12] and in
[7]. Note that regularity is not equivalent with the topological coreflection being
regular.

4.1. Definition. A space (X, δ) is called regular if

λF (ε) ≤ λF + ε

for every ε ≥ 0 and with F (ε) the filter generated by {F (ε)|F ∈ F}.

Recall that a quasi-metric approach space (X, δd) is regular if and only if the
quasi-metric d is symmetric, i.e. is a metric. In our context in particular in 4.5, a
weaker form of regularity will be sufficient.

4.2. Proposition. Let (X, δ) be an approach space. The following are equivalent:

(1) For any filter F we have λF = λF .

(2) For any ultrafilter U we have λU = λU .

Proof. We only have to prove that (2) implies (1). Let F be an arbitrary filter on
(X, δ). By proposition 1.1.4 in [14] we have that for every ultrafilter F ⊆ W there
exists an ultrafilter F ⊆ U satisfying U ⊆ W. Applying (12) it follows that

λF = sup
W∈β(X), F⊆W

λW ≤ sup
U∈β(X), F⊆U

λU = sup
U∈β(X), F⊆U

λU = λF .

�

4.3. Definition. A space which satisfies either of the equivalent conditions of the
previous proposition will be called base-regular.

It is well known that regularity is preserved by initial sources, and analogously
we have

4.4. Proposition. Base-regularity is preserved by initial sources.
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Proof. For the characterization of contractions with limit operators we refer to (14).
Let (fi : (X,λ) → (Xi, λi))i∈I be an initial source with (Xi, λi) base-regular for
every i ∈ I then we have

λF = sup
i∈I

λifi(F) ◦ fi

≤ sup
i∈I

λifi(F) ◦ fi

= sup
i∈I

λifi(F) ◦ fi

= λF .

So the initial lift is base-regular. �

4.5. Theorem. A compact base-regular space is supported.

Proof. Let (X, δ) be compact and base-regular with gauge G and let x ∈ X and
A ⊆ X. Applying 1.2.67 from [14] there exists an ultrafilter U on X containing A
such that

δ(x,A) = δ(x,A) = αδ[A](x) = λU(x)

where we used (16) for the first equality. In view of the compactness of (X, δ) there
exists y ∈ A such that U converges to y in the topological coreflection (X, Tδ). Then
we have

δdδ
(x,A) ≤ δdδ

(x, {y})

= sup
d∈G

d(x, y)

= sup
d∈G

inf
U∈U

d(x, y)

≤ sup
d∈G

inf
U∈U

sup
z∈U

d(x, z)

= λU(x)

= λU(x)

= δ(x,A),

where the equality on line 2 follows from (10) and the inequality on line 4 follows
from the fact that y ∈ U for every U ∈ U and the equality on line 5 is (19). �

In contrast to the fact that arbitrary products of supported spaces need not be
supported, as we will show in section 7, we have that products of compact base-
regular spaces are supported, as both compactness and base-regularity are preserved
under arbitrary products.

4.6. Example. Let [0, 1] be endowed with the Euclidean metric dE. The product
approach space X = [0, 1][0,1] is compact and base-regular. Hence X is supported.
The topological coreflection is the product topology and the metric coreflection is the
uniform metric.

Clearly regularity of an approach space implies base-regularity, so we have

4.7. Corollary. A compact regular approach space is supported.

Recall from [14], that a quasi-metric space (X, d) and its quasi-metric d are
called weakly adjoint if Td− ⊆ Td or equivalently if Td∗ = Td with d∗ = d∨ d−. This
concept was shown to be equivalent to d(·, x) being upper semi-continuous for each
x ∈ X in [10]. An approach space is called weakly adjoint if the gauge has a base
consisting of weakly adjoint quasi-metrics.

4.8. Theorem. A compact weakly adjoint space is base-regular.
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Proof. Suppose (X, δ) is compact and weakly adjoint and let U be an ultrafilter on
X and x ∈ X. By compactness both filters U and U are total in the sense of [17]
or [18], so we can apply 3.2.14 in [14] for the calculation of their limitfunction in
terms of the adherence set in the topological coreflection,

λδU(x) = sup
y∈adhTδ

U

dδ(x, y) = sup
y∈adhTδ

U
dδ(x, y) = λδU(x).

�

By 4.5 and 4.8 we now have

4.9. Corollary. A compact weakly adjoint approach space is supported.

4.10. Corollary. A compact uniform approach space is supported.

4.2. Examples and counterexamples. Every regular approach space is base-
regular and a base-regular approach space has a regular topological coreflection.
That the reverse implications do not hold follows from the following examples.

4.11. Examples. (1) A weakly adjoint compact base-regular approach space
that is not regular.
Let [0, 1] be endowed with the weakly adjoint quasi-metric

d(x, y) =

{

|x− y| x ≤ y

2|x− y| y ≤ x.

As a quasi-metric space it is supported. By 4.8 the approach space (X, δd)
is base-regular. Since the quasi-metric is not symmetric the approach space
(X, δd) is not regular.

(2) A compact supported approach space with a regular topological coreflection
that is neither base-regular nor weakly adjoint.
Consider X = [0, 1], let T be the usual topology on X and S the topology
defined by its neighborhoodfilters

VS(x) = VT (x)

if x 6= 0 and
VS(0) = VT (0) ∩ [G],

with X \G = {0} ∪ {1/n|n ≥ 1} and with [G] the filter generated by G.
We define an approach space (X, δ) with tower

tε =

{

T ε ∈ [0, 1[

S ε ∈ [1,∞[.

Clearly (X, δ) has a regular topological coreflection. For the filter [G],
applying (17) we have λ[G](0) ≤ 1 since [G] converges to 0 in S. Its closure

[G] = [X] does not converge to 0 in S and therefore λ[G](0) 6≤ 1. So (X, δ)
is not base-regular. Since (X, δ) is compact, by 4.8 it is not weakly adjoint.
The space is supported. To see this we only check the case where x = 0.

dδ(0, y) =











0 y = 0

∞ y 6= 0, y 6∈ G

1 y ∈ G.

For A ⊆ X and x ∈ X by (5) we now have

δ(0, A) = inf{ε|0 ∈ tε(A)} =











0 0 ∈ A

∞ 0 6∈ A & G ∩A = ∅

= 1 0 6∈ A & G ∩A 6= ∅



12 E. COLEBUNDERS, R. LOWEN

which clearly equals δdδ
(0, A).

In theorem 4.5 base-regularity cannot be replaced by the topological coreflection
being regular.

4.12. Example. A compact Hausdorff approach space with a regular topological
coreflection that is not supported.

Let X = [0, 1] and let T be the usual topology on X. An approach structure δ is
defined by its tower

tε =











T ε ∈ [0, 1[

cofinite ε ∈ [1, 2[

indiscrete ε ∈ [2,∞[.

Then dδ is only two-valued with dδ(x, y) = 2 if x 6= y. Let A = [0, 1
2 ] then for x 6∈ A

we have δdδ
(x,A) = 2 and δ(x,A) = 1, so (X, δ) is not supported.

From corollary 4.10 we know that a compact uniform approach space is sup-
ported. In this respect compactness cannot be replaced by completeness.

4.13. Example. A complete T2 uniform approach space that is not supported.
Let X = [0, 1] be equipped with the approach structure δ with tower

tε =











discrete ε ∈ [0, 1[

cofinite ε ∈ [1, 2[

indiscrete ε ∈ [2,∞[.

Then Tδ is discrete and dδ is only two-valued with dδ(x, y) = 2 if x 6= y. So the
approach space is not quasi-metric and by 3.6 (3) it is not supported.

Furthermore, an easy verification, making use of (5), shows that

δ(y,B) =











2 B finite, y 6∈ B

1 B infinite, y 6∈ B

0 y ∈ B.

Next we show that (X, δ) is uniform. Let x ∈ X,A ⊆ X, ε > 0 and ω < ∞.
Applying 3.1.7 in [14] we construct a contraction f : (X, δ) → ([0,∞], dE) satisfying
f(x) = 0 and

f |A+ ε ≥ δ(x,A) ∧ ω.

We may assume x 6∈ A.
For A infinite we have δ(x,A) = 1 and we put

f =

{

0 in x

1 elsewhere.

To see that this function is a contraction consider y ∈ X and B ⊆ X arbitrary such
that y 6∈ B then on the one hand, obviously, δdE

(f(y), f(B)) ≤ 1 and on the other
hand δ(y,B) ≥ 1. Thus always, δdE

(f(y), f(B)) ≤ δ(y,B).
For A finite we have δ(x,A) = 2 and we put

f =











0 in x

2 on A

1 elsewhere.

To see that this function is a contraction, again consider y ∈ X and B ⊆ X
arbitrary such that y 6∈ B then δdE

(f(y), f(B)) = 2 only if B ⊆ A and y = x and in
all other cases the value is less than or equal to 1. However, since A is finite, also B
is finite and then δ(y,B) = 2. Hence again, in all cases δdE

(f(y), f(B)) ≤ δ(y,B).
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By construction, both in the case that A is infinite and in the case that it is finite
the function constructed satisfies the uniformity condition mentioned higher up.

Next we show that the space is complete. Since for a filter F on (X, δ) and y ∈ X,
the limit function λF(y) has values in {0, 1, 2} the property of being a Cauchy filter,
meaning infy∈X λF(y) = 0, implies that the filter converges, in the sense that there
exists y ∈ X with λF(y) = 0.

5. Contractions in supported approach spaces

In this section an important feature of supported approach spaces will be made
clear. We show that on a supported domain contractivity is characterized by con-
tinuity for the topological coreflections and non-expansiveness of the quasi-metric
coreflections. This result implies that a supported approach space is the infimum of
its quasi-metric and its topological coreflection. From the characterization of con-
tractivity on a supported space, new examples of contractive maps emerge, leading
to a characterization of uniform approach spaces. We show that in a similar way
closed-expansiveness and open-expansiveness are closely related to the respective
property in terms of the quasi-metric and topological coreflections.

5.1. A characterization of contractivity.

5.1. Theorem. Let (X, δ) be supported, then the following properties are equivalent:

(1) f : (X, δ) → (Y, δ′) is a contraction.

(2) For the topological and quasi-metric coreflections

(i) f : (X, Tδ) → (Y, Tδ′) is continuous
(ii) f : (X, dδ) → (Y, dδ′) is non-expansive.

Proof. That (1) implies (2) always holds.
To prove that (2) implies (1), let x ∈ X and A ⊆ X. We have

δ′(f(x), f(A)) = δ′(f(x), f(A))

≤ δ′(f(x), f(A))

≤ δdδ′
(f(x), f(A))

≤ δdδ
(x,A)

= δ(x,A),

where the first inequality uses continuity, the second non-expansiveness and the
last equality uses the fact that the domain is supported. �

That even in uniform approach spaces this characterisation of contractions is not
satisfied follows from our example 4.13

5.2. Example. Take the uniform approach space (X, δ) in 4.13 of which we already
know that it is not supported. Let f : (X, δ) → ([0, 2], δdE

) be the function defined
by f(x) = 2x.
The function f : (X, dδ) → ([0, 2], dE) is non-expansive and f : (X, Tδ) → ([0, 2], TdE

)
is continuous. However

δdE
(f(0), f([

2

3
, 1])) =

4

3
6≤ 1 = δ(0, [

2

3
, 1])

So f is not contractive.

5.3. Corollary. Using the notations in (23), when (X, δ) is supported we have

Lδ = Ldδ
∩ LTδ

and by (28) this means that (X, δ) is the infimum of the approach spaces (X, δdδ
)

and (X, δTδ
).
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Proof. By definition we have µ ∈ Ldδ
if and only if µ : (X, dδ) → (P, dP) is non-

expansive and µ ∈ LTδ
if and only if µ : (X, Tδ) → (P, TP) is continuous. The rest

follows from (5.1). �

In order to obtain a characterization of supportedness in terms of the lower
regular function class, we prove the following preliminary result.

5.4. Proposition. Let X be a set endowed with a topology T and a quasi-metric
d. For a T -closed subset A the following are equivalent:

(1) δd(·, A) ∈ LT .

(2) Aε
d is T -closed, for all ε ≥ 0.

Proof. It is sufficient to observe that for A a T -closed subset and ε ≥ 0 we have
[0, ε] is closed in TP and

Aε
d = (δd(·, A))

−1[0, ε].

�

Next we give a new characterization of supportedness.

5.5. Theorem. For an approach space (X, δ) with lower regular function class Lδ,
topological coreflection (X, Tδ) and quasi-metric coreflection (X, dδ) the following
are equivalent

(1) (X, δ) is supported.

(2) Lδ = Ldδ
∩ LTδ

and δdδ
(·, A) ∈ LTδ

for every Tδ-closed subset A.

(3) Lδ = Ldδ
∩LTδ

and Aε
dδ

is Tδ-closed for every Tδ-closed subset A and for
every ε ≥ 0.

Proof. That (2) and (3) are equivalent follows from 5.4.
Assume (X, δ) is supported then by 5.3 we have Lδ = Ldδ

∩ LTδ
.

Next let A be a Tδ-closed subset. Since δdδ
(·, A) = δ(·, A) and δ(·, A) ∈ Lδ by

(24), we have δdδ
(·, A) ∈ LTδ

.
Assume that A is a Tδ-closed subset, Lδ = Ldδ

∩ LTδ
and δdδ

(·, A) ∈ LTδ
.

Applying equation (2) to the quasi-metric dδ we have that δdδ
(·, A) ∈ Ldδ

. It follows
that δdδ

(·, A) ∈ Lδ. Clearly δdδ
(·, A) ≤ θA(·). By (25) we have

δdδ
(·, A) ≤ l(θA)(·) = δ(·, A).

Since the other inequality is always true, we can conclude that

δdδ
(·, A) = δ(·, A),

which in view of the Tδ-closedness of A proves supportedness. �

5.2. A characterization of uniform approach spaces. We use the notation ẋ
for the ultrafilter generated by {x}.

5.6. Proposition. For an approach space (X, δ) the following conditions are equiv-
alent:

(1) The quasi-metric coreflection of (X, δ) is symmetric

(2) λẋ(ε) ≤ λẋ+ ε holds for all x ∈ X and ε ≥ 0.
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Proof. (1)⇒ (2) For all x, y we have

λẋ(ε)(y) = sup
d∈G

inf
F∈ẋ(ε)

sup
z∈F

d(y, z)

= sup
z∈{x}(ε)

sup
d∈G

d(y, z)

= sup{dδ(y, z)|dδ(z, x) ≤ ε}

≤ {dδ(y, x) + dδ(x, z)|dδ(z, x) ≤ ε}

≤ dδ(y, x) + ε

= λẋ(y) + ε,

where the first equality applies (19), the third equality applies (10) and the last
equality applies (11).

(2) ⇒ (1) Since λẋ(ε)(x) ≤ ε holds for any x ∈ X and ε ≥ 0, we have

sup
z∈{x}(ε)

dδ(x, z) ≤ ε

and hence dδ(z, x) ≤ ε implies dδ(x, z) ≤ ε for any ε, x and z and thus dδ(x, z) =
dδ(z, x). �

As an application of Theorem 5.1 we have the following result.

5.7. Proposition. Suppose (X, δ) is supported, weakly adjoint and assume dδ is
symmetric. If H is a base of the gauge consisting of weakly adjoint quasi-metrics
and A ⊆ X then the function

δd(·, A) : (X, δ) → ([0,∞], δdE
)

is contractive for every d ∈ H.

Proof. Let d ∈ H and d∗ = d ∨ d−1. For x, y ∈ X and A ⊆ X by (2) we have

δd(x,A)− δd(y,A) ≤ d(x, y) ≤ d∗(x, y) ≤ dδ(x, y)

which implies

(35) |δd(x,A)− δd(y,A)| ≤ d∗(x, y) ≤ dδ(x, y).

This means that δd(·, A) : (X, d∗) → ([0,∞], dE) is non-expansive and hence is
continuous as a function δd(·, A) : (X, Td∗) → ([0,∞], TdE

). Since we have Td∗ =
Td ≤ Tδ we conclude that

δd(·, A) : (X, Tδ) → ([0,∞], TdE
)

is continuous. By (35) we also have that

δd(·, A) : (X, dδ) → ([0,∞], dE)

is non-expansive. From Theorem 5.1 the conclusion follows. �

5.8. Corollary. Under the same assumptions as in 5.7, for a fixed point x ∈ X we
have that

d(·, x) : (X, δ) → ([0,∞], δdE
)

is contractive for every d ∈ H.

5.9. Theorem. For supported approach spaces the following are equivalent:

(1) (X, δ) is a uniform approach space.

(2) (X, δ) is weakly adjoint and has a symmetric quasi-metric coreflection.
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Proof. That (1) implies (2) is clear. To show the other implication, let (X, δ) be
supported weakly adjoint and assume dδ is symmetric. Let H be a base of the
gauge consisting of weakly adjoint quasi-metrics. To show that (X, δ) is uniform,
fix A ⊆ X, x ∈ X, ε > 0 and ω < ∞. Choose d ∈ H satisfying

δd(x,A) + ε ≥ δ(x,A) ∧ ω.

Now as in 3.1.7 in [14] we consider f(·) = d(·, x) : (X, δ) → ([0,∞], δdE
) which is

contractive by 5.8. Then this function satisfies f(x) = 0 and the inequality

f |A+ ε ≥ δd(x,A) + ε ≥ δ(x,A) ∧ ω.

�

5.3. Closed and open expansiveness. Next we study closed-expansive maps in
terms of the associated maps between the topological and quasi-metric coreflections.
Recall from [14] that a function f : (X, δ) → (Y, δ′) is closed expansive if for all
A ⊆ X and y ∈ Y

(36) inf
x∈f−1(y)

δ(x,A) ≤ δ′(y, f(A)).

Equivalently this means that for all A ⊆ X and for all α ∈ R
+

(37) (f(A))
(α)
δ′ ⊆

⋂

ε>0

f(A
(α+ε)
δ ).

5.10. Proposition. Let (X, δ) and (Y, δ′) be supported approach spaces, then the
condition (i) + (ii)

(i) f : (X, Tδ) → (Y, Tδ′) is closed

(ii) f : (X, dδ) → (Y, dδ′) is closed expansive

implies that f : (X, δ) → (Y, δ′) is closed expansive

Proof. Let A ⊆ X and α ≥ 0.

(f(A))
(α)
δ′ = (f(A)

T ′

)
(α)
dδ′

⊆ (f(A
T
))

(α)
dδ′

⊆
⋂

ε>0

f((A
T
)
(α+ε)
dδ

)

⊆
⋂

ε>0

f((A)
(α+ε)
δ )

where the first line uses supportedness of (X, δ′), the second line uses (i), the third
line (ii) and the last line supportedness of (X, δ). �

5.11. Proposition. Let (X, δ) and (Y, δ′) be supported approach spaces and assume
(X, Tδ) is T1, if f : (X, δ) → (Y, δ′) is closed expansive then for the quasi-metric
coreflections f : (X, dδ) → (Y, dδ′) is closed expansive.

Proof. Let x, y ∈ X then for A = {x}, by supportedness of (X, δ) and (Y, δ′) we
have

inf
z∈f−1(y)

δdδ
(z, {x}) ≤ δdδ′

(y, {f(x)}).

Since (X, T ) is T1 it follows that

inf
z∈f−1(y)

dδ(z, x) ≤ δdδ′
(y, {f(x)}) = dδ′(y, f(x)),

and by (9) (ii) follows. �
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That closed expansiveness of f : (X, δ) → (Y, δ′) does not imply closedness of
f : (X, Tδ) → (Y, Tδ′) follows from the example 2.4.11 in [14]

5.12. Example. Consider the projection R
2 → R, with domain and codomain en-

dowed with the Euclidean metrics. Then the projection is closed expansive, but for
the Euclidean topologies it is not a closed map.

Next we study open-expansive maps in terms of the associated maps between
the topological and quasi-metric coreflections. Recall from [14] that a function
f : (X, δ) → (Y, δ′) is open expansive if for all B ⊆ Y and x ∈ X

(38) δ(x, f−1(B)) ≤ δ′(f(x), B).

Equivalently this means that for all B ⊆ Y and for all ε ∈ R
+

(39) f−1(B
(ε)
δ′ ) ⊆ (f−1(B))

(ε)
δ .

5.13. Proposition. Let (X, δ) and (Y, δ′) be supported approach spaces and assume
(Y, Tδ′) is T1 and f−1(y) is closed in (X, Tδ) for every y ∈ Y then the following
conditions are equivalent:

(1) f : (X, δ) → (Y, δ′) is open expansive.

(2) For the topological and quasi-metric coreflections

(i) f : (X, Tδ) → (Y, Tδ′) is open

(ii) f : (X, dδ) → (Y, dδ′) is open expansive.

Proof. (2) ⇒ (1): Let B ⊆ Y and ε ≥ 0, then we have

f−1(B
(ε)
δ′ ) = f−1((B)

(ε)
dδ′

)

⊆ (f−1(B))
(ε)
dδ

⊆ (f−1(B))
(ε)
dδ

= (f−1(B))
(ε)
δ

where on the first line we use supportedness of (X, δ′), on the second line the
open expansiveness of f : (X, dδ) → (Y, dδ′), on the third line the openness of
f : (X, Tδ) → (Y, Tδ′) and on the last line the supportedness of (X, δ).

(1) ⇒ (2): We first prove (i). Let B ⊆ Y arbitrary. We apply f−1(B
(ε)
δ′ ) ⊆

(f−1(B))
(ε)
δ to the case ε = 0 and obtain

f−1(B
Tδ′ ) ⊆ f−1(B)

Tδ

.

This means f : (X, Tδ) → (Y, Tδ′) is open.
To prove (ii), let y ∈ Y then for B = {y} we have

inf
z∈f−1(y)

dδ(x, z) = δdδ
(x, f−1(y))

= δdδ
(x, f−1(y))

= δ(x, f−1(y))

≤ δ′(f(x), {y})

= δdδ′
(f(x), {y})

= δdδ′
(f(x), {y})

= dδ′(f(x), y)

where on the third line we use supportedness of (X, δ), on the fourth line the open
expansiveness of f : (X, Tδ) → (Y, Tδ′) and on the fifth line the supportedness of
(X, δ′). Finally by (9) (ii) follows. �
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6. construction of supported approach spaces

An obvious question is whether, given a topology and a quasi-metric on the
same set, they can generate a supported approach space. In this section, under a
certain condition on the topology and the quasi-metric, we answer this question
positively. The supported approach space we obtain is the infimum in App of
the given topology and quasi-metric. We apply the results to construct several
supported approach spaces.

6.1. Theorem. Let X be a set with topology T and quasi-metric d. Define

(40) δ : X × 2X → P : (x,A) 7→ δd(x,A)

where the overline stands for closure in T . Then the following are equivalent:

(1) (X, δ) is a supported approach space with dδ ≤ d and Tδ ⊆ T .

(2) For any T -closed set A and any ε ≥ 0 the set A
(ε)
d is T -closed.

Proof. (2) ⇒ (1) It follows at once from the definition that (D1), (D2) and (D3)
from (1) are fulfilled. In order to verify (D4), first note that for any A and ε ≥ 0

we have A
(ε)
δ = A

(ε)

d . It then follows that for any A and ε ≥ 0

δ(x,A) = δd(x,A)

≤ δd(x,A
(ε)

d ) + ε

= δd(x,A
(ε)

d ) + ε

= δ(x,A
(ε)

d ) + ε

= δ(x,A
(ε)
δ ) + ε

where the second line applies (D4) to (X, δd), the third line uses the assumption
(2) and the fourth line is the definition of δ. It follows that δ is indeed a distance.
To see that dδ ≤ d, for any x, y apply (30), then

dδ(x, y) = δ(x, {y}) = δd(x, {y}) ≤ d(x, y).

In order to show that Tδ ⊆ T first note that

δ(x,A) = δd(x,A) = δd(x,A) = δ(x,A)

and hence
x ∈ A ⇒ δ(x,A) = 0 ⇒ δ(x,A) = 0 ⇔ x ∈ clTδ

A.

Finally we show that (X, δ) is supported. This follows from

δdδ
(x, clTδ

A) ≤ δdδ
(x,A) ≤ δd(x,A) = δ(x,A).

Since the other inequality always holds we are done.
(1) ⇒ (2) Assume (X, δ) defined by (40) is a supported approach space with

dδ ≤ d and Tδ ⊆ T . For any A and ε ≥ 0, A
(ε)
δ is T -closed as

A
(ε)
δ = δ−1(·, A)[0, ε]

and δ(·, A) ∈ Lδ by (24), which implies δ(·, A) ∈ LTδ
⊆ LT . From (40) it follows

that A
(ε)
δ = A

(ε)

d and consequently if A is T -closed also A
(ε)
d is T -closed.

�

6.2. Proposition. Let X be a set with topology T and quasi-metric d and assume

that for any T -closed set A and any ε ≥ 0 the set A
(ε)
d is T -closed. Let (X, δ) be

defined as in 6.1. Then we have:

(1) If T is a T1 topological space, then dδ = d.
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(2) If T ⊆ Td, then Tδ = T .

Proof. First assume T is T1. For any x, y we have

dδ(x, y) = δ(x, {y}) = δd(x, {y}) = δd(x, {y}) = d(x, y),

which proves (1). Next assume T ⊆ Td. For any x and A we apply (31) and have

x ∈ clTδ
A ⇔ δ(x,A) = 0

⇔ δd(x,A) = 0

⇔ x ∈ clTd
A

⇒ x ∈ clT A

⇒ x ∈ A,

which proves T ⊆ Tδ. Since the other inclusion was shown in 6.1 the equality
holds. �

6.3. Theorem. Let X be a set with topology T and quasi-metric d and assume that

for any T -closed set A and any ε ≥ 0 the set A
(ε)
d is T -closed. Then the approach

space defined in 6.1 by

δ(x,A) = δd(x,A)

for x ∈ X, A ⊆ X and A the closure in T , is the infimum of (X, δd) and (X, δT ),
which by (28) means that

Lδ = Ld ∩ LT .

Proof. First observe that L = Ld∩LT is stable for taking arbitrary suprema, finite
infima and translations since both Ld and LT are so. Hence L satisfies the axioms
of a lower regular function class [14]. Let (X, δ′) be the associated approach space
described by (26).

We claim that

(41) Tδ′ ⊆ T .

In order to see this observe that by (26)

x ∈ A ⇒ µ(x) = 0, ∀µ ∈ LT with µ|A = 0

⇒ µ(x) = 0, ∀µ ∈ L with µ|A = 0

⇔ δ′(x,A) = 0

⇔ x ∈ clTδ′
A.

Next we prove that (X, δ) and (X, δ′) coincide. Let A ⊆ X and consider the
function δd(·, A). By 5.4 we have δd(·, A) ∈ LT . Moreover by (2) we also have
δd(·, A) ∈ Ld, and hence δd(·, A) ∈ L = Lδ′ . Since the function δd(·, A) is 0 on A,
for x ∈ X we have

δ′(x,A) = sup{µ(x)|µ ∈ Lδ′ , µ|A = 0} ≥ δd(x,A).

For the other inequality observe that by (41) and applying L ⊆ Ld

δ′(x,A) = δ′(x, clTδ′
A)

≤ δ′(x,A)

= sup{µ(x)|µ ∈ L, µ|A = 0}

≤ sup{µ(x)|µ ∈ Ld, µ|A = 0}

= δd(x,A).

Finally we can conclude that δ′(x,A) = δ(x,A). �
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Next we construct several supported approach spaces on the basis of Theorem
6.1 and Proposition 6.2.

6.4. Examples. (1) With regard to proposition 6.2, we give an example show-
ing that without the T1 property, dδ need not be equal to d.
Let X = [0,∞], d = dE and let T be the right order topology. Clearly

T ⊆ Td. For A a T -closed set, i.e. [0, a], {0} or [0,∞] the set A
(ε)
dE

has the

form [0, a+ ε], [0, ε], [0,∞] respectively and hence is T -closed.
Consequently (X, δ) defined by

δ(x,A) = δdE
(x,A)

is a supported approach space with Tδ = T and dδ ≤ d. However since

dδ(x, y) =

{

0 x ≤ y

dE(x, y) y < x

= x⊖ y

we clearly have dδ 6= dE.
(2) Let X = R, d = dE and let T be the topology of compact complements.

Clearly T ⊆ Td. For A a T -closed set, i.e. a compact set, the set A
(ε)
dE

is

T -closed. Consequently (X, δ) defined by

δ(x,A) := δdE
(x,A) =

{

δdE
(x,R) = 0 A unbounded

δdE
(x, clTdE

A) A bounded

is a supported approach space with Tδ = T and dδ = dE.
(3) Let X = [0,∞[, with the usual topology T and d = q with

q(x, y) =

{

y − x x ≤ y

∞ elsewhere

inducing the Sorgenfrey topology Tq. Clearly T ⊆ Tq. Let A be T -closed.

In order to see that A
(ε)
q is T -closed, first observe that the set A

( ε
2 )

dE
is T -

closed. Then apply a translation over ε
2 to obtain the set A

(ε)
q which hence

is T -closed. Consequently (X, δ) defined by

δ(x,A) = δq(x,A) =

{

infa∈A,a≤x x− a ∃a ∈ A, a ≤ x

∞ ∀a ∈ A, x < a,

is a supported approach space with Tδ = T and dδ = q.

7. Stability properties

In this section we study stability properties of supportedness. We show that al-
though arbitrary products of compact base-regular approach spaces are supported,
supportedness is not stable under taking arbitrary products. Neither do arbitrary
subspaces preserve supportedness. We show that closed subspaces as well as co-
products do preserve supportedness. With respect to maps we prove that closed-
expansive or open-expansive surjective contractions are preserving supportedness.

7.1. Proposition. Supportedness is preserved by taking closed subspaces.

Proof. Let (X, δ) be supported, Y ⊆ X with the subspace distance δY . Then TδY
is the trace of Tδ and dδY is the trace of dδ. Assume Y is closed in the topological
coreflection (X, Tδ). For a subset A ⊆ Y and y ∈ Y we have

δY (y,A) = δ(y,A) = δdδ
(y,A

X
) = δdδY

(y,A
Y
),
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with A
X

the closure in Tδ and A
Y
the closure in TδY which are equal in view of the

closedness of Y . �

Remark that an arbitrary subspace of a supported approach space need not
be supported. This follows from the fact that an arbitrary T2 uniform approach
space, which by 4.2 need not be supported, can be embedded into its Čech-Stone
compactification, which is uniform and compact and hence supported.

In order to deal with arbitrary products, from the proof of 3.1.5 in [14] we recall
that for an arbitrary uniform approach space (X, δ) with symmetric base H for the
gauge, the diagonal map is an embedding

Ψ : (X, δ) → (XH,
∏

d∈H

δd) : x 7→ (xd = x)d∈H.

7.2. Proposition. For the T2 uniform approach space (X, δ) of example 4.13 the
embedding Ψ is closed.

Proof. Let G be the gauge of (X, δ) andD the gauge basis consisting of all symmetric
d ∈ G. We show that the Euclidean metric dE belongs to D by applying (20).
Let A ⊆ X and ε ≥ 0. Since {δdE

(·, A) ≤ 1} = X and t0(A) = A, in all cases of A
and ε we have

tε(A) ⊆ {δdE
(·, A) ≤ ε}.

Let
H = {d ∨ dE | d ∈ D}.

Since H is closed under finite infima and satisfies δ = supd∈D δd∨dE
, the collection

H is a gauge basis for G consisting of separated metrics.
Next we consider the embedding

Ψ : (X, δ) → (XH,
∏

d∈D

δd∨dE
) : x 7→ (xd = x)d∈D

onto the diagonal ∆ and show that it is closed. Let z = (zd∨dE
)d∈D and assume

z 6∈ ∆. Let d′, d′′ ∈ D such that zd′∨dE
6= zd′′∨dE

. In (X, dE) we choose ε > 0 such
that

BdE
(zd′∨dE

, ε) ∩BdE
(zd′′∨dE

, ε) = ∅.

Then also
Bd′∨dE

(zd′∨dE
, ε) ∩Bd′′∨dE

(zd′′∨dE
, ε) = ∅.

Finally the open neighborhood
∏

d∈D Vd∨dE
of z with

Vd∨dE
=











Bd′∨dE
(zd′∨dE

, ε) d = d′

Bd′′∨dE
(zd′′∨dE

, ε) d = d′′

X d 6= d′, d 6= d′′

is disjoint from ∆.
�

7.3. Proposition. Supportedness is not preserved by arbitrary products.

Proof. Take the T2 uniform approach space (X, δ) of example 4.13. By 7.2 it is a
closed subspace of the product

(XH,
∏

d∈D

δd∨dE
)

with all factors (X, δd∨dE
) metric and hence supported. If the product would be

supported then by 7.1 also (X, δ) would be supported. This contradicts the obser-
vation in 4.13.

�
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7.4. Proposition. Coproducts preserve supportedness.

Proof. Let (Xi, δi) be approach spaces indexed by i ∈ I. Let

X =
∐

i∈I

Xi × {i}

endowed with the coproduct approach structure given by

δ((x, i), A) = δi(x,A ∩ (Xi × {i})),

for A ⊆ X where we use the same notation for δi considered on Xi and on Xi×{i}.
For the quasi-metric coreflection we have with (x, i) ∈ X and (y, j) ∈ X

dδ((x, i), (y, j)) = δ((x, i), {(y, j)}) =

{

∞ i 6= j

dδi(x, y) i = j.

For the topological coreflection (X, Tδ) and A ⊆ X we have

(x, i) ∈ clTδ
(A) ⇔ x ∈ clTδi

(A ∩ (Xi × {i})).

Now suppose every (Xi, δi) is supported. Then for (x, i) ∈ X we have

δ((x, i), A) = δi(x,A ∩ (Xi × {i}))

= δdδi
(x, clTδi

(A ∩ (Xi × {i}))

= δdδ
((x, i), clTδ

(A)).

�

7.5. Proposition. If f : (X, δ) → (Y, δ′) is a closed expansive, contractive surjec-
tion, then it is a quotient.

Proof. Suppose h : (Y, δ′) → (Z, σ) is a function and h◦f is contractive. Let y ∈ Y
and B ⊆ Y. With A = f−1(B) and x ∈ f−1(y) we have

σ(h(y), h(B)) = σ(h(f(x)), h(f(A))) ≤ δ(x,A),

hence using (36)

σ(h(y), h(B)) ≤ inf
x∈f−1(y)

δ(x,A) ≤ δ′(y, f(A)) = δ′(y,B).

�

7.6. Proposition. If f : (X, δ) → (Y, δ′) is a closed expansive, contractive surjec-
tion and (X, δ) is supported then also (Y, δ′) is supported.

Proof. Let y ∈ Y and B ⊆ Y a closed set in (Y, Tδ′), then for x ∈ f−1(y) and the
closed set A = f−1(B), applying non-expansiveness of f : (X, dδ) → (Y, dδ′) and
supportedness of (X, δ), see 5.11, we have

δdδ′
(y,B) = δdδ′

(f(x), f(A)) ≤ δdδ
(x,A) = δ(x,A),

and hence using (36)

δdδ′
(y,B) ≤ inf

x∈f−1(y)

δdδ
(x,A) = inf

x∈f−1(y)

δ(x,A) ≤ δ′(y,B).

Since the other inequality is always valid we are done. �

7.7. Proposition. If f : (X, δ) → (Y, δ′) is an open expansive, contractive surjec-
tion, then it is a quotient.
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Proof. Suppose h : (Y, δ′) → (Z, σ) is a function and h ◦ f is contractive. For
y = f(x) and B ⊆ Y applying (38) we have

σ(h(y), h(B)) = σ(h(f(x)), hf(f−1(B))) ≤ δ(x, f−1(B))

≤ δ′(f(x), B) = δ′(y,B)

�

7.8. Proposition. If f : (X, δ) → (Y, δ′) is a open expansive, contractive surjection
and (X, δ) is supported then also (Y, δ′) is supported.

Proof. Let y ∈ Y and B ⊆ Y a closed set in (Y, Tδ′), then for x ∈ f−1(y) we have

δdδ′
(f(x), B) ≤ δdδ

(x, f−1(B)) = δ(x, f−1(B)) ≤ δ′(f(x), B) ≤ δdδ′
(f(x), B),

where the first inequality applies non-expansiveness of f : (X, dδ) → (Y, dδ′), the
next equality follows from the supportedness of (X, δ), the next inequality from the
open expansiveness of f : (X, δ) → (Y, δ′) (38) and the last inequality is always
true. Hence we have

δdδ′
(y,B) = δ′(y,B)

for all B closed and hence (Y, δ′) is supported. �
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